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Abstract

In this work, we study the combination of explainable artificial intelligence (XAI) and Android

malware family clustering. XAI is a popular domain in artificial intelligence that aims to provide

logical reasoning behind traditional AI models and generate meaningful explanations. Though

there have been numerous researches on the XAI classification of Android malware families,

they ignore the large emergence of unlabeled data nowadays. Additionally, considering the fact

of gap in studying clustering methods that provide explanations for Android malware families,

we present this paper, which compares three algorithms in this domain (ExKMC, ICOT and

CART).

First, we analyze the dataset AMD through data exploration and data preprocessing. Next, we

conduct multiple experiments and compare the results obtained from ExKMC with those of a

baseline method CART and the newest approach ICOT. We then draw conclusions about the

key features of malware that the algorithm identifies and compare them with the ground truth

using multiple evaluation metrics. Algorithm ICOT and ExKMC perform well compared to the

baseline model CART and can provide reasonable features to cluster the Android malware family.

Keywords: XAI, Clustering Methods, Android Malware Family, Interpretation
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Chapter 1

Introduction

1.1 Motivation

Nowadays, Android has become a dominant operating system in the realm of smartphones.

It owns an impressive user base of 3.6 billion across 190 countries [110]. By the end

of 2022, it held a worldwide market share of 71.25%. This rapid growth has witnessed

the explosive potential and power of Android on a global scale. For this reason, it has

attracted attention not only from users but also from attackers to hack smartphones

for extracting benefits. Since 2012, the emergence of Android malware has experienced

exponential growth, reaching 1,047 million cases by June 2023 (equivalent to 259,591 per

day) [102]. The proliferation of Android malware poses significant concerns for smartphone

users, Android developers, and the cybersecurity community.

A large amount of emergence of Android malware has had a substantial negative impact

in various aspects. Similar to scammers in real life, Android malware is capable of steal-

ing classified information from your personal device while disguising itself as legitimate

software. For instance, malware Trojan horse [46] performs functions like stealing clas-

sified information or gaining unauthorized access to smartphones while disguising itself.

It can capture user keystrokes and transmit the gathered information to remote servers

via the Internet or SMS server. Another notable Android malware is ransomware [101],

which aims to lock the device and encrypt classified data. Ransomware requires a ran-

som payment from the victim in exchange for regaining access to the user’s device and

its information. Additionally, Android malware may display advertisements on the user’s

device, containing links or directives that prompt users to click on them. Moreover, it

can cause damage to the device itself, such as increased battery drainage, overall device

slowdown, or unauthorized modifications to the system.

Considering the increasing influx of Android malware and the resulting damages, re-

searchers and companies have devised strategies to study and mitigate their impact by
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1.1. Motivation

categorizing them into families. Additionally, attackers usually modify existing families

by appending new behaviors [21]. Therefore, a comprehensive study of Android malware

families enables us to gain more understanding of Android malware evolution and analysis.

Based on the analysis, companies can develop more robust strategies to prevent existing

and future damage from similar Android malware.

Hence, in order to address these challenges from Android malware, researchers have made

substantial e↵orts. The recent emergence of machine learning (ML) presents a huge po-

tential for learning patterns and identifying features. Especially compared to traditional

signature-based methods, ML could distinguish hidden relationships behind data through

technologies of classification and clustering. Consequently, this domain has garnered sig-

nificant attention from researchers. They have proposed a variety of machine learning and

deep learning techniques to e↵ectively classify Android malware [125, 93, 60, 98, 76, 28, 44].

Among these machine learning technologies, the classification models have made great

contributions to analyzing and grouping Android malware families. However, classification

technology can only be used for labeled samples, with a clear definition of whether it’s

malware or not or the type of malware family. And the prerequisite for the processed data

is su�cient labeled data for automatic ML, which is not enough. The reason lies in the

new coming of 2,722,824 malware samples per week [102] that need to be categorized and

analyzed. Thus, there comes a necessity to automatically cluster the newborn malware

into its own families or into the unknown new Android malware family [122].

The instinct solution for analyzing the family of unlabeled samples is to utilize the sim-

ilarity of newly emerged malware samples to compare and assign labels based on known

families. On the other hand, by categorizing the newly emerged samples belonging to

known families, new samples can also help to contribute the newly own attributes from

themselves to the pool of existing samples and enhance the discriminative ability to iden-

tify incoming samples. Consequently, due to the considerable appeal of automated labeling

technology, clustering methods have emerged as a prevailing trend [13, 118, 86, 57, 7].

Currently, machine learning techniques have demonstrated remarkable proficiency in clus-

tering Android malware families. However, ML’s limited interpretability has introduced

a potential vulnerability, where subtle modifications of malware may be able to evade

detection. For example, attackers may discover techniques or engage in activities to evade

identification by absorbing AI-based frameworks, a phenomenon commonly referred to

as evasion attacks [105]. This susceptibility is further compounded by the prevalence of

similar activities such as adversarial machine learning attacks, encompassing evasion, poi-

soning, and backdoor incursions [67].

Additionally, researchers often prioritize the accuracy of models over interpretability [92].

The lack of crucial internal model logic hampers the display, examination, and analysis
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Chapter 1. Introduction

of machine learning results [22]. Therefore, to enhance comprehension of the underly-

ing AI model and facilitate understanding of its decision-making process, models should

be transparent and interpretable. The solution for explainable methods in artificial in-

telligence is commonly referred to as ”XAI,” which has gained widespread usage across

multiple domains [130].

Presently, there are numerous researchers who have focused on clustering malware families

and conducting analysis to understand their causes and crucial features. Additionally, a

considerable amount of work has been carried out in the field of XAI for malware family

classification. However, there is a significant scarcity of researchers who specifically delve

into the application of XAI methods for real-world clustering malware families datasets,

particularly in addressing analyzing, and providing explanatory insights when clustering

unlabeled datasets of Android malware families.

1.2 Contribution

Therefore, motivated by the existing gap in research on clustering methods for XAI in the

domain of Android malware analysis, we conducted this study by applying multiple clus-

tering XAI techniques to real-world datasets of Android malware families, The framework

of whole thesis is followed as Figure 1.1.

Figure 1.1: Framework of this thesis. It begins with data preprocessing and implements three
selected algorithms. Subsequently, the data is fed into the algorithms to conduct experiments.
The results of the algorithms are then evaluated, and a comprehensive explanation of the results
is provided.

In this study, we utilized the dataset AMD provided by Wei et al. [116] for our research

purposes. The dataset comprises 24,650 samples of malware applications, categorized into

71 distinct malware families. Additionally, this dataset includes comprehensive descrip-

tions of malware behaviors, enabling us to compare the outcomes generated by our models

with descriptions provided in the dataset.

In our study, we employed three XAI clustering algorithms: Expanding k-Means clus-

tering (ExKMC) [38], Clustering via Optimal Trees (ICOT) [15], and Classification And
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1.3. Outline

Regression Tree (CART) [55]. The selection of ExKMC was based on its state-of-the-art clus-

tering performance, e�cient computational cost, and promising outcomes obtained from

experiments conducted with synthetic and real-world datasets. We employed CART as the

baseline algorithm to assess the advancements introduced by the newly proposed meth-

ods. Furthermore, we compared ExKMC with ICOT due to algorithm ICOT’s novelty and

flexibility in achieving high-quality partitions of the feature space.

These clustering algorithms not only facilitate the exploration of poorly understood data

[11] but also address the increasing prevalence of unlabeled data in current scenarios. The

primary contributions of this research are outlined as follows:

• We implemented and compared three clustering XAI models on Android malware

family clustering on the AMD dataset.

• A detailed evaluation of the algorithm’s results from the perspectives of quality and

interpretability.

1.3 Outline

The thesis is structured as follows. In the next chapter, we conduct a review of recent

articles concerning Android malware detection and the application of XAI methods to

Android malware. Chapter 3 introduces mathematical notations, and preliminaries of rel-

evant approaches, and outlines data preprocessing and evaluation methods. Chapter 4

explores the main dataset, AMD, providing a brief understanding of the dataset’s dis-

tribution. Additionally, this chapter encompasses the data preprocessing steps, including

balanced sampling, feature selection, and a concise analysis of the k-Means results, to

enhance the accessibility of the data for the models.

Chapter 5 includes experiments and hyperparameter tuning conducted on each of the three

algorithms. The chapter discusses the output of the algorithms, considering both quantity

and quality. Furthermore, in Chapter 6, interpretable results from the algorithms’ output

are displayed and compared, along with the evaluation results. Chapter 7 elaborates on

the implications and limitations of the methods employed. In the final Chapter 8, a

comprehensive conclusion is drawn regarding the achievements of the research and also

proposes potential directions for future research.
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Chapter 2

Related Work

In recent years, with the rapid growth in demand for Android applications, a variety of

malware has appeared alongside the release of new applications. Since the appearance

of the first DroidDream malware [14], the number of profitable newly born malware has

significantly increased. After conducting investigations, the researchers discovered that

DroidDream had the ability to exploit a weakness in the Android operating system, al-

lowing it to infiltrate and gain root access to infected devices. Once it had achieved this

elevated level of access, the malicious software was able to execute its nefarious operations,

including downloading additional code, exfiltrating sensitive information, and carrying out

other malicious activities. These findings serve as a stark reminder of the importance of

implementing robust security measures to safeguard against Android malware threats.

In this chapter, we first (Section 2.1) discuss the detection of Android malware, includ-

ing the types of features from malware detection, and the popular detection methods

employed. Secondly, we dive into Section 2.2 which addresses how the integration of

explanatory malware detection contributes to enhancing the e�cacy of conventional de-

tection and clustering tools. Furthermore, we explore the evaluation of interpretative

methods following the implementation of malware technologies, assessing their e↵ective-

ness. Finally, we present a comprehensive conclusion that highlights the existing gaps and

elucidates our innovative approach to addressing these challenges.

2.1 Android Malware Detection

Feature Type. Malicious code features can significantly impact the detection of malware

and the accuracy of detection results. There are various divisions in the types of malware

detection features. These features can be categorized into three types: static, dynamic, and

hybrid features. The static features are extracted without running the application itself.

The dynamic features can only be observed when the Android application is executed.
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And the hybrid features are a combination of both static and dynamic features [16]. It’s

also suitable for classifying the corresponding detection analysis methods.

Static features can be obtained without executing the programs. For the Android system,

the primary focus is on the application package (APK) file, which is a package document

format that instructs the Android operating system to install applications on devices. Nu-

merous valuable features can be extracted from it, such as permissions (requests from ap-

plications to access specific actions or data on devices), API calls (to observe whether the

malware performs actions that gain access to various functions in the Android platform),

package names, related libraries, and application components (e.g., activities, services).

Yerima et al. [127] utilized API calls, (Linux/Android) command sets, and permissions in

ensemble learning and static analysis, achieving a detection accuracy of 97.3% - 99% with

lower false positive rates. Zhu et al. [134] extracted and employed permissions, sensitive

APIs, monitoring system events, and permission rates to implement an ensemble Rotation

Forest for detecting malicious behaviors, showcasing distinct advantages compared to the

Support Vector Machine model.

Dynamic features are revealed in a ”living” environment for Android, which means obtain-

ing the features during runtime [47]. Commonly used dynamic features include network

communication (network activity generated from the Android applications), system calls

(the interface between the user and the kernel also means the requests that need to go

through system calls before using any hardware resources [64]), resource usage (e.g., CPU

usages, memory, etc.), and file access. Taniya et al. [17] introduced a system to capture

system call traces of applications while interacting with Android devices. They considered

the frequency of system calls from applications as the primary feature set, feeding it into

the J48 Decision Tree and the Random Forest. Shree et al. [39] extracted activity-specific

features, OS-specific features, and also the generic network features such as HTTP-based

features (Malware can receive/send personal information to remote servers) for malware

detection. They conducted experiments on 18 applications from multiple malware families

and 14 genuine applications, showing a detection accuracy of 95% - 99.9% and e�ciency

for Android malware detection.

Hybrid features refer to the combination of static and dynamic features. Multiple models

are employed to create an ensemble approach that is adaptable to di↵erent scenarios

in Android malware. Saracino et al. [100] combined static features (permissions, app

metadata at the package level) and dynamic features (user activity, important APIs, and

system call) to mitigate malicious behaviors across four levels. Their approach successfully

prevented 96% of malware instances from a dataset of 2,800 applications.

However, the static analysis approach has limitations in its inability to identify malicious

behavior while the application is running [82]. On the other hand, dynamic analysis is
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costly due to the requirement of executing Android applications in a sandboxed environ-

ment, which leads to slower analysis [112]. Hybrid methods aim to leverage the benefits

and weaknesses of both static and dynamic analysis techniques but also highly rely on

each scenario requiring multiple experiments [73].

Feature Selection. Current researchers are utilizing the advantages of machine learning

to uncover hidden feature relationships among data samples. As a result, researchers are

exploring various models using a large number of features to achieve higher accuracy [61].

Even though these features can increase the probability of finding the correct relationship

to distinguish between malicious and benign Android applications. At the same time, an

excessive number of features can slow down machine learning technologies and reduce

the model’s performance [42]. Therefore, several feature reduction methods, along with a

multitude of data preprocessing techniques, are employed. Feature selection is one vital

method that holds value for machine learning models [24].

Chen et al. [27] and Kang et al. [50] utilized information gain to evaluate the generated

feature subset. Information gain is a commonly used non-parametric and non-linear mea-

sure that is independent of the distribution of datasets. The genetic search (GS) is a

search method based on genetic algorithms, aiming to identify the smallest set of features

through various generations. Firdaus et al. [36] employed GS to select features from a

pool of 106 strings and conducted experiments using various machine learning methods

such as Näıve Bayes (NB), functional trees (FT), J48, random forest (RF), and multilayer

perceptron (MLP), achieving an accuracy of around 96%. In addition to these approaches,

other methods have been studied, such as a class-driven correlation-based feature selection

method [48] and a Deep Q-learning-based Feature Selection method [33].

Machine Learning Methods. Recently, to deal with malware threats, researchers have

put great e↵ort into analyzing malware and their common characteristics. Machine learn-

ing is an important component in malware analysis, and plays a key role in identifying

and categorizing new malware samples automatically.

And multiple researchers have conducted comprehensive reviews and surveys regarding

Android malware detection methods based on ML models. Alqahtani et al. [6] divided ML

technologies into four types of frameworks: SVM, Naive Bayes, Perceptron, and Neural

Network, providing detailed algorithms, article citations, and comparisons. They observed

that most of the articles used SVM and NB algorithms, achieving high accuracy of 100%

with 0.00% false positives; however, the detection rate was only around 85%. Improve-

ments are needed. Kouliaridis et al. [53] identified gaps among multiple machine learning

methods, di↵erent metrics, models, datasets, and features that complicate comparisons in

a broad view. They established a system to organize past research based on the dataset

age, analysis type, ML models, and evaluation metrics and followed a converging schema
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2.1. Android Malware Detection

Table 2.1: Summary of multiple machine learning models in Android malware detection. The
first column lists di↵erent ML models, the second column lists the primary strengths, and the
third column lists selected weaknesses. The last column provides references that utilize these ML
models as their focused researched algorithms in their works. The division of machine learning
and part of the pros and cons are referenced by Liu et al. [61]

Models Advantages Disadvantages Reference

Decision Trees (DT) easy to understand and analysis potential to overfitting [136, 111]

Naive Bayesian (NB) lightweight to gain result
assume the features are independent,

which is not the usual case

[103, 2]

Linear Model (LM) fast and direct failed to deal with high dimensional data [95, 94]

Support Vector Machine (SVM)
improved in coping with small,

high-dimensional and non-linear problems

sensitive to missing data

and data preprocessing

[4, 89]

K-Nearest Neighbor (KNN) small cost on parameter tuning computation cost is huge [120, 8, 126]

Neural Networks (NN)

Deep Learning (DL)

high accuracy and fault tolerance

requires huge dataset and

computational resources,

parameter tuning is laborious

[114, 121, 49]

Ensemble Learning smarter than single model
expensive to train and

requires multiple experiments

[61, 127]

Online Learning
great real-time performance

and lower hardware requirements

models are limited to online training [75, 74]

as a baseline to guide future research.

Table 2.1 [61] presents a division of various ML technologies used in Android malware

detection, along with their respective pros and cons.

Some researchers investigate how to improve the algorithm itself. There is a large num-

ber of published studies on machine learning in malware classification. A mixed-method

approach was employed [68] using lightweight machine learning with app permissions to

detect malware, followed by a code analysis to peek into malicious behavior. One de-

cently accurate approach that experiments have shown is AndroDFA [66]. Also, several

systematic studies of malware categorization in unsupervised machine learning have been

undertaken. Arvind et al. [63] proposed the SOMDROID framework, which involves fea-

ture ranking approaches and the Self-Organizing Map (SOM) algorithm and completed a

comprehensive evaluation along several clustering and classification metrics. Kanti et al.
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[96] introduced Kernel k-means based on k-means clustering methods to prevent the sepa-

rations from clusters in vector space. Swathi et al. [80] applied Hidden Markov Models as

the basis to provide scoring to the k-means model. And di↵erent from other research, they

examined the accuracy by taking into account the interplay between the dimension and

the number of clusters. Aiman et al. [99] also conducted an investigation into the potential

use of clustering techniques in malware detection. Their evaluation, which encompassed

18,174 application files, demonstrated the e↵ectiveness of permission features, as well as

the amalgamation of AndroidManifest files and application information

2.2 Interpretable Explanation Approaches

In recent years, there has been a proliferation of methods aimed at providing explanations

for black-box machine learning models and making their outcomes interpretable in various

domains, including identification, estimation, inference, and judgment. These methods

aim to make complex models comprehensible to individuals by employing techniques such

as LIME (Local Interpretable Model-Agnostic Explanations) [90] or more sophisticated

models. The foundation of these models is rooted in various theoretical methods, including

Linear Regression [3], Logistic Regression [59], Decision Trees [26], Random Forests [43],

Naive Bayes [107], and Gradient Boosting [10].

In these researches, there have been notable contributions toward the development of

e↵ective interpretable Android malware detection systems. For instance, Alani et al. [3]

proposed a lightweight solution that leverages recursive feature elimination (RFE) to

distill the most vital features for distinguishing between benign and malicious software.

Furthermore, this system employs Shapley additive explanation (SHAP) values to o↵er

explanatory insights into the selected features, achieving an impressive accuracy rate

exceeding 98%.

Similarly, Arp et al. [8] introduced the DREBIN approach that harnesses static analysis

and machine learning techniques such as Support Vector Machines to identify crucial

features for malware detection. The resultant explanations are highly accurate, with a

success rate of 94% and negligible instances of false positives. Additionally, DREBIN

provides a valuable resource in the form of a commonly used database for Android malware

research.

Martina et al. [70] conducted experiments and discovered the high accuracy from trigrams

of systems calls results. They propose a model that combines enhancements to the main

model, such as Random Forest, with an auxiliary model like SHAP. The combination

methods are based on the degree of disagreement between the main model and the auxil-

iary model. The obtained results are promising, as the models demonstrate no bias, and

9



2.2. Interpretable Explanation Approaches

the extracted features are found to be intuitive.

Minami Set al. [104] tackled this challenge through the application of natural language

processing techniques, utilizing FCGAT methods for representing function features. Ad-

ditionally, the attention mechanism is employed to emphasize the importance of functions

in the ranking of malware features.

Iadarola et al. [45] employed the cumulative heatmap technique for Android malware de-

tection and identification. This approach leverages the advantages of convolutional neural

networks (CNN) while utilizing visualization results to guide classifier decisions and en-

hance understanding of why intricate network learning produces such models, thereby

improving reliability. The interpretability aspect of this approach is applicable to various

ML models.

Yajamanam et al. [123] utilized the gist descriptor, which represents image features, to

distinguish di↵erences among malware families. One advantage of this method is its ability

to avoid the costly extraction of gist features during training or scoring, as the neural

network automatically handles this process.

Ni et al. [77] proposed MCSC (Malware Classification using SimHash and CNN), a tech-

nique that generates images from disassembled malware codes and feeds them into a

CNN using SimHash technology. This method achieves favorable results even when deal-

ing with unevenly distributed samples from di↵erent malware families. Furthermore, it

exhibits exceptional speed, taking an average of only 1.41 seconds to recognize a new

sample.

Je↵rey et al. [30] took a di↵erent approach to interpretability, moving away from clas-

sification or clustering. Instead, the focus is on understanding the behavior of malware.

The distinguishing factor lies in leveraging the MITRE ATT&CK® ontology. This paper

automates a method to identify Tactics, Techniques, and Procedures (TTPs) within a

sub-part of the control flow graph, which determines the execution flow of a malware exe-

cutable. By analyzing this specific aspect, it aims to shed light on the malicious behavior

exhibited by the malware.

Martin et al. [52] also introduced a novel method using CNN to identify the location of

Android app’s opcode sequence in malware detection, and employed LIME to explain the

importance of this feature.

Though research has been done on interpreting the underlying reasons of XAI models,

there still remain some suspicions. Capuano et al. [22] discovered that the explanations

are more intrinsic explanation rather than post-hoc (such as SHAP and LIME). Fan et al.

[32], on the other hand, raise concerns about the trust level of output interpretations from

XAI models. They propose di↵erent multiple angles to interpret the results. To address

the question of why we should trust our interpretation model, they present a set of guide-
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lines for assessment and three critical evaluation methods, including stability (assessing

the model’s ability to maintain consistent explanation for similar pre-trained models),

robustness (measuring the similarity of interpretability results for similar instances), and

e↵ectiveness (observing the changes on predictions results when removing several critical

features). Nadeem et al. [22] studied existing research on explanation models for security

problems from a broader perspective. They discovered a lack of clear separation between

users and designers when designing models, as well as a reduced focus on model and

explanation verifications. Furthermore, the obtained results often vary across di↵erent ex-

planation models. Moreover, Nadeem et al. noted that adversaries could potentially utilize

explanations to compromise confidentiality, integrity, and the availability of the model.

Evaluation of XAI Methods for Android Malware Detection. After conducting

experiments on machine learning and obtaining the results of interpretation, it is crucial

to notice the correctness and employ a metric to assess the algorithm’s performance on

explanation, and also its e↵ectiveness among other algorithms. The primary objective of

the evaluation is to provide evidence to determine whether the model e↵ectively fulfills

its objectives [85]. Liu et al. [62] discovered that many researchers tend to focus only on

evaluating the XAI results based on over-optimistic classification performance, neglecting

the actual malicious behaviors that may result in poor reliability.

For previous works on evaluation methods, some of them require manual evaluation,

either by experts or companies. For instance, Van et al. [113] designed an evaluation

framework to enhance the e↵ectiveness of users’ experiments by utilizing results generated

from interpretation. Kim et al. [51] employed a system tool that allows users to test the

classification results using user-defined concepts, addressing the challenges in evaluating

deep learning interpretation results. However, these evaluation methods through human

significantly increase the human cost [58]. Furthermore, human opinions are prone to

biases that can violate the scientific research principles of objectivity [19].

Currently, researchers have proposed several quantity metrics for evaluation on classifica-

tion tasks, including accuracy score, precision, recall, and F1-score [87, 40, 62]. Addition-

ally, execution time (computation cost) is another factor to evaluate the training duration

of machine learning methods [58]. For some researchers, the evaluation of interpretation

results also remains questionable. Therefore, they have suggested several technologies and

established certain rules to assess the evaluation results derived from interpretation. Yang

et al. [124] proposed principles to evaluate generalizability, fidelity, persuasibility, etc.,

encouraging researchers to test their results from these three perspectives. Mohseni et al.

[69] proposed a comprehensive framework that combines various elements to provide a

detailed evaluation of XAI methods. This framework encompasses multiple dimensions,

including the assessment of mental models, end-user satisfaction and usefulness, user
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trust and reliance, human-AI task performance, and computational measures. However,

these metrics tend to be overly general and lack practical guidance [9]. For deep learning

models, notable for hard interpretation ability, Alexander et al. [115] proposed criteria for

comparing and evaluating interpretation results, which are based on the accuracy of inter-

pretation and security-focused aspects (completeness, e�ciency, and robustness). These

criteria are tested on six popular explanation models, leading to the discovery that two

models (Integrated Gradients and LRP) achieve the best performance in meeting all the

requirements. The authors also observed that in many scenarios trained neural network

models have the potential to be overfitted to certain datasets, highlighting the necessity

of obtaining more general applicability in deep learning models. In conclusion, evaluation

is a challenging task that requires balancing both objective and subjective considerations

[41].

2.3 Conclusion

In a nutshell, for the domain of Android malware detection, researchers primarily focus on

supervised machine learning techniques, specifically classification tasks. For the explana-

tion methods, the recent advancements in deep learning have garnered significant atten-

tion, leading researchers to shift their focus toward these approaches. However, utilizing

deep learning networks for explanation purposes poses challenges, such as the extensive

computational resources required for generating results and the di�culty in interpreting

network outputs. For this reason, the reliability of these network-based technologies for

analysis raises concerns.

Therefore, there is a noticeable gap in the application of XAI methods that discuss the

performance of clustering techniques in malware family detection and categorization. And

also for the evaluation after performing interpretation algorithms, each research study

tends to have its own preferences and testing methodologies. In this thesis, we employ a

more subjective approach to handle the evaluation results from XAI clustering result.
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Chapter 3

Methodology

In this research, our primary objective is to investigate the performance of XAI clustering

methods in the categorization of Android malware families. This chapter provides a de-

tailed introduction to the XAI clustering algorithms. We selected three algorithms as the

focus point of our work. The main algorithm under investigation is ExKMC (Section 3.1).

Additionally, we include the baseline model CART (Section 3.2) for comparison purposes,

and a state-of-the-art model ICOT (Section 3.3). The rationale behind our selection has

elaborated in Section 1.2.

3.1 ExKMC

ExKMC (Expanding k-Means clustering) is first brought up from [38], which is designed for

low-cost clustering methods and the tradeo↵ between explanation and accuracy. ExKMC

includes two essential input parameters, including k and k0, a set of points � = x1, . . . , xn ✓
Rd with cardinality |�| = n (n is number of leaves of ExKMC tree). The algorithm has two

distinct phases, each characterized by its own objectives and strategies.

In the initial phase, ExKMC undertakes the construction of a tree consisting of k leaves,

employing the famous IMM algorithm [72]. Then, ExKMC proceeds to the second phase,

marked by minimizing the surrogate cost. Within this phase, ExKMC expands the original

tree, incorporating additional leaves beyond the initial k. At each step of the iterative

expansion, the tree undergoes modifications. Notably, this expansion process involves the

partitioning of data using an increasing number of thresholds, thereby leading to more

granular divisions.

The mission of algorithm ExKMCis the identification of the optimal feature-threshold pair

for inclusion, achieved through the refinement of the centers. To elucidate the principle

guiding the division process, ExKMC introduces a designed surrogate cost. After construct-

ing the initial tree with k leaves (which correspond to the k centers generated by the IMM
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algorithm), ExKMC expands the tree with an overall k0 leaves (increasing k0 � k leaves),

adhering to the principle of minimizing the cost associated with the k reference centers.

Ultimately, the cluster assignments are determined based on the selection of the best

reference center.

A set of k clustering references is generated using the k-Means algorithm. The rationale

for optimizing the actual cost is that the original k-Means cost is time-consuming and

challenging to recalculate the distances between the nodes and clustering centers. Instead,

a surrogate cost is defined as the sum of squared distances between the nodes and their

closest reference center.

Definition 3.1 (Surrogate cost). For centers µ1, ..., µk, tree T has the clustering ( bC1, ..., bCk0),

the surrogate cost is

gcostµ
1,...,µk

(T ) =
k0X

j=1

min
i2[k]

X

x2 bCj

��x� µi
��2

2

With the surrogate cost, the utilization of the ExKMC algorithm becomes feasible, as out-

lined in Algorithm 1. This algorithm requires the following inputs: k0 leaves, the dataset D,

and the pre-defined cluster number k. By leveraging the IMM algorithm and the standard

k-Means algorithm, ExKMC is capable of generating a tree T with k leaves from the IMM

algorithm and k reference centers from standard k-Means. Subsequently, ExKMC produces

a tree T 0 with assigned labels.

Algorithm 1 ExKMC Algorithm [38]

Require: D - dataset, vectors in Rd

Require: C - Set of k clusters
Require: M - Tree
Require: k0 - leaves numbers
for all leaf 2 T.leaves do

Compute gains of split based on the di↵erence between the surrogate cost with split
without storing the best feature-threshold pair and cost improvement in splits and gains
end for

while |T.leaves| < k0
do

select leaf with maximum gain from split
find its best reference center for its children µL, µR

use µL, µR to form new children of leaves greedily
update splits and gains
delete nonsense leaves

end while

return T 0
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Figure 3.1: Example tree from ExKMC result. The basic construction is similar to a binary tree,
wherein three axes (x, y, z) are employed to partition the entire dataset of numbers into four
clusters, each with a discernible and reasonable path. At each node, the left branch satisfies the
given condition, while the right branch follows the opposite.

3.2 Baseline-CART

Classification And Regression Tree (CART) [55] originated from the decision tree algo-

rithms family, which plays a crucial role in interpretation. CART extends the functionality

of a decision tree by recursively partitioning the dataset based on features, considering

either the Gini impurity or information gain. The resulting binary tree undergoes recur-

sive growth until it reaches the defined limits of tree depth or the minimum number of

samples in the leaf nodes. Nodes within the tree signify the features, while branches rep-

resent the potential outcomes, and the leaf nodes convey the final results of clustering or

classification.

The choice of the CART algorithm is driven by several factors. Firstly, it serves as the

fundamental algorithm for decision trees, which are highly intuitive and widely used in

machine learning research. Secondly, decision trees o↵er the benefit of generating expla-

nations naturally. Thirdly, the CART algorithm is lightweight, characterized by its ability

to perform complex computations with minimal resource consumption. Fourthly, in prac-

tice, we utilize the labels assigned by the k-Means algorithm as training labels for the

CART tree. So under the circumstances of using k-Means, we could better investigate the

performance of the interpretable part of the whole algorithms compared to ExKMC.

Figure 3.2 uses the public and commonly used dataset IRIS [37], and generates an example

CART tree with 110 samples dataset.

The decision tree starts from a root node, which represents the first decision. The root

node divides the data based on the petal width feature in this scenario. If the petal width
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is less than or equal to 0.8, the tree continues to the left child node, which predicts the

class as ”setosa” with high confidence since all the training samples in this branch belong

to the ”setosa” class. If the petal width is greater than 0.8, the tree moves to the right

child node, which further splits the data based on the petal length feature. If the petal

length is less than or equal to 4.75, the tree proceeds to the left child node of the current

node. In this node, the class is classified as ”versicolor” since most of the training samples

in this branch belong to the ”versicolor” class. On the other hand, if the petal length

is greater than 4.75, the tree moves to the right child node of the current node. In this

node, the class is classified as ”virginica” since most of the training samples in this branch

belong to the ”virginica” class.

This decision tree provides a visualization of the decision-making process based on the

provided features (petal width and petal length) to classify the Iris flowers into di↵erent

classes (setosa, versicolor, and virginica). It uses if-else conditions at each node to split

the data and make predictions. By following the branches and rules of the tree, we can

determine the predicted class for a given set of feature values.

Figure 3.2: Example tree from CART result with IRIS dataset public online.

The Gini index [88] serves as the evaluative metric or optimization criterion in CART for

partitioning nodes and determining the subsequent branching paths. It facilitates the

assessment of the probabilities associated with node membership across di↵erent classes.

The equation representing the Gini index is as follows, in which n is the number of

16



Chapter 3. Methodology

classifications and pi denotes the probability that a sample being classified for a class:

Gini = 1�
Pn

i=1(pi)
2

The objective is to minimize the Gini impurity within the decision tree construction

process. The Gini index ranges between 0 and 1, with values closer to 1 indicating a

higher degree of randomness in the distribution of instances across classes within a node.

Conversely, a value of 0 implies that all samples exclusively belong to a certain class,

thus achieving pure classification. An index of 0.5 signifies a uniform distribution among

multiple classes.

3.3 ICOT

Clustering via Optimal Trees (ICOT) [15] is built upon the Optimal Classification Trees

(OCT) algorithm, utilizing the commonly used clustering metric, the Silhouette Metric.

By combining both intra-cluster density and inter-cluster separation, the loss function in

ICOT prevents the need for complex considerations regarding tree modification.

ICOT adopts the mixed-integer optimization (MIO) framework to construct the tree glob-

ally. While OCT is traditionally used for supervised learning tasks, ICOT leverages insights

from the MIO framework to address unsupervised learning tasks with certain modifica-

tions.

The loss function definition is based on Silhouette Metric [91].

Definition 3.2 (Silhouette metric). The Silhouette measures the distances between ob-

servations in the same cluster to the distance from its second closest cluster. For each

observation i, the formulation is as follows, ai is the mean intra-cluster distance between

i and its companion in the same cluster, and bi is the mean nearest-cluster distance for i

and other points in the second closest cluster.

scorei =
bi � ai

max(bi, ai)

Silhouette Coe�cient lies between �1  scorei. If scorei is near 0, the cluster i is not

distinguished from other clusters, if scorei is near 1, the cluster i can be well clustered,

and if scorei approaches -1, it could have a di↵erent or wrong clustering result.

The pseudocode of ICOT is listed in Algorithm 2. ICOT begins with a greedy tree and

then expands the leaves using a local search procedure until the clustering convergence

threshold of the cost function metrics is reached. The original greedy tree can take multiple

forms with multiple nominees, and the tree modifies itself recursively by adding leaves.
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ICOT returns the tree with the highest clustering metrics. The local search procedure

is responsible for assigning the clustering result. The principle of adding, deleting, or

replacing is determined based on whether it improves the objective from its current value.

All nodes are reconsidered in a list once an improvement is found.

Algorithm 2 ICOT Algorithm [15]

Require: D - dataset, vectors in Rd

Require: C - Set of k clusters
Create a initial greedy tree T , cluster C and loss l0
Potentials to search : S = 1,..., S; loss: l = l0
while S not Null do

for all s 2 S do

if Ck is leaf then
select best new division with loss bl . Loss is based on initial tree and

calculated by Silhouette Metric
else

find the best-modified fit via a di↵erent division or division deletion, with
loss bl

end if

end for

if bl < l then
Update T 0 and add all leaves to S. l  bl

else

delete s from S
end if

end while

return T 0
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Data

The dataset, AMD, used in this thesis was collected in 2017 by Wei et al. [116]. It con-

tains samples that were observed in the period from 2010 to 2016. It was collected through

prevalent anti-virus scan outputs from third parties and compiled using automation tech-

nologies. It comprises 24,650 malware applications categorized into 71 families. In addition

to o↵ering an extensive collection of Android malware families, AMD also provides de-

tailed information on malware behaviors, which will be useful for later comparisons with

the algorithm’s generated explanations.

There are several prevalent malware datasets available within the current research domain,

including Circa (2011, created by Android Malware Genome), Drebin (2014, created by

Arp et al. [8]), and AndroZoo (2016, [5]). Among them, AMD o↵ers distinct advantages

as it specifically focuses on details of malware behavior. Furthermore, AMD is relatively

up-to-date, covering the time period that corresponds to the emergence and proliferation

of various malware families. This is why AMD was chosen as the primary dataset for this

research.

In this section, an initial data exploration and data preprocessing are provided. Data

preprocessing also comprises three parts: sample balance, feature selection, and k-Means

results.

4.1 Data Exploration

As mentioned above, AMD comprises 24,650 samples and covers 71 families. When con-

sidering these 71 families, there are large families like Airpush, which have 6652 malware

samples, and small families with fewer than 10 malware samples. Figure 4.1 illustrates the

proportion of each family within the entire dataset. The families with sample sizes smaller

than 164, which do not fall within the top 20 datasets families, are grouped together and

represented as ”others” in the figure.
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(a) Pie chart of top 20 families based on counts

(b) Pie chart of top 10 families based on counts

Figure 4.1: Family counts in AMD dataset
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In detail, the pie chart provides a clear and intuitive representation of the relative pro-

portions of each family within the dataset. The size of each slice reflects the family’s

relationship to the entire dataset and its contribution to the whole. Referring to Figure

4.1, we can observe that the largest family, Airpush, occupies approximately 32.0%, which

is almost one-third of the entire dataset. From the family FakeInst to the family Kuguo,

they collectively account for over 5% of the whole dataset. The relatively smaller families

make up around 3%.

From Figure 4.1a, we can see that the top 20 families and their samples constitute ap-

proximately 92.9% of the dataset, while the remaining datasets contain less than 164

samples. Furthermore, in Figure 4.1b, the top 10 families and their samples account for

approximately 81.9% of the dataset. It is also worth noting that the largest family takes

up the highest proportion within the dataset.

Figure 4.2: Histogram displaying the distribution of the top 10 families in the AMD dataset
in descending order, along with their respective counts.

From Figure 4.2, it is evident that Airpush comprises approximately one-third of the en-

tire dataset, amounting to 6,652 samples. Comparatively, the 10th largest family, Droid-

KungFu, consists of 546 samples, resulting in a significant di↵erence of 6,106 samples.

Therefore, it is necessary to implement a sampling process to address the imbalance, par-

ticularly concerning the Airpush family. Sample distribution plays a significant role in

clustering tasks, as highlighted in [128]. Inspired by Zhao [131], for simplicity and better

representation of results, we select the top 10 families as the experimental data.
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4.2 Data Preprocessing

For unsupervised machine learning, k-Means, ExKMC, and other interpretable algorithms

are commonly used. Data preprocessing is necessary and beneficial, which includes tech-

niques such as feature scaling, feature selection, and sample balancing.

The benefits of data preprocessing are numerous. Some unsupervised machine learning

algorithms rely on distance-based calculations [108]. Feature scaling techniques like stan-

dardization or normalization ensure that all features are on a similar scale. This prevents

features with larger magnitudes from dominating the analysis and ensures that the algo-

rithms consider all features equally [133]. Balancing the skewed dataset is also crucial as

unsupervised learning algorithms are highly sensitive to imbalanced datasets, which can

introduce bias even in large datasets.

The evaluation metric used for assessing the k-Means results is MoJoFM. MoJoFM is

one of the clustering measures used to evaluate clustering results. It was introduced by

Zhihua Wen and Vassilios Tzerpos in 2004 [117]. MoJoFM is an e↵ective measure based

on the Minimum Overlap (MoJo) distance, which is also utilized by Zhao in comparing

clustering results for malware detection [131].

The similarity metric can be used to select the most similar cluster for each cluster result.

The Silhouette score is employed to assess the quality of clusters in typical clustering

analyses. Additionally, MoJoFM can be utilized to provide a quantitative evaluation of

the algorithm’s performance.

MoJo distance (Minimum Overlap distance) forms the foundation of the MoJoFM metric,

which measures the similarity or di↵erence between two clusters. For instance, given two

clusters A and B, MoJo distance calculates the minimum number of ”Move” and ”Join”

operations required to transform A into B or vice versa. Here, A represents the clustering

generated by the algorithm, and B is the reference or ”gold standard” labeling [117].

The equation below describes a general rule for calculating the MoJoFM result, where

M represents the algorithm, A denotes the algorithm’s output, B represents the ”gold

standard” and n is the number of clusters. mno(A,B) is how close A comes to B, which

defines in its original article and calculates the actual maximum distance to partition B

for the denominator of its formula [117].

MoJoFM(M) = (1� mno(A,B)

max(mno(8A,B))
)⇥ 100

4.2.1 Sample Balance

To deal with the unbalanced data distribution, various preprocessing methods are used,

including over-sampling the minority class [106, 81] or under-sampling the majority class
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[83, 18]. NearMiss is our selected under-sampling method. And in this thesis, the focus

is on the first method (NearMiss-1), which aims to identify and reduce the number

of significant negative examples that overshadow the positive examples in the minority

class. The selection strategy is based on the top three closest positive examples, aiming to

minimize the average distance between the negative examples and these positive examples.

Applying under-sampling techniques o↵ers several advantages. For example, if the major-

ity class (negative labels) constitutes 80% of the dataset, while the minority class (positive

labels) constitutes only 20%, employing under-sampling would preserve the information

in the minority class by maintaining the same number of instances as before, or even

improving it. This helps to prevent the loss of meaning that can occur when the majority

class dominates the dataset. However, it’s important to note that if a rigorous threshold

is applied for removing features, some important features in the negative labels may be

lost, potentially causing issues in clustering.

NearMiss [65] employs a selection strategy where it identifies instances from the majority

class that possess the lowest average distance to the three nearest instances belonging to

the minority class.

Therefore, we utilized the NearMiss algorithm. It is essential to explore di↵erent sampling

algorithms to determine the most suitable one for a given dataset. Di↵erent sampling

methods can have varying impacts depending on the distribution of the dataset. The

evaluation metric used for comparing di↵erent sampling methods is crucial. We have

experimented with oversampling methods such as SMOTE [25], Global CS [35], as well as

the combined over-sampling and under-sampling method called SMOTEENN [12].

(a) MoJoFM score on three sampling tech-
nologies

(b) Running time on three sampling tech-
nologies

Figure 4.3: MoJoFM score and running time of di↵erent sampling technologies on AMD
dataset
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Then the result from MoJoFM is obtained by comparing the k-Means prediction results

and the true labels to examine the sampling algorithms’ performance. The running time

and the MoJoFM result are displayed in Figure 4.3. When comparing these algorithms, the

best result is obtained from NearMiss, which is an undersampling method. In Figure 4.3a,

Global CS and SMOTEENN display the not great result with only a round 60% MoJoFM

score. As for NearMiss, the MoJoFM score gives a decent result of approximately 66.5%,

which is the highest among all three sampling methods. Additionally, when we consider

the running time as shown in Figure 4.3b, SMOTEENN is the slowest with a runtime of

250 seconds, while Global CS and NearMiss perform similarly, taking 80 and 20 seconds,

respectively. Consequently, it is evident that NearMiss could be the superior method

among these three algorithms.

The reason why oversampling and combined sampling methods are not as e↵ective as

undersampling is that the oversampled dataset becomes excessively large. For each fam-

ily, the samples are duplicated to an increased number, 6652 samples. For instance, after

applying the SMOTEENN method to each family, the result can be presented as follows:

(family cluster No., corresponding number of samples). (0, 6393), (1, 6652), (2, 6609), (3,

6646), (4, 6650), (5, 6652), (6, 6652), (7, 6552), (8, 6652), (9, 6534). Consequently, the

overall result is unsatisfactory due to the combination of factors. Firstly, the substantial

number of duplicated samples, reaching up to 66,000, might negatively impact the out-

come. Secondly, the poor performance in MoJoFM score and running time, as depicted

in Figure 4.3.

Therefore, based on our evaluation and comparison of di↵erent sampling methods in

Figure 4.3, we have selected the NearMiss method to continue our experiments. The

NearMiss algorithm has shown promising results in addressing the challenges posed by

imbalanced datasets. By selecting the NearMiss method, we aim to further investigate its

e↵ectiveness in improving the performance of our machine learning models.

4.2.2 Feature Selection

The AMD dataset comprises 695 features, categorized into the following groups: permis-

sion, intent, network activities, telephony, provider, NFC, location, media, bluetooth, app,

OS, inputmethodservice, hardware, accounts, and other detailed Android methods. Ex-

tensive numbers of features for ML technologies could compromise the outcome, resulting

in biases or even poor model performance. Therefore, this thesis also investigates feature

selection techniques to reduce the number of Android malware features before conducting

experiments on algorithms.

Feature selection [42] finds wide-ranging applications in various scenarios, including pat-

tern recognition [78], artificial intelligence [20, 97], and statistical analysis [31, 23]. All

24



Chapter 4. Data

studies emphasize the significance of relevant features and the elimination of redundant

ones to determine the threshold for division or recognition [132]. Feature selection is a

process that identifies the most important features to enhance the impact and sustainabil-

ity of the model, regardless of whether it involves clustering, classification, or regression

tasks in machine learning. Additionally, by reducing dimensionality, feature selection aids

in better data visualization and comprehension.

Based on the availability of labels in the dataset, feature selection methods can be classified

as supervised, semi-supervised, or unsupervised. In the context of this thesis, our focus

is on unsupervised feature selection methods. Unsupervised Feature Selection (UFS) is

designed for non-labeled datasets.

FRUFS
1 is a method designed to address the challenges associated with unlabeled datasets

and models. It falls under the category of feature relevance-based Unsupervised Feature

Selection (FRUFS) and employs supervised algorithms, such as XGBoost, to rank features

based on their importance.

The design initiative of FRUFS draws inspiration from linear regression, specifically, the

equation
P

j ↵
k
jx

i
j, where ↵i represents the importance of the corresponding feature xi

j.

This importance can be interpreted as the weight used to predict the target variable. The

primary objective is to utilize a set of coe�cients to predict each feature. The equation

representing this process is as follows:

xi
k =

X

j

↵k
jx

i
j

↵k
j is the j-th feature coeeficient to predict the k-th feautre.

And xi
k means that we are going to predict the feature importance on k-th feature based

on other features of x

X = XW T

) X �XW T = 0

min
��X �XW T

��
F

(4.1)

In equations,
��X �XW T

��
F
is the Frobenius norm that could get the sum of squares of

all values in the matrix.

In a more concrete matrix form based on Equation 4.1, we have the matrix X with

1
https://github.com/atif-hassan/FRUFS
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dimensions (n⇥d), where n represents the number of samples and d represents the number

of columns. Our objective is to learn the matrix W through machine learning. Matrix W

has dimensions (d ⇥ d) and initially contains randomly assigned coe�cient values. For

instance, considering the first row of W , denoted as W j
i where i is 1 and j 2 {1, 2, ...d},

the values of W j
1 pertain to the second feature among the d features, and its purpose is

to predict the first feature. Similarly, in the first column, when j is 1, the coe�cients W 1
i

represent the weights associated with the second feature for all other features.

To obtain the final importance value for each feature, we calculate the average value

across all instances i of feature j in Xij. The process of redefining the importance is

also referenced from [135]. Therefore, we apply FRUFS, the cut-o↵ importance ranking of

features is shown in Appendix 8.1.

After applying feature selection of FRUFS algorithm, the total number of features decreased

from the original 695 to a reduced number of 209 features.

4.2.3 k-Means Result

Before delving into the results of ExKMC and the corresponding experiments, it is essential

to understand the foundation of ExKMC, which is based on the k-Means algorithm. By

examining the k-Means results before applying advanced ExKMC, we can gain insights into

the data’s separation and observe how k-Means contributes to enhancing the performance

of both the dataset and ExKMC. Therefore, in this section, we present an exploration of the

pure k-Means results to provide an overview of the data partitioning and the underlying

mechanisms that aid ExKMC in generating its outcomes.

Figure 4.4: Confusion matrix of k-Means on AMD top 10 families after data preprocessing

After applying the k-Means algorithm, the confusion matrix in Figure 4.4 was generated,
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targeting 10 classes. The x-axis represents the cluster results obtained from k-Means, while

the y-axis represents the true labels of family names. Several important observations can

be made from this confusion matrix, which requires careful consideration or discussion

after the experiment and obtaining the explanation result.

• The Fusob and Jisut families are di�cult to distinguish since they are both perfectly

assigned to one cluster, and they have a 100% assignment rate for their true labels

• Similarly, cluster 1 presents challenges in distinguishing di↵erent classes. There are

three labels that can potentially match the actual class, with matching rates ex-

ceeding 25%.

• A similar phenomenon occurs in cluster 4, where the matching rate for the true label

”Airpush” is 73%, but it is also 36% for the label ”BankBot.” This suggests that

”Airpush” and ”BankBot” may share some common features in some way. Further

investigation is needed in subsequent experiments to explore this relationship.
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Chapter 5

Experiment

In this chapter, our focus will be on the experiments including the algorithms ExKMC, ICOT,

all conducted on the AMD top 10 families. Firstly, in Section 5.1, we will introduce the

hardware and software settings used for these experiments. Secondly, for each algorithm,

the experiments will be divided into three main components. The first component presents

the experiments themselves. For ExKMC, this includes confirming the matching between

clusters from the experimental results and the true labels for this multi-label clustering

task. This is achieved through a similarity comparison table. The second component

involves parameter tuning to select the best parameter combination for optimal outcomes

with the given datasets. Next, we explain the results of the explanation tree generated

by the algorithms through a cut-o↵ example tree, as the complete tree generated by the

algorithm is excessively large. This is also the key step and crucial principle to obtain the

explanation result in the next chapter. In the end, we compare the clustering accuracy

results of three algorithms, providing a more quantitative perspective to examine their

performance.

5.1 Setup

The experimental setup is unified to make an easy reproducibility. The entire experimental

code is available online1, and the descriptions of the experiments are provided as follows:

• Language: Python 3.9 (with Anaconda as virtual environment); Julia 1.1.0

• Hardware and software: Processor 11th Gen Intel® Core™ i5-1135G7 @ 2.40GHz

× 8 ; Memory is 8 GiB; operation system is ubuntu 22.04; no GPU used

1
https://github.com/hhant-max/Thesis
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• Algorithms: ExKMC2; ICOT3; CART4

The experimental results are averaged and interpretation results are concluded based on

ten repetitive runs for each algorithm ExKMC, ICOT, and CART.

5.2 ExKMC

After analyzing the family through the k-Means algorithm and visualizing the results,

this section focuses on determining the correspondence between clusters and families.

Additionally, we explain the generated results from ExKMC and summarize the features

with ground truth labels.

5.2.1 Cluster and Label Matching

Since we have identified the top 10 families based on their numbers, we set the value of k

as 10 in ExKMC. Consequently, the model automatically generates 10 clusters based on the

learning results (e.g., cluster 0 to 9). However, as the results are not directly connected

to the true labels, which represent the family names, we cannot confirm which cluster

corresponds to which family without a method to evaluate and quantify the similarity

between clusters and family labels.

To address this, we utilize a simple and intuitive approach for matching. The results

are obtained by comparing each family to the 10 families using the Jaccard similarity

coe�cient. This method o↵ers a straightforward and e�cient way to measure the similarity

between clusters and labels. The Jaccard similarity is an intuitive metric commonly used to

quantify the similarity between two clustering results. It is determined by calculating the

intersection of two sets and dividing it by the union of their sizes. The Jaccard similarity

coe�cient ranges from 0 to 1, with values closer to 1 indicating a higher similarity between

the clustering results. The formula for Jaccard similarity can be expressed as follows:

J(A,B) = |A \B| / |A [B|

It’s verified and used by many unsupervised machine learning and clustering results [56,

29, 54, 79].

Table 5.1 presents the results of applying k-Means to Android malware. The first column

represents the clusters assigned by the algorithm, ranging from cluster 0 to 10. The values

in the second row indicate the Jaccard similarity coe�cient corresponding to the samples

2
https://github.com/navefr/ExKMC/tree/master

3
https://github.com/agniorf/ICOT-Example/tree/main

4
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
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Chapter 5. Experiment

within each cluster and the respective families. A similarity coe�cient approaching 1

indicates a strong match between the cluster and label, while a coe�cient of 0 signifies

no overlap.

Table 5.1: Jaccard distance between clustering results and the original family samples

Cluster No. Airpush BankBot Dowgin DroidKungFu FakeInst Fusob Jisut Kuguo Mecor Youmi Label

0 0 0 0.0729 0.0214 0 0.4320 0.4297 0.0017 0 0.0056 Fusob

1 0.1242 0.2810 0.0682 0.0045 0 0 0 0.1737 0 0.0456 BankBot

2 0 0 0.0399 0.0036 0 0 0 0.3993 0 0.0183 Kuguo

3 0 0 0.0018 0.0082 0 0 0 0 0.9785 0.0009 Mecor

4 0.4323 0.1720 0.0670 0.0369 0 0 0.0015 0.0312 0 0.0084 Airpush

5 0 0 0.0040 0.2986 0 0 0 0.0149 0 0.0219 DroidKungFu

6 0 0 0.0750 0.0086 0 0 0 0 0 0.3393 Youmi

7 0 0.0467 0.0136 0.1416 0.6825 0 0 0 0 0.0067 FakeInst

8 0 0 0.0842 0.1435 0 0 0 0.0692 0 0.0266 DroidKungFu

9 0 0 0.1104 0 0 0 0 0.0085 0 0.3129 Youmi

For each cluster (each row), we calculate the largest Jaccard distance among all possible

families and assign this maximum value to confer the label (in the last column). For

instance, in cluster 0, we compute the Jaccard distance to 10 potential families, resulting

in 6 positive values. Among these values, Fusob has the highest score compared to the

others. Consequently, we assign Fusob to cluster 0.

And additionally, based on the findings presented in Table 5.1, we can also derive signifi-

cant insights from the similarity results.

• The model results reveal two competing families, namely DroidKungFu (in clusters

5 and 8) and Youmi (in clusters 6 and 9). Through a deeper investigation of clusters

5, 6, 8, and 9, we observe that the similarity between clusters 5, 8, and DroidKungFu

are 0.2986 and 0.1435, respectively, indicating a gap of perfect matches with a simi-

larity score of 1. The same situation applies to the Youmi family, with approximately

30% similarity in both clusters. These findings suggest that clusters 5, 6, 8, and 9

are closely related and di�cult to distinguish from each other.

• The presence of competing families, DroidKungFu and Youmi, also implies the ab-

sence of the Jisut and Dowgin families. Through careful observation of the first
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row, we note that Jisut has the second highest similarity compared to Fusob. This

indicates the di�culty in distinguishing between Jisut and Fusob based on their

similarity. These observations align with the descriptions provided in Figure 4.4

(Chapter 4) for Jisut and Fusob. Additionally, identifying Dowgin proves to be a

challenging task, which is consistent with the research conducted by Zhao et al.

[131].

• Taking a vertical view of the table, we notice that certain families are easily distin-

guishable from others, as they only have one or two matching clusters. For instance,

FakeInst exhibits similarity with only cluster 8, while having a similarity score of 0

with other clusters. Conversely, families such as Youmi, Dowgin, and DroidKungFu

present a more complex scenario, indicating the need for further study in this re-

search into their shared features, which might lead to the di�culty in separating

them.

• If we would like to rank the similarity matches among the families, based on their

similarity values, we can list them as follows: Mecor (0.9785), FakeInst (0.6825), Fu-

sob (0.4320), Airpush (0.4323), Kuguo (0.3993), Bankbot (0.2810), Youmi (0.3393,

0.3129), DroidKungFu (0.2986, 0.1435).

5.2.2 Parameter Tuning

For the ExKMC algorithm, there are two important parameters to control and experi-

ment with k and max leaves. Since k is settled at 10, we focus on varying the value of

max leaves in our experiments. The surrogate cost is defined as the ratio of k-Means to

Figure 5.1: Cost ratio of parameter tuning on ExKMC algorithm

ExKMC. When this value converges to 1, it indicates that the interpretable result tree has

a similar e↵ect to ExKMC while providing interpretability [38].
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Experiments show that as the maximum number of leaves increases and decreases to 1

after i = 2, the cost ratio is nearly equal to 1, with only a slight di↵erence as i increases.

However, as i increases, the tree naturally expands with more, and possibly abundant,

leaves. Therefore, the final parameter selection also needs to take the interpretation result

into account, which will be discussed later in the result section. Based on the current

analysis, the best results are obtained when the value of max leaves is set to 3, 4, 5, or

6. For values 1 to 3, the results are worse compared to when i = 4. On the other hand,

when i = 7, i = 8, or i = 9, the resulting tree becomes large and filled with too many

branches, which can be illustrated later on.

(a) max leaves of 3

(b) max leaves of 5

Figure 5.2: Example tree of max leaves of 3, 5 from ExKMC

For interpretable algorithms, it is vital to observe the generated tree with explanatory

results. Since the generated tree is quite large, we only display the partial tree for the se-

lection of the parameter max leaves in Figure 5.3. From the observations, we can see that

for the branch of the feature Cipher;init, when it is smaller than 6, there are 509 samples

separating into cluster 9 with a misclustering count of 29. However, when max leaves is

set to 6 ⇤ k, it separates one sample from cluster 4, three samples from cluster 1, and

one sample from cluster 4, resulting in 24 mistakes compared to the 29 shown in Figure

5.2a. Furthermore, increasing max leaves to 6 reduces the mistakes to 21, and setting
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5.2. ExKMC

(a) max leaves of 6

(b) max leaves of 9

Figure 5.3: Example tree of max leaves of 6, 9 from ExKMC
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Chapter 5. Experiment

max leaves to 9 further decreases the mistakes to 16.

Nevertheless, as max leaves increases, the tree becomes excessively large, and the im-

provement in separation occurs incrementally. Therefore, it raises the question of whether

it is worth expanding the tree endlessly despite the increase in clustering samples. Based

on the results from Figure 5.1, the final selection for the parameter of the ExKMC algorithm

is max leaves = 6.

5.2.3 Result

In Figure 5.4, a comprehensive result is presented from the ExKMC generation process.

For instance, at the root level, a key feature is identified where the count of Power-

Manager$WakeLock;release is greater than 5. Based on this criterion, ExKMC assigns the

corresponding samples to cluster 6, which represents the Youmi family and consists of 556

samples. On the other hand, samples with a count of PowerManager$WakeLock;release

smaller than 5 proceed to subsequent branches, awaiting further features to facilitate their

separation.

Furthermore, within cluster 6, a notable feature that sets it apart from other clusters is

the PowerManager$WakeLock;release. This principle is also crucial for identifying essential

interpretable features using interpretive clustering methods, enabling the comprehensive

determination of features for all families in the final result table in Chapter 6. By compar-

ing the results among di↵erent algorithms, insights can be gained into the performance

and explanation of these algorithms.

5.3 ICOT

In this section, the experiments primarily center on the ICOT algorithm. These experiments

involve injecting the top 10 families of AMD dataset into the ICOT algorithm. Additionally,

considering that parameter tuning plays a crucial role in achieving the best adaptable

results for each machine learning method, we discuss the process of tuning key parameters

in Subsection 5.3.1. Furthermore, we present an outlined explanation tree derived from

the complete result, which is then interpreted in Subsection 5.3.2.

5.3.1 Parameter Tuning

There are multiple parameters to tuning for ICOT.

• Criterion. Criterion is used for evaluating the splits by confirming the dense re-

gions as well as sparse regions [15]. Here, the criterion is defined as the Silhouette
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Chapter 5. Experiment

Coe�cient score. The Silhouette Coe�cient in the ICOT algorithm is from the com-

parison of two distances: the average distance within a cluster (a) and the average

distance to the nearest neighboring cluster (b), both calculated for every sample.

• Ls num tree restarts. The ls num tree restarts parameter controls the number of

random restarts used in the local search algorithm, which corresponds to the initial

greedy tree in the ICOT algorithm. Its e↵ect primarily pertains to computational

cost, and we have set a default value of 10. Increasing this value leads to a linear

increase in the time spent. The complexity parameter plays a crucial role in achieving

a balance between performance and the complexity of the tree to control overfitting.

We have set it to the recommended value of 0. The value of this particular parameter

was determined through subsequent timing experiments.

• Max depth.Max depth is the parameter to control the maximum depth of the fitted

tree. After conducting initial experiments and adhering to the principle of maintain-

ing consistency with the ExKMC method, we decided to focus more on max depth for

in-depth research. As a result, we will only present the tuning process and e↵ects of

the max depth parameter. The complete result on di↵erent choice ranges from 4 to

10 of max leaves can be found in Table 5.2.

Table 5.2: ICOT result parmeter

Max Depth 4 5 6 7 8 9 10

Silhouette 0.4750 0.5067 0.5356 0.5408 0.5453 0.5447 0.5422

Running time (min) 113 132 172 164 190 212 315

From Table 5.2, we observe a gradual increase in performance from 4 to 7, with the

peak achieved at 8. Subsequently, at 8 and 10, the results exhibit similarities and do not

demonstrate substantial improvements. This suggests that the maximum number of leaves

set to 8 adequately captures the clustering and e↵ectively explains the entire dataset.

Consequently, we have selected this parameter value of 8 for the final interpretable result.

5.3.2 Result

After tuning the parameters, we conducted research on the interpretable tree results

generated by the ICOT algorithm. The complete result is presented in Figure 5.5.

To provide a better illustration, we have extracted a small portion for discussion, as

shown in Figure 5.6. In this figure, based on important features the leaves are segregated
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Chapter 5. Experiment

into two branches, as depicted in the fundamental visualization. Additionally, the detailed

comparisons with the true labels aid in better understanding the performance of clustering,

as elucidated in the caption box of the figure, which assigns the predicted probabilities as

cluster labels.

At the root node, there are 1056 observations. The feature analysis reveals that the pres-

ence of READ PHONE STATE does not lead to any path to the left branch, which

corresponds to cluster 8, since the value of READ PHONE STATE for the left branch is

less than 0.5. and the two possible values for these features are only 1 and 0. The left node

cluster 8 represents 98.68% of the total outcome 6, accounting for 440 observations. This

suggests that the malware family associated with outcome 6 does not typically exhibit

the READ PHONE STATE feature.

Figure 5.6: Example explainable tree from ICOT algorithm

Continuing down the branch, we encounter 602 observations where the relevant feature

for cluster division is Cipher getinstance. In this branch, the outcome distribution is as

follows: 0 (3 samples), 2 (14 samples), 3 (491 samples), 7 (76 samples), and 9 (18 samples).

When examining cluster 11(the right branch of observation 602 node), we find no samples

of outcome 0, only 3 occurrences of outcome 2, which is not a majority value to conclude

this feature is responsible for these outcomes. At the same time, it is also unclear whether

this feature is important for outcome 7, given that it consists of 38 samples, accounting for

approximately half of the subset. Similarly, outcome 9 is represented by only 1 observation.
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In summary, the feature crypto Cipher getinstance does not exhibit the necessary qualities

to distinctly separate certain outcomes from other families.

Now, shifting our focus to the 411 observations node, the relevant feature is READ SMS.

Cluster 11 comprises only 140 of the outcome 3 samples, compared to the 342 samples

at the observations node. Thus, READ SMS is not a crucial feature for distinguishing

outcome 3 from other outcomes.

In conclusion, in this subsection, we have conducted a parameter tuning process and ob-

tained the best parameter combination, specifically settling the key parametermax leaves

at a value of 8. Furthermore, we have focused on extracting the small branches from the

generated results to provide insights into identifying key features that will be presented in

the interpretable table in the next chapter. To obtain a more comprehensive quantitative

evaluation of the entire tree, it will be further examined through the interpretable result

table, which also will be introduced in the upcoming chapter.

5.4 Comparison Result

Table 5.3: Clustering accuracy comparison for each top 10 families among algorithm CART,
ExKMC and ICOT. Each column represents an Andriod malware family, the last column is the
average clustering accuracy for the algorithm. The symbol of ”/” denotes no result for this
family under this algorithm, and the bold numbers indicates the best results in these three
algorithms.

Airpush Banbot Dowgin DroidKungFu FakeInst Fusob Jisut Kuguo Mecor Youmi Average

CART 0.7036 0.6955 / 0.3972 0.7845 0.4319 / 0.5275 0.7385 0.5128 0.4792

ExKMC 0.7436 0.4945 / 0.5284 0.7368 0.4194 / 0.7334 0.3590 1 0.6269

ICOT 0.8974 0.8352 0.6868 0.8993 0.7916 0.2805 0.4186 1 0.6996 0.8462 0.7355

After tunning the parameters for each algorithm, we obtain the clustering accuracy result

for each family in Table 5.3. We observe that algorithm ICOT gets the best result on the

average clustering with 0.7355, and ICOT outperforms compared other two algorithms in

8 families, and CART has a better result on family Fusob and family Mecor. Moreover, on

the average accuracy, ExKMC has an improvement of 0.1477. Therefore, algorithm ICOT

has the best performance, and in the next chapter, we will use the interpretation result

from algorithm output to better explain the logic behind algorithms on Android malware

family clustering.
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Interpretation Result

In this chapter, our primary objective is to validate the e�cacy of the ExKMC algorithm,

while also conducting a comparative analysis between ExKMC and two other algorithms,

namely ICOT and baseline CART. The aim is to examine their capabilities in explaining

the clustering family of Android malware.

6.1 ExKMC Interpretable Result

In this section, the interpretable result of ExKMC will be our central focus of observation.

We will draw conclusions based on the generated explanation tree and extract key features

to display clustering results for each family. Subsequently, we will evaluate the generated

results against the true labels.

Ground Truth Sources. When comparing the generated results with true labels, we

have utilized a variety of reliable sources for establishing the ground truth. The dataset

provided by AMD [116] explicitly mentions the references used for extracting the ground

truth features, which include reputable third-party sources such as Dr.Web virus 1, Syman-

tex2 and etc. These sources have been analyzed by experts to ensure accuracy. Addition-

ally, instead of relying solely on outdated datasets, we have validated the key features by

consulting well-known antivirus comparisons in the current industry. By combining these

diverse sources of information, we have extracted the ground truth for each malware fam-

ily. This comprehensive approach allows us to e↵ectively evaluate and compare the results

obtained from the key features and the established ground truth.

Semantic Meaning. Since the results generated from algorithms have been condensed

to only include extracted programming features, it is crucial to enhance our understand-

ing of these key features in terms of their semantic meaning. For example, the key feature

1
https://vms.drweb.com/virus/?i=4059936&lng=en

2
https://www.broadcom.com/support/security-center
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Url;OpenConnection may have a connection to the topic, but to fully comprehend how

malware can exploit this feature and its impact on the device, we need to uncover the

true significance of Url;OpenConnection. Consequently, we cross-reference each key fea-

ture with the Android documentation [1] to determine its meaning. According to the

documentation, Url;OpenConnection refers to establishing a connection to a specific URL

and engaging with the resource located at that URL. Armed with this understanding, we

can proceed with our matching process accordingly.

Interpretation Result. The results of the ExKMC algorithm are presented in Table 6.1.

The first column of the table represents the names of the malware families, and the

serial numbers indicate the cluster numbers assigned by the algorithm. For example, the

DroidKungFu family has the highest similarity value for both cluster 5 and cluster 8, so

we mark them both for this family in the first column. In addition, the ground truth also

includes masked serial numbers, indicating that they correspond to specific data points

from the semantic meaning (the third column).

Evaluation Metrics. The F1-score is a commonly used evaluation measure to quantify

the results obtained from a classifier [84]. However here, the task is not a classification but

rather a clustering and also the evaluation for comparisons for the result of retrieved and

the ground truth, therefore, we borrow the concept of F1-score in information retrieval.

The F1-score [109] combines precision and recall. Precision represents the fraction of

relevant instances among the retrieved instances, while recall refers to the fraction of

relevant instances that are retrieved in the model’s output. The F1-score computes the

harmonic mean of these two values, returning a ratio rather than the traditional arithmetic

mean. A higher value of 1 indicates better performance for the F1-score. The equation of

F1-score is as follows:

F = 2 ⇤ Precision ⇤Recall

Precision+ recall

Ground Truth Concepts. The features generated from the ExKMC algorithm and the

ground truth are both in an unstructured context. Therefore, when comparing and eval-

uating them, it is necessary to consider individual words or phrases instead of the overall

meaning [119].

For instance, the ground truth for the feature ”Retrieve device info such as GPS and

phone number” actually consists of three distinct concepts: retrieving device information,

collecting GPS location information, and collecting the phone number. When computing

evaluation metrics, such as recall, if we only have the generated features ”Retrieve location

and location updates”, the total number of relevant features would be three instead of one

in this case. To provide clarity, we have included the concepts for all 10 malware families

in Table 6.2, which o↵ers a detailed overview of the concepts associated with each family.

Ground Truth Example. Taking Airpush as an example, we refer to Table 6.3 to
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Key Features Semantics Matching [1] Ground Truth [116]

4. Airpush

Url;OpenConnection

Context;getSystemService

requestLocationUpdates

getBestProvider

getLastKnownlocation

Cipher;init

getPackageInfo

NotificationManageer;notify

getAccounts

1. Establish a connection to a URL and interact with the resource located at that URL.

2. Access to system resources and obtain the device information or policies.

3. Retrieve the device’s current location and monitor location updates.

4. Retrieve information about a specific location provider available on the device.

5. Retrieve the last known location of the device.

6. Initialize the cipher with a specific mode.

7. Retrieve overall information about an installed package.

8. Display a notification to the user.

9. Retrieve the user’s accounts such as email accounts, social media accounts, phone numbers, or others.

A. Pushes advertisement from the Airpush network to the device. (1)

B. Display content on the device notification bar. (8)

C. Retrieve device info such as GPS, and phone number. (2.3.4.9)

1. BankBot

context;getSystemService

URLConnection;connect

Acticity;getSystemService

Cipher;init

MediaPlayer;stop

Throwable;printStackTree

getBestProvider

URL;openConnection

getAllNetworkInfo

TelephonyManager;getCellLocation

1. Access to system resources and obtain the device information or policies.

2. Initiates the network connection and allows you to communicate with the remote server.

3. Retrieve system-level services or managers within an activity.

4. Initialize the cipher with a specific mode.

5. Stop the playback of audio or video.

6. Print the stack trace of an exception or error to the standard error stream.

7. Determine the best available location provider based on the specified criteria.

8. Establish a connection to the resource specified by a URL.

9. Retrieve the network connectivity state of all available network interfaces.

10. Retrieve the current location of the device in terms of the cellular network.

A. Steals personal information(accounts, phone number, etc). (1)

B. Send stolen information to a remote internet server. (2,8,9)

C. Monitor SMS and send SMS messages.

5.8 DroidKungFu

context;getSystemService

SMSManager;sendMultipartTextMessage (5)

Settings.System.putInt (5)

getDeviceId (8)

1. Access to system resources and obtain the device information or policies.

2. Send an SMS message that exceeds the character limit of a single SMS.

3. Modify system settings stored in Settings.System class.

4. Retrieve the unique device identifier (IMEI, MEID, or ESN) of the phone.

A. Collect device information, network information, and phone data. (1,4)

B. Send collected information to remote servers. (2)

C. Exploit vulnerabilities to root the device. (3)

D. May install other applications onto the device.

7. FakeInst

getSystemService

Url;OpenConnection

getDeviceId

Runtime;exec

1. Access to system resources and obtain the device information or policies.

2. Establish a connection to a URL and interact with the resource located at that URL.

3. Retrieve the unique device identifier (IMEI, MEID, or ESN) of the phone.

4. Execute a command in the underlying operating system.

A. Send the SMS.

B. Receive commands from a remote server, (2)

0. Fusob

runtime;exec

PowerManager$WakeLock;acquire

getActiveNetworkInfo

getDeviceId

URL;openConnection

1. Run external commands or execute shell scripts from within your Android application.

2. Acquire a wake lock (make the device awake all the time for displaying).

3. Obtain information about the currently active network connection.

4. Retrieve the unique device identifier (IMEI, MEID, or ESN) of the phone.

5. Establish a connection to the resource specified by a URL.

A. Sending/receiving SMSs.

B. Lock phones by overlaying and displaying fake screens. (2)

C. Steal network information such as Wi-Fi connection details. (3)

D. Communicate to the remote server controlling the ransomware attack. (5)

2. Kuguo

context;getSystemService

System;putInt

URL;openConnection

getPackageInfo

getAccounts

getAllvisitedUrls

MediaPlayer;reset

getActiveNetworkInfo

1. Access to system resources and obtain the device information or policies.

2. Modify system settings stored in Settings.System class.

3. Establish a connection to a URL and interact with the resource located at that URL.

4. Retrieve information about an installed package.

5. Retrieve the user’s accounts such as email accounts, social media accounts, phone numbers, or others.

6. Retrieve all visited URLs from the browser history.

7. Release any resources associated with MediaPlayer object and prepare it for subsequent use.

8. Obtain information about the currently active network connection.

A. Uses special library to hide executable bytecode. (2,4)

B. Gets location, network, phone status(number,IMEI,etc) information. (3,5,8)

C. Displays its own windows (ads) over windows of other apps.

3. Mecor

context;getSystemService

Activity;getSystemService

Cipher;init

URL;openConnection

getLastKnownLocation

1. Access to system resources and obtain the device information or policies.

2. Retrieve system-level services or managers within an activity.

3. Initialize the cipher with a specific mode.

4. Establish a connection to a URL and interact with the resource located at that URL.

5. Retrieve the last known location of the device.

A. Collect device info, phone number, GPS, (1,5)

B. Send stole information to a remote server. (4)

6.9 Youmi

PowerManager$WakeLock;release (6)

PowerManager$WakeLock;acquire (6)

getActiveNetworkInfo (9)

url;openConnection(9)

MediaPlayer;release(9)

getAllNetworkInfo (9)

setVideoPath (9)

context;getSystemService (9)

System;putInt(9)

1. Release a previously acquired wake lock (return to normal power-saving behavior).

2. Acquire a wake lock (make the device awake all the time for displaying).

3. Obtain information about the currently active network connection.

4. Establish a connection to a URL and interact with the resource located at that URL.

5. Release the MediaPlayer resources when you are done using it.

6. Retrieve the network connectivity state of all available network interfaces.

7. Set the path or URL of a video file to be played.

8. Access to system resources and obtain the device information or policies.

9. Modify system settings stored in Settings.System class.

A. Collect personal information and user contacts from the device. (8

B. Access the device’s location.

C. Display pop-up advertisements on the screen. (1,2)

D. Display notifications and warnings.

E. Receive commands from a remote server. (3)

Table 6.1: Interpretation result on ExKMC algorithm
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Table 6.2: Table of Concepts for Each Ground Truth of the Top 10 Families in the AMD
Dataset. These concepts are necessary because the ground truth obtained from reliable resources
is often in unstructured text, and a single sentence could possess multiple meanings, leading to
di�culties in comparing the semantic meaning to the ground truth one by one. Therefore,
initially, we extract the concepts from the ground truth and subsequently compare the semantic
results with extracted ground truth concepts for evaluation. Therefore, when calculating the
recall based on the ground truth, the denominator is the number of concepts for each ground
truth. Additionally, to ensure consistency with the original resources on ground truth, we retain
the original ground truth in the tables of interpretation results for each algorithm.

Concepts from Ground Truth [116]

Airpush a. From the network to the device. b. Notification bar. c. Retrieve device info. d. GPS. e. Phone number.

Banbot a. Steal personal info. b. Send to a remote server. c. Send SMS.

Dowgin a. Notification. b. Download applications. c. Collect device information. d. Send to a remote server.

DroidKungFu

a. Retrieve device information. b. Collect network information. c. Collect phone data.

d. Send to a remote server. e. Boot the device. f. Install applications.

FakeInst a. Send SMS. b. Receive commands from the server.

Fusob a. Send and receive SMS. b. Lock phones. c. Steal network information. d. Communicate to the remote server.

Jisut a. Display ads on the device (override keys, get the boot, kill the process). b. Send to a remote server.

Kuguo

a. Hide executable bytecode. b. Get the location. c. Steal network information.

d. Steal device information. e. Display ads on the device.

Mecor a. Steal personal info. b. Phone number. c. GPS. d. Send to a remote server.

Youmi

a. Collect personal information. b. Access the device’s location. c. Display ads on the screen.

d. Notifications. e. Receive from remote.
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establish the correspondence between the generated feature meanings and the ground

truth. The precision is calculated as the ratio between the correct labels and the returned

features, which in this case is 5/9. The recall represents the fraction of correct items

among all relevant labels, yielding a value of 5/5. Furthermore, the F1-score is computed

as the harmonic mean of precision and recall, resulting in a value of 0.7143. Based on

these measurements, we can now determine the precision and recall values for each family

in the generated ExKMC result, following the aforementioned rule.

Table 6.3: Table of concepts of each ground truth for family Airpush

Concepts

Ground truth [116] A. Network to the device (1) B. Notification bar (8) C. Retrieve device info (2) D. GPS (3,5) E. Phone number (9)

Generated features meaning

1. Establish a connection to fetch resources. 2. Obtain the device information.

3. Retrieve location and location updates. 4. Retrieve the location provider.

5. Retrieve the last-known location. 6. Initialize the cipher.

7. Retrieve info about the installed package. 8. Display a notification.

9. Obtain info like phone numbers and accounts.

Evaluation Result. Table 6.4 presents the precision, recall, and F1-score results obtained

from the ExKMC algorithm. For the Dowgin and Jisut families, the algorithm ExKMC fails

to detect them, as indicated by the ”/” symbol in the table, the same rule is also applied

to the subsequent tables and figures.

From a precision perspective, it measures the accuracy of positive predictions generated

by the algorithm. The DroidKungFu family achieves the best results. By examining Table

6.1, we can observe that compared to the 9 features generated by Airpush and the 10

features generated by Bankbot. Family DroidKungFu only has 4 predicted key features,

indicating a higher potential for precision, since family DroidKungFu has only 6 ground

truth labels. Furthermore, three of four predicted key features correctly identify the ground

truth labels, leading to higher precision.

Regarding recall, it measures the model’s ability to correctly identify all positive instances.

In terms of recall values, Airpush exhibits the best results. Although it may be deficient

in precision due to generating a large number of key features, it successfully identifies all

three ground truths. Therefore, for the F1-score, the Airpush family achieves the highest

result of 0.7143, mainly due to its high recall value.

In conclusion, by setting a separation threshold of 0.3, all top 10 families on AMD dataset

can attain this level of F1-score for the interpretation result. Specifically, the highest re-

sults are achieved by the Airpush and DroidKungFu families, both surpassing 0.7. Con-

versely, the lowest results are observed for the undetected families Dowgin and Jisut.
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Table 6.4: Precision, Recall, and F1-score from ExKMC results

Airpush Banbot Dowgin DroidKungFu FakeInst Fusob Jisut Kuguo Mecor Youmi Average

Precision 0.5556 0.2 / 0.6667 0.25 0.6 / 0.5 0.6 0.3333 0.3706

Recall 1.0 0.6667 / 0.75 0.5 0.75 / 0.8 0.75 0.6 0.5817

F1-score 0.7143 0.3077 / 0.7059 0.3333 0.6667 / 0.6154 0.6667 0.4286 0.4439

6.2 Comparison Interpretation Result on ExKMC, ICOT

and CART

In this section, first, we will present two other comprehensive interpretation result tables

for algorithm ICOT and CART. Next, we will select three representative families (Airpush,

DriodKungFu, and Youmi) and examine the features generated from these algorithms.

This analysis will allow us to delve into a more detailed comparison of results at the

family level. Finally, the evaluation results, measured by the F1-score, will be displayed

in order to provide an overview of the quality value for the Interpretation Result on

algorithm ExKMC, ICOT and CART.

For the ICOT algorithm, we will use the results obtained with a maximum of 6 leaves as

the final parameter. Since ICOT shares the same foundation as ExKMC, both algorithms are

based on the k-Means method and employ the k-Means labels to facilitate interpretability.

Therefore, it is feasible to control CART and ExKMC using the same parameter. The only

parameter to adjust is the maximum number of leaves, which is set as 8⇤k, where k = 10.

Interpretation Table for Algorithms ICOT and CART. For the results, Table 6.5

presents the interpretation results obtained from the ICOT algorithm. The CART interpre-

tation results can be found in Table 6.6.
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Chapter 6. Interpretation Result

Table 6.5: Interpretation result on ICOT algorithm

Key Features Semantics Matching [1] Ground Truth [116]

0. Airpush

getSystemService

getActiveNetworkInfo

MEDIA EJECT

BOOT COMPLETED

READ PHONE STATE

category.HOME

1. Access to system resources and obtain the device information or policies.

2. Obtain information about the currently active network connection.

3. Remove the external storage media.

4. A broadcast intent when the device completes the booting process and becomes fully operational.

5. Access to phone state (current network information, any ongoing calls status, and phone Accounts).

6. Represents the main interface when they unlock their device or press the home button.

A. Pushes advertisement from the Aripush network to the device.

B. Display content on the device notification bar.

C. Retrieve device info such as GPS, and phone number. (1,5)

1. BankBot

getSystemService

Cipher getParameters

SEND SMS

CALL PHONE

category.HOME

1. Access to system resources and obtain the device information or policies.

2. Retrieve the algorithm parameters about the current encryption or decryption operation.

3. Allows an application to send SMS messages.

4. Initiate phone calls directly without user intervention.

5. Represents the main interface when they unlock their device or press the home button.

A. Steals personal information(accounts, phone number, etc). (1,4)

B. Send stolen information to a remote internet server.

C. Monitor SMS and send SMS messages. (1,2,3)

2. Dowgin

getSystemService

getActiveNetworkInfo

READ PHONE STATE

ACCESS FINE LOCATION

ACCESS COARSE LOCATION

1. Access to system resources and obtain the device information or policies.

2. Obtain information about the currently active network connection.

3. Access to phone state (current network information, any ongoing calls status, and phone Accounts).

4. Access the device’s GPS or network-based location data with higher accuracy.

5. Retrieve location data with lower accuracy such as cell tower triangulation or Wi-Fi positioning.

A. Display advertisements in the system notification bar.

B. Download and request installation of new applications.

C. Send device information and details about installed applications to a remote location. (1,2,3,4,5)

3. DroidKungFu

getSystemService

getActiveNetworkInfo

BOOT COMPLETED

Runtime;exec

READ PHONE STATE

ACCESS COARSE LOCATION

1. Access to system resources and obtain the device information or policies.

2. Obtain information about the currently active network connection.

3. A broadcast intent when the device completes the booting process and becomes fully operational.

4. Run external commands or execute shell scripts from within your Android application.

5. Access to phone state (current network information, any ongoing calls status, and phone Accounts).

6. Retrieve location data with lower accuracy such as cell tower triangulation or Wi-Fi positioning.

A. Collect device information, network information, and phone data. (1,2,5)

B. Send collected information to remote servers.

C. Exploit vulnerabilities to root the device. (3,4)

D. May install other applications onto the device.

4. FakeInst
SEND SMS

getLine1Number

1. Allows an application to send SMS messages.

2. Retrieve the phone number associated with the SIM card in the device.

A. Send the SMS. (1)

B. Receive commands from a remote server.

5. Fusob
BOOT COMPLETED

READ CALL LOG

1. A broadcast intent when the device completes the booting process and becomes fully operational.

2. Read the call history or call log of the device.

A. Send or receive SMSs.

B. Lock phones by overlaying and displaying fake screens.

C. Steal network information such as Wi-Fi connection details.

D. Communicate to the remote server controlling the ransomware attack.

6. Jisut

getActiveNetworkInfo

BOOT COMPLETED

Runtime;exec

1. Obtain information about the currently active network connection.

2. A broadcast intent when the device completes the booting process and becomes fully operational.

3. Run external commands or execute shell scripts from within your Android application.

A. Display advertising content in the process(override keys, get boot, kill process). (2,3)

B. Gather and forward details information from the device.

7. Kuguo

getSystemService

getActiveNetworkInfo

READ PHONE STATE

ACCESS COARSE LOCATION

1. Access to system resources and obtain the device information or policies.

2. Obtain information about the currently active network connection.

3. Access to phone state (current network information, any ongoing calls status, and phone Accounts).

4. Retrieve location data with lower accuracy such as cell tower triangulation or Wi-Fi positioning.

A. Uses special library to hide executable bytecode.

B. Gets location, network, phone status (number,IMEI,etc) information. (1,2,3,4)

C. Displays its own windows (ads) over windows of other apps.

8. Mecor getAccounts 1. Retrieve the user’s accounts such as email accounts, social media accounts, phone numbers, or others.

A. Collect device info, phone number, GPS. (2/3)

B. Send stole information to a remote server.

9. Youmi

getSystemService

Runtime;exec

READ PHONE STATE

ACCESS COARSE LOCATION

1. Access to system resources and obtain the device information or policies.

2. Run external commands or execute shell scripts from within your Android application.

3. Access to phone state (current network information, any ongoing calls status, and phone Accounts).

4. Retrieve location data with lower accuracy such as cell tower triangulation or Wi-Fi positioning.

A. Collect personal information and user contacts from the device. (1,3)

B. Access the device’s location. (4)

C. Display pop-up advertisements on the screen.

D. Display notifications and warnings.

E. Receive commands from a remote server.
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Table 6.6: Interpretation result on CART algorithm

Key Features Semantics Matching [1] Ground Truth [116]

4. Airpush

getActiveNetworkInfo

getSystemService

URL;openConnection

URLConnection;connect

getBestProvider

1. Obtain information about the currently active network connection.

2. Access to system resources and obtain the device information or policies.

3. Establish a connection to a URL and interact with the resource located at that URL.

4. Initiates the network connection and allows you to communicate with the remote server.

5. Determine the best available location provider based on the specified criteria.

A. Pushes advertisement from the Aripush network to the device.

B. Display to the device notification bar.

C. Retrieve device info such as GPS, phone number. (2,5)

1. BankBot

getSystemService

getDeviceId

MediaPlayer;start

1. Access to system resources and obtain the device information or policies.

2. Retrieve the unique device identifier (IMEI, MEID, or ESN) of the phone.

3. Start or resume playback of an audio or video file.

A. Steals personal information(accounts, phone number, etc). (1,2)

B. Send stolen information to a remote internet server.

C. Monitor SMS and send SMS messages.

5.8. DroidKungFu

URL;openConnection

Cipher;init

URLConnection;connect(8)

getActiveNetworkInfo

getPackageInfo(8)

getDeviceId

Vibrator;vibrate(8)

getAllNetworkInfo(8)

1. Establish a connection to a URL and interact with the resource located at that URL.

2. Initialize the cipher with a specific mode.

3. Initiates the network connection and allows you to communicate with the remote server.

4. Obtain information about the currently active network connection.

5. Retrieve overall information about an installed package.

6. Control the vibrating motor (also known as a vibrator) on the device.

7. Retrieve the unique device identifier (IMEI, MEID, or ESN) of the phone.

A. Collect device information, network information, phone data. (5,7)

B. Send collected information to remote servers. (1.3.4)

C. Exploit vulnerabilities to root the device. (2)

D. May install other applications onto the device.

7. FakeInst

getDeviceId

URL;openConnection

getSystemService

1. Retrieve the unique device identifier (IMEI, MEID, or ESN) of the phone.

2. Establish a connection to a URL and interact with the resource located at that URL.

3. Access to system resources and obtain the device information or policies.

A. Send the SMS.

B. Receive commands from a remote server. (2)

0. Fusob URL;openConnection

getDeviceId

1. Establish a connection to a URL and interact with the resource located at that URL.

2. Retrieve the unique device identifier (IMEI, MEID, or ESN) of the phone.

A. Sending/receiving SMSs.

B. Lock phones by overlaying and displaying fake screens.

C. Steal network information such as Wi-Fi connection details.

D. Communicate to the remote server controlling the ransomware attack. (1)

2. Kuguo

Runtime;exec

getActiveNetworkInfo

URL;openConnection

1. Run external commands or execute shell scripts from within your Android application.

2. Obtain information about the currently active network connection.

3. Establish a connection to a URL and interact with the resource located at that URL.

A. Uses special library to hide executable bytecode.

B. Gets location, network, phone status(number, IMEI, etc) information. (1/3)

C. Displays its own windows (ads) over windows of other apps.

3. Mecor getSystemService 1. Access to system resources and obtain the device information or policies.

A. Collect device info, phone number, GPS. (1/3)

B. Send stole information to a remote server.

6.9. Youmi

getActiveNetworkInfo(6)

NotificationManager;notify(6)

MediaPlyaer;release(6)

getBestProvider(9)

getPackageInfo(9)

getDeviceId(9)

MediaPlayer;stop(9)

1. Obtain information about the currently active network connection.

2. Display a notification to the user.

3. Release the MediaPlayer resources when you are done using it.

4. Determine the best available location provider based on the specified criteria.

5. Retrieve overall information about an installed package.

6. Retrieve the unique device identifier (IMEI, MEID, or ESN) of the phone.

7. Stop the playback of audio or video files.

A. Collect personal information and user contacts from the device. (6)

B. Access the device’s location.

C. Display pop-up advertisements on the screen. (3,7)

D. Display notifications and warnings. (2)

E. Receive commands from a remote server.
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6.2. Comparison Interpretation Result on ExKMC, ICOT and CART

Interpretation Result Comparison. We then compare the interpretation result on

three algorithms, and demonstrate three representative malware families (Airpush, Dri-

odKungFu, and Youmi), as shown in Table 6.7. Figure 6.1 describes the average F1-score

result for all malware families for algorithm ExKMC, ICOT, and CART. And the detailed

analysis and family study are listed as follows:

• Airpush

The Airpush family is chosen as the representative for this research since it has

the largest number of ten families. The ground truth for Airpush involves pushing

advertisements from the Airpush network to the device. Both ExKMC and CART detect

it through the feature openConnection. Additionally, ExKMC also detects the display

of content on the device notification bar. All three algorithms (ExKMC, ICOT, and

CART) detect the retrieval of device information using the method getSystemService.

For the ground truth of GPS usage, both ExKMC and CART achieve accurate detection.

Moreover, ExKMC successfully detects the phone number through getAccounts, while

ICOT achieves this by reading the phone state.

• Bankbot

For other noticeable families, such as the Bankbot family, it achieves the lowest

F1-score in Figure 6.1, with all scores hovering around 0.3. In the case of ExKMC,

it extracts a large number of features, but only 4 of them are relevant, and 2 out

of those 4 features have the same meaning, namely, collecting information from

getSystemService. In comparison, ICOT extracts 5 features, which is half the number

extracted by ExKMC, and 2 out of those 5 features are correctly identified according

to the precision calculation. As for the results from CART, it also extracts a limited

number of features, but it only detects 1 out of the 3 important features. Therefore,

the ICOT algorithm performs better in this context.

• Dowgin

Upon observing the similarity table and examining the distribution of the Dow-

gin family, it becomes evident that it exhibits a similarity of approximately 0.1

within each cluster. This raises the question of whether the features of Dowgin are

not distinct enough to di↵erentiate it from other families. In the case of Dowgin,

the ground truth feature of displaying advertisements on the screen is present in

only 1 out of 2 ground truth families, while the feature of downloading and in-

stalling new applications is found in only 2 out of 10 families. However, 9 out of

10 families share the feature of connecting to remote servers. The failure to dis-

tinguish Dowgin from others may stem from the shared features it has with other

families and the lack of common features related to installing applications. The in-
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Chapter 6. Interpretation Result

tent.ACTION INSTALL PACKAGE feature can be considered in this context, but

unfortunately, the algorithm does not detect it.

• DroidKungFu

The F1-score for both families exhibits minimal variance, with ICOT yielding a higher

score of approximately 0.8333, followed by ExKMC at around 0.7, and CART performing

the poorest with a score of 0.6154. Both ExKMC and ICOT extract the getSystemSer-

vice feature, which indicates their ability to identify the relative features associated

with stealing device information, a characteristic of the DroidKungFu ground truth.

ICOT and CART both extract relevant information related to obtaining internet infor-

mation through the getActiveNetworkInfo feature. Furthermore, all three algorithms

extract features related to collecting phone data, (getDeviceId, read phone state, and

getDeviceId). Regarding the ground truth of sending information to remote servers,

ExKMC and CART both achieve this through features like sendMultipleTextMessage

and URL.openConnection. One notable distinguishing feature of ICOT is its abil-

ity to identify the ground truth feature of exploiting vulnerabilities to boot the

device, detected through boot completed and Runtime.exec. However, none of the

three algorithms detect the ground truth probability of installing applications onto

the device. Given that this ground truth contains the verb ”may”, it is likely that

the number of malware samples presenting this feature is relatively small, resulting

in the inability of these three technologies to detect it accurately.

• FakeInst

For the FakeInst family, a confusion matrix score of 1 in Figure 4.4 has shown a

sign of excellent performance. Among the interpretation results, the ICOT algorithm

achieves the highest F1-score of approximately 0.5, while CART and ExKMC show

similar performance. For family FakeInst, there are only two clearly identifiable

true labels. Among the four generated results from ExKMC, it correctly identifies

the second true label. For the ICOT algorithm, it generates only two key features,

and only one of them correctly identifies the true label related to sending SMS

messages, while overlooking the crucial feature related to network behavior. For

CART algorithm, similarly to the ExKMC results, it also identifies only one feature

correctly, specifically regarding SMS messages.

• Fusob & Jisut

However, the reason for the confusion in detecting the Jisut family is di↵erent from

that of Dowgin. According to the similarity table (Table 5.1), Jisut has the highest

similarity with cluster 0. However, cluster 0 shows the highest similarity with the

Fusob family. This indicates that there is a significant similarity between Fusob and
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6.2. Comparison Interpretation Result on ExKMC, ICOT and CART

Jisut. Consequently, it is necessary to thoroughly examine the ground truth of the

Fusob and Jisut families in order to gain a better understanding of the similarities

and di↵erences between them.

In the ground truth of the Fusob family, it is identified that they engage in the

following activities: 1. Sending or receiving SMS messages. 2. Locking phones by

overlaying and displaying fake screens. 3. Stealing network information such as Wi-

Fi connection details. 4. Communicating with the remote server controlling the

ransomware attack. On the other hand, the ground truth of the Youmi family in-

cludes the following activities: 1. Displaying advertising content by overriding keys,

obtaining boot access, and killing processes. 2. Gathering and forwarding detailed

information from the device.

We can observe that both families share the characteristics of displaying advertise-

ments on the screen and communicating with a remote server to send stolen in-

formation. The distinguishing factor is that the Fusob family also involves sending

and receiving SMS messages and stealing internet information. This suggests that

the additional features of the Fusob family may make it stand out more distinctly.

Additionally, since the ground truth of Fusob actually ”includes” the features of

Jisut, it explains the di�culty in separating Fusob and Jisut through the clustering

algorithm. This also clarifies why ExKMC missed identifying Jisut, while ICOT missed

identifying Fusob.

• Kuguo

For the Kuguo family, the true labels consist of three features. Among the key

features generated by ExKMC, five of them are actually correctly identified, which

corresponds to two-thirds of the overall features in the true labels. For the ICOT

algorithm, all four generated key features correctly identify the crucial true label of

obtaining personal information, resulting in high performance for the Kuguo family

on algorithm ICOT. For the CART algorithm, it generates three key features, but

only one of them provides the best identification for one true label according to the

ground truth.

• Mecor

In total, all three algorithms achieve great F1-score results, ranging from 0.4 to 0.7,

which indicates a strong performance. This is further supported by the confusion

matrix score of 1 in Figure 4.4 from Chapter 4. Additionally, for both true labels,

ExKMC successfully identifies them using three out of the five generated features.

For the ICOT algorithm, it only produces one feature related to retrieving personal

information, which is specifically associated with the Mecor family. As for CART, it
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Chapter 6. Interpretation Result

generates a relatively general key feature pertaining to obtaining information and

identifies only one true label.

• Youmi

For the Youmi family, CART performs the best with an F-score of approximately

0.5, followed by ICOT with a score of 0.44, and ExKMC performs the worst with a

score of 0.42. From the similarity table, Table 5.1, it is evident that Youmi exhibits

similarities within each cluster. All three algorithms detect the feature of collecting

personal information and user contacts from the device. Only CART and ICOT de-

tect the attempt to access the device’s location. Regarding the display of pop-up

advertisements on the screen, ExKMC and ICOT extract the feature of displaying no-

tifications and warnings, while CART detects this feature through the notify feature.

Additionally, ExKMC and CART both detect the possibility of connecting to a remote

server.

Figure 6.1: F1-score on algorithms of ExKMC, ICOT and CART interpretation result

Evaluation Result. Figure 6.1 presents the results for all malware families across the

ExKMC, ICOT, and CART technologies. Through this figure, we can clearly observe which

algorithm generates better results for information retrieval within each family. From the

average F-score, it is evident that the ICOT algorithm outperforms ExKMC, which amounts

to approximately 5% and both the up-to-date algorithms perform better than the baseline

CART algorithm.

Upon closer examination of the table, we can observe that for the Dowgin and Jisut

families, ICOT provides detailed explanations and relevant features. In contrast, both

ExKMC and the baseline CART algorithm confuse Dowgin with DroidKungFu and Jisut

with Youmi, resulting in both algorithms yielding a feature score of 0 for these families.

Therefore, the results from ICOT are superior. Furthermore, Dowgin and Jisut achieve

decent scores of 0.63 and 0.4, respectively. Although ICOT successfully predicts almost
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6.2. Comparison Interpretation Result on ExKMC, ICOT and CART

ten families, it fails to correctly identify the Fusob family, as there is limited semantic

meaning correspondence with the ground truth in Table 6.5.

Therefore, in total, as shown in Figure 6.1, ICOT exhibits the best performance with an

F1 score exceeding 0.5. Additionally, among the ten families analyzed, ICOT outperforms

other algorithms in seven of them, while ExKMC proves to be a decent alternative, partic-

ularly in the context of Airpush and Fusob. In terms of our own family, both algorithms

demonstrate similar performance. However, when considering the di↵erences, it becomes

evident that CART fails due to its tendency to generate an excessive number of irrele-

vant features. Consequently, ExKMC can still deliver satisfactory results, although slightly

inferior to ICOT, which was introduced one year later.
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Chapter 7

Discussion

In this section, we will discuss the implications in Section 7.1 and limitations in Section7.2.

7.1 Implications

In this study, we investigate the performance of explanation unsupervised machine learn-

ing on Android malware applications using three algorithms: ExKMC, ICOT, and the base-

line algorithm, CART. Next, we conducted experiments on a large-scale real-world malware

dataset AMD. Based on the clustering accuracy, the algorithm ICOT outperformed ExKMC

with a significantly better accuracy of 0.7355. ExKMC demonstrated the second-best per-

formance with an accuracy of 0.6269. Both algorithms showed improvements compared

to the accuracy of algorithm CART, which scored 0.4792. In the end, the interpretation

results of key features present the underneath reasonable process of decision-making in

machine learning. Among the algorithms, ICOT achieves the highest F1-score of 0.52.

In detail, based on the interpretation results for each family, we observe the key features

through the generated explanation trees, which leads to further analysis or the detection

of unfamiliar and ungrouped Android malware samples. Among these three algorithms,

when comparing ICOT with the ExKMC algorithm, it is evident that algorithm ExKMC does

not outperform ICOT on ”accuracy”. After examination of the interpretation results, it is

apparent that for certain families (e.g. Bankbot and Youmi), ExKMC generates significantly

more key features than ICOT algorithm (10 vs 5) and (9 vs 4) respectively, indicating a need

for ExKMC to improve on accurate prediction. As for the CART algorithm, after conducting

experiments and comparing it with ExKMC, we find that it generates a large number of

irrelevant key features in most families, resulting in a final poor F1-score of 0.32.

For the dataset, the examination through large unlabeled datasets is crucial for experi-

ments of algorithms, given the continuous emergence of malware families. The ExKMC and

ICOT algorithms have shown great performance when tested on a large-scale real-world
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malware dataset (AMD). In particular, ExKMC achieves an F1-score of 0.45 and ICOT

achieves the highest F1-score of 0.52. In comparison to previous studies, such as Aung et

al. [129] with 700 samples and Ali et al. [34] with 800 samples, which only tested with

hundreds of samples, both ExKMC and ICOT algorithm demonstrate promising results for

identifying malware families.

7.2 Limitations

In this thesis, we have proven the good performance of algorithm ExKMC, ICOT, and the

baseline algorithm, CART on the application of clustering the Android malware family.

However, it is important to acknowledge that our analysis has certain limitations during

the process.

Assumption in k-Means. Before conducting experiments, we assume that we have

studied 10 families with a known number of members to be discussed. This implies that we

assume we know the value of k in advance. Also, in this thesis, determining the appropriate

cluster for an unknown dataset is not within the scope of our research. However, in reality,

there are cases where we do not know the number of families [34]. Therefore, accurately

determining the exact number of target clusters requires careful experimentation. There

are various methods available for this purpose, including but not limited to the Elbow

Method [71] and the Silhouette Method [80]. Both methods can be further explored in

future research.

Evaluation. When conducting the calculation in Chapter 6, there is some confusion

about getting the precision result. According to traditional rules, precision is determined

by dividing the number of correctly identified items by the total number of predictions.

However, in the case where there are similar key features, such as URL;openConnection

and URLConnection;connect, it is important to consider counting them as a single correct

prediction to align with the ground truth. This is because there is only one ground truth

related to URL connection. By not accounting for this consideration, the precision value

may unfairly decrease, as it fails to capture the correct predictions. Therefore, it can be

argued that incorporating this approach provides a better evaluation metric for precision.

Dataset. When conducting the experiments, we only tested on the real-world Android

malware dataset (AMD), di↵erent datasets and more malware families are considered for

testing the performance of the result.

Gap between Algorithm Result and Interpretation Result. There exists a gap

between the evaluation results for the algorithms (e.g. ExKMC algorithm evaluation Mo-

JoFM result, the clustering accuracy result for each family on each algorithm) and the

final evaluation results from the interpretation table. This discrepancy raises the question
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of whether the evaluation metrics can be compatible or consistent with the interpretation

results. For instance, during the data preprocessing in Chapter 4, we attempted to scale

the results, which is a common and essential practice in machine learning. Scaling en-

sures that the features or variables of a dataset are on a similar scale or range. From the

results obtained, scaling the data in the ExKMC algorithm potentially increased the Mo-

JoFM score from 67% to 85%. However, this scaling process does not necessarily improve

the quality of the explanation table and F1-score. If we apply the scaled dataset to the

interpretation result and compared them, obtaining the evaluation result via F1-score,

we could observe the decrease from 0.44 to 0.11. Additional details regarding this matter

can be found in Table 7.1. Therefore, it highlights the need for further research to explore

the relationship between the algorithm’s quantitative evaluation and interpretation result

quality assessment.

Table 7.1: F1-score for the scaled datasets interpretation result on the ExKMC algorithm

Methods Airpush BankBot Dowgin DroidKungFu FakeInstaller Fusob Jisut Kuguo Mecor Youmi mean

ExKMC 0.7143 0.3077 / 0.7059 0.3333 0.6667 / 0.6154 0.6667 0.4286 0.4439

ExKMC scalered 0.0769 0.4000 / 0.2222 0 / 0 / 0.2222 0.2105 0.1132

Mapping between the Key Features and Ground Truth. When comparing the

results of precision and recall, it is necessary to quantitatively determine whether they

match. However, this process may involve subjectivity at times. Therefore, further re-

search is required to either develop a more advanced NLP model that generates directly

comparable results with the ground truth or conduct a survey to leverage the biases from

a human perspective like Wu et al. [119].

For example, to avoid bias, an online survey could be conducted to gather opinions from

a diverse range of participants. Participants should possess basic knowledge of malware

analysis and preferably be experts in the field. Diversity among participants is important,

encompassing various domains, countries, research institutions (including universities),

and occupations such as PhD researchers, industry professionals, postdocs, or professors.

Participants would be asked to rate the extent to which the generated semantic meaning

truly matches the ground truth on a scale of 1 to 5, with 5 representing a perfect match

and 1 indicating a poor match. Scaling the ratings in this manner allows for a more

nuanced evaluation

Interpretaion Result. Currently, the interpretation results (as demonstrated by Table

6.5) reveal that the key features are the only output derived from the generated expla-

nation tree by the algorithm (as illustrated in Figure 5.6). However, it’s still unclear for
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analysts to directly analyze the interpretation result in a more practical setting in the

industry. Further research is required to delve into the semantic level of analysis to draw

conclusions for unlabeled data. This would involve analyzing the interpretation results

and, ultimately, developing strategies to mitigate malware attacks.
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Conclusions

In this thesis, we have studied two state-of-the-art approaches and one baseline model for

unsupervised learning in applications to Android malware detection and family clustering.

Here, it is important that the clustering approaches not only accurately classify malware

samples into families, but also provide insights for security analysts why this family is

chosen as the clustering target based on behavior-related features.

In our approach, we worked with the relatively recent Android malware dataset (AMD).

We have experimented with feature selection and data preprocessing, and hyperparameter

tuning of the three studied algorithms. We have then compared these algorithms on the

task of clustering Android malware into 10 clusters. Our results show that algorithm ICOT

is the best to achieve the highest clustering accuracy with 0.7355, and algorithm ExKMC

also demonstrated an improvement over the baseline CART with an accuracy of 0.6269.

We then experimented with the capability of these algorithms to report the key features

for the clustering decision and assessed them for being the basis for Android malware

family identification, comparing to the ground truth with have assembled from reputable

security sources and the Android documentation. Our results show that algorithm ICOT

achieved the best F1-score of 0.52. As for algorithm ExKMC, it needs to improve its feature

prediction accuracy further, as it generates more irrelevant features than algorithm ICOT.

Our findings also demonstrate that there is a complex relationship between clustering

accuracy and the interpretability of the results. This is an interesting observation that

requires more attention from the field of malware research.

8.1 Future Work

As mentioned in Section 7.2, several research directions have emerged from this work. For

the dataset, further examination is required to assess the e↵ectiveness of algorithms on

di↵erent malware families, since in this essay, we mainly focus on the study of one dataset.
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Additionally, due to the selection process of malware families, it may be necessary to

include a more comprehensive range of families. For example, testing the algorithms on

the entire set of 71 families could provide valuable insights.

Regarding the algorithms themselves, it is imperative to notice that improvements can

be made to ExKMC and ICOT. Furthermore, exploring other XAI unsupervised machine

learning algorithms on Android malware families, such as neural networks, could be a

solution to yield a better result.

For the evaluation of interpretation results, it may be beneficial to search for more e↵ective

and compatible metrics for comparing key features and true labels. To ensure accuracy

and minimize bias, it is crucial to involve human experts in extracting true labels from

websites and in the process of comparing the results between semantic meanings and true

labels in the interpretation table.
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[95] Durmuş Özkan Şahin, Oğuz Emre Kural, Sedat Akleylek, and Erdal Kılıç. A novel
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Figure 1: Partial result of feature importance
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