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Abstract

Remote sensing imagery plays a vital role in Earth observation tasks. However, remote sensing
data collection platforms often have limitations resulting in low-resolution remote sensing
data. Super-resolution techniques offer a solution to improve the resolution of these images.
This thesis explores the application of deep learning-based super-resolution frameworks as
a pre-processing step to enhance the resolution of remote sensing data. We evaluate the
subsequent effect of super-resolution on aerial scene classification. We leveraged a diverse
range of pre-trained super-resolution frameworks including ESPCN, Real-ESRGAN, SwinIR,
and Swin2SR. The ESPCN model was further fine-tuned with domain-specific data. The
performance of these models was assessed by calculating the PSNR and SSIM scores, and by
performing statistical tests. PSNR and SSIM are commonly used metrics to evaluate image
quality. We incorporated transfer learning with a fine-tuning approach using the ResNet50 and
ViT models for the aerial scene classification task. The performance of the classification task
was evaluated by computing various metrics and carrying out statistical tests. The findings of
this thesis show that the ESPCN model significantly outperforms the other super-resolution
models assessed in this study. Additionally, our results indicate that a shallower model yields
higher PSNR and SSIM scores for the AID dataset. For the classification tasks, the ESPCN
and Swin models achieved higher evaluation scores compared to the native-resolution images.
However, the statistical tests revealed that the super-resolved datasets did not yield significant
results for the classification task.
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1 Introduction

Remote sensing imagery is used in various fields including agriculture, meteorology, geography,
and the military [1]. The applications in these fields include weather prediction, climate change
prediction, agricultural crop type identification, land use mapping, disaster management, military
target identification, and more [1, 2]. These applications require high-resolution imagery to achieve
optimal performance. However, the remote sensing imagery often does not have the desired level
of resolution. Data collection platforms, including satellites and air crafts, have limitations such
as optical distortion, sensor noise, environmental interference, and cost constraints [1, 2]. Super-
resolution techniques offer a solution to this challenge. Super-resolution is the process of enhancing
low-resolution images to high-resolution counterparts [3]. Super-resolution has been applied in
other fields such as video surveillance [4] and medical imaging [5]. In this thesis, we focus on deep
learning-based techniques for super-resolution. Deep learning-based super-resolution aims to learn a
mapping between low-resolution and high-resolution image pairs using neural networks. The rapid
advancement of deep learning has led many researchers to explore deep learning approaches for
super-resolution tasks [6, 7, 8, 9, 10, 11]. They showed significant results along with the development
of benchmark datasets for super-resolution. Super-resolution has the potential to improve the spatial
and spectral quality of remote sensing imagery. As a result, super-resolution methods have gained
popularity within the remote sensing community.

In this thesis, we focus on the specific problem of evaluating the effect of super-resolution on
the downstream task of aerial scene classification. To address this problem, we investigate the
application of super-resolution techniques as a pre-processing step to improve the resolution and
quality of aerial imagery. We aim to evaluate the subsequent effect on the performance of aerial
scene classification.

Aerial scene classification is the task of assigning labels to overhead imagery to identify land
use. According to Cheng et al., [12] several researchers have investigated applications of scene
classification such as environmental monitoring [13], urban planning [14], vegetation mapping
[15], and natural hazards detection [16]. For this study, transfer learning is incorporated for the
classification task. Marmanis et al. [17] showed that using ImageNet [18] pre-trained networks
benefits Earth Observation classification. The aim of transfer learning is to transfer knowledge
across different domains by leveraging pre-trained models for different but related tasks [19]. These
pre-trained models are typically trained on large datasets, so they have already learned useful
feature representations which can be reused for other vision tasks. This is especially useful in
scenarios where there is limited training data available for a specific task [19]. Another advantage
of transfer learning is that it is able to save training time and computational resources compared
to starting a task from scratch [20]. Additionally, a study conducted by Yosinski et al. [21] revealed
that using feature weights, even from distant tasks or domains, displayed improved performance
compared to using random initialization. They also showed that adopting transfer learning can
improve the generalization ability of a model.

The main contributions of this thesis are:

• We investigate the application of deep learning-based super-resolution techniques as a pre-
processing step to improve the resolution of aerial imagery.
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• We used diverse state-of-the-art pre-trained super-resolution models, including ESPCN, Real-
ESRGAN, SwinIR, and Swin2SR, and quantified their performance using commonly used
super-resolution evaluation metrics and a statistical test. Additionally, we fine-tuned the
ESPCN model using domain-specific data and also quantified its performance.

• We evaluate the effect of super-resolution on the performance of 2 aerial scene classification
models, including ResNet50 and ViT. We incorporated transfer learning by using pre-trained
models and fine-tuned them using domain-specific data. We also performed a statistical test.

The code repository of this thesis can be accessed via the following link: https://github.com/
sharandaa/thesis. This thesis is organized according to the following structure. This chapter
contains the introduction; Section 2 discusses related work; Section 3 describes the methodology.
Section 4 describes the experiments; Section 5 demonstrates the results; Section 6 concludes and
suggests potential directions for further research.

2 Related Work

In this section, we discuss prior research that has been done on super-resolution and its application
to remote sensing image classification.

2.1 Single Image Super-Resolution

Super-resolution is typically divided into single-image super-resolution and multiple-image super-
resolution. Multiple-image super-resolution is defined as producing a high-resolution image from
multiple low-resolution images from the same scene [22]. In this thesis, we focus on single-image
super-resolution. A super-resolution technique that was used before deep learning approaches, is
interpolation-based methods, such as bicubic interpolation [23, 24]. Despite their simplicity and
efficiency, they often lack the ability to generate fine details.

The first deep learning-based approach for super-resolution was proposed by Dong et al. who
introduced SRCNN [6]. This network contains 3 convolutional layers and exhibited improved
performance compared to bicubic interpolation [2]. Subsequently, multiple CNN-based models have
been proposed that aim to learn better representations using deeper and more complex architectures
[25, 26, 27]. Additionally, GAN methods have been employed in super-resolution models [28, 8, 29].
Residual connections are another approach to improve the learned representations [30, 31, 32]. They
allow information to be passed on to subsequent layers. Furthermore, attention modules have shown
significant benefits in super-resolution architectures because of their ability to attend to important
information and their ability to model long-range dependencies [33, 34, 35]. Transformer-based
architectures use a self-attention technique [36].

In addition to the aforementioned frameworks, there has been research conducted on the application
of super-resolution in remote sensing imagery. Xu et al. proposed a super-resolution framework
using a deep memory-connected network. Tingting [37] introduced a light super-resolution model for
remote sensing imagery. Wa̧sala et al. [38] proposed AutoSR-RS, which is an automated machine
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learning framework that aims at building optimal neural networks for diverse remote sensing
datasets.

2.2 Super-Resolution applied to Remote Sensing Image Classification

Remote sensing image classification is typically divided into 3 levels: pixel-level, object-level, and
scene-level classification [12]. Pixel-level classification is sometimes referred to as semantic segmen-
tation. A visual representation of these 3 levels is illustrated in Figure 1. This study focuses on
scene-level classification.

Several studies have explored the application of super-resolution on object detection tasks. Shermeyer
et al. [39] used the Very Deep Super-Resolution (VDSR) framework and a custom Random Forest
Super-Resolution (RFSR) framework to evaluate the effect of super-resolution on the identification
of objects like vehicles, boats, and cars in remote sensing imagery. Courtrai et al. [40] proposed a
GAN-based super-resolution network to improve object detection performance in satellite imagery.
Musunuri et al. [41] introduced SRODNet which combines super-resolution and object detection
for aerial imagery and imagery from a car driver’s perspective. There have also been studies that
explored the application of super-resolution methods in the domain of semantic segmentation.
Wang et al. [42] proposed the Dual Super-Resolution Learning (DSRL) framework to improve
segmentation tasks while minimizing additional computation costs. Zhang et al. [43] introduced the
FSRSS-Net framework that maps buildings in satellite images using a super-resolution semantic
segmentation network.

For the scene classification task, Palacios Salinas et al. [44] conducted a study that leveraged
automated machine learning for satellite data classification, while incorporating transfer learning.
Other works that leverage transfer learning for scene-level classification are [45, 17, 46]. Dimitrovski
et al. [47] introduced an artificial intelligence toolbox for Earth Observation (AiTLAS). This
open-source toolbox includes a wide range of remote sensing datasets and deep learning models for
evaluating image classification in Earth Observation.

This thesis contributes to the existing literature by conducting a comparative analysis of multiple
super-resolution frameworks applied to a remote sensing image dataset. In contrast to previous
research, this study aims to quantify the effect of these techniques on scene-level classification
specifically, in the context of remote sensing image analysis. There has been extensive research
carried out on super-resolution applied to object detection. However, the categories of object
detection slightly differ from the categories of scene-level classification. Remote sensing object
detection categories typically encompass individual objects such as cars, airplanes, and boats. Scene
classification categories include broader remote sensing categories such as urban areas and water
bodies.
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Figure 1: The three levels of remote sensing image classification. Source: [12].

3 Methods

This section describes the methodology used to evaluate the performance of super-resolution
techniques on aerial scene classification. The main objective of our study is to assess the effectiveness
of various super-resolution techniques in accurately classifying a wide range of remote sensing
images. To achieve this, we undertook the following steps:

1. We selected an aerial scene dataset, pre-processed the images, and made a train, validation,
and test split.

2. The pre-processed images of the test split were super-resolved using various super-resolution
methods, including ESPCN, Real-ESRGAN, SwinIR, and Swin2SR. The performance of these
models was assessed using evaluation metrics and a statistical test.

3. The pre-trained classification models, ResNet50 and ViT, were fine-tuned using the training
part of the dataset.

4. The super-resolved datasets were used to assess the classification performance using evaluation
metrics and a statistical test.

This section provides an overview of the key elements of our methodology, including descriptions of
the dataset, super-resolution models, classification models, and evaluation metrics.

3.1 Datasets

Different types of datasets are needed for the super-resolution task and the classification task. For
the super-resolution task, we require a dataset consisting of pairs of low-resolution images along
with their corresponding high-resolution images. Our selected dataset did not contain this low
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and high-resolution pairing. Therefore, we synthetically created the low-resolution counterparts in
order to evaluate the super-resolution performance. There is room for improvement in our method
regarding the degradation model we used for down-sampling the images. Our approach included
bicubic interpolation, but there exist many other models such as nearest-neighbor interpolation and
bilinear interpolation that could be explored. Additionally, some studies used a Gaussian kernel
to add blur to an image before down-sampling it [7, 9]. This addition is able to better simulate a
camera’s down-sampling process.

A labeled image dataset is needed for the classification task. In the context of aerial scene classi-
fication, each image is labeled with a specific land use or scene category. It is also worth taking
into consideration the differences between “regular” computer vision tasks and satellite vision
tasks. “Regular” computer vision tasks refer to the task of classifying natural images. Liu et al.
[48] argue that aerial images are taken from the vertical view perspective, while natural images are
typically captured from the horizontal view. Furthermore, aerial images may contain more complex
backgrounds and the scales of objects may vary depending on the data collection platform such as
satellites or air crafts. Besides, the scale of satellite imagery is typically much larger than natural
images. They can cover large geographic regions. Figure 2 illustrates the difference between natural
and aerial images.

Figure 2: The distinction between an aerial image and a natural image of a port. (a) Aerial image of
a port captured by a remote sensing platform. (b) Natural image of a port captured by a surveillance
camera. Source: [48].

For the classification task, we applied data augmentation to the images that were used for fine-tuning
the classification models. Data augmentation is the process of adding new synthetic data to the
dataset by applying modifications to your original data [49]. Examples of modifications include
rotating, flipping, or cropping the images. This increases the dataset size and diversity. Studies have
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shown that data augmentation can reduce overfitting and improve the accuracy and generalization
of classification models [50, 51, 52].

3.1.1 AID: Aerial Image Dataset

The AID (Aerial Image Dataset) dataset [53] was selected for the experiments for a number of
reasons. The AID dataset is an established benchmark dataset for remote sensing scene classification.
Moreover, this dataset offers a realistic representation of a wide range of land cover scenes. The AID
datasets also provide ground truth labels for each image. This was required for the classification
task. We split the dataset into a training, validation, and test set. The test set was used for the
super-resolution tasks and the training and validation sets were used for the classification tasks
and for the fine-tuning of the ESPCN model. Figure 3 illustrates the split.

Used for the classification tasks &
the fine-tuning of the ESPCN model

Used for the
SR tasks

Train Validation Test

AID Dataset

Figure 3: The split of the AID dataset into a training, validation, and test set.

The AID dataset was developed for aerial scene classification and consists of 10.000 images across
30 categories and was collected through Google Search imagery. Each category contains 220 to
420 samples of 600x600 pixels. The following categories are included: airport, bare land, base-
ball field, beach, bridge, center, church, commercial, dense residential, desert, farmland, forest,
industrial, meadow, medium residential, mountain, park, parking, playground, pond, port, rail-
way station, resort, river, school, sparse residential, square, stadium, storage tanks, and viaduct.
Figure 4 shows an example of each category. Additionally, the samples were selected from differ-
ent countries including China, the United States, England, France, Italy, Japan, Germany, and more.

The AID dataset has multiple improvements compared to previous remote sensing datasets. Firstly,
this dataset has higher intra-class variations since the samples are extracted at different seasons,
scales, and orientations, and in different regions of the world. For example, the category ’mountain’
contains mountains with and without snow. Secondly, AID contains smaller inter-class dissimilarity.
The differences between various scene categories are often minimal. For instance, the categories
“playground” and “stadium” may both include a sports field, but the primary distinguishing factor
is the presence of seating arrangements. To address this issue, AID incorporated more classes
compared to previous datasets. Lastly, AID is a relatively large dataset that is typically better for
assessing classification methods [54, 55].
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Figure 4: Examples of images from the AID dataset illustrating the 30 Categories. Source: [12].

3.2 Super-Resolution Models

We have used a number of pre-trained super-resolution models and we fine-tuned one super-
resolution model with the AID dataset. Pre-trained models offer time-saving advantages as well as
reduce computational efforts [56]. A disadvantage of pre-trained models includes domain mismatch.
Domain mismatch occurs when the data of the pre-trained model differs significantly from the data
that is used for another task. This is also the case for our experiments: the pre-trained models
used for the experiments are mainly trained on natural images. Consequently, they might fail to
capture the domain-specific nuances of remote sensing data. Fine-tuning allows a model to adapt
to a specific domain [21].

7



The following pre-trained models have been selected to assess different super-resolution performances:
ESPCN [7], Real-ESRGAN [9], SwinIR [10], and Swin2SR [11]. ESPCN is CNN-based, Real-
ESRGAN is GAN-based and SwinIR and Swin2SR are both transformer-based. ESPCN was
selected because it is a relatively efficient model compared to other CNN-based models such as
EDSR [57]. This might be advantageous in various remote sensing tasks such as natural hazard
detection, where time is of the essence. Real-ESRGAN was chosen because they leveraged an
extensive degradation model during their training process. This enables the model to imitate
real-world degradation more accurately. We selected SwinIR and Swin2SR because they exhibited
improved performance compared to state-of-the-art models while having fewer parameters. Our
objective was to compare various super-resolution architectures. Additionally, we chose models that
were publicly available.

3.2.1 ESPCN: Efficient Sub-Pixel Convolutional Neural Network

ESPCN [7] is a 3-layer CNN architecture where the up-scaling process is performed by the last layer
of the network. The previous layers learn the feature maps from the low-resolution input. The archi-
tecture of the network is illustrated in Figure 5. As a result, ESPCN is computationally faster than
previous models such as the SRCNN [6] model, which upscales the image at the start of the network.

The OpenCV library includes a super-resolution class that can be used to load the ESPCN
model. This class was used for the experiments alongside the trained ESPCN models ESPCN x2.pb,
ESPCN x3.pb and ESPCN x4.pb from this repository1. These models were trained on the DIV2K
[58] dataset.

Figure 5: The architecture of the ESPCN model. The network contains 2 convolutional layers for
constructing feature maps and a sub-pixel convolution layer for reconstructing the high-resolution
result. Source: [7]

The model we fine-tuned was the ESPCN model because this model exhibited superior performance.
We used the model and code from Keras 2 to fine-tune the ESPCN model. This model was pre-

1https://github.com/fannymonori/TF-ESPCN/tree/master/export
2https://keras.io/examples/vision/super resolution sub pixel/
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trained on the BSDS500 dataset [59] and we fine-tuned this model with the training and validation
set of the AID dataset.

3.2.2 Real-ESRGAN: Real Enhanced Super-Resolution Generative Adversarial Net-
works

Real-ESRGAN [9] is a GAN-based model and contains two networks: a generator network and
a discriminator network. The generator network is trained using low-resolution/high-resolution
pairs to ultimately learn a mapping to super-resolve an image from a low-resolution input. The
discriminator network attempts to distinguish the ground truth images from the super-resolved
images created by the generator and updates both models accordingly. The Real-ESRGAN model
aims to extend the ESRGAN [8] model by training it with a large synthetic dataset. This synthetic
dataset was generated by applying a random degradation model, such as applying blur, adding
noise, and using different down-sampling methods (bilinear, bicubic, etc.).

For the Real-ESRGAN experiment the provided repository3 was used with the following pre-trained
models: RealESRGAN x2plus and RealESRGAN x4plus. These models were trained on the datasets:
DIV2K, Flickr2K, and OutdoorSceneTraining. There is no model provided for super-resolving with
a scale factor of x3, hence there are no results for this scale.

Figure 6: The architecture of the Real-ESRGAN model. The network uses a pixel unshuffle procedure
to reduce the spatial size of the images. The RRDBs (residual-in-residual dense blocks) are blocks
that contain multiple residual connections between the convolution layers. Source: [9].

3.2.3 SwinIR: Swin Image Restoration

The SwinIR [10] model incorporates the Swin Transformer [60] in its architecture. An advantage
of using a Transformer [61] is that it learns global features across images using a multi-head
self-attention mechanism. The SwinIR model consists of three parts: shallow feature extraction,
deep feature extraction, and high-quality image reconstruction modules. The shallow feature ex-
traction contains 1 convolutional layer and the deep feature extraction includes multiple residual
Swin Transformer blocks (RSTBs). Each RSTB contains several Swin Transformer layers and a
convolution layer. The Swin Transformer layers incorporate multi-headed self-attention. Residual

3https://github.com/xinntao/Real-ESRGAN
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connections can preserve information from earlier layers [62]. Liang et al. [10] showed that SwinIR
achieved higher PSNR with fewer parameters than previous super-resolution models.

For the SwinIR super-resolution the provided repository4 was used to perform the super-resolution
tasks. We used the classical version and the lightweight version. The classical version includes
6 RSTBs for deep feature reconstruction, while the lightweight model contains 4 RSTBs. For
the classical super-resolution, we used a patch size of 64 and the following pre-trained models:
001 classicalSR DF2K s64w8 SwinIR-M x2.pth, 001 classicalSR DF2K s64w8 SwinIR-M x3.pth,
and 001 classicalSR DF2K s64w8 SwinIR-M x4.pth. For the lightweight super-resolution, we used
the following pre-trained models: 002 lightweightSR DIV2K s64w8 SwinIR-S x2.pth, 002 light

weightSR DIV2K s64w8 SwinIR-S x3.pth, and 002 lightweightSR DIV2K s64w8 SwinIR-S x4.pth.
We chose the models that are trained on the DIV2K and Flickr2K image datasets since Real-
ESRGAN and Swin2SR are also trained on said datasets. This ensures a fair comparison between the
models. To enhance the images to 1200x1200 pictures, this model was used: 003 realSR BSRGAN DFO

s64w8 SwinIR-M x4 GAN.pth.

Figure 7: The architecture of the SwinIR model. The shallow feature extraction consists of a
convolution layer. The deep feature extraction contains multiple RSTBs. Each RSTB contains
multiple STLs. The high-quality image reconstruction layer contains a sub-pix convolution layer.
Source: [10].

3.2.4 Swin2SR: Swin to Super-Resolution

he Swin2SR [11] model is based on the SwinIR model. One of the key differences is that it employs
the new Swin Transformer V2 [63] in the RSTBs. The V2 model presents an improvement over the
V1 model by exhibiting improved stability during the training phase [63]. The study conducted by
Conde et al. [11] showed that Swin2SR achieved the same results as SwinIR for some tasks but
with 33% fewer training iterations.

For the Swin2SR super-resolution the provided repository5 was used to perform the classical

4https://github.com/JingyunLiang/SwinIR
5https://github.com/mv-lab/swin2sr
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image super-resolution task with a training patch size of 64 and the following pre-trained mod-
els: Swin2SR ClassicalSR X2 64.pth and Swin2SR ClassicalSR X4 64.pth. These models are
trained on the DIV2K and Flickr2K datasets. Swin2SR has no results for the x3 scale since there
is not a pre-trained model available that can handle this scale. For the classification task, the
images could not be upscaled to 1200x1200 images since there was no ’Real-World Image Super-
Resolution’ model for this scale. However, there was a model available to handle a scaling factor of
4: Swin2SR RealworldSR X4 64 BSRGAN PSNR.pth.

Figure 8: The architecture of the Swin2SR model. This architecture is similar to the SwinIR
architecture. Swin2SR modified the residual transformer blocks by swapping the Swin Transformer
layers with the new Swin Transformer V2 module. Source: [11].

3.3 Classification Models

For the classification task, we leveraged transfer learning and a fine-tuning approach. Fine-tuning
is a common practice to improve the pre-trained model for a specific task [21]. It involves training
the pre-trained model further with task-specific data to adapt to the new task. The training and
validation sets of the AID dataset were used for this purpose. There are different approaches
for fine-tuning a pre-trained network. Nogueira et al. [45] employed 2 different approaches: (1)
fine-tuning all layers and (2) fine-tuning only the final layers while keeping the weights of earlier
layers fixed. For this thesis, we focused on fine-tuning all the layers because this approach appeared
to exhibit superior performance as opposed to only fine-tuning the higher-level layers. A possible
explanation for this could be that the data used for the pre-trained model is different compared
to the AID dataset. The pre-trained models were trained using the ImageNet [18] dataset which
consists of natural images. Liu et al [48] state that it is not feasible to use the common object-
detection algorithms trained on the domain of natural images for aerial image object detection. We
believe aerial scene classification encounters a similar challenge as the learned representations from
ImageNet did not transfer well to the AID dataset.
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The following models have been used for the classification task: ResNet50 [62] and ViT [64].
ResNet50 was pre-trained on ImageNet-1K [18] and ViT was pre-trained on ImageNet-21K [65].
The ImageNet-1K dataset consists of more than one million natural images and the ImageNet-21K
dataset consists of more than 14 million images. We chose ResNet50 because it is a commonly used
baseline model in the computer vision community [66]. Additionally, Helber et al. [46] compared a
range of CNNs on the EuroSAT dataset and obtained the best results for the fine-tuned ResNet50
model pre-trained on ImageNet. We selected the ViT model because Dimitrovski et al. [47] showed
that this model achieved the highest top 1 accuracy for the AID dataset.

3.3.1 ResNet50: Residual Network 50

ResNet50 [62] is a convolutional neural network consisting of 50 layers and is part of the residual
network family. Convolutional layers, pooling layers, and fully connected layers make up the model.
The main advancement is the use of residual blocks. Residual blocks contain shortcut connections
that allow the output from one layer to be taken to a layer deeper in the model, to preserve
information from earlier layers. The ResNet50 model has been applied in several computer vision
tasks, such as image classification [67], object detection [68], and semantic segmentation [69].

3.3.2 ViT: Visual Transformer

ViT [64] is a transformer-based [61] network consisting of patch and position embeddings and
transformer encoder blocks. We employed the ViT-Base model which consists of 12 transformer
encoder blocks. The ViT model divides an image into patches. Patches are equivalent to tokens
(words) in natural language processing tasks that use transformer architectures. These patches have
a fixed size and do not overlap with each other. Subsequently, the patches are flattened, and then
lower dimensional linear embeddings are created of these flattened patches. The results are called
patch embeddings. To preserve positional information, positional embeddings are added to every
patch embedding. The patch and positional embeddings are then used as input for the transformer
encoder blocks. The ViT model uses the same transformer encoder structure as proposed by Vaswani
et al. [61]. Each block consists of 2 layers: a multi-headed self-attention layer and a multi-layer
perceptron (MLP) layer (feed-forward neural network). MLP layers capture local information
while multi-headed self-attention layers capture global information. Additionally, there are residual
connections [62] after every layer. The ViT model has been applied in several computer vision tasks,
such as image classification [70], object detection [71], and instance segmentation [72].

3.4 Evaluation Metrics

3.4.1 Super-Resolution Evaluation

The evaluation metrics used to assess the performance of the super-resolution models are peak
signal-to-noise ratio (PSNR) [73] and structural similarity index (SSIM) [74]. The PSNR, expressed
in decibels (dB), indicates how much noise is present between the original image and the modified
image. It describes the ratio between the maximum possible value of a signal and the value of noise
in the modified image. The formula to calculate the PSNR is shown in Equation 1. f represents the
original image and g is the modified image and they are both of size m ∗ n. MAX is the maximum
possible pixel value. For this study, we used the 3-channel RGB (red, green, and blue) system
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where the maximum possible pixel value is 255. When multi-spectral satellite images are used, the
number and type of channels may differ. The maximum possible pixel value should be adjusted
accordingly [44]. The mean squared error (MSE) is computed between the original and modified
picture according to Equation 2. Assuming that f and g are 2D arrays of the images, m represents
the number of rows and i is the index of the row, while n represents the number of columns, and j
is the index of the column. f(i, j) and g(i, j) represent pixel values with indices i and j. The MSE
compares the true pixel value to the pixel value of the modified image. In other words, this is called
the error. The error is computed for every pixel and after being squared and averaged, this results
in the MSE. If the MSE approaches 0, the PSNR approaches infinity. Therefore, a higher PSNR
indicates a higher-quality image.

PSNR(f, g) = 10 ∗ log10(
MAX2

MSE(f, g)
) (1)

MSE(f, g) =
1

mn

m−1∑
i=1

n−1∑
j=1

∥f(i, j) − g(i, j)∥2 (2)

The SSIM is another commonly used metric for assessing image quality [10, 11]. The main difference
between SSIM and PSNR is that SSIM takes into account the human visual system for evaluation.
SSIM considers 3 components for calculating its index: luminance, contrast, and structure. In
Equations 3, 4, 5, and 6, x and y refer to the original and modified images.

Luminance considers the brightness of a picture. Equation 3 is used to compare the luminances of
two pictures. µx and µy take the average value of the pixels in the image to measure the average
luminance. The metric l(x, y) ranges between 0 and 1, where 1 indicates that the luminance of the
two pictures is exactly the same. C1 is a stabilizing constant.

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(3)

Contrast measures how the pixel intensities are spread in an image. A high contrast value indicates
that there are dark as well as light regions in an image. Equation 4 is used to compare the contrast
between two images, where C2 is also a stabilizing constant. The contrast value is measured using
the standard deviation of the pixel values, depicted as σx and σy in Equation 4.

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

(4)

To compare the structures of images, the covariance and correlation are computed between the
images. To illustrate, if a pixel in image x is above the mean pixel value and if the corresponding
pixel in image y is also above the mean pixel value, then the covariance will increase. The covariance
is depicted as σxy in Equation 5. The structure metric is computed using Equation 5, where C3 is a
stabilizing constant.

s(x, y) =
σxy + C3

σxσy + C3

(5)
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Ultimately, these three components combined form the SSIM equation depicted in Equation 6. α,
β and γ are parameters to adjust the importance of each component. The SSIM ranges from 0 to 1
where a higher score indicates greater resemblance.

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (6)

3.4.2 Classification Evaluation

We used top 1 accuracy, top 5 accuracy, precision, recall, and the F1-score for the classification
evaluation [75]. The top 5 accuracy metric examines if the target label is included among the 5
predictions with the highest probability. The formulas for the metrics are depicted below. TP,
FP, TN, and FN describe the number of true positives, false positives, true negatives, and false
negatives respectively. The macro metrics were used because every class is equally important.

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 − score = 2 × Precision×Recall

Precision + Recall
(10)

4 Experiments

This section outlines an overview of the experimental setup used in this study. We will discuss both
the super-resolution and classification experimental setups, along with the computational resources
utilized.

4.1 Super-Resolution Experimental Setup

The AID dataset was used for the experiments. This dataset consists of 10.000 images. These images
were first split into a train, validation, and test set. The split was created using the sci-kit-learn
library with a random seed of 58. The test size was 10%, thus the test set contains 1000 images.
The test set was used for the super-resolution tasks. The training and validation sets were used to
fine-tune the ESPCN model.

The test images have been down-sampled using bicubic interpolation from the OpenCV library and
are down-sampled with scaling factors of x2, x3, and x4 resulting in image dimensions of 300x300,
200x200, and 150x150 pixels, respectively. The down-scaled images are subsequently super-resolved
to their original dimensions of 600x600 pixels using the super-resolution models discussed in Section
3.2. The super-resolution models are compared by calculating the PSNR and SSIM scores of the
super-resolved datasets of each scale. In addition, we performed the Wilcoxon signed-rank test to
examine the significance of the results between the models [76, 77]. To assess the classification
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performance of super-resolved datasets, the images were up-scaled beyond their original dimensions
using the super-resolution models. The images were enhanced to 1200x1200 pixels, corresponding
to a scaling factor of x2.

The ESPCN model underwent fine-tuning for three trials for each scaling factor of x2, x3, and x4.
The trials were carried out using random seeds of 35, 36, and 37. The images for fine-tuning were
also down-sampled using bicubic interpolation. The Adam optimizer and mean squared error loss
were used to compile the model. We used the default learning rate of 0.001 and a batch size of 32.
The model was trained for 50 epochs while using model checkpoints and early stopping to prevent
overfitting. For the model checkpoints and early stopping, we used a value of 10 for the patience
parameter and monitored the loss. To assess the results, we calculated the PSNR and SSIM scores.

4.2 Transfer Learning Experimental Setup

Both the ResNet50 model and ViT model were trained 3 times. We used the training split of the AID
dataset for the fine-tuning process. This training split was further split into a training and validation
split using the sci-kit-learn library with a random seed of 35, 36, and 37 for the 3 trials. All pixel
values of the images were normalized to the range [0, 1] by dividing each value by 255. Furthermore,
data augmentation was applied to the training images. Table 1 depicts the parameter configuration
for the data augmentation. A data frame was used for loading the labels for the corresponding images.

We used Tensorflow version 2.12.0 for the implementation of the ResNet50 classification model.
ResNet50 takes input images with resolutions of 224x224 pixels, therefore all images were resized
to these dimensions. Subsequently, an AveragePooling2D layer, a Flatten layer, a Dense layer, a
Dropout layer, and another Dense layer were added to the base model.
We employed the Keras implementation for the ViT classification model. We used the ViT-B32
model so with a patch size of 32. We used input image sizes of 256x256 considering the patch
size of 32. We added a Flatten layer, a BatchNormalization layer, a Dense layer, and another
BatchNormalization layer to the base model.

The last Dense layers of both models have a softmax activation function since it is a multi-class
classification task. We did not freeze any layers during the fine-tuning process. The Adam optimizer
and categorical cross-entropy loss were used to compile the models. We used the default learning
rate of 0.001 and a batch size of 64. The models were trained for 50 epochs while using model
checkpoints and early stopping. For the model checkpoints and early stopping, we used a value of
10 for the patience parameter and monitored the loss. We computed the evaluation metrics top 1
accuracy, top 5 accuracy, precision, recall, and the F-1 score for both the original images and the
super-resolved images. We performed the Wilcoxon signed-rank test to examine the significance of
the results among the models and datasets [76, 77].
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Parameter Setting

rotation range 20
zoom range 0.15
width shift range 0.2
height shift range 0.2
shear range 0.15
horizontal flip True

Table 1: Data augmentation configurations for the ResNet50 and ViT implementation.

4.3 Computational Resources

All the experiments were conducted using the GPU from the Grace cluster of the ADA research
group from Leiden University. The duration of each experiment varied depending on the specific
task, ranging from a few minutes to 10 hours. The fine-tuning experiments of the classification
models required a training duration of approximately 10 hours.

5 Results

This section presents our results of the super-resolution tasks and the classification tasks of this
study.

5.1 Super-Resolution Results

Table 2 and Figure 9 present the results of the super-resolution part of this study. The ESPCN
model demonstrates superior performance for the PSNR and SSIM scores compared to the other
models across all scaling factors. This finding is unexpected considering previous research by
Liang et al. [10] and Conde et al. [11], which indicated that both SwinIR and Swin2SR models
outperformed several CNN-based super-resolution models.

There is a considerable difference between the architecture of the ESPCN model and the architecture
of the Swin models. The SwinIR and Swin2SR frameworks are deeper in terms of layers compared
to the ESPCN framework, and they contain residual Swin transformer blocks. The exact details of
the architectures of these models are discussed in Section 3.2. Comparing the architectures of the
ESPCN model and the Swin models suggest that the use of the residual Swin transformer blocks
does not result in higher PSNR and SSIM for the AID dataset. Furthermore, the lightweight SwinIR
model yields higher PSNR and SSIM scores than the classical SwinIR version. The lightweight
version has fewer layers than the classical version. This observation shows that a shallower model
produces higher PSNR and SSIM scores for the AID dataset. It is noteworthy that the ESPCN
model also contains fewer layers than the Swin models while yielding better results. It is a possibility
that a deep network with more layers is susceptible to overfitting. The increased complexity can
cause the model to learn the training data too well and is not able to generalize for unseen data
[78].
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The fine-tuned ESPCN model resulted in lower PSNR and SSIM scores than the non-fine-tuned
ESPCN model. An explanation for this could be that we used an ESPCN model that was pre-trained
on a different dataset than the non-fine-tuned ESPCN model. The non-fine-tuned ESPCN model
was trained on the DIV2K dataset, whereas the fine-tuned ESPCN model was pre-trained on the
BSDS500 dataset. There are no results for the scaling factors of x2 and x4 since there was no
pre-trained model available for these tasks.

x2 x3 x4

PSNR SSIM PSNR SSIM PSNR SSIM

ESPCN 32.21 0.9152 27.94 0.7948 26.27 0.7216
Fine-tuned ESPCN - - 27.76 ± 0.22 0.7947 ± 0.00 - -
Real-ESRGAN 27.20 0.8114 - - 23.95 0.6419
SwinIR Classical 28.25 0.8384 23.68 0.6835 21.70 0.5978
SwinIR Lightweight 28.52 0.8427 23.98 0.6894 23.98 0.6894
Swin2SR 28.27 0.8386 - - 21.88 0.6017

Table 2: The mean PSNR and SSIM results of the super-resolution models on the test split of
the AID dataset for different scales. The best and second best results are shown in red and blue
respectively. The results that are significantly the best are shown in bold text. The ESPCN model
outperforms the other models for every scale. Some scales were not available, these are marked
with “-”.
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Figure 9: The PSNR and SSIM results of the super-resolved images as box plots for every model
and every scaling factor. The ESPCN model outperforms the other models for every scale for both
PSNR and SSIM.
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We performed the Wilcoxon signed rank test for the difference in results between the best model
and the second-best model. These are the ESPCN model and the SwinIR Lightweight model
respectively. The Wilcoxon signed rank test was selected because the results are not normally
distributed. The results are presented in Table 3. The results for the best model, ESPCN, are
statistically significantly better than the results of the second-best model, SwinIR Lightweight,
using α = 0.05. This is the case for all the scaling factors and for both the PSNR and SSIM scores.

ESPCN vs. SwinIR lightweight
PSNR SSIM

P-value Significant results? P-value Significant results?

Scale x2 3.59e-165 Yes 3.33e-165 Yes
Scale x3 3.34e-165 Yes 3.34e-165 Yes
Scale x4 3.33e-165 Yes 3.33e-165 Yes

Table 3: Results of the Wilcoxon signed-rank test for the difference of results between the ESPCN
model and the SwinIR lightweight model. The results show that the ESPCN model is significantly
better than the SwinIR lightweight model for all scales using α = 0.05.

5.2 Classification Results

Table 4, Figure 10, and Figure 11 present the results of the classification part of this study. The
baseline consists of the original pictures. For the fine-tuned ResNet50 model, the ESPCN model
was the only model that improved classification for all the metrics. The other models showed
no improvement compared to the baseline. This is in line with the super-resolution results. The
pre-trained ResNet50 model without fine-tuning was also tested. However, without any fine-tuning,
the model exhibits very poor performance with evaluation metrics approaching a value close to
0.0. For the fine-tuned ViT model, the ESPCN model showed superior performance for the top 1
accuracy, precision, recall, and the F1-score. SwinIR and Swin2SR displayed superior performance
for the top 5 accuracy. When comparing the two classification models, it is notable that the variance
(error bars) of ViT is smaller than the variance of ResNet50. This indicates that the results of ViT
are more consistent. Figure 12 shows the confusion matrix of the ResNet50 model with the ESPCN
super-resolved dataset.

19



SR model Top 1 Acc. Precision Recall F1-score Top 5 Acc.

ResNet50

Baseline 0.864±0.023 0.885±0.006 0.866±0.026 0.862±0.021 0.989±0.004
ESPCN 0.867±0.020 0.886±0.006 0.868±0.024 0.864±0.019 0.990±0.004
FT ESPCN 0.866 ±0.026 0.886 ±0.009 0.867 ±0.029 0.863 ±0.025 0.989±0.004
Real-ESRGAN 0.823±0.038 0.866±0.012 0.825±0.043 0.819±0.038 0.978±0.007
SwinIR 0.816±0.045 0.861±0.019 0.818±0.050 0.812±0.045 0.977±0.009
Swin2SR 0.836±0.037 0.873±0.012 0.838±0.041 0.835±0.037 0.981±0.008

ViT

Baseline 0.835±0.000 0.845±0.004 0.833±0.000 0.832±0.002 0.972±0.007
ESPCN 0.838±0.002 0.846±0.006 0.837±0.003 0.833±0.005 0.977±0.007
FT ESPCN 0.835 ±0.006 0.846 ±0.010 0.834 ±0.005 0.830 ±0.008 0.977±0.008
Real-ESRGAN 0.814±0.010 0.827±0.011 0.812±0.008 0.809±0.012 0.976±0.007
SwinIR 0.831±0.008 0.838±0.008 0.830±0.006 0.826±0.009 0.978±0.006
Swin2SR 0.835±0.004 0.845±0.006 0.834±0.002 0.831±0.006 0.978±0.007

Table 4: Top 1 accuracy, precision, recall, F1-score, and top 5 accuracy results for ResNet50 and
ViT. The best results are shown in red. For ResNet50, ESPCN outperforms every other model for
all metrics. For ViT, ESPCN outperforms every metric except the top 5 accuracy. SwinIR and
Swin2SR show superior results for the top 5 accuracy.

Baseline ESPCN Fine-tuned ESPCN Real-ESRGAN SwinIR Swin2SR
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Figure 10: The results of the finetuned ResNet50 model for the different super-resolved datasets
using the selected super-resolution models. The baseline is the original test images without any
super-resolution. The (fine-tuned) ESPCN model demonstrated improvements in all evaluation
metrics compared to the baseline. The other models did not display enhancements in any evaluation
metric when compared to the baseline.

20
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Figure 11: The results of the finetuned ViT model for the different super-resolved datasets using
the selected super-resolution models. The baseline is the original test images without any super-
resolution. The (fine-tuned) ESPCN model displays improved performance for the top 1 accuracy,
precision, recall, and the F1-score. SwinIR and Swin2SR demonstrate improved results for the top
5 accuracy. It is notable that the ViT model contains smaller error bars, indicating more consistent
performance.
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Figure 12: Confusion matrix using the pre-trained and fine-tuned ResNet50 model with ESPCN
super-resolved dataset.

We performed the Wilcoxon signed rank test for the difference in results between the ResNet50
baseline and the ResNet50 ESPCN, and for the difference in results between the ViT baseline
and the best results of the super-resolution models for ViT (ESPCN, SwinIR, and Swin2SR). The
results are presented in Table 5 and Table 6. The results of the super-resolution models for both
ResNet50 and ViT are not statistically significantly better than the results of the baseline using
α = 0.05.
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ResNet50 baseline vs. ResNet50 ESPCN

Metric P-value Significant results?

Top 1 accuracy 0.5 No
Precision 0.5 No
Recall 0.75 No
F1-score 0.75 No
Top 5 accuracy 0.16 No

Table 5: The results of the Wilcoxon signed rank test for the difference of results between the
ResNet50 baseline and the ResNet50 ESPCN model. The results show that the super-resolved
ESPCN dataset is not significantly better than the baseline consisting of the native-resolution
images.

ViT baseline vs. ViT ESPCN, SwinIR, Swin2SR

Metric P-value Significant results?

Top 1 accuracy (ESPCN) 0.25 No
Precision (ESPCN) 0.75 No
Recall (ESPCN) 0.25 No
F1-score (ESPCN) 0.75 No
Top 5 accuracy (SwinIR) 0.25 No
Top 5 accuracy (Swin2SR) 0.25 No

Table 6: The results of the Wilcoxon signed rank test for the difference of results between the ViT
baseline and the ViT ESPCN, SwinIR, and Swin2SR models. The results show that the super-
resolved datasets are not significantly better than the baseline consisting of the native-resolution
images.

6 Conclusions and Further Research

In this thesis, we have explored the application of super-resolution as a pre-processing technique
to enhance the resolution of aerial imagery. We evaluated a range of pre-trained super-resolution
models, including ESPCN, Real-ESRGAN, SwinIR, and Swin2SR using the evaluation metrics
PSNR and SSIM. Additionally, we fine-tuned the ESPCN model using domain-specific data and
evaluated its performance. The findings of our super-resolution study indicated that the ESPCN
model has significantly the best results compared to the other models. Our results also demonstrate
that shallower super-resolution models display higher PSNR and SSIM scores for the AID dataset.
We assessed the effect of super-resolution on the downstream task of aerial scene classification.
We utilized ResNet50 and ViT with transfer learning for the classification task and performed
a statistical test. The ESPCN and Swin models yielded higher classification evaluation scores
compared to the native-resolution images. However, the results of the significance test revealed
that our super-resolution approach did not yield significant results for the classification tasks. Even
the ESPCN model, which was significantly the best-performing super-resolution model, did not
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demonstrate significant results for the classification task.

In terms of further research, there are multiple angles that could be explored. One could explore
fine-tuning all the pre-trained super-resolution models used in this study, as well as performing
hyperparameter optimization. In addition, we used a limited selection of super-resolution models.
One could investigate other super-resolution frameworks to gain a broader understanding of the
available models. Furthermore, we only used the AID dataset in this study. Further research could
entail assessing and comparing multiple remote sensing imagery datasets. Lastly, we did not analyze
the computational efficiency of the super-resolution frameworks. In real-life applications, detecting
a forest fire, for example, it is important that these frameworks are able to operate at high speeds.
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[73] A. Horé and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th International
Conference on Pattern Recognition, pp. 2366–2369, 2010.

[74] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error
visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4,
pp. 600–612, 2004.

[75] S. Thirumaladevi, K. Veera Swamy, and M. Sailaja, “Remote sensing image scene classification
by transfer learning to augment the accuracy,” Measurement: Sensors, vol. 25, p. 100645, 2023.

[76] G.-L. Chen, C.-C. Hsu, and M.-H. Wu, “Adaptive distribution learning with statistical
hypothesis testing for covid-19 ct scan classification,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) Workshops, pp. 471–479, October 2021.

[77] M. Lopez-Martin, A. Nevado, and B. Carro, “Detection of early stages of alzheimer’s disease
based on meg activity with a randomized convolutional neural network,” Artificial Intelligence
in Medicine, vol. 107, p. 101924, 07 2020.

[78] X. Ying, “An overview of overfitting and its solutions,” Journal of Physics: Conference Series,
vol. 1168, p. 022022, feb 2019.

30


	Introduction
	Related Work
	Single Image Super-Resolution
	Super-Resolution applied to Remote Sensing Image Classification

	Methods
	Datasets
	AID: Aerial Image Dataset

	Super-Resolution Models
	ESPCN: Efficient Sub-Pixel Convolutional Neural Network
	Real-ESRGAN: Real Enhanced Super-Resolution Generative Adversarial Networks
	SwinIR: Swin Image Restoration
	Swin2SR: Swin to Super-Resolution

	Classification Models
	ResNet50: Residual Network 50
	ViT: Visual Transformer

	Evaluation Metrics
	Super-Resolution Evaluation
	Classification Evaluation


	Experiments
	Super-Resolution Experimental Setup
	Transfer Learning Experimental Setup
	Computational Resources

	Results
	Super-Resolution Results
	Classification Results

	Conclusions and Further Research
	References

