
Opleiding Informatica

Usability of VR in the construction

of category theoretical diagrams

Mattias Tuk

Supervisors:
Henning Basold & Marcello Bonsangue

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 15/03/2023

www.liacs.leidenuniv.nl

Abstract

In this thesis, the question “Is it possible to provide a VR environment for category theoretical
diagrams, which enhances the collaborative work of scientists that work with such diagrams
according to a set of use cases?” is answered. This is done by creating such a VR environment,
and designing a usability study that can be used to review its usability.

Contents

1 Introduction 1
1.1 Using tikz to draw category theory diagrams . 1
1.2 Quiver . 2
1.3 Using VR to draw category theory diagrams . 3
1.4 Overview . 4

2 The application 4
2.1 Instructions . 4

2.1.1 Headset and controllers . 4
2.1.2 Moving through the environment . 4
2.1.3 Drawing nodes and arrows . 4
2.1.4 Moving and deleting nodes . 6
2.1.5 Drawing more precisely . 6
2.1.6 Rotating the diagram . 7
2.1.7 Labeling the nodes and arrows . 7
2.1.8 Taking a picture . 11
2.1.9 Using the menu . 11

2.2 Software design . 11
2.2.1 Engine . 11
2.2.2 Movement and camera control . 13
2.2.3 Placing nodes and arrows . 13
2.2.4 Moving and deleting nodes . 13
2.2.5 Rounding the angles . 13
2.2.6 Moving and rotating the diagram . 14
2.2.7 Adding labels . 14
2.2.8 Converting the diagram to LaTeX code . 14
2.2.9 Settings . 15

3 Usability studies 15
3.1 Reasons for doing usability studies . 15
3.2 Meaning of usability . 15

3.2.1 The problem with defining usability . 15
3.2.2 A sufficient definition of usability . 16
3.2.3 Defining usability problems . 17

3.3 Measuring usability . 18

3.3.1 System Usability scale . 18
3.3.2 NASA task load index . 19
3.3.3 Net Promoter Score . 20
3.3.4 Single Ease Question . 22
3.3.5 Task completion rate . 22
3.3.6 Time to task completion . 22
3.3.7 Error rate . 22

3.4 Priority scores . 23
3.5 Think-aloud studies . 23
3.6 Conduct study at home versus in lab . 24
3.7 Moderated versus unmoderated study . 24
3.8 Sample sizes . 24

3.8.1 Sample sizes for finding usability problems 24
3.8.2 For measuring usability . 25

4 The usability study 25
4.1 The chosen definition of usability . 25
4.2 How the study will be conducted . 25
4.3 The procedure . 26
4.4 Instructions . 27

4.4.1 Test group . 27
4.4.2 Control group . 27

5 Conclusion 28

References 31

1 Introduction

1.1 Using tikz to draw category theory diagrams

In category theory, diagrams like these are used:

0
A0

0
A1

B0

B1

A0
0

A0
1

B 0
0

B 0
1

0

0

Figure 1: An example of a diagram

Scientists often want to draw these diagrams in LaTeX. To do this, they can use commands from
the \tikz" package, and the tikz library \arrows". Below is the example code of a diagram drawn
with tikz (the diagram in �gure 1):

nbeginf t i k z p i c t u r e g[= > ,> =s tea l t h ' , shor ten >=1pt , auto , node d i s tance=3cm
, th ick , main node / . s t y l e=f c i r c l e , drawg]

nnode [main node] at (10 ,1 .475782) (0)f 0g;
nnode [main node] at (7 .346128 ,1 .867354) (1)f $A f 0g$g;
nnode [main node] at (8 .429331 ,0) (2)f 0g;
nnode [main node] at (5 .775269 ,0 .3900079) (3)f $A f 1g$g;
nnode [main node] at (4 .693215 ,2 .25727) (4)f $B f 0g$g;
nnode [main node] at (3 .121275 ,0 .7803407) (5)f $B f 1g$g;
nnode [main node] at (6 .874884 ,4 .588971) (6)f $A ' f 0g$g;
nnode [main node] at (5 .303257 ,3 .1107) (7)f $A ' f 1g$g;
nnode [main node] at (4 .219888 ,4 .977129) (8)f $B ' f 0g$g;
nnode [main node] at (2 .649264 ,3 .500662) (9)f $B ' f 1g$g;
nnode [main node] at (1 .566133 ,5 .367168) (10)f 0g;
nnode [main node] at (0 ,3 .88991) (11)f 0g;

npath [every node / . s t y l e=f fon t= ns f f a m i l y nsmal l g]
(0)
edge node fg (1)
(1)

1

edge node fg (4)
edge node fg (3)
(2)
edge node fg (3)
(3)
edge node fg (5)
(4)
edge node fg (5)
(5)
(6)
edge node fg (1)
edge node fg (7)
edge node fg (8)
(7)
edge node fg (3)
edge node fg (9)
(8)
edge node fg (4)
edge node fg (9)
edge node fg (10)
(9)
edge node fg (5)
edge node fg (11)
(10)
(11) ;
nendf t i k z p i c t u r e g

As shown above, the code starts withnbegin f tikzpicture g, and ends withnendf tikzpicture g.
Within those lines, nodes are made usingnnode[main node]. Positions are de�ned explicitly and
the nodes get a number and a label to be referred by in the future. After the nodes are declared,
edges are made. This starts with the linenpath[every node/.style= f font= nsffamily nsmall g] .
Nodes are mentioned using the number from before. Between the nodes,edge node fg is written.
Inside the fg , a label can be written.

It is di�cult to write this code by hand, without exactly knowing what the end result will
look like. It is important that this problem is solved, because it would make the work of scientists a
lot easier if they can draw these diagrams instead of having to use code.

1.2 Quiver

A solution to the problem described in subsection 1.1 already exists: q.uiver.app. [Varkor et al., nd]
On Quiver, users can draw graphs, and export them to LaTeX code. The problem with Quiver, is
that it is only in 2D. Drawing a picture like �gure 1 would be di�cult in a 2D application. It is
possible, but arrows would cross above each other, and it would be di�cult to place the nodes in a
way that is easy to interpret.

2

Figure 2: A screenshot from q.uiver.app[Varkor et al., nd]

1.3 Using VR to draw category theory diagrams

In this thesis, a solution to this problem is suggested. The objective is to �nd a way to draw
diagrams in 3D. This can be done by making a digital 3D environment in which a user could
draw diagrams. There are multiple ways in which a user could control such an environment: using
a mouse, using a tablet etc. The problem with these methods, is that they operate on a 2D
plane. Of course depth could still be added. For example by enabling the user to move forward
and backward using the keyboard. However, there is a better solution: Virtual Reality (VR) controls.

Most modern VR headsets are controlled using two controllers, which are held by and moved
with the user's hands. The advantage of controlling the environment this way, is that the user has
control over the environment from two di�erent positions, which they can change intuitively in
any direction in the 3D space. The control is highly intuitive, because it feels like using real-life
hands. Some headsets even allow using only hands to control VR applications, without the need for
controllers.

Another advantage of using VR, is that the user intuitively and easily controls the camera with
their head. Besides that, they see the environment in 3D.

For this thesis, a VR application is designed in which the user can draw diagrams, and ex-
port them to LaTeX code. Afterwards, I answer my research question: Is it possible to provide

3

a VR environment for category theoretical diagrams, which enhances the collaborative work of
scientists that work with such diagrams according to a set of use cases?

1.4 Overview

In this bachelor thesis, the application's visuals are shown, and its controls and design are explained.
The rest of the thesis consists of research on usability studies, and the design of a usability study
that could be conducted to review and improve the usability of the application.

2 The application

2.1 Instructions

2.1.1 Headset and controllers

The application should be usable on most VR headsets, but it has only been tested on the Oculus
Quest 2 (Figure 3). When describing the controls, the layout of the Oculus Touch controllers (Figure
4) is used.

Figure 3: The Oculus Quest 2 with controllers[bol.com, nd]

2.1.2 Moving through the environment

The virtual environment of this application looks like Figure 5.
The user can move around using the stick on the left controller. The stick on the right controller
rotates the camera.

2.1.3 Drawing nodes and arrows

A node can be placed by pressing the trigger button. Both controllers have such a button, and they
do exactly the same. Instead of immediately releasing the trigger, the user can choose to hold the
button, move their hand to a new position, and then release the trigger. In this case, a new node
will appear at this new position, with an arrow between the two nodes. If the trigger is released in

4

Figure 4: The Oculus Touch controllers. The trigger buttons are on the top in this image. They are
pressed with the user's index �ngers. The grip buttons are under the user's middle �ngers. Picture
taken from [u/Arc8ngel, 2018], from reddit.com.

Figure 5: The empty environment.

5

the position of an existing node, no new node will appear. If the node in which the user releases
the trigger is not the same as the node they started in, an arrow does appear. If the user starts
drawing near an existing node, that node will be the node that the arrow starts from, and no new
starting node will be created. To remove an arrow, an arrow can be drawn over an existing one. No
new nodes or arrows will be created, and the existing arrow will disappear.

Figure 6: Drawing two nodes and an arrow.

2.1.4 Moving and deleting nodes

The grip button can be used to grab and move an existing node. The grip button is located below
the user's middle �nger, and it is the button that is usually used for grabbing things (hence the
name \grip button"). Using this button closes the virtual hand. Both hands have this button, and
they do exactly the same. Once a node is grabbed, a bin symbol will appear. Release the node in
this bin to delete the node. If the node is moved away from the bin, the bin symbol will disappear,
so the node's position can also be slightly moved, without deleting it.

2.1.5 Drawing more precisely

There are two ways to draw more precisely. One of them is rounding the angles using the B or Y
button. The other one is using a snap grid, by pressing A or X.
By pressing B or Y, the angle the arrow is drawn in, can be rounded. This means that if an arrow is
drawn while the user holds B or Y, the angle between the arrow and each plane in the 3D space is
always rounded to 45 degrees. This may sound complicated, but it is basically the same as drawing
a line while holding shift in applications like Paint or Word, but in 3D. Instead of doing this while
drawing, it can also be done while moving a node with the grip button, if that node is connected
to exactly one other node.
By holding A or X, the node held or drawn moves to the nearest position in an invisible snap grid.

6

Figure 7: Deleting a node.

2.1.6 Rotating the diagram

By grabbing the air with both hands, the diagram can be rotated and moved. If the user moves
their hands at least one meter apart, the diagram's rotation will reset.

2.1.7 Labeling the nodes and arrows

If the user presses A or X while holding nothing, labels will appear. These labels are uppercase for
nodes, and lowercase for arrows. A label can be grabbed with the grip button, moved, and released
to label a node or arrow. By releasing it in the air, the label will be deleted.

Figure 8: The available labels.

7

By pressing B or Y while holding the label, an apostrophe will appear or disappear. Pressing A or
X while holding it, will increase the number in the lower right, or make it \0" if there is no number
yet.

Figure 9: The \A" node label with an apostrophe and a \1".

Figure 10: A node and an arrow, both labeled.

Morphisms can be composed by releasing one label while holding another one. The labels will
become one new label. That label will contain the letters that were concatenated, with the function
composition symbol between them. The released label will be behind the held label.
To create a label that is di�erent from the above options, one can be made from the menu. Pressing
Y or B while holding nothing will open the menu. The trigger can be used to click \Make nodelabel

8

Figure 11: Two concatenated labels.

with keyboard" or \Make linelabel with keyboard". Now the keyboard can be used to type a label
with LaTeX code. After pressing enter, the label will be generated as a png image, and shown inside
the application. This works by passing a command to the command prompt and using LaTeX,
Imagemagick and Ghostscript. If the code is incorrect, this will not work and the label will instead
show the original code in red.

Figure 12: Typing an epsilon label.

There are two labels that work di�erently from the rest. These are the label that has the text
\[Empty]" and the label that shows a loop symbol. The \[Empty]" label clears the label when applied
to a node or arrow. The loop label gives a node a loop symbol, which will give the node an arrow
to itself in the �nal output.

9

Figure 13: A misspelled label.

Figure 14: What the epsilon label looks like in the application.

10

2.1.8 Taking a picture

The user can convert the diagram to LaTeX code, by using the camera. The camera can be grabbed
with the grip button. Pressing the trigger while holding the camera, will take a picture from that
perspective. This means that a latex png will be generated. This png will be visible on the camera
screen. The code with which this image is made, is copied to the user's clipboard, and can be found
in the �les of the application.

Figure 15: Taking a picture.

2.1.9 Using the menu

In the menu, the user can look at the controls, save, load, clear the diagram and exit. The user can
also create labels like described above, and access the settings. In the settings, the user can change
the size of the labels, nodes and arrows. The user can also tick a box to show the labels as LaTeX
code instead of showing it as it will look like in the pdf. There is also an option called \LaTeX node
visibility". Here the user can choose \Always visible", \Only empty" or \Never visible". \Always
visible" means a circle will always be visible in the pdf when there is a node. \Only empty" means
a circle will only be visible when the node has no label. \Never visible" means there will never be a
circle. The �nal option in the settings is \Snap grid size" this increases or decreases the distance
between points in the snap grid.

2.2 Software design

2.2.1 Engine

The application is made in Unity. This is a game engine, in which VR games can be made. To
implement VR, Unity's own XR SDK is used.

11

Figure 16: The menu.

Figure 17: The settings.

12

2.2.2 Movement and camera control

Movement is done as in most VR games or applications: by using the stick on the left controller. It
is done this way, because it is the most common way, so it is the most intuitive way. A teleportation
system could also have been implemented for people who get motion sick easily, but this seemed
unnecessary, because for those people it is easier to only move the diagram instead of themselves.

Moving the camera is done in the most common way: using the right stick. It works in small jumps
instead of continuous movement, to prevent users from becoming motion sick.

2.2.3 Placing nodes and arrows

The chosen button for node and arrow placement, is the trigger button. This button is chosen,
because it is the easiest to use. The user will have their thumb on the thumbstick, their index �nger
on the trigger, and their middle �nger on the grip button. Their ring �nger and their little �nger
are not on any buttons, but only used to hold the controller. The thumbstick is used for movement
and camera rotation, the grip button for moving nodes (see below), so the trigger is the only button
left. Of course there are also the A, B, Y and X buttons, but these are usually meant for less used
actions, because the user needs to move their thumb to them to use them. Pressing the thumbstick
was also an option, but the trigger is an easier button to press. In conclusion, the trigger is chosen
for this action, because it is a common action, and the trigger is the easiest button for it. The
reason both trigger buttons can be used, is that users can choose which hand they want to use,
and can use both if desired.

2.2.4 Moving and deleting nodes

The grip button is, in most VR games and applications, the button that closes the user's virtual
hand, and with which the user can grab objects. This is why the grip button is used for grabbing
nodes. Both hands can do this, because in real life, most users can use both hands to grab objects.

For deleting nodes, multiple ideas were tried. The �rst idea, was to use a button while hold-
ing the node to remove it. This works �ne, but eventually, there were too few buttons to keep this
method in. The second idea, was to use a bin symbol, in which the user can drop the node. In a 2D
application, such an icon would probably be placed in the corner or at the edge of the screen. In
VR, this is a bad idea, because the corner of the screen moves when the user moves their head. This
means another position had to be chosen. It is hard to �nd a good spot relative to the user's head,
because whichever spot is chosen, it can always be the position where the user want to move the
node to. Eventually, the best position turned out to be the position of the node. The only problem
is that a user may want to only move the node slightly, and then the user would drop the node in
the bin. The solution, is to make the bin disappear when moving the node away from it. This way,
the user can grab the node, move it away, move it back and place it in their chosen position.

2.2.5 Rounding the angles

When testing the application, it turned out to be di�cult to draw the diagrams in a good-looking
way. This is because it is di�cult to draw in an angle of exactly 90 or 45 degrees. The solution,

13

is to do what some 2D drawing applications already do: use a button to round the angle to 45
degrees. Usually, this is the shift button. For this application, the B and Y buttons were chosen for
this. The reason for these buttons, is that the trigger and grip buttons were already taken, and the
sticks are harder to press. There are also two menu buttons, but this is not a menu, so it makes no
sense to use it for this purpose.

After trying this new feature, it turned out not to be good enough for users who want to be
really precise. This is because it is still di�cult to draw lines in exactly the same length. For this
purpose, another button was introduced: one that moves the nodes to the closest position in a snap
grid. For this action, the A and X buttons were chosen.

2.2.6 Moving and rotating the diagram

Interaction in VR feels best when it is as intuitive as possible. This is why, instead of something
like rotation buttons, it would be best to be able to grab and rotate the diagram using hands.
Implementing grabbing the whole diagram is di�cult, because there is no logical place to grab
it. The nodes move apart from each other, and grabbing arrows would be di�cult if nodes are
close, because the user will often accidentally grab a node. An implementation that was briey
considered, is creating two handles around the diagram which the user would grab. This idea was
quickly dismissed, because this would be impossible to use when the diagram gets too big. In the
end, the idea occurred that there is no need for handles, because the user can just grab the air. The
way rotation now works, is that the user grabs the air, and moves their hands as if the diagram is
between their hands. If the user moves their hands forward or backward, the diagram moves the
same way. The diagram's rotation will reset if the user moves their hands apart.

2.2.7 Adding labels

For labelling nodes and labels, dragging and dropping seemed the most intuitive way. It would be
annoying to always have the label menu in view, so the user can make them appear or disappear
with A or X. To add and apostrophe or a number, Y and B and A and X can be used, because those
buttons are available in that moment. Concatenating labels also works by grabbing and dropping.
It is very di�cult to put all possible labels in the application this way, so for other labels, LaTeX
code can be used.

2.2.8 Converting the diagram to LaTeX code

To convert the diagram to Latex code, a perspective must be chosen from which the diagram
is viewed. In an earlier version of the application, this was the perspective of the user. This
implementation worked, but was later replaced by a better solution. Choosing the position and
converting the diagram, felt like making a photo. For this reason, the mechanic was replaced by a
virtual photo camera, with which the user makes the \photo". This implementation feels intuitive,
and the user can see the diagram in the screen on the camera, so they can retake the photo if they
are unsatis�ed.

14

2.2.9 Settings

Some settings were made available to the user, to improve their experience. One of these, is to
resize the labels, nodes or arrows. This was added, to account for users having di�erent preferences.
The same goes for the snap grid size setting. Another setting, is a toggle for showing the labels as
LaTeX code or showing them as they will look like in the diagram. This option was added so users
can easily see what can be changed in the labels if something is not to their liking. Finally, there is
a setting for LaTeX node visibility. This is not a setting that changes how the application is used,
but one that changes what the diagram looks like when it is exported to LaTeX code. This setting
is added to account for the di�erent preferences users have.

3 Usability studies

3.1 Reasons for doing usability studies

To see if the application is a good tool for drawing graphs and converting them to LaTeX, a
usability study could be conducted. But what would be the advantages for doing this over not doing
it? According to Usersense [UserSense, 2022a], there are �ve main reasons for using a usability study:

A lot of the users' issues are noticed. Even when an issue is not so big as to ruin the whole
program, it can be frustrating enough for a user to �nd an alternative. These issues need to be
found, and the best way to �nd them, is a usability study.

By using usability testing while developing the product, feedback can be used to make the program
exactly how users want it.

See the product through the lens of a user. Developers understand their applications more than
anyone, so it is hard to see how a user would interact with it. Using usability testing, can help
increase a developer's understanding of how new users would use their application.

Usability testing exposes the issues themselves. Even if a developer has data of how many users
stop using their product, they do not know why, until they do a usability test.

Usability testing can be used to �nd improvements. Even if there are no issues, users can still �nd
improvements developers would not think of themselves, through a usability test.

3.2 Meaning of usability

3.2.1 The problem with de�ning usability

Multiple researchers consider the lack of de�nition for usability an obstacle:

\One of the most important issues is that there is, as yet, no generally agreed de�nition of usability
and its measurement." [Shackel, 1990]

15

	Introduction
	Using tikz to draw category theory diagrams
	Quiver
	Using VR to draw category theory diagrams
	Overview

	The application
	Instructions
	Headset and controllers
	Moving through the environment
	Drawing nodes and arrows
	Moving and deleting nodes
	Drawing more precisely
	Rotating the diagram
	Labeling the nodes and arrows
	Taking a picture
	Using the menu

	Software design
	Engine
	Movement and camera control
	Placing nodes and arrows
	Moving and deleting nodes
	Rounding the angles
	Moving and rotating the diagram
	Adding labels
	Converting the diagram to LaTeX code
	Settings

	Usability studies
	Reasons for doing usability studies
	Meaning of usability
	The problem with defining usability
	A sufficient definition of usability
	Defining usability problems

	Measuring usability
	System Usability scale
	NASA task load index
	Net Promoter Score
	Single Ease Question
	Task completion rate
	Time to task completion
	Error rate

	Priority scores
	Think-aloud studies
	Conduct study at home versus in lab
	Moderated versus unmoderated study
	Sample sizes
	Sample sizes for finding usability problems
	For measuring usability

	The usability study
	The chosen definition of usability
	How the study will be conducted
	The procedure
	Instructions
	Test group
	Control group

	Conclusion
	References

