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Abstract
The application of Radial Drilling is an emerging field in the geothermal, oil- and gas industry.
By creating radial extensions from existing wells into existing reservoirs, the extraction of re-
sources can be made easier - improving the yields of these wells at a relatively low cost. We aim
to automatically classify the main steps in the Radial-Drilling process based on the previous
outputs of 4 of the most important sensors. We have designed and implemented an open source
machine learning pipeline for these kinds of multivariate time-series classification tasks. This
pipeline consists of MVTS-analyzer, a platform for visualizing annotating and analyzing mul-
tivariate time-series data and Configurun, an app installable as a python package that can be
used to (remotely) create, manage and run python configurations - on top of which we have im-
plemented our machine-learning framework, making all (novel) classification methods available
in an intuitive UI.

MVTS-analyzer is used to annotate the raw Radial-Drilling data. Configurun and the im-
plemented training-framework are then used to train and test the performance of 7 models on
this novel classification-task and on 10 existing time-series classification tasks.

By combining two state-of-the-art classification methods (Rocket and XGBoost) we create
a new classifier that shows robust results on the tested datasets. Based on a state-of-the-art
Time Series Transformer architecture (TST) we design and implement our own convolutional-
transformer classification architecture (CTST). We expand upon this idea by applying multiple
convolutional layers (MCTST), allowing for a higher degree of feature extraction before self-
attention is applied. We train and test these and several state-of-the-art models and compare
our found results to the author-reported performance. From our results, the average accuracy of
TST is still slightly lower than that of the state-of-the-art methods. CTST shows a slight overall
increase in accuracy over TST, while MCTST shows some improvement on select datasets, but
does not improve the accuracy on average. On the novel Radial-Drilling classification dataset,
we achieved a maximum prediction accuracy of 82% using our proposed method of combining
Rocket and XGBoost.
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1 Introduction
Radial Drilling - in the geothermal oil- and gas industry - is a process in which radial-extensions
are drilled from existing resource wells. It is a field that focuses on improving the extraction
efficiency of wells. Radial-Drilling operations are most often performed on wells with relatively
low performance in an attempt to increase yields by improving the reach to existing reservoirs by
branching off from the well at predetermined depths. Over the last decades, the Radial-Drilling
process has seen considerable success, improving well efficiency in various places around the
world such as in Egypt [30] and Kuwait [22].

During the drilling-process, the operator is presented with a multitude of continuous sensor
outputs. Based on these outputs, the operator decides how to proceed. At the same time, a
log of the reached (sub)-steps is manually kept. This log is later used, in combination with the
sensor data, to create a report on the success of the drilling-operation.

Proper post-operation analysis of the sensor data is a valuable resource, as it is essential
to demonstrate the success of the operation to the client. Analysis of these results also allows
for further optimizations of future Radial-Drilling operations by identifying the most and least
successful approaches.

The segmentation of the data into the various sub-process makes this task significantly more
manageable and allows for more accurate predictions on the actual success of a drilling-operation.
Coupling the logs made by the operator to the recorded sensor data after the fact, however, is
a time-consuming task. Furthermore, knowing when certain milestones in the (sub)processes
have been reached requires the operator to keep constant track of the sensor outputs while at
the same time, the rig still needs to be controlled. All the while the logs have to be kept as
accurately as possible.

Automatic segmentation of the drilling-data into the various sub-processes, therefore, has
the potential to significantly improve the efficiency of the Radial-Drilling process. It furthermore
enables the use of previously recorded (unlabeled) data in sub-process analysis tasks without
the need for meticulous manual labeling of weeks of sensor outputs.

Automatic classification of the main processes during run-time additionally provides a basis
for live-process monitoring, which could aid the operator in more accurately determining the
current underground state to allow for better decision-making.

Most publicly available research, however, is done on the individual mechanical components
of the Radial-Drilling process, such as the jetting nozzle [20]. Some studies have tried to apply
machine learning to the geological well-parameters, to predict the success of a location in advance
[24]. Classification of the main processes of the Radial-Drilling operation has, as far as we know,
not yet been done.

Multivariate time-series classification is a difficult task, for which not many open-source
tools are available. This makes the process of annotating, visualizing and analyzing multivariate
time-series data much less accessible, especially for non-experts. After annotation, determining
what classifier is best suited for the task at hand is another challenge, as is managing the
various hyperparameters of each classifier and keeping track of the results. The end-to-process
of creating solutions to these problems is therefore time-consuming - indicating that a general-
use pipeline that makes this process easier, would be a valuable resource in all fields that deal
with multivariate time-series data.

1.1 Research Questions
From the abovementioned, we formulate the following research questions:

1. Can we accurately predict the main process steps of the Radial-Drilling process based on
the previous sensor outputs of the drilling rig?

2. Can we create an accessible end-to-end machine learning pipeline for multivariate time-
series classification tasks?
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2 Background and Related Work
2.1 Related work
2.1.1 Time Series Classification

Historically, time series data has been difficult to work with. Classification methods on this
type of data are often more complex than their univariate counterparts and popular methods
have not always been able to make efficient use of parallelization (e.g. using GPU’s). While
the field of univariate time-series prediction has seen considerable advances, the creation of
competitive multivariate classification-specific methods has been shown, probably due to this
added complexity, to lag behind [8].

A problem with simple higher-dimensional time series data, especially when doing similarity
search, is the exponential increase in the search space as the amount of dimensions increases.
Schäfer et al. [32] propose SFA which is able to handle up to a factor 5-10 more indexed dimen-
sions than previous approaches.

Chen and Guestrin have created XGBoost [6], a tree-based algorithm with an emphasis
on scalability. XGBoost allowed up to 10 times faster runtimes on single machines compared
to other popular solutions at the time. This makes this algorithm more suitable for decision
problems operating on very large datasets. XGBoost has been used successfully in, for example,
Kaggle competitions. In 2015, out of 29 winning solutions, 17 solutions used XGBoost. The
improvements of this algorithm over normal gradient boosting methods are explained further in
Section 3.1.1.

Bagnall et al. [2] combine the idea of previously shown performance improvements due to
data-transformations into alternative spaces where discriminatory features are more easily de-
tected, with the principle that, in many situations, improved understanding of the data can
be achieved through ensemble-schemes, combining multiple classifiers into one. They create
the Collective of Transformation-Based Ensembles (COTE) using classification methods in the
time, frequency, change and shapelet transformation domains. They show that the ensemble
outperforms any of its components and any other previously published time-series classification
method.

Lines, Taylor, and Bagnall [28] attempt to apply convolutional neural networks to time-series
classification problems. They also propose the Hierarchical Vote Collective of Transformation-
based Ensembles (HIVE-COTE), as an improvement upon the aforementioned COTE ensemble.
The authors note that Flat-COTE (their most effective ensembling strategy) performs signifi-
cantly more accurate than 2 implemented neural-network based approaches.

Tang, Liu, and Long [36] [37] propose Dual Prototypical Shapelet Networks (DPSN) for
few-show time series classification. Their method both trains a neural network-based model and
interprets the model using representative shapelets - the discriminating shapelet that appears
in all instances of a certain class. The authors test their method on 18 few-shot TSC datasets
and compare it to several baseline methods. They observe their method to be especially robust
compared to the baselines when the amount of training data is severely limited.

Dempster, Petitjean, and Webb [11], considered the recent success of convolutional neural
networks for time-series classification tasks. They show that random convolutional kernels can
be leveraged to achieve state-of-the art performance on large datasets, at the cost of only a
relatively small amount of computational power. Rocket is explained further in Section 3.2.

Although neural-network based approaches are now the dominantly used methods in both
computer-vision and natural language processing tasks, the same cannot be said for the field of
time-series classification, where methods such as XGBoost and Rocket, in many cases, represent
the state-of-the-art. Recently, however, neural-network based approaches have started to bridge
this gap in performance. Mainly because of the demonstrated dominance in other sequence-to-
sequence domains, the neural network based approaches represent an interesting alternative to
the more traditional methods, one that shows a lot of potential.
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Neural-network based approaches to time-sequence tasks initially relied mainly on recurrence,
for example with LSTM-units [21]. The canonical LSTM-model, however, often struggles with
learning long-term dependencies [4]. Over the years, several improvements were proposed to
remedy this problem. Gers, Schmidhuber, and Cummins [19] proposed a forget-gate that can
be used by the LSTM-layer to reset itself. Later on Cho et al. [7] proposed gated recurrent
units, which can be seen as a simplification of the canonical LSTM-unit. GRU’s has been shown
to perform similarly to LSTM-units in some tasks [9]. Shen et al. [33] use GRU’s for financial
sequence prediction tasks due to their ability to better learn long-term dependencies.

Fawaz et al. [14] introduce Inceptiontime. This architecture, based on the InceptionV3 image
recognition model, focuses on scalability and is able to achieve similar results to HIVE-COTE
on the UCR univariate time-series classification-task, while cutting down on calculation times
by two orders of magnitude.

Kieu et al. [23] propose a sparsely connected Recurrent Neural network auto-encoder en-
semble in the field of outlier detection. The authors experiment with training unsupervised
auto-encoder ensemble frameworks in both a joint and independent manner. Auto-encoders
represent the input data in a compact, hidden representation from which the decoder can only
reconstruct representative features. By comparing a reconstructed output - as generated by the
decoder - to the original input, the authors are able to outperform all tested state-of-the-art
methods on their outlier detection task.

In Attention Is All You Need [39], the authors introduce a novel way of sequence transduction.
They propose the Transformer architecture: an architecture that leverages attention modules,
allowing the model to attend to information at different positions in the input sequence without
the need for recurrence (also see Section 3.3).

The creators of the language representation model BERT ([12]), which builds on this trans-
former architecture, gain considerable performance improvements in the field of Natural Lan-
guage Processing (NLP). Deviating from earlier methods, they utilize both left and right context
when processing text, instead of only attending to tokens previously encountered as many previ-
ous state-of-the-art methods did. The authors improve fine-tuning methods on their NLP model
by using a masked language model pre-training objective, which aims to predict masked words
in sentences. Additionally, a sentence prediction task is used to pre-train text-pair represen-
tations. The authors report that the leveraged transformer units also allowed for much better
transfer learning performance than achieved before due to previous limitations in transfer learn-
ing capabilities introduced by the traditional LSTM-units.

Zerveas et al. [41] introduce A transformer-based Framework for Multivariate Time Series
Representation Learning in which they directly apply transformers to time series data. They
propose and implement a general-use transformer architecture and make it available as a com-
bined framework. They have tested their model on several multivariate time series regression
and classification tasks and reported it to have outperformed all the current state-of-the-art ap-
proaches. The transformer units allow for unsupervised pre-training on unlabeled datasets using
sequence masking and a data imputation task. The authors note that the networks, consisting
of ”at most hundreds of thousands of parameters, can be efficiently trained: a commodity GPU
allows them to be trained approximately as fast as lean non-deep learning based approaches”.
The findings and proposed architecture serve as the basis for many of the experiments done in
this paper, this is explained further in Section 3.3.4.

The use of convolutional layers in time series classification tasks, with or without the use
of self-attention mechanisms, has shown promise in a number of studies. Causal convolutions
have been shown to be effective in creating embeddings[16] for time series data, allowing for an
easier interpretation of long sequences. Using convolutions allows the embeddings to be created
in an unsupervised manner, while avoiding the need for recurrence - thereby being more suited
for longer time series data.

Cirstea et al. [10] use a combination of recurrence with convolutional neural networks. They
experiment both with employing convolutions on each individual time series while applying the
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RNN on top, and adding auto-encoders to the convolutional neural networks. The proposed
methods are shown to be effective compared to their baselines.

Elbayad, Besacier, and Verbeek [13] apply 2D convolutional neural networks to sequence-
to-sequence prediction tasks and introduce an approach that relies on convolutional layers to
re-encode source tokens based on the output sequence produced so far. They report competitive
results compared to state-of-the-arts methods, while being conceptually simpler and having
fewer parameters.

Zhang et al. [42] introduce an attentional prototype network which uses a random group per-
mutation method, combined with multi-layer convolutional networks to extract low-dimensional
features from multivariate time-series data.

Li et al. [27] observe a limitation of using Transformers in time-series forecasting tasks due
to the fact that similarities between queries and keys are normally calculated based on their
point-wise values. Without taking into account the local context of the query, key and value in
the transformer, the model might often be unable to distinguish whether an observed value is
an outlier, or part of an existing (but slightly changed) pattern in the data. In an attempt to
remedy this, they propose convolutional self-attention, which makes use of convolutional layers
to generate the Query and Key pair in an attempt to preserve this context. Zhou et al. [43] use a
similar idea for their Informer architecture, which is centered around improving the performance
on Long Sequence time-series forecasting. They use convolutional layers in the encoder to create
the inputs to the attention-blocks.

Shen and Wang similarly use convolutional layers in combination with transformer-modules.
They propose three tightly coupled convolutional transformer (TCCT) architectures and an
architecture in which these novel TCCT modules are combined with a transformer model.

2.1.2 Time-Series annotation

When dealing with time-series classification problems, one of the main difficulties is the acqui-
sition of quality training and testing data. In particular, the annotation of time-series data is
a time-consuming process for which the right tools are important to allow for efficient labeling
while maintaining a high level of accuracy.

Fedjajevs et al. [15] implemented a platform for analysis and labeling of medical times series
(PALMS). Their python-based user-interface allows a medical professional to annotate time se-
ries with fiducials (points of interest, R-peaks of an ECG, for example), events with an arbitrary
duration (for example: arrhythmic episodes) and signal quality (data parts corrupted by motion
artifacts). PALMS was mainly designed with medical applications in mind.

Tools such as SUMsarizer1, and its evolved online-version TRAINSET 2 focus on the annotation
of time series data, particularly for Internet of Things-applications. The creators claim that most
users use the tool to detect cooking events from temperature sensors called Stove Use Monitoring
Systems (SUMS).

Other, more commercially oriented tools such as Visplore 3 exist, but they are not open-
source and restrict the data size and/or feature count when labeling on a non-professional plan.

Tkachenko et al. [38] have created Labelstudio: The most flexible data labeling platform to
fine-tune LLMs, prepare training data or validate AI models. This open-source software platform
built using python, implements labeling-tools in a web-UI environment for a variety of tasks such
as image classification, object detection, semantic segmentation, but also (multivariate) sequence
tasks. The tool is open-source and is provided under the Apache-2.0 license.

1https://github.com/geocene/sumsarizer
2https://trainset.geocene.com/
3https://visplore.com/
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2.2 Radial-Drilling - Technical Background
The Radial-Drilling process can, in general, be divided into several steps:

1. Inserting a guide - the shoe or deflector (see Figure 1) - into the existing well at target
depth

2. Inserting a hose with a drill-bit into an existing well
3. Drilling into the existing well-casing at target depth (milling)
4. Pulling out the drill-bit
5. Inserting a jet-nozzle into the existing well
6. Jetting a radial hole from the casing into the surrounding soil (jetting)
7. (Optionally) some form of stimulation of the newly created link to an existing reservoir
8. Pulling the jetting nozzle out of the well

Figure 1: A cross-section and side-view of the shoe. The shoe is (in the displayed orientation)
inserted into the existing well and serves as a guide to drill the hole in the existing casing at the
desired location and, afterwards, for the jetting-nozzle to enter the reservoir4.

The operations by Radial-Drilling Europe B.V. are performed by a mobile unit consisting of
a trailer-mounted drilling rig. It carries a spool with high-pressure hose, on which a drill-bit or
jetting nozzle can be mounted depending on the task at hand. The unit is capable of creating
radial wells up to a depth of several kilometers.

Steps 2 to 4 are only performed, if the well in question has a casing, a surrounding tube that
prevents well-collapse and/or contamination of the well. The casing, in general, consists of a
metal tube surrounded by cement.

The radial-drilling process can be repeated at varying depths for the same well, in whatever
direction is deemed fit. Using the inserted guide - the shoe - specific targets can be aimed for:
in particular existing reservoirs that have previously been mapped.

Various sensor-outputs are made available to the operator during the drilling operation,
based on which the operator can make decisions on how to proceed. Especially around target-
depth, the sensor outputs are essential for the operator to determine whether the shoe has been
reached, whether the drill-bit or jetting-nozzle has been inserted, and whether the shoe has been
passed.

4Images of the shoe were provided by Radial-Drilling Europe B.V.
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Figure 2: A schematic overview of the jetting step in the radial-drilling process. Existing target-
reservoirs in the soil are drilled to using a jetting-nozzle, which is guided into the reservoir
through the previously milled casing-hole at target depth by using the shoe (in blue). The
jetting nozzle propels itself forward using back-facing jets of water, while simultaneously grinding
away the soil in front using the main front-facing jet of water. Reservoirs of oil, water, or gas
(depending on the well) can be targeted in order to improve the well-yield.

Both the jetting-nozzle and the drill-bit are hydraulically powered. High-pressure water is
pumped through the hose. A hydraulic motor at the end of the hose converts the water-pressure
into rotational movement when milling. During jetting, the water is forced through one or more
small nozzles at the end of the hose, creating a high pressure jet of water that is used to cut
through the existing soil and create the radial well-extension. Optionally, backwards facing jets
can be used to propel the nozzle forwards during the jetting operation.
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3 Methodology
In this section, we discuss the selected baseline methods used in the experiments in Section 7 -
and the motivation behind these choices.

3.1 Gradient Boosting
Friedman [17][18] first introduced gradient boosting in Greedy Function Approximation: A Gra-
dient Boosting Machine. Gradient boosting works by creating an ensemble of (individually)
weak base learners to create an input/output (x to y) mapping that aims to approximate the
output variables based on the input variables: an approximation function F̂ (x). Over multiple
iterations, it tries to find F̂ by using training samples for which input and output are known
- yi, xi - to minimize the expected value of a loss function L(y, F (x)) (for example, the mean
squared error loss function).

F̂ = argmin
F

(Ey,xL(y, F (x))) (1)

Gradient boosting takes a greedy approach to this problem, by iteratively adding new weak
learners (typically decision trees), each one attempting to minimize the loss function further.

The algorithm has been widely used in the field of machine learning. Its popularity can
be partly attributed to its performance in Kaggle competitions, where it has been used many
times in winning solutions - especially the XGBoost-variant (see Section 3.1.1). Its established
robust performance in a variety of time-series tasks is the reason we choose to include it in our
experiments.

During our experiments, we used the Scikit-learn [29] implementation of the gradient boost-
ing classifier. This classifier fits n_classes regression trees on the negative gradient of the loss
function. In the case of a binary classification problem, one single tree is used.

3.1.1 XGBoost

Many implementations of gradient boosting algorithms (such as the previously mentioned Scikit-
learn implementation) are unable to efficiently make use of computational resources, which often
results in very long training times on larger datasets. Chen and Guestrin [6] have implemented
XGBoost: A Scalable Tree Boosting System, as its name implies: a scalability-oriented gradient
boosting system.

The main changes of XGBoost, compared to the canonical gradient boosting algorithm, in
terms of computational efficiency are:

• Column block for Parallel Learning: by distributing data into blocks, and sorting the
data within these blocks according to their respective feature values, scanning new split
candidates can be done more efficiently. When using approximate algorithms, multiple
blocks can be used, allowing the distribution of blocks across machines.

• Cache aware access: using a prefetching algorithm and/or by fine-tuning block-sizes,
among other things, makes data-fetching more efficient, by reducing the amount of cache-
misses.

• Blocks for Out-of-Core Computation: by enabling the use of data-compression, prefetching
and block-sharding when using out-of-core computation, disk-access times are minimized.

In Section 7, we compare the default implementations of XGBoost to the default imple-
mentation of the Scikit-Learn gradient boosting classifier, to see, besides the computational
efficiency, whether the base-implementation of one or the other offers any advantage on the
tested datasets.
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3.2 Rocket
Dempster, Petitjean, and Webb [11] propose Rocket - RandOm Convolutional KErnel Transform.
This method relies on generating n random convolutional kernels, which are then applied to the
target data before a classifier is used. According to the authors, using random convolutional
kernels for feature extraction has been shown to be effective in multiple earlier studies, which
was their main motivation for further exploring this method.

The Rocket-method distinguishes itself from previous random-kernel-transform based meth-
ods in 4 main ways. The first one being that Rocket uses a relatively large amount of kernels.
Because computing these kernels is computationally inexpensive, a large number of them can be
used without a significant increase in the total computational cost. Secondly, the authors report
the variety of kernels used to be relatively great - length, dilation, padding, weights and bias
are all picked randomly, generating a wide variety of features (though stride is always 1). The
third difference relates to the second one in the fact that dilation is also strongly varied - cap-
turing both long and short-term dependencies, which is unique. Lastly, and most importantly,
Rocket uses a novel approach in which not only the maximum of the feature maps generated by
the random kernels is used, but also the proportion of positive values (ppv). This enables the
classifier to take into account the prevalence of a certain feature. The authors note that this is
the main addition that sets the success of Rocket apart from other random kernel methods.

When training or testing, the target data is first transformed using the generated random
kernels. Using these random kernels, random “features” are extracted. This output can then,
in the case of classification, be used as an input to a classifier, for which the authors note
that linear classifiers are often most effective. In the default implementation, the authors use a
ridge-regression classifier.

Dempster et al. have evaluated Rocket on the UCR-archive, and report Rocket to be com-
petitive with state-of-the-art methods. They note that Rocket is able to obtain the best mean
rank across the 85 ’bake-off’-dataset compared to all used baselines. Rocket is also evaluated by
Zerveas et al. [41], coming second in their ranking of evaluated methods, which further solidifies
our choice to include it in our experiments.

3.3 Transformer
Transformer-based methods have taken the field of Natural Language Processing by storm. The
ability to efficiently make use of long-term dependencies sets these models apart from previous
methods. Recurrent Neural Networks, for example, allow for a lot of flexibility when it comes
to sequence-dependent tasks, but they can suffer from vanishing gradient problems when the
input sequences become longer [25]. The Transformer architecture makes use of self attention
mechanisms over the full input sequence, allowing it to attend to different parts of the input
without applying recurrence. Self-attention in the Transformer architecture furthermore consists
of relatively inexpensive computational operations that can be done in parallel, allowing for much
more efficient use of computational resources. Additionally, transformer-based architectures
such as BERT [12] have been shown to be more robust in transfer-learning than previously used
RNN-architectures.

The same properties that make the Transformer-based architectures effective in NLP tasks,
also make these models a promising addition to the field of multivariate time-series classification.
Zerveas et al. show a variant of the transformer architecture to be effective in a variety of multi-
variate time-series tasks, for which they report state-of-the-art performance. This architecture
forms the basis for our proposed architectural additions and the experiments done in Section 7.

The following subsections will further explain the main building blocks of the Transformer-
architecture and will introduce the time-series classification architecture as presented by Zerveas
et al.
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Figure 3: Scaled dot-product attention5
Figure 4: Multi-head attention5

3.3.1 Attention-module

The transformer architecture makes use of Scaled Dot-Product Attention units (see Figure 3).
The input to the attention-units consists of a set of queries, keys and values of dimensions dk, dk
and dv respectively. First, the dot-product of the queries and keys is calculated. This essentially
tries to map the queries to their appropriate keys, creating a similarity score between the two.
The model learns to generate these queries and keys in such a way that this similarity-score can
attend to different parts of the input sequence based on relevance.

The next step differs from normal dot-product attention. The authors noted that normal,
additive attention, outperformed normal dot-product attention for large values of dk. They
theorize this to happen due to the dot product growing too large in magnitude, which results
in minute gradients in the softmax layer. This is why the output of the dot-product module is
scaled by 1√

dk
to prevent values from getting too large. The result is then passed through the

previously mentioned softmax-function.
The output of the attention-module is thus calculated as follows:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (2)

Where Q, K and V denote the matrices for the queries, keys and values respectively.

3.3.2 Multi-Head Attention

Multi-Head Attention first uses h linear layers in parallel, which learn to project the input
values, keys and queries in different ways. On each output, scaled dot-product attention is then
applied (see Figure 4). In theory, this allows the model to relate parts of the input sequence
to itself in different ways. Additionally, the calculations can be done in parallel, allowing for
more efficient use of computational resources. The output of the attention-modules are then
concatenated and linearly projected into the expected dimensionality.

Multi-head attention is thus computed as follows:

MultiHead(Q,K, V ) = Concat(Head1, ...,Headn_heads)W
O (3)

With:
Headi = Attention(QWQ

i ,KWK
i , V WV

i ) (4)
Where WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk and WV

i ∈ Rdmodel×dv denote the linear pro-
jections (resp.) of the queries, keys and values for Headi. Attention(...) is defined in Equation
2.

5 Image reproduced from Attention is all you need [39] under its allowed usage in scholarly works by Google
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3.3.3 Transformer Encoder

In Attention is all you need, the Transformer encoder is created using a stack of N encoder layers,
consisting of Multi-Head Attention, followed by a feed-forward layer, as depicted in Figure 5.
Residual connections are added between the in- and output of both the feedforward layer and
multi-head attention layer, both followed by layer normalization. The addition of the residual
connections improves the training performance by making it possible for the gradients to flow
through the network more easily.

Figure 5: The original Transformer-encoder layer. Multiple encoder layers (×N) are stacked to
create the full encoder5.

In the original Transformer-model architecture, the output of the stacked encoder layers is
then fed into decoder-blocks that are used in sequence-to-sequence tasks. In our used architec-
tures, this decoder-block is not included as it is less suitable for classification tasks, which is
further explained in Section 3.3.4.
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3.3.4 Time-series Transformer
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Figure 6: An overview of the TST-classification architecture as presented by Zerveas et al.

The transformer architecture as presented by Zerveas et al. - henceforth called Time Series
Transformer (TST) - differs slightly from the architecture presented in Attention is all you
need (see Figure 6). In particular, the authors forego the inclusion of the decoder-part of the
original architecture in favor of a generally applicable network using only the encoder part of
the original architecture. Since the decoder would need the masked ground truth sequence as
an input, this makes the full architecture less suitable for classification tasks.

The TST-model takes a sample X ∈ Rw×m as input - consisting of a multivariate time-series
of length w, with m dimensions equal to the amount of features. In the case of the radial drilling
problem, m would correspond to the amount of sensors recording data, and w would correspond
to the amount of time-steps per sample

Input X is passed through a linear layer, outputting the full input sequence into a specified
amount of dimensions (dmodel):

ut = Wpxt + bp

Where Wp ∈ Rd×m and bp ∈ Rd denote the learnable parameters of the linear layer. ut is
analogous to the word-embeddings used in NLP tasks. Similarly, a positional encoding is then
added to this input sequence, which allows the model to take the order of the input sequence into
account. In the original method, sine and cosine-functions are used to add this positional encod-
ing to the word-embeddings. Zerveas et al. have experimentally found that in their time-series
experiments, a learnable positional encoding showed better results. The positional encoding is
generated using random samples from a uniform distribution between -0.02 and 0.02.

Zerveas et al. have applied their proposed model on a variety of time-series classification
tasks from the UAE-datasets (see Section 5.2) and have reported the model to outperform all
other state-of-the-art time-series classification methods.
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4 Contributions
In this section, the main contributions of this work are introduced, both in terms of the (novel)
classification methods tested and the machine learning pipeline that we have created.

4.1 Time Series Classification Pipeline
Multivariate time-series classification is a difficult task, for which not many open-source tools
are available. This makes the process of annotating the data and selecting a viable classi-
fication method an inaccessible and time-consuming process for the average user. We have
implemented several open-source tools in order to create a cross-platform general-use machine
learning pipeline for time series classification tasks.

In the following subsections, the 3 components of this pipeline will be discussed:

• MVTS-Analyzer - A platform for visualizing, analyzing and annotating multivariate
time-series data.

• Configurun - A cross-platform python package app for (remotely) managing and running
python configurations.

• MVTS-Learner - A machine learning framework built using Configurun - specifically for
multivariate time series (classification) tasks.

4.1.1 MVTS-Analyzer

We implement MVTS-Analyzer: an open-source, general use multivariate time series annotation
and analysis tool6. Although some time-series annotation tools exist, these are often limited in
their use when dealing with larger continuous datasets. The most promising option we found,
was Labelstudio. This annotation-environment is implemented in a web-UI, which is not ideal
when dealing with a large amount of data-points. Furthermore, multivariate time-series are
plotted in multiple parallel plots, making it difficult to keep track of all values when dealing
with more than 2 sensors at the same time.

MVTS-Analyzer was developed in Python using PySide6 (a python-wrapper around Qt)
with Matplotlib and Pandas at its core.

In particular, our implemented tool is useful when visualizing and annotating data with
significant difference in scale between the features, as is the case with the Radial-Drilling dataset
for which MVTS-analyzer was originally designed. Its main strength is its flexibility - we can
directly operate on the pandas data-frame that was loaded into the tool, allowing for easy data
manipulation.

The main window consists of a plot that allows the user to label individual time-steps
using lasso, square and range selection tools (see Figure 7). Selection can be done additively,
subtractively or complementarily. The user can then set the label of the selected data-points.
They can either create a new label in the side-view, or select from all available labels for the
selected label-column. Time series can be easily exported and loaded using several formats.

A side-window is made available to the user in which the domain of the selected x-axis is
continually determined such that the user can select which part of the data they would like to
have in focus. Each time the focus is changed, the data is normalized to the new focus window.
Every currently selected column (e.g. sensor) gets its own axis that is individually moveable and
scalable to allow for easy inspection of the data. The user can furthermore select the columns
to display, the font size to use, the plot type and the plot-coloring method.

The user can also open multiple views of the same loaded dataset at once. Data-point-
selection is shared between all views, and the user can choose to plot different variables against
each other in each view. This allows for easy selection of outliers, as well as easy isolation of

6https://github.com/Woutah/MVTS-analyzer
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Figure 7: The data-viewer in MVTS-Analyzer. The user can select data-points using a variety
of selection methods, and label them accordingly. Multiple label-columns can be added that
can then be used when splitting data.

specific patterns in the data which might be difficult to label when only viewing the data over
the time-domain.

The python-window allows for on-the-fly python code execution on the currently loaded
dataframe, as well as the current selection. Python-scripts can be saved for later use, allowing
for easy re-use of the same data processing methods on different (sub-)datasets.

When annotating, we can create as many label-columns as we want, allowing for more
complex labeling methods. In turn, we can use these columns in our implemented MVTS-
Learner-framework to split the data to make sure train, validation and test-datasets respect the
desired group-separation.

4.1.2 Configurun

Although some tools exist to automatically generate UI’s based on command-line arguments,
the user-friendliness of these tools quickly deteriorates when dealing with more complex con-
figurations. In many cases, it would be desirable to disable or enable certain options based on
the value of other options in order to keep the UI clean and intuitive. For example: it would
make no sense to show options for Neural-Network based training when the user has selected a
Random-Forest classifier. Furthermore, tools that also enable the user to quickly load and save
such configurations are not readily available. Especially an all-in-one solution that also allows
for easy (remote) queuing and running of configurations has, to our knowledge, not been cre-
ated before. We implement Configurun7, a cross-platform PySide6-based package with an app
to save, manage and (remotely) run python configurations. Configurun can be easily installed
from PyPi, for example with pip using: pip install configurun.

Configurun was designed mainly with machine-learning tasks in mind, but can be used for
any python script or framework that takes arguments as an input. Editable UI’s are created au-
tomatically based on either an argparse.Argumentparser or python-@dataclass(es). Editing-
widgets are based on the types provided by this argparse-object or the dataclass. Supported
types include int, str, bool, float, choices of any type using a Literal, as well as (complex)
combinations of these types which can be created quickly using list and union type-hints (see
Figure 8). We can dynamically switch between configuration templates based on user-choices in

7https://github.com/Woutah/configurun
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Figure 8: An example of how a single attribute in a python @dataclass is presented to the
user. The dataclass is automatically converted into a UI in which editing-widgets are provided
based on the type-hints.

Figure 9: An example of several configurations in the Run-Queue.

the current configuration, allowing the user to quickly generate intuitive testing-environments
for any existing python framework.

The main configurun-editor window displays a sub-window with a workspace-explorer in
which we can easily save, load and edit configurations. In this way, we can keep track of the
configurations we have run and create new configurations based on previous ones. Parameters
that have changed from the default values are highlighted, allowing the user to keep track of
what changes have been made to large configurations.

Configurun saves the workspace-states when quitting, allowing the user to resume work at a
later time. Queued, running and finished jobs are kept in the Run-Queue. In the same window,
we can start, stop, remove and edit runs, as depicted in Figure 9. Auto-running-mode can also
be enabled here, which will automatically start the next job when a process-space opens up. We
can run multiple configurations simultaneously by specifying the amount of processes to use.

The Configurun-app can either be run entirely locally, or in a client-server setup. In the
latter case, the user can start a server-instance on the remote machine. A local client-instance
can then be used to interface with the remote server-instance as if the user is running the normal
local app, adding jobs to the queue and monitoring the output of running, queued and finished
jobs. Multiple clients can connect to the same server-instance, so multiple users can work on
the same remote machine at once.
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4.1.3 MVTS-Trainer

On top of Configurun, we implement MVTS-Trainer: an open source framework for time-series
classification tasks8.

This implementation is based on the transformer-based framework for multivariate time-
series representation learning as presented by Zerveas et al.9, and combines this existing frame-
work with the Rocket-feature extraction method and a multitude of classification algorithms
from the Scikit-learn [29] library. We also integrate XGBoost, using the implementation made
by its authors 10. We have furthermore implemented our own Convolutional-Transformer archi-
tecture(s) (see Section 7), which we have also made available in this framework.

All combination of models, datasets and preprocessing methods can be easily selected using
the Configurun-UI, at which point the appropriate sub-options for model, dataset and training
are automatically presented to the user.

Figure 10: An example of the general and model sub-options. The applicable options are
automatically selected and shown based on the model selected in the main-options sub-window
and allow for easy customization of the training/testing parameters.

An example of the general-options and model-options can be seen in Figure 10. The model-
options are selected automatically based on the currently selected model-architecture. The
framework makes it very easy to run a variety of experiments on a multitude of datasets. We
have split the options into main-, general-, model-, dataset- and training-options. All sub-option
choices are then loaded dynamically based on the selected main-options. As noted before, we
can save, load and edit these configurations and add them to the run-queue to be run (remotely).
Options that have changed from their default values are printed in bold, allowing us keep track
of what changes are made to each configuration.

All target-algorithms from the sklearn-library are automatically loaded into the UI and every
argument of each of the individual algorithms is then automatically converted into a UI-element
based on the class-signatures and type-hints. The description of each of the arguments is loaded
automatically from the Scikit-learn documentation and is displayed on-hover. Adding more
Scikit-learn algorithms to the framework can be done by simply adding the desired class to the
list of algorithms to be loaded.

8https://github.com/Woutah/MVTS-Trainer
9https://github.com/gzerveas/mvts_transformer

10https://github.com/dmlc/xgboost/tree/master
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Figure 11: The time-series window sampler with a frame with of 6. We can specify the boolean
mask and step size to customize our sampling method.

The framework is designed in such a way that users can also add their own custom models,
datasets and preprocessing methods. By creating a python-@dataclass, all options for the new
implementation can then be presented to the user in an intuitive manner.

As we have integrated the framework by Zerveas et al., we should be able to load any of
the datasets reported in the paper in question (including time-series regression datasets/tasks).
We note that, in this thesis, we have primarily made use of the time-series-classification type
datasets. These datasets were provided in the ts-format.

We have additionally implemented a general-use data-loader for Pandas-dataframes, com-
patible with the output of MVTS-Analyzer. This means that any dataset which is loaded (and
annotated) in MVTS-Analyzer, can also be loaded into the framework for training and testing.
This dataloader provides a variety of functions to split the data into train, validation and test
sets, to extract the actual samples from the data and to validate the data. The core feature for
converting continuous time-series data into multiple samples, is the time-window-sampler. This
sampler allows the user to select a window-size, a step-size and a boolean mask to determine
which time-steps should be included in the sample. The sampler will create a sample for each
window-step in the data, using the provided window-size, step-size and padding settings. The
boolean mask additionally allows the user to use a variable step-size in the actual sample as
depicted in Figure 11.

Using this window, we can resample large continuous datasets using a fixed-window size with
a boolean mask and the desired step-size. Depending on the problem at hand, we can decide to
what extent long-term dependencies should be taken into account. In Section 7, we experiment
with these settings on the Radial-Drilling dataset.

Finally, we have integrated Wandb [5]11 and Tensorboard into the framework, allowing the
user to quickly log all training and testing results to either the (online) Wandb-platform or to
a local Tensorboard-instance.

4.2 Classification Methods: (M)CTST and XGBR
The following subsections describe the contributions made in terms of novel classification meth-
ods, all methods are evaluated in Section 7.

4.2.1 Convolutional Transformer - (M)CTST

Certain time-series patterns evolve over time. Canonical transformer-encoder layers, however,
do not immediately take into account local context when computing the self-attention vector if
the feature-vectors are directly inserted into the Transformer-Encoder - as this means that the
attention vector is calculated in a point-wise manner, as is also noted by Li et al. This means
we might miss such evolving patterns.

11https://wandb.ai/
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Figure 12: The (M)CTST-architecture, based on the TST architecture, self-attention is com-
puted over features using either one (CTST) or multiple (MCTST) convolutional layers.

Convolutional layers have previously been used in combination with Transformers in time-
series sequence-to-sequence models [27]. Zerveas et al. propose a similar improvement for future
work, and note that from their initial tests, the convolutional transformer showed promising
results on datasets consisting of longer (lower-dimensional) time series.

Based on the work of Li et al. in time-series forecasting tasks, and based on the suggestions
for future work provided by Zerveas et al., we design and implement our own architecture using
the transformer-encoder architecture.

A schematic overview of this architecture is depicted in Figure 12. In accordance with the
naming scheme of Zerveas et al. for their Transformer-based convolutional classifier Time Series
Transformer (TST). We refer to the models with a single convolutional layer as Convolutional
Time Series Transformer models (CTST) and to the models with multiple convolutional layers
as Multi-Convolutional Time Series Transformer models (MCTST).

Figure 13: Convolutional self-attention allows for local context to be taken into account, ex-
tracting (local) features/patterns before self-attention is applied.

The intended use of the convolutional layers is to capture local dependencies, allowing for
feature-extraction on a local level before self-attention is applied. An example of this principle is
shown in Figure 13. A fully connected layer would have trouble capturing these local dependen-
cies in a repeatable manner (especially for longer sequences), and using self-attention directly
on the time-sequence would result in point-wise self-attention, which might miss such patterns.
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Using one or more 1D convolutional layers theoretically allows these patterns to be extracted
more easily.

Additionally, by using sub-sampling or dilation (Section 9), the receptive field of the convo-
lutional layers can be increased. This might allow the model to learn to create a more condensed
representation of long input sequences.

4.2.2 XGBR

In addition to evaluating the performance of Rocket (in combination with a RidgeCV-Classifier)
and XGBoost individually, we also experiment with a combination of the two. We use the output
features of Rocket as an input to the XGBoost-classifier and denote this method as XGBR
(XGBoost-Rocket).

At the time of writing, a concurrent work has applied this combination of classifier and
feature extraction on a 3D-printer fault monitoring problem [31]. As far as we know, this is
the first time this combination of feature-extractor and classifier has been applied to time-series
classification tasks.

This method aims to make use of both the feature extraction capabilities of Rocket and
the classification capabilities of XGBoost, while also taking advantage of the computational
effectiveness of both methods. We compare the performance of this method to the default
RidgeCV-classifier proposed by the creators of Rocket.
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5 Datasets
5.1 Radial-Drilling
We operate on data provided by Radial-Drilling Europe B.V.. We have been given access to a
dataset consisting of anonymized well operations with a couple of hours of data per operation.
The sensor-data consists of 1-second measurement intervals of the four most important sensors:

1. Depth - The hose length that has currently been inserted into the well.
2. Load - The load on the hose-mechanism.
3. Fluid-Flow - The fluid-flow rate through the hose, which determines the speed of the

milling and jetting-nozzle.
4. High-Pressure - The pressure of the fluid in the hose.

Using MVTS-Analyzer, all individual well-operations were given their own ID, after which
process-labels were assigned according to the day reports provided by Radial-Drilling Europe
B.V.. The dataset differentiates between six different classes in the radial-drilling process: wait-
ing/standby, pull-out-of-hole (POOH), run-in-hole (RIH), tagging/run-in-shoe (RIS), jetting
and milling.

The datasets were then sampled by sliding a sampling-window of a fixed size over the time-
steps in each well-operation as described in section 4.1.3, and depicted in Figure 11. To select the
optimal size and sampling-method for this window, we experiment with four different settings
denoted by a version number from 1 to 4:

• DrillingV1 A sliding window with a width of 60 seconds, each sample consisting of all
60 time-steps in this window.

• DrillingV2 A sliding window with a width of 6000, steps between each sampled index
increase exponentially as we go further back in time, from 1 to 256, in total, the sample
consists of around 1200 time-steps.

• DrillingV3 Analogous to V2 - but steps increase more quickly, resulting in a total size of
600 time-steps per sample.

• DrillingV4 A sliding window of width 600, of which all indexes are sampled - correspond-
ing to the last 10 minutes of data for each sample.

Every dataset is sub-sampled such that the classes are approximately balanced. The dataset
is then split into 70% train- and 30% test-set similar to the used public-datasets with a larger
amount of samples. During hyperparameter tuning, the train-set is further split into the actual
train- (80% of total train-set) and validation-set (20% of train-set), following the example of
Zerveas et al.

We note that due to the severely limited amount of distinct wells present in the dataset, and
due to the fact that the well-locations were not annotated, we were unable to create a test-set
consisting of completely distinct well locations, which would be most desirable as this would
come closest to a real-world performance evaluation in which all (geological) well-parameter
could differ from the train-set (see Section 9).

We make use of Stratified Group K-Fold splitting to try to preserve the class-distributions as
much as possible, while ensuring that the same well-operation is never present in both the train-
and val- or test-set. The fact that well-operations are kept distinct, makes it so that the model
is never trained on samples from “in between” samples in the validation- or test-set, from which
information could be leaked. Splitting the dataset in this manner, results in a more realistic
performance evaluation.
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5.2 UAE-Datasets
In addition to the novel classification task on the Radial-Drilling dataset, we experiment on a
variety of datasets from the UEA Time Series Classification Repository [3]. We follow Zerveas
et al. by example and use 10 datasets with a diverse amount of training samples, dimensions,
sequence lengths and classes. We note that we did not use the InsectWingbeat-dataset because
Zerveas et al. do not take this dataset into account for their calculation of the weighted accuracy
due to the fact that they could not run the Rocket-experiments on this dataset. Additionally,
we noted that loading-times for this dataset were prohibitively long.

A summary of the dataset properties is shown in Table 1.

Table 1: Overview of the used datasets from the UEA Time Series Classification Repository.

Dataset Train size Test size Dimensions Length Classes
EthanolConcentration 261 263 3 1751 4
FaceDetection 5890 3524 144 62 2
Handwriting 150 850 3 152 26
Heartbeat 204 205 61 405 2
JapaneseVowels 270 370 12 29 9
PEMS-SF 267 173 963 144 7
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2
SpokenArabicDigits 6599 2199 13 93 10
UWaveGestureLibrary 120 320 3 315 8

As can be seen, several of these datasets contain very few training samples. The predefined
test- and train-splits are used during training and testing. For hyperparameter tuning, the
train-set is split into a 20%-80% validation and train-split respectively in accordance with the
training procedure used by Zerveas et al. A more in-depth description of the training procedure
can be found in Section 6.

In Table 2, a short description of the classification-objective of each dataset is given.

Table 2: Summary of the classification objectives per dataset.

Dataset Objective Balanced
EthanolConcentration Determine alcohol concentration of a sample using spectroscope data [26]. Yes
FaceDetection Determine whether subject is looking at a picture of a person or scrambled data using MEG data. Yes
Handwriting Determine handwritten letters of the alphabet based on x, y, z motion data. 2-7 samples per class
Heartbeat Determine whether a heart sound-recording is normal or abnormal. 75%/25% resp.
JapaneseVowels Determine the person based on utterances of the vowels ’e’ and ’a’. Yes
PEMS-SF Determine day of the week based on car occupancy rate in car lanes. Yes
SelfRegulationSCP1 Determine mouse movements made by subject based on cortical potential measurements. Yes
SelfRegulationSCP2 Determine mouse movements made by patient with ALS based on cortical potential measurements. Yes
SpokenArabicDigits Determine spoken Arabic digit based on MFCC. Yes
UWaveGestureLibrary Determine gesture based on x, y, z data. Yes
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6 Pre-Review of related work
Zerveas et al. provide the model architecture hyperparameters for their proposed TST-model
for the supervised learning tasks. The authors have run hyperparameter optimization on
each individual dataset in the UAE-archive to determine the number of transformer-encoder
blocks (n_blocks), the number of attention heads (n_heads), the dimensionality of the self-
attention in/output (d_model) and the dimensionality of the linear feed-forward layers in each
transformer-encoder block (d_FFW ). In practice, however, we were not immediately able to
reach the reported results in the paper. After reaching out with questions about the training
and testing procedure, the authors have remarked that (at least) both the subsampling-rate and
batch-sizes were also tuned separately for each dataset. The authors, in their paper, noted that
the amount of epochs trained was treated as a hyperparameter: 20% of the training data was
used as a validation set for hyperparameter tuning, after which the full train-set was used to
train the model a pre-determined amount of epochs.

Unfortunately, the authors were no longer able to provide us with the exact hyperparameter
settings for each dataset. This made it difficult to reproduce the reported results.
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Figure 14: Test-accuracy of provided hyperperameters, Validation-accuracy of provided hyper-
parameters, Validation-accuracy of own hyperparameter optimization - all over 5 folds.

We illustrate this point using figure 14. For this example, we picked the Heartrate-dataset,
for which the most hyperparameter-settings were known, as this is one of the few datasets for
which the batch-size was given due to the authors’ extra experiment regarding the difference be-
tween Batch-Normalization and Layer-normalization. We set all model-hyperparameters to the
reported optimal settings (n_blocks=1, n_heads=8, d_model=64, d_FFW=256), after which
we trained the model for 400 epochs 5 times using the default settings provided in the frame-
work, with BatchNormalization and a Learnable positional encoding - as recommended by the
authors.

In green, we show the validation-accuracy on the Heartbeat dataset over 5 folds, with 20% of
train-set used as the validation set in each fold. In red, we show the test-accuracy over 5 runs,
when using 100% of the training data for training - note that this is only done for illustrative
purposes.

For the validation-accuracy we can see that the maximum mean-validation-accuracy of 0.761
is reached at epoch 102 - indicated by the green arrow. According to the authors’ testing
procedure, we would then evaluate model at the same epoch. At this epoch, (as denoted by the
red arrow) the test accuracy is only 0.700 ± 0.017. The reported accuracy on this dataset is
0.776, which is significantly higher.

Because this pattern was observed for many of the datasets, we have decided to re-run the
hyperparameter optimization for each dataset to be able to also compare our found optimal
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Figure 15: Heartrate validation accuracy per training epoch - over 5 folds of the validation set.
All runs use the same hyperparameter settings. All folds have a 20%-size validation set. Each
fold in a different color.

hyperparameters to the reported optimal hyperparameters. We not only vary the subsampling
rate and batch-size, but also compare the architectural hyperparameters to the reported optimal
settings. Due to the very small training-sizes of several of the datasets, we have decided to use
5-fold or 10-fold validation for each hyperparameter-optimization-run (based on the size of the
dataset in question) to be able to evaluate the performance of the hyperparameters in a more
meaningful way. We illustrate this using 5-fold validation on the same dataset, using the same
hyperparameter settings, as depicted in Figure 15. We can see that, depending on the split, the
validation accuracy can vary greatly. At the absolute maximum of almost 90% accuracy, the
minimum of one of the other folds has an accuracy of around 68% - a difference of more than
20%, which is only caused by how the validation-split was made. Furthermore, the amount of
epochs needed to reach the optimal accuracy also varies between folds.

For many of the datasets, such as for the Heartbeat-dataset used in our example, we were
able to find a set of hyperparameters which performed better on the validation set. An example
of this can be seen in Figure 14. In orange, we show a run with custom hyperparameter settings
for which a maximum accuracy of 0.795 was reached at epoch 30. In this example we used
the following settings which differ from the authors: fixed positional encoding, n_blocks=4,
batch_size=64 and d_FFW=128.

At epoch 30, using our found optimal hyperparameters, we reached a mean accuracy of
0.699 ± 0.017 on the test-set - which is in line with our earlier test that resulted in about the
same accuracy - though still significantly lower than the reported accuracy of 0.776. For the
Heartrate-dataset, we were unable to find a set of hyperparameters which both outperformed the
abovementioned hyperparameter settings on the validation-set, and also matched the reported
test-accuracy of the authors.

We specifically note that we also did some precursory investigation in the reported perfor-
mance improvements when pre-training the Transformer-classification architecture on the UAE
dataset in an unsupervised manner. We found that tuning the hyperparameters played a much
larger role in the final performance of the model. As the reported accuracy-improvement over
non-pretrained models was only 0.6%, we decided to limit the scope of our experiments to not
include this pre-training procedure.

The final results on the Heartbeat- and the other UAE-datasets using the author proposed
architecture are investigated further in Section 7.
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7 Experiments & Results
7.1 Computing Devices
All experiments with CPU-intensive tasks (in particular Rocket and the gradient-boosting meth-
ods) were done on the Leiden-University CPU DSLAB-servers with a 16 Intel Xeon E5-2630v3
CPU @2.40Ghz. GPU-intensive tasks (TST, CTST, MCTST) were either done on a desktop-pc
with a RTX-3080TI, or on the Leiden University DSLAB-servers using either an NVidia GTX
980TI, an NVidia Titan X or an Nvidia RTX 2080.

7.2 Summary Tested Methods & Contributions
We note that the reported performance of TapNet (Zhang et al. [42]) offered no improvement over
any of the mentioned methods on this selection of the UAE-datasets. As the average accuracy
of 0.678 would rank it as the second worst performing (see Section 7), we forego implementing
it in our framework and/or including the results in the results-table.

We train, test and evaluate the following existing methods:

• Gradient Boosting (GBoost) - using the scikit-learn implementation of the gradient
boosting classifier (Section 3.1)12.

• XGBoost - Using the XGBoost-library implementation(Section 3.1.1)13.

• Rocket - using the implementation for multivariate time-series data provided by the
authors [35] in combination with a Ride-CV classifier (Section 3.2)14.

• Time Series Transformer (TST) - as presented in A transformer-based Framework for
Multivariate Time Series Representation Learning [41] (Section 3.3.4).

In addition to these methods, we propose and implement the following novel contributions
to the classification-framework, and train and test them on the datasets in question:

• Convolutional Time Series Transformer (CTST) - a transformer-based classification
architecture with a single convolutional layer used for feature extraction (Section 4.2.1).

• Multi-Convolutional Time Series Transformer (MCTST) - a transformer-based
classification architecture with multiple convolutional layers used for feature extraction
(Section 4.2.1).

• XGBR - a combination of Rocket and XGBoost, using the output of Rocket as input to
the XGBoost-classifier (Section 4.2.2).

7.3 Training and Testing Procedure
For the Radial-Drilling datasets, a single validation set consisting of 20% of the train-set is used.
The best performing (as determined using the method described below) model is retrained using
3 folds of the train-set, every time the best performing model of that fold (as determined by the
accuracy on the validation set) is then evaluated on the testset. For the non-NN methods, for
each fold, the final found model is evaluated on the test-set.

Hyperparameter optimization on the Radial-Drilling datasets was performed for TST, CTST,
MCTST and Rocket. Both GBoost and XGBoost were tested using the default settings. XGBR
uses the default settings for both XGBOOST and Rocket.

12https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
13https://xgboost.readthedocs.io/
14https://github.com/ChangWeiTan/TS-Extrinsic-Regression/blob/master/models/rocket.py
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For all UAE-datasets, we used either 5 or 10 fold validation-evaluation during hyperparam-
eter tuning depending on the size of the train-set to get a more stable evaluation for each of
the settings (also see Section 6). The transformer-based methods (TST, CTST, MCTST) were
optimized by doing between 10 and 15 hyperparameter optimization training-runs on each of the
10 datasets, with the model-hyperparameters reported by the authors as the starting point for
the optimization process. For Rocket and GBoost, around 8 runs were done to try to optimize
the number of kernels and the number of estimators respectively. For XGBoost and XGBR,
the default settings were used. The top-10 hyperparameter-runs and rankings can be found in
Section A in the Supplementary Material.

After training, all hyperparameter runs are objectively ranked by first obtaining the maxi-
mum reached (mean) accuracy (averaged over all folds) on the validation set. For that epoch,
the average accuracy over the last and next 10 epochs is then calculated to also weigh the sta-
bility of the chosen method. Both the maximum and “10-average”-accuracies are then ranked,
at which point an average ranking is calculated from the two rankings, which serves as the final
parameter-ranking-method.

To obtain the test-results, the model is then trained using the best found hyperparameters
on 100% of the training set, for the amount of epochs at which the found maximum validation
accuracy was reached.

The evaluation metric used is the accuracy. This is also the metric used by the creators of
the TST-model, to which we compare our found results.

7.4 Results
We optimize the hyperparameter settings of the models according to Section 7.3. In the following
subsections, the found performance is first compared to the reported performance by Zerveas
et al., after which we compare the performance of the novel approaches to the authors’ method.
Lastly, the performance of all methods on the novel Radial-Drilling dataset is examined.
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7.4.1 UAE Results compared to Zerveas et al.
We firstly compare our found results for TST to two of the main baselines that the same authors
use in their paper (XGBoost & Rocket). In Table 3, our (left) found results are shown next to
the results reported by the authors (right) for each of the datasets, for each of the methods.

TST Rocket XGBoost
Dataset Our Author Our Author Our Author
Eth. Concentration 0.280 0.337 0.381 0.452 0.449 0.437
FaceDetection 0.671 0.681 0.618 0.647 0.589 0.633
Handwriting 0.308 0.305 0.555 0.588 0.167 0.158
Heartbeat 0.699 0.776 0.710 0.756 0.693 0.732
JapaneseVowels 0.976 0.994 0.985 0.962 0.908 0.865
PEMS-SF 0.822 0.919 0.761 0.751 0.983 0.983
SelfRegulationSCP1 0.886 0.925 0.883 0.908 0.826 0.846
SelfRegulationSCP2 0.520 0.589 0.602 0.533 0.467 0.489
SpokenArabicDigits 0.990 0.993 0.997 0.712 0.970 0.696
Wave G. Library 0.866 0.903 0.918 0.944 0.759 0.759
Mean Accuracy 0.702 0.742 0.741 0.725 0.681 0.659

Table 3: Our (left) results compared to Zerveas et al. (right) found results for 3 of their used
methods, on the 10 UAE-datasets. TST is the novel method proposed by Zerveas et al.

From these results, we firstly conclude that we were unable to exactly reproduce the accuracy-
scores reported by Zerveas et al. for their proposed TST-model. With an average accuracy of
0.702, we fall short 4% of the reported average accuracy of 0.742 - which would, also according to
self reported accuracies, put the TST-model’s performance behind the state-of-the-art Rocket-
method. Presumably due to our precursory hyperparameter optimization of the Rocket/Ridge-
method, we were also able to outperform the reported accuracy of Rocket from 0,725 to 0,741.
We observed that, even though the average accuracy of Rocket was higher for us, for several
of the datasets, we nevertheless performed slightly below the reported accuracy. For example,
Zerveas et al. report an accuracy of 0.452 on the EthanolConcentration dataset. We observed
optimal performance on the validation set when the hyperparameter settings were set to default
(10,000 kernels). Nevertheless, we observed an accuracy of only 0.381 on the test-set. For
SpokenArabicDigits we can see a significant difference between the reported and found accuracy
- whereas the authors reported an accuracy of 0.712 - our test-runs resulted in an average
accuracy of 0.997, an increase of 0.285. This same extreme difference is also visible for XGBoost
for the same dataset, where we observed an average accuracy of 0.970, compared to the reported
accuracy of 0.696 on the SpokenArabicDigits dataset.

The largest differences between the authors’ observations and our observations for the TST-
model can be seen for the Heartbeat and the PEMS-SF datasets. For the Heartbeat dataset, we
observed an accuracy of 0.699, whereas the authors report to have reached an accuracy of 0.776.
This difference is even more clear for PEMS-SF, as we were unable to approach the reported
accuracy of 0.919 - the maximum achieved accuracy was 0.831.

For XGBoost, our other found accuracies were mostly in line with the performance reported
by the authors. Our average accuracy for the XGBoost-method on the UAE-dataset was 0.681,
compared to 0.659 reported by the authors, so its performance was shown to be slightly higher
from our experiments - mostly due to the aforementioned difference for the SpokenArabicDigits
dataset.

We have reached an average accuracy of 0.741 using Rocket, and the author-reported ac-
curacy for the TST-model was 0.742 (or 0.748 for the pre-trained version of TST), our found
accuracy for the TST method is 0.702. We are thus unable to conclude that the TST-model
outperforms the other state-of-the-art methods as mentioned by the authors, as we have found
that both baselines performed better than reported, and TST performed worse than reported.
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7.4.2 CTST & MCTST Results

Ours Ours
Dataset MCTST CTST TST Rocket GBoost XGBoost XGBR
Eth. Concentration 0.398 0.324 0.280 0.381 0.439 0.449 0.418
FaceDetection 0.679 0.668 0.671 0.618 0.661 0.589 0.573
Handwriting 0.327 0.371 0.308 0.555 0.105 0.167 0.321
Heartbeat 0.658 0.678 0.699 0.710 0.754 0.693 0.717
JapaneseVowels 0.970 0.975 0.976 0.985 0.905 0.908 0.953
PEMS-SF 0.753 0.831 0.822 0.761 0.996 0.983 0.949
SelfRegulationSCP1 0.885 0.889 0.886 0.883 0.819 0.826 0.811
SelfRegulationSCP2 0.479 0.524 0.520 0.602 0.478 0.467 0.531
SpokenArabicDigits 0.992 0.988 0.990 0.997 0.970 0.970 0.986
Wave G. Library 0.880 0.862 0.866 0.918 0.659 0.759 0.875
Mean Accuracy 0.702 0.711 0.702 0.741 0.679 0.681 0.713

Table 4: Only our found test accuracies on the 10 publicly UAE-datasets are listed here. The
best result for each dataset is highlighted in bold. The second-best result is underlined. The
third-best result is printed in italic.

We run and test the CTST, MCTST and XGBR methods on the UAE-datasets. The results
can be seen in Table 4.

As expected, the default Gradient-Boosting implementation performed very similarly to
XGBoost. From our testing on the validation sets, we noted that on several datasets, some gain
in accuracy was displayed when the amount of estimators was varied. In practice, however, this
gain seems to have been negligible, as XGBoost outperforms GBoost - if only slightly. We note
that from our experiments, we indeed observed a significant computational advantage of the
XGBoost-method over the GBoost-method. In some instances, we could observe a speedup of
more than a factor ten on the tested datasets.

The average accuracy of the CTST-model shows an average improvement of about 1% over
the baseline TST-model. In particular, we see an improvement for the Handwriting-dataset, for
which an accuracy of 0.371 was achieved using CTST, compared to 0.308 using TST (or 0.305
according to the results of the authors).

MCTST offers a small improvement over the TST and CTST-models for the EthanolConcen-
tration and FaceDetection datasets. For EthanolConcentration, the observed accuracy of 0.398
is quite high compared to the other TST-methods. This result was achieved using quite a high
subsampling rate (4) in combination with 2 convolutional layers of size 64 and 16 respectively.
Due to the large scope of our optimization experiments, we were unable to also experiment with
dilation rates for the convolutional layers, which, from this result, might have been fruitful to
further explore. Especially for the longer-time-series data, capturing long sequences into a more
compact representation in this way would be interesting. Even though we have simulated this
behavior using subsampling, using this method means that, in some cases, more information
might be lost than necessary.

For the performance of both the CTST and MCTST we must remark, however, that Zerveas
et al. report an average accuracy of 0.742 for the canonical TST-model (see previous Section),
which is still 0.031 higher than the average accuracy of 0.711 that we have found for CTST. Even
though our results on the TST model showed an overall improvement when introducing convo-
lutional layers, it is therefore difficult to conclude that the predictive performance is actually
better than the canonical TST-model.

For the UAE-datasets, we can see that XGBR performs relatively well compared to the other
baseline methods. With an average accuracy of 0.713, it comes in at second place in the accuracy
ranking, just below the Rocket-method. Although XGBR never comes in first place for any of
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the accuracies on the UAE-datasets, it does strike a good balance between the performance of
Rocket and XGBoost. For most datasets, this balance is in favor of Rocket, which (on average)
performs considerably better than XGBoost for the UAE-datasets. However, the opposite also
holds true for the PEMS-SF-dataset, on which Rocket achieves an accuracy of 0.761 compared
to the 0.949 achieved by XGBR - and on the EthanolCencentration-dataset, for which XGBR
is able to achieve an accuracy of 0.418, compared to 0.381 for Rocket.

7.4.3 Radial Drilling Results

Ours Ours
Dataset MCTST CTST TST Rocket GBoost XGBoost XGBR
DrillingV1 0.706 0.732 0.719 0.770 0.744 0.744 0.820
DrillingV2 0.732 0.727 0.750 0.780 0.737 0.733 0.801
DrillingV3 0.745 0.741 0.764 0.791 0.749 0.755 0.819
DrillingV4 0.755 0.755 0.737 0.754 0.751 0.754 0.804
Mean Accuracy 0.734 0.739 0.743 0.774 0.745 0.746 0.811

Table 5: Test accuracies using the 4 sampling-methods on the Radial-Drilling dataset. The
best result for each dataset is highlighted in bold. The second-best result is underlined. The
third-best result is printed in italic.

For the Radial-Drilling datasets, we can see from Table 5 that the transformer-based ap-
proaches (TST, CTST & MCTST) perform better on the datasets in which samples contain
data from a longer time ago. Especially DrillingV3 seems to perform, on average, quite well.
In this dataset, samples are included from up to an hour ago (compared to 60 seconds for the
V1-dataset). This suggests that the transformer-based models make use of the longer-term de-
pendencies in the data. DrillingV2 - which includes samples from the same amount of time
before the prediction-point - but includes more data in each sample - seems to perform a bit
worse than V3 in all cases, which suggests that a balance between the amount of time-steps
further in the past and the amount of more recent time-steps is important for optimal perfor-
mance of the transformer-based models. We note that all 4 dataset sampling methods perform
reasonably well. This can be explained by the fact that the performance for DrillingV1 is already
very strong, implying that the last 60 seconds of data contain most of the information needed
to predict the current state of the drilling process. As the last 60 seconds are included in all 4
variants, this would explain the good performance across the board.

Although the performance of XGBR is quite robust on the UAE datasets, we can see from
Table 4 that the resulting accuracies of the same method on the Radial-Drilling dataset are
surprisingly high, outperforming both the Rocket and XGBoost methods individually. Most
notably, the performance on the DrillingV1 dataset was the highest, with an accuracy of 82%,
indicating that it is sufficient to use only the last 60 seconds of data to accurately predict the
current main-state of the drilling process. In second place, we find the Rocket-classification
method, which, similar to the UAE-dataset experiments, performs quite well compared to the
other methods. XGBoost comes in third, though its average performance is quite close to that
of the other remaining methods.
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8 Conclusion
In this study, we have designed and implemented a UI-based machine learning pipeline for multi-
variate time-series classification tasks, which we use on our novel classification task: determining
the current main-process step in the Radial-Drilling process based on the previous outputs of the
4 most important sensors. Using our implementation of MVTS-Analyzer - a tool for visualizing,
analyzing and labeling multivariate time-series data, the raw dataset was annotated. Using
our implementation of the MVTS-Trainer platform, we have fine-tuned several state-of the art
methods on 10 public multivariate time series datasets across several hundreds of optimization
runs. We have compared the results of our finding to those reported by the authors but were
unable to definitively confirm that their proposed TST-model outperformed the other state-of-
the-art methods. We furthermore implement and test two novel transformer-based classification
architectures, CTST and MCTST, which make use of convolutional layers to perform self at-
tention on local-features in the data. From our results, we find that the CTST-model offers
a small overall improvement over the original classification-transformer model. On all but one
dataset, MCTST does not seem to offer a significant improvement over the same baseline. We
additionally combine the state-of-the-art Rocket-method with XGBoost (XGBR), and conclude
that this classifier is quite robust for the public multivariate time-series datasets, and offers a
good balance between the performance of Rocket and XGBoost. Using XGBR, we were able to
achieve a maximum accuracy of 82% on the novel Radial-Drilling dataset.

9 Discussion & Future work
The hyperparameter-settings play a large part in the test-performance of the models on the
UAE-datasets. We found it very difficult to reproduce the results reported by Zerveas et al.,
because the authors evidently performed quite a high degree of hyperparameter-optimization
on each individual dataset, without explicitly mentioning the optimal settings found. The
found difference in performance on several on the datasets could be explained with certain
hyperparameters that we have missed while optimizing our configurations, though we believe
that our search was quite broad.

In our opinion, to get a more accurate indication of the performance on the smaller UAE-
datasets, it would be better to use a basic set of hyperparameters that is used across all datasets
to evaluate the performance. Alternatively, if hyperparameter tuning is performed, a set (objec-
tive) procedure should be included when reporting on these relatively small datasets to ensure
reproducibility of the results. We have, for transparency, included the top-10 hyperparameter
optimization experiments in the supplementary material (Section A) for each of the 3 trans-
former models, on each of the 10 UAE-datasets, such that any future research using these
models or datasets can quickly reproduce our results.

For the Radial-Drilling dataset, we must reiterate that the amount of distinct well locations
in the provided dataset was very limited. As the limited data for the few well-operations that
were from different locations, often did not contain all available labels, this means that, although
the well-operations in the train and test-set were distinct, it was impossible to create a sizeable
test-set where all well locations were also completely distinct from the train-set. To get a better
estimate of the real-world performance of the model, we would like to see our models tested on
a variety of completely unseen wells at unseen locations such that (geological) well parameters
are completely different. We particularly would like to confirm whether the performance of the
XGBR-method indeed remains as high as we have found it to be. Additionally, we would suggest
data augmentation by introducing noise to the train-data to make better use of available labeled
data, as to make the resulting model more robust.

For future research on our proposed CTST and MCTST classification-architectures, we pro-
pose applying multiple parallel convolutional layers to the input (in a Rocket- or inception-
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module like fashion), to create a more robust model without the need to fine-tune the kernel
and step-sizes. We furthermore would like to explore the effect on performance of using varying
degrees of dilation on the introduced convolutional layers. This might allow the model to learn
to create a more condensed representation of long input sequences, which could be useful for
longer time-series data. Lastly, we would like to test our methods on more large datasets.
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A Supplementary Material
Standard Deviations
Table 6 denotes the standard deviation of the test-accuracy for each of the methods, for each of
the UAE-datasets. All methods were tested 5-10 times according to the procedure described in
Section 7.3.

Dataset MCTST CTST TST Rocket GBoost XGB XGBR
EthanolConcentration 0.027 0.024 0.012 0.003 0.011 0.000 0.022
FaceDetection 0.002 0.005 0.006 0.005 0.004 0.000 0.006
Handwriting 0.016 0.008 0.008 0.003 0.005 0.000 0.016
Heartbeat 0.078 0.010 0.017 0.010 0.009 0.000 0.023
JapaneseVowels 0.024 0.006 0.012 0.001 0.006 0.000 0.009
PEMS-SF 0.042 0.051 0.011 0.016 0.007 0.000 0.028
SelfRegulationSCP1 0.035 0.007 0.017 0.007 0.008 0.000 0.036
SelfRegulationSCP2 0.014 0.032 0.013 0.028 0.012 0.000 0.036
SpokenArabicDigits 0.004 0.006 0.002 0.001 0.001 0.000 0.003
UWaveGestureLibrary 0.011 0.003 0.011 0.002 0.005 0.000 0.021

Table 6: The standard deviations of the reported accuracies of each of the methods on the
UAE-datasets.

For the radial drilling datasets, all classifiers were trained from scratch at least 3 times,
according to the methods described in Section 7.3. Table 7 denotes the standard deviation of
the found test-accuracies of each of the methods, on each of the dataset-variants.

MCTST CTST TST Rocket Gboost XGB XGBR
DrillingV1 0.034 0.023 0.014 0.003 0.004 0.008 0.027
DrillingV2 0.037 0.019 0.030 0.011 0.012 0.006 0.003
DrillingV3 0.031 0.024 0.020 0.009 0.022 0.019 0.019
DrillingV4 0.016 0.015 0.030 0.012 0.006 0.012 0.002

Table 7: The standard deviations of the reported accuracies of each of the methods on the
radial-drilling datasets.

Hyperparameter optimization
The following (sub-)sections contain the top-10 best performing hyperparameter optimization
runs on the UAE-datasets, for the original TST models, CTST-models, and MCTST-models.
Any settings in the names of the configurations are the deviations from the author-provided
hyperparameters and/or the default values of the parameters in question, as shown in table 8.
bs denotes the used batch-size, ss corresponds to the subsampling-rate. For CTST and MCTST,
the hyperparameter setting names start with: conv<1>_<2>x<3>, where:

• <1> denotes the amount of convolutional layers used in the model.

• <2> denotes the kernel sizes for each layer

• <3> denotes the step sizes for each layer

E.g. conv2_4+2x2cstep_bs32_16model_ss2 describes the following hyperparameters: an
MCTST-model with 2 convolutional layers with a kernel size of 4 and 2 respectively and a
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step size of 2 for both, d_model is 16. The model is trained using a batch-size of 32, and a
sub-sampling rate of 2 is applied to the input.

Dataset n_blocks n_heads d_model d_FFW
EthanolConcentration 1 8 64 256
FaceDetection 3 8 128 256
Handwriting 1 8 128 256
Heartbeat 1 8 64 256
JapaneseVowels 3 8 128 256
PEMS-SF 1 8 128 512
SelfRegulationSCP1 3 8 128 256
SelfRegulationSCP2 3 8 128 256
SpokenArabicDigits 3 8 64 256
UWaveGestureLibrary 3 16 256 256

Table 8: Default author-provided hyperparameter settings for the TST-model.

The tables are split per architecture (TST, CTST, MCTST) and per dataset. The high-
score is the maximum accuracy achieved by the model on the validation set. To take stability
of the tested model into account, we also average the accuracy of the previous and next 10
epochs (denoted by 10-accuracy and 10-rank), as mentioned in Section 7.3. The best performing
hyperparameter-settings are shown in bold, these are the hyperparameters that were tested on
the test-set.

Hyperparameter Optimization Runs - TST, CTST & MCTST

Table 9: TST - EthanolConcentration

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
TST_2ss_bs32_5fold 106.0 0.374 1 0.328 2 1.5
TST_bs16 146.0 0.358 2 0.326 3 2.5
TST_0,0001lr_2ss_bs32_5fold 344.0 0.343 7 0.331 1 4.0
TST_relu_bs16 218.0 0.351 3 0.320 5 4.0
TST_4ss_bs45_5fold 190.0 0.347 4 0.310 6 5.0
TST_128ffw_32model_4ss_bs45_5fold 306.0 0.343 7 0.322 4 5.5
TST_128ffw_4ss_bs45_5fold 146.0 0.347 4 0.300 9 6.5
TST_128dim_4ss_bs45_5fold 58.0 0.343 7 0.303 8 7.5
TST_3layer_8ss_bs128 42.0 0.343 9 0.306 7 8.0
TST_4ss_bs64_5fold 134.0 0.340 10 0.300 9 9.5

Table 10: TST - FaceDetection

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
TST_bs512 232.0 0.783 1 0.772 1 1.0
TST_fixedencoding_bs512 112.0 0.768 4 0.763 3 3.5
TST_bs256_64model_128ffw 292.0 0.767 6 0.763 2 4.0
TST_bs64_64model_fixedencoding 72.0 0.770 2 0.762 7 4.5
TST_bs128 28.0 0.768 4 0.760 8 6.0
TST_bs512 66.0 0.767 7 0.762 5 6.0
TST_bs96 22.0 0.768 3 0.759 9 6.0
TST_bs256 46.0 0.767 9 0.762 4 6.5
TST_bs64 350.0 0.767 8 0.762 6 7.0
TST_bs256_64model 248.0 0.762 10 0.756 10 10.0
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Table 11: TST - Handwriting

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
TST_bs64_ss2 116.0 0.287 1 0.283 2 1.5
TST_bs64_16seed1 216.0 0.283 3 0.283 2 2.5
TST_bs64_3layer 66.0 0.283 3 0.283 2 2.5
TST_bs128_ss2 72.0 0.283 3 0.276 5 4.0
TST_bs32 68.0 0.283 3 0.276 5 4.0
TST_bs64 286.0 0.277 6 0.277 4 5.0
TST_bs128 560.0 0.277 6 0.274 7 6.5
TST_fixedencoding_bs64_ss2 346.0 0.270 8 0.270 8 8.0
TST_0.25drop_bs64_ss2 348.0 0.270 8 0.265 9 8.5
TST_adam_0.5drop_bs64_ss2 186.0 0.267 10 0.244 11 10.5

Table 12: TST - Heartbeat

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
TST_bs64_400epoch_128feedf_4heads_5fold 144.0 0.795 1 0.786 1 1.0
TST_fixedencoding_bs64_400epoch_128feedf_4heads_5fold 30.0 0.795 1 0.778 2 1.5
TST_bs64_400epoch_128feedf_5fold 86.0 0.785 4 0.768 3 3.5
TST_bs64_400epoch_4heads_5fold 82.0 0.785 4 0.767 4 4.0
TST_bs64_llr0_0001_800epoch_5fold 336.0 0.780 7 0.767 4 5.5
TST_b64_400epoch_5fold 126.0 0.780 7 0.765 6 6.5
TST_bs64_127400epoch_5fold 12.0 0.785 4 0.757 9 6.5
TST_bs64_400epoch_5fold 126.0 0.780 7 0.765 6 6.5
TST_bs128_400epoch_5fold_ss2 46.0 0.766 10 0.759 8 9.0
TST_bs48 120.0 0.771 9 0.747 11 10.0

Table 13: TST - JapaneseVowels

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
TST_bs64_128moded2subs_5fold 476.0 0.996 1 0.995 1 1.0
TST_bs64_2subs_5fold 140.0 0.993 3 0.990 2 2.5
TST_bs64_16heads_5fold 248.0 0.993 3 0.989 3 3.0
TST_bs64_5fold 284.0 0.993 3 0.989 4 3.5
TST_bs128_16head_5fold 354.0 0.989 6 0.989 4 5.0
TST_64model_128_ffw_bs64_2subs_5fold 218.0 0.991 5 0.986 6 5.5
TST_fixedencoding_bs64_2subs_5fold 234.0 0.989 6 0.984 7 6.5
TST_bs128_5fold 386.0 0.985 8 0.984 7 7.5
TST_64_model_128_ffw_bs64_5fold 496.0 0.983 10 0.981 9 9.5
TSTbs64_16heads_2ss_5fold 32.0 0.985 8 0.979 11 9.5

Table 14: TST - PEMS-SF

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
TST_bs64_3layers_16heads_256ff_5fold_1.5kepoch 1264.0 0.867 2 0.857 1 1.5
TST_bs64_3layers_5fold_1500epoch 796.0 0.874 1 0.824 4 2.5
TST_fixedencoding_bs64_3layers_16heads_256ff_5fold_1.5kepoch 1384.0 0.859 3 0.840 2 2.5
TST_bs64_3layers_16heads_256ff_5fold 412.0 0.844 4 0.829 3 3.5
TST_bs64_2ss_5fold_1.5kepoch 1434.0 0.830 5 0.813 5 5.0
TST_bs64_12785fold 18.0 0.822 6 0.799 7 6.5
TST_bs64_5fold1.5kepoch 18.0 0.822 6 0.799 7 6.5
TST_bs128_5fold_1.5kepoch 30.0 0.815 9 0.802 6 7.5
TST_bs32_5fold 12.0 0.819 8 0.767 10 9.0
TST_bs64_2ss_5fold 60.0 0.793 10 0.770 9 9.5
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Table 15: TST - SelfRegulationSCP1

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
TST_64model_layernorm_128bs_2ss 56.0 0.867 1 0.854 1 1.0
TST_64model_128ffw_layernorm_128bs_2ss 54.0 0.848 2 0.837 2 2.0
TST_layernorm_128bs_2ss 50.0 0.848 2 0.836 3 2.5
TST_64bs_4ss 84.0 0.844 4 0.834 4 4.0
TST_64model_128ffw_128bs_2ss 42.0 0.844 4 0.831 6 5.0
TST_128bs_4ss 170.0 0.837 9 0.834 4 6.5
TST_32bs_2ss 190.0 0.841 7 0.831 6 6.5
TST_32bs 30.0 0.841 6 0.825 8 7.0
TST_128bs_2ss 10.0 0.841 7 0.760 10 8.5
TST_32bs_3ss 8.0 0.833 10 0.794 9 9.5

Table 16: TST - SelfRegulationSCP2

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
TST_64model_16batch_2ss 104.0 0.555 5 0.542 1 3.0
TST_32bs_2ss_0,3dropout_1layer 102.0 0.560 1 0.514 7 4.0
TST_64model_64batch_128ffw_1layer_4ss_4heads 32.0 0.555 5 0.531 3 4.0
TST_32bs_2ss_0,4dropout 56.0 0.560 1 0.514 8 4.5
TST_bs64_3ss_5fold 170.0 0.555 3 0.519 6 4.5
TST_bs64_5fold 92.0 0.550 8 0.532 2 5.0
TST_64model_64batch_4ss 38.0 0.535 9 0.527 4 6.5
TST_64model_64batch_128ffw_1layer_4ss 74.0 0.535 9 0.523 5 7.0
TST_bs64_2ss_5fold 24.0 0.555 5 0.512 9 7.0
TST_bs64_2ss_5fold 18.0 0.555 5 0.507 10 7.5

Table 17: TST - SpokenArabicDigits

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
TST_bs256_2ss 124.0 0.997 2 0.996 1 1.5
TST_bs384 350.0 0.996 6 0.996 2 4.0
TST_fixedencoding_bs256_2ss 140.0 0.997 2 0.996 6 4.0
TST_bs256_128model_6layer 108.0 0.997 2 0.995 7 4.5
TST_bs256_128model 246.0 0.996 6 0.996 3 4.5
TST_bs256 92.0 0.996 6 0.996 4 5.0
TST_bs512 148.0 0.996 9 0.996 5 7.0
TST_bs256_128ffw 86.0 0.997 4 0.994 12 8.0
TST_bs256_3ss 144.0 0.996 9 0.995 8 8.5
TST_bs256_128ffw_4heads 138.0 0.996 11 0.995 9 10.0

Table 18: TST - UWaveGestureLibrary

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
TST_bs64_ss2 154.0 0.904 1 0.904 1 1.0
TST_bs48_ss2 600.0 0.900 2 0.900 2 2.0
TST_bs128 40.0 0.896 5 0.896 4 4.5
TST_bs48 42.0 0.896 5 0.896 4 4.5
TST_bs64 582.0 0.896 5 0.896 4 4.5
TST_fixedencoding_bs64 192.0 0.896 5 0.896 4 4.5
TST_bs32_ss2 60.0 0.896 5 0.894 7 6.0
TST_bs32 10.0 0.896 5 0.810 10 7.5
TST_bs64_512ffw 500.0 0.892 9 0.890 8 8.5
TST_bs128_512ffw 596.0 0.887 10 0.888 9 9.5

39



Table 19: CTST - EthanolConcentration

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv1_128x1cstep_4ss_bs45 716.0 0.453 1 0.414 1 1.0
conv1_128x4cstep_bs45_128model 222.0 0.415 3 0.379 3 3.0
conv1_128x4cstep_bs45 743.0 0.408 4 0.387 2 3.0
conv1_8x1cstep_4ss_bs45 304.0 0.396 6 0.372 4 5.0
conv1_256x4cstep_bs45_128model 376.0 0.400 5 0.370 5 5.0
conv1_256x4cstep_bs45 562.0 0.421 2 0.357 10 6.0
conv1_256x4cstep_bs45 343.0 0.396 6 0.357 9 7.5
conv1_8x1cstep_4ss_bs64 292.0 0.392 9 0.364 6 7.5
conv1_256x4cstep_bs20 471.0 0.392 9 0.358 7 8.0
conv1_8x1cstep_128ffw_4ss_bs45 300.0 0.385 12 0.358 8 10.0

Table 20: CTST - FaceDetection

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv1_8x1cstep_64dmodel_bs512 46.0 0.784 1 0.775 1 1.0
conv1_8x1cstep_fixed_bs512 54.0 0.776 3 0.771 2 2.5
conv1_16x1cstep_bs512_fixed 28.0 0.774 4 0.770 3 3.5
conv1_16x1cstep_fixed_bs512 78.0 0.778 2 0.767 7 4.5
conv1_32x1cstep_fixed_bs512fixed_ 30.0 0.771 7 0.769 4 5.5
conv1_32x1cstep_fixed_bs512 30.0 0.771 7 0.769 4 5.5
conv1_4x1cstep_bs512_fixed 76.0 0.771 6 0.768 6 6.0
conv1_32x1cstep_bs512_128model 20.0 0.774 5 0.766 8 6.5
conv1_8x1cstep_bs512_128model 52.0 0.769 9 0.764 9 9.0
conv1_8x1cstep_64dmodel_bs512 332.0 0.768 10 0.761 11 10.5

Table 21: CTST - Handwriting

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv1_16x1clayer_bs128 92.0 0.327 1 0.327 1 1.0
conv1_16x1clayer_bs128_32model_128ffw 268.0 0.327 1 0.327 1 1.0
conv1_8x1clayer_bs64 28.0 0.320 3 0.318 3 3.0
conv1_32x1clayer_bs128 216.0 0.313 4 0.313 4 4.0
conv1_64x1clayer_bs128 106.0 0.307 5 0.307 5 5.0
conv1_16x1clayer_bs128_32model 80.0 0.307 5 0.298 6 5.5
conv1_16x1clayer_bs128_64model 296.0 0.293 7 0.293 7 7.0
conv1_16x1clayer_bs128_32model_128ffw_4heads_2layers 164.0 0.293 7 0.293 8 7.5
conv1_16x1clayer_bs64_ss2 48.0 0.280 9 0.280 9 9.0
conv1_16x1clayer_bs64_ss2 48.0 0.280 9 0.280 9 9.0

Table 22: CTST - Heartbeat

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv1_8x2cstep_bs128_ss2 388.0 0.795 1 0.773 1 1.0
conv1_8x2cstep_bs128_64ffw 176.0 0.790 2 0.773 2 2.0
conv1_4x1cstep_bs128_32model_32ffw 54.0 0.780 4 0.767 3 3.5
conv1_8x2clayer_bs64_64model_128ffw_1layer 286.0 0.785 3 0.766 4 3.5
conv1_8x4cstep_bs128 152.0 0.780 4 0.761 6 5.0
conv1_16x1cstep_bs96 362.0 0.766 8 0.763 5 6.5
conv1_8x1cstep_bs128_32model_32ffw 74.0 0.771 6 0.751 7 6.5
conv1_8x1clayer_bs64_64model_128ffw_1layer 72.0 0.766 8 0.747 8 8.0
conv1_4x1cstep_bs64_ss2 72.0 0.766 8 0.740 9 8.5
conv1_8x2cstep_bs128 132.0 0.761 10 0.739 10 10.0
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Table 23: CTST - JapaneseVowels

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv1_8x1cstep_fixedpos_64_model_bs64_2subs 450.0 0.993 1 0.991 1 1.0
conv1_4x1cstep_fixedpos_64_model_bs64_2subs 202.0 0.991 2 0.987 3 2.5
conv1_8x1cstep_fixedpos_64_model_128_ffw_bs64_2subs 260.0 0.989 4 0.987 2 3.0
conv1_4x2cstep_64_model_bs64 246.0 0.991 3 0.983 4 3.5
conv1_16x2cstep_128model_bs64 220.0 0.980 6 0.978 5 5.5
conv1_4x2cstep_64_model_128ffw_bs64 212.0 0.985 5 0.976 7 6.0
conv1_2x4cstep_64model_bs256 404.0 0.978 7 0.978 6 6.5
conv1_16x2cstep_64_model_256_ffw_bs64 128.0 0.974 8 0.971 8 8.0
conv1_16x4cstep_64model_bs128 464.0 0.970 9 0.970 9 9.0
conv1_16x2cstep_64_model_bs64 292.0 0.969 10 0.966 10 10.0

Table 24: CTST - PEMS-SF

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv1_16x1cstep_256ffw_16heads_3layer_64bs 426.0 0.867 1 0.834 1 1.0
conv1_16x1cstep_256ffw_16heads_3layer_128bs 260.0 0.852 2 0.813 3 2.5
conv1_4x2cstep_256ffw_16heads_3layer_64bs 280.0 0.844 3 0.817 2 2.5
conv1_8x1cstep_bs32 1432.0 0.826 4 0.812 4 4.0
conv1_16x1cstep_default_64bs 18.0 0.815 5 0.791 7 6.0
conv1_2x1cstep_64model_64bs 30.0 0.811 8 0.798 5 6.5
conv1_64x1cstep_default_64bs 18.0 0.815 5 0.790 9 7.0
conv1_4x1cstep_default_64bs 22.0 0.811 8 0.791 8 8.0
conv1_2x1cstep_default_64bs 386.0 0.796 11 0.795 6 8.5
conv1_4x2cstep_64model_128ffw_64bs 26.0 0.811 8 0.773 11 9.5

Table 25: CTST - SelfRegulationSCP1

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv1_8x1cstep_layernorm_128bs_2ss 94.0 0.844 2 0.844 1 1.5
conv1_32x4cstep_bs64 144.0 0.848 1 0.837 3 2.0
conv1_8x1cstep_64model_128ffw_layernorm_128bs_2ss 120.0 0.841 5 0.841 2 3.5
conv1_8x1cstep_32model_layernorm_16bs 204.0 0.844 2 0.824 7 4.5
conv1_8x1cstep_64model_layernorm_64bs_2ss 496.0 0.837 7 0.836 4 5.5
conv1_8x2cstep_256model_layernorm_64bs 40.0 0.841 5 0.825 6 5.5
conv1_8x4cstep_64 98.0 0.833 10 0.828 5 7.5
conv1_8x2cstep_64model_layernorm_128bs 42.0 0.837 7 0.819 10 8.5
conv1_32+16x2cstep_128+64cchannel_bs45 10.0 0.841 5 0.788 13 9.0
conv1_4x4cstep_bs64 128.0 0.830 12 0.821 8 10.0

Table 26: CTST - SelfRegulationSCP2

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv1_4x2cstep_bs27 296.0 0.560 3 0.547 1 2.0
conv1_4x2cstep_bs32_512model 76.0 0.565 1 0.526 6 3.5
conv1_4x2cstep_bs32 148.0 0.550 6 0.541 2 4.0
conv1_4x1cstep_bs32 78.0 0.555 5 0.533 4 4.5
conv1_6x3cstep_bs64 204.0 0.545 8 0.540 3 5.5
conv1_8x1cstep_bs27_1024model 160.0 0.560 3 0.516 10 6.5
conv1_4x2cstep_bs32_1024model 128.0 0.560 3 0.503 13 8.0
conv1_32+16x1cstep_4ss_bs45 40.0 0.540 10 0.521 7 8.5
conv1_8x1cstep_4xbs27_16model 130.0 0.535 12 0.528 5 8.5
conv1_32x1cstep_bs27 0.0 0.545 8 0.509 12 10.0
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Table 27: CTST - SpokenArabicDigits

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv1_8x2cstep_fixedencoding_bs256 238.0 0.998 2 0.998 1 1.5
conv1_24x4cstep_bs128 58.0 0.998 1 0.997 3 2.0
conv1_16x1cstep_32model_bs256 190.0 0.998 3 0.998 2 2.5
conv1_8x1cstep_fixedencoding_bs256_2ss 248.0 0.998 4 0.997 5 4.5
conv1_24x4cstep_bs128_32model 248.0 0.998 5 0.997 6 5.5
conv1_8x1cstep_bs256 230.0 0.997 7 0.997 4 5.5
conv1_2x2cstep_bs128 100.0 0.997 6 0.995 10 8.0
conv1_8x1cstep_fixedencoding_bs128_2ss 242.0 0.997 8 0.996 8 8.0
conv1_24x2cstep_bs128 50.0 0.997 10 0.997 7 8.5
conv1_4x2cstep_bs128 132.0 0.997 8 0.995 11 9.5

Table 28: CTST - UWaveGestureLibrary

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv1_4x1cstep_bs64 578.0 0.958 1 0.958 1 1.0
conv1_8x1cstep_3ss_bs64 594.0 0.933 2 0.928 2 2.0
conv1_8x2cstep_2ss_bs64 466.0 0.933 2 0.925 3 2.5
conv1_8x2cstep_bs64 284.0 0.925 4 0.925 3 3.5
conv1_16x2cstep_bs64 312.0 0.908 6 0.908 5 5.5
conv1_8x1cstep_bs64_128model 450.0 0.908 6 0.908 5 5.5
conv1_16x1cstep_bs64 436.0 0.896 8 0.896 7 7.5
conv1_64x1cstep_bs64 6.0 0.917 5 0.696 11 8.0
conv1_32x1cstep_bs64 594.0 0.892 9 0.892 8 8.5
conv1_4x1cstep_fixedpos_bs64 10.0 0.885 10 0.735 10 10.0

Table 29: MCTST - EthanolConcentration

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv2_64+16x1cstep_4ss_bs45 464.0 0.468 1 0.443 1 1.0
conv2_32+16x1cstep_4ss_bs45 538.0 0.419 3 0.408 2 2.5
conv3_64+32+16x1cstep_4ss_bs45 396.0 0.442 2 0.404 3 2.5
conv2_128+16x1cstep_4ss_bs45 436.0 0.404 4 0.360 6 5.0
conv2_16+8x1cstep_4ss_bs45 296.0 0.396 7 0.368 4 5.5
conv2_16+8x1cstep_4ss_bs45 626.0 0.404 4 0.353 7 5.5
conv2_64+16x4+2cstep_bs45 784.0 0.400 6 0.367 5 5.5
conv2_128+32x4cstep_128+64cchannel_bs45_ss2 750.0 0.396 7 0.346 8 7.5
conv2_128+32x4+1cstep_128+32cchannel_bs64 719.0 0.385 9 0.331 9 9.0
conv2_128+32x4cstep_128+64cchannel_bs45 252.0 0.384 10 0.329 11 10.5

Table 30: MCTST - FaceDetection

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv2_clayer_16x1cstep_fixed_bs512 18.0 0.776 1 0.769 1 1.0
conv2_clayer_32+16x1cstep_fixed_bs1024 30.0 0.772 2 0.767 2 2.0
conv2_clayer_32+16x1cstep_fixed_bs512 34.0 0.766 4 0.763 3 3.5
conv2_8x1cstep_bs512 24.0 0.766 4 0.761 5 4.5
conv2_8x1cstep_64dmodel_bs512 84.0 0.769 3 0.760 7 5.0
conv3_clayer_16x1cstep_fixed_bs512 16.0 0.766 6 0.762 4 5.0
conv2_8x1cstep_256+128cchannel_bs512 24.0 0.766 7 0.760 6 6.5
conv3_clayer_32+16+8x1cstep_fixed_bs512 16.0 0.764 8 0.759 8 8.0
conv2_32x1cstep_bs512 200.0 0.762 9 0.754 9 9.0
conv3_8+8+1x1cstep_256+128+128cchannel_bs512_2ss 18.0 0.745 10 0.740 10 10.0
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Table 31: MCTST - Handwriting

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv2_32+4x1clayer_bs128_32model_128ffw_3layer 254.0 0.333 1 0.333 1 1.0
conv2_32+4x1clayer_128x64cchannel_bs128_64model 136.0 0.300 3 0.300 2 2.5
conv2_32+4x1clayer_bs128_64model 136.0 0.300 3 0.300 2 2.5
conv2_16+2x1clayer_bs128_64model 66.0 0.300 3 0.295 4 3.5
conv2_4x2+1cstep_64model_128ffw_3blocks_64 72.0 0.293 6 0.291 5 5.5
conv2_16x1clayer_bs64_fixed_3layer 256.0 0.293 6 0.288 6 6.0
conv2_32+4x1clayer_128x32cchannel_bs128_32model 88.0 0.287 8 0.282 8 8.0
conv3_4x1clayer_bs64 30.0 0.293 6 0.276 10 8.0
conv2_16x1clayer_bs64 34.0 0.287 10 0.284 7 8.5
conv2_32+4x1clayer_bs128_32model_128ffw_16heads_6layer 104.0 0.287 8 0.278 9 8.5

Table 32: MCTST - Heartbeat

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv2_32x2cstep_bs64_64model_3layer_8heads_256ffw 382.0 0.795 1 0.769 1 1.0
conv2_16x2cstep_bs64_128model_1layer_4heads_128ffw 148.0 0.780 3 0.767 2 2.5
conv2_8x2cstep_bs64_128model_1layer_4heads_128ffw 212.0 0.785 2 0.765 3 2.5
conv2_clayer_8x2cstep_bs64_128model_2layer 118.0 0.776 4 0.754 4 4.0
conv3_clayer_8x2+1+1cstep_bs64_128model_2layer 588.0 0.766 5 0.753 5 5.0
conv2_8x2cstep_bs64_128model_1layer 100.0 0.766 5 0.742 7 6.0
conv2_clayer_8x2+1cstep_bs64_128model_2layer 282.0 0.751 8 0.746 6 7.0
conv2_clayer_16x1cstep_bs64 46.0 0.751 8 0.739 8 8.0
conv2_clayer_16x1cstep_bs64_128model_2layer 18.0 0.751 8 0.739 9 8.5
conv2_8x2clayer_bs64_64model_128ffw_1layer 46.0 0.746 10 0.732 10 10.0

Table 33: MCTST - JapaneseVowels

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv2_8+1x1+2cstep_bs64 140.0 0.989 1 0.988 1 1.0
conv2_8+1x1+2cstep_256x128cchannel_bs64 232.0 0.989 1 0.978 3 2.0
conv2_4+1x1+2cstep_bs64 396.0 0.981 4 0.979 2 3.0
conv2_8+2x1cstep_bs64 80.0 0.985 3 0.974 4 3.5
conv2_4x2cstep_64model_128ffw_bs64 298.0 0.980 5 0.973 5 5.0
conv2_16+1x1+2cstep_bs64_64model 270.0 0.978 6 0.972 6 6.0
conv2_16+1x1cstep_bs64_128model 208.0 0.978 6 0.969 9 7.5
conv2_8+1x2cstep_512x128cchannel_bs64 278.0 0.974 8 0.970 8 8.0
conv2_4x2cstep_128ffw_4head_2layer_bs128 332.0 0.970 10 0.970 7 8.5
conv2_8x1cstep_256x128cchannel_bs64 90.0 0.974 8 0.962 10 9.0

Table 34: MCTST - PEMS-SF

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv2_16x1cstep_256ffw_16heads_3layer_128bs 40.0 0.833 1 0.811 1 1.0
conv2_16x8cstep_default_64bs 478.0 0.815 2 0.803 3 2.5
conv3_32+16+8x2+1+1cstep_default_64bs 56.0 0.811 4 0.811 1 2.5
conv2_8x1cstep_256ffw_16heads_3layer_128bs 42.0 0.811 4 0.790 4 4.0
conv2_32x1cstep_256ffw_16heads_3layer_128bs 262.0 0.811 4 0.773 7 5.5
conv2_128x1cstep_256ffw_16heads_3layer_128bs 298.0 0.807 6 0.756 9 7.5
conv2_64x1cstep_256ffw_16heads_3layer_128bs 258.0 0.804 7 0.758 8 7.5
conv2_64x1cstep_32model_128ffw_16heads_3layer_128bs 74.0 0.796 10 0.781 5 7.5
conv4_16x1cstep_32model_64bs 34.0 0.796 9 0.780 6 7.5
conv2_64x1cstep_64model_256ffw_16heads_3layer_128bs 244.0 0.800 8 0.745 10 9.0
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Table 35: MCTST - SelfRegulationSCP1

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv3_64+32+16x1cstep_4ss_bs45 388.0 0.856 1 0.844 1 1.0
conv3_64+32+16x1cstep_128+64+64cchannel_4ss_bs45 300.0 0.856 1 0.841 3 2.0
conv2_32+16x1cstep_4ss_bs45 334.0 0.852 3 0.842 2 2.5
conv2_8x1cstep_64model_layernorm_64bs_2ss 44.0 0.852 3 0.828 6 4.5
conv3_64+32+16x2cstep_2ss_bs45 142.0 0.848 6 0.838 4 5.0
conv3_64+32+16x2cstep_128+64+64cchannel_2ss_bs45 62.0 0.848 6 0.835 5 5.5
conv2_32x4cstep_bs64 96.0 0.848 6 0.810 10 8.0
conv2_4x4cstep_bs64 176.0 0.837 9 0.826 7 8.0
conv2_8x4cstep_64 166.0 0.841 8 0.824 8 8.0
conv3_64+32+16x1cstep_bs64 12.0 0.833 10 0.817 9 9.5

Table 36: MCTST - SelfRegulationSCP2

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv2_4x1cstep_bs27_ss4_32model_128ffw_4heads_1layer 162.0 0.565 2 0.558 1 1.5
conv3_16+8+4x2+1+1cstep_128x64cchannels_bs20 22.0 0.570 1 0.534 3 2.0
conv3_8+8+4x2+1+1cstep_128x64cchannels_bs20 118.0 0.560 3 0.549 2 2.5
conv2_6x3cstep_bs64 150.0 0.545 6 0.533 4 5.0
conv3_16+8+4x2+1+1cstep_128x64cchannels_bs20_4ss 34.0 0.550 4 0.528 8 6.0
conv3_4x1cstep_bs27_ss4_32model_128ffw_4heads_1layer 262.0 0.545 6 0.530 7 6.5
conv2_32x1cstep_bs27 40.0 0.540 9 0.532 5 7.0
conv3_12x3+2+1cstep_bs64 52.0 0.545 8 0.531 6 7.0
conv2_64x1cstep_bs27 4.0 0.550 4 0.508 11 7.5
conv2_8x1cstep_512x64cchannels_bs27_16model 290.0 0.525 11 0.525 9 10.0

Table 37: MCTST - SpokenArabicDigits

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv2_8+8x2+1cstep_fixedencoding_bs256 208.0 0.998 1 0.997 1 1.0
conv2_8+8x2+1cstep_128model_bs128 22.0 0.998 2 0.996 2 2.0
conv2_2x2cstep_bs128 62.0 0.997 3 0.996 3 3.0
conv2_2x1cstep_bs128 62.0 0.997 5 0.996 4 4.5
conv2_8+8x2+1cstep_128model_bs_ss2 70.0 0.997 4 0.995 5 4.5
conv3_32+16+8x2+1+1cstep_bs128_32model 158.0 0.996 6 0.994 6 6.0
conv3_2x2cstep_bs128 170.0 0.995 7 0.994 7 7.0
conv2_8+8x2+1cstep_128model_bs128_ss2 36.0 0.995 8 0.992 8 8.0
conv2_8+8x2+1cstep_128model_bs128_ss2 14.0 0.995 9 0.989 10 9.5
conv2_8x2+1cstep_128model_bs128_ss2 32.0 0.995 10 0.990 9 9.5

Table 38: MCTST - UWaveGestureLibrary

Configuration Epoch High-score High-rank 10-accuracy 10-rank Total-Rank
conv2_16x1cstep_128+64cchannel_bs64 492.0 0.912 4 0.913 1 2.5
conv2_4x2cstep_256+128cchannel_bs64 252.0 0.912 4 0.913 1 2.5
conv2_16x2+1cstep_bs64 582.0 0.912 4 0.909 3 3.5
conv2_16x2+1cstep_bs64 288.0 0.912 4 0.909 4 4.0
conv2_64+32x2+1cstep_bs128_32model 570.0 0.908 7 0.908 5 6.0
conv2_8x1cstep_bs64 196.0 0.908 7 0.908 5 6.0
conv2_16x2+1cstep_bs64 28.0 0.938 1 0.896 12 6.5
conv2_16x2+1cstep_bs128 596.0 0.904 9 0.904 7 8.0
conv2_4x2cstep_256+128cchannel_bs64 12.0 0.917 2 0.847 16 9.0
conv2_16x2+1cstep_bs128_32model 596.0 0.900 11 0.900 8 9.5
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