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Abstract

In vitro fertilization is a crucial treatment for individuals experiencing infertility due
to various reproductive disorders. Despite advancements, IVF success rates have shown
limited improvement over the years. The implantation potential of an embryo is an
important factor for the success of an pregnancy. Currently, this potential is determined
by the embryologist through video assessment, which is not optimal. The goal of this
study is to develop an AI model that can predict the embryo implantation potential
using longitudinal time-lapse imaging data. The implementation of such an AI model
can lead to faster and more accurate embryo assessment, bene�ting the healthcare
system and improving IVF treatments. A total of 774 videos were obtained from the
92 labelled embryos. Embryos whose implantation resulted in abortion or menstruation
were labelled as negative, and embryos resulting in pregnancy were labelled as positive.

The pre-processing involved localizing the embryo using an U-Net, cropping the
embryo's ROI, determining z-slice quality, and generating di�erent training data sets.
Linear subsampling was applied to create subsets with a length of 10, 50, and 75. To
prevent the lose of morphological context, surrounding frames were added.

Three classi�cation networks: the adapted versions of the VGG and E�cientNet, and
the TimeBlocks model, were trained on these data. A total of 960 experiments were
performed. Our results show that none of the models was able to learn features related
to the implantation potential. Instead, we found that the models over�t on the training
set. This was mainly caused by having too few embryos in the data set, combined with
label imbalance, forcing the models to learn trivial features.
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1 Formula sheet

Table 1: Formula sheet: introduction

Variable
Name

Context Section

Introduction

w Weights
4:1
Neural network

z Weighted sum
� Activation function
b Bias
x i Each neuron
wi Weights
a Activation function output
D = f (i 1; o1); : : : ; (i n ; on )g Full dataset
(i 1; o1) Data input, data output

� Weights and biases
4:2
Backpropagation

� j The partial derivative of each parameter
Loss General loss function

ReLU(z) Relu
4:3
Activation functions

e Euler's number
� (z) Sigmoid

ôloss Prediction loss
4:4
Model loss

ô Prediction output
BTE Bernoulli trial entropy
n All samples in dataset
B loss = � (olog(ô) + (1 � o)
log(1 � ô))

BCE output

�
B loss Average BCE

B = f x1; x2; x i ; xng A batch
4:5
Batch normalization

x̂ i = x i � � Bp
� 2

B + �

Batch normalization
Function

x̂ i Normalized output 1
� Smoothing term
 Batch normalization scale value
Z i Normalized output 2
� Shift

sh; sw Horizontal, vertical strides
4:6
CNN architecture

f w � f h Kernel's width and height
zijk Feature map
x ijk CNN input
wijk Kernel weights

ôacc Accuracy
4:8
Performance Metrics

ôrecall Recall
ôprecision Precision
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Table 2: Formula sheet: methods

Variable
Name

Context Section

Methods

Cx X coordinate
6:2:2
Center detection

Cy Y coordinate
I Intensity
I 0 Max normalisation
t Image threshold value
Qt (x) Function for binary thresholding

m Number of U-net feature maps
6:2:3
U-Net: training parameter optimization

H (x) Heaviside step function
6:2:4
Obtaining embryo location from U-Net output

t = 0:0001
P(ô) = 1

n

P n
i =1 ôi ;

Et (P) = H (ô � t):
Embryo presence detection

6:2:5
Embryo extraction & Coordinates smoothing

w(d) = (1 � j dj3)3 LOWESS Function
6:2:6
Coordinates smoothing

jjr F jj =
q

( @f
@x)

2 + ( @f
@y)

2

AGM = 1
n

P n
i =1 jjr F jj

Average gradient magnitude
6:3:1
The average gradient magnitude

Tn=0 Start of sequence
6:3:2
Sharpness normalisation:

Tp Number of timepoints
6:5
Data sets for classi�cation

Tb Numbers of mini-networks
Tf Feature maps of each mini-network
Tc Timepoint context

Td
Timepoint focal planes
(dimensions)

Tbn Batch normalisation status
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2 Introduction
In Vitro Fertilisation (IVF) is an important treatment for people su�ering from some form
of infertility, such as low sperm concentration, ovulation disorders, endometriosis, uterine �-
broids [1]. Infertility is described as a disease of the reproductive system de�ned by the failure
to achieve a clinical pregnancy after 12 months or more of regular unprotected sexual inter-
course. It a�ects between 48 million couples and 186 million individuals worldwide, representing
15% of couples of reproductive age worldwide, and is classi�ed as a global health issue by the
World Health Organization[2]. For a long time, the desire of these individuals to reproduce
stayed unful�lled. This changed with the emergence of fertilization techniques like IVF and
ICSI (Intracytoplasmic sperm injection). This provided an option for individuals su�ering from
infertility diseases.

The IVF technique has been proven to be e�ective, with the �rst successful humans ap-
plication occurring in 1978. The birth ofLouise Joy Brown, the world's �rst test-tube baby,
was the result of the procedure being used to bypassLesley Brown'sblocked fallopian tubes
[3]. After that, millions of successful cases followed. The IVF treatment is a complex process
that involves several steps, including: ovary stimulation, oocyte (egg) retrieval, sperm prepa-
ration, fertilization, embryo selection and transfer of the fertilized oocyte into the uterus, in
order to achieve a pregnancy.

2.1 Success rate & Fertility
It is important to note that IVF treatment success is not guaranteed and depends on patient-
related factors, including: women's age, physical stress and sperm quality. Additionally, external
factors, such as the culture medium and assessment of the embryologist, who is responsible
for managing the development of the embryo and selecting the embryos, also play a signi�cant
role in the success of the IVF treatment [4].

Among these factors, the age of the oocyte is described as one of the most important and
determinant factor for the success rate of the treatment. This is because the likelihood of
fertility problems, such as uterine �broids and endometriosis, increases with age [5]. There is
also a strong relationship between ageing and having an abnormal number of chromosomes [6].
Despite this, the average age at which women become mothers has increased over the years. In
2021, the age for the �rst child was 30.3 years, and for the second child 32.3 years, according
to the Centraal Bureau voor de Statistiek (Central Bureau of Statistics)in the Netherlands [7].

Assisted reproductive technology statistics show that women under the age of 35 have a
1.3 times greater chance of delivering a live birth compared to women aged 35-37. This num-
ber jumps to 2.0 for women aged 38-40 and rises further to 5.6 for women over the age of
40, see Figure 1A. After the age of 40, the chances of becoming pregnant decrease with each
passing year until they are almost zero after the age of 43 [8]. The number of egg retrieval
attempts before giving birth is also an unfavourable factor for older women, see Figure 1B.
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(a) (b)

Figure 1: Women age statistics for ART (assisted reproductive technology) success, for
4 age groups [9].a) The percentage of success rate of live-birth deliveries per embryo
transfer, based on 107,795 ART cycles. For the 3 groups including: all births (including
twins) in blue, only singleton births (orange), and singleton births with normal weight
(green). The chance of giving birth is negatively correlated with the age of the woman.
b) The average number of egg retrievals necessary for giving birth, based on 47,847 ART
cycles. The number of egg retrievals is negatively correlated with the woman's age.

As mentioned above, giving birth through IVF treatment is not a guarantee. To increase the
chances, multiple embryos are transferred rather than just one, which increases the likelihood
of multiple pregnancies and potential complications for both mother and child. In addition,
transferring embryos is also very expensive and can be emotionally heavy. According to the
Dutch organisation,Landelijke infertiliteit registratie (Infertility registration foundation), the
overall IVF success rate of embryo-transfers in 2020 is 74.6%, and for ongoing pregnancy
27.1% per embryo-transfer [10]. Looking at the results of previous years, it is surprising to see
that there has been little to no improvement in this area in recent decades, see Figure 2. This
shows that despite decades of IVF study, there is still a lot of room for improvement regarding
IVF/ICSI treatment.
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Figure 2: Embryo transfer and pregnancy successes in IVF/ICSI treatment [11]. Neither
the success rate of embryo transfers nor pregnancies have improved since 1998. The year
2018 is missing from this graph.

Additionally, recent articles have shown a decline in fertility rates in men and women. In the
last 50 years, the sperm concentration of European men has decreased by 32.5 percent [12].
Other studies have shown a decline of 50{60% in North America-Europe-Australia and China
[13, 14]. Rising exposure to environmental toxins found in food, water, household items, per-
sonal care products, clothing, carpeting, packaging, cooking materials, electronic and electrical
equipment, etc. has been linked to potential harm to male reproductive health [15]. The role of
chemicals in women's fertility is less studied. However, it is shown that certain chemicals and
hormonal-disrupting substances harm the fertility of women (2023) [16]. If this trend contin-
ues, it is likely that humanity will become more dependent onassisted reproductive technology
like IVF for its existence.

2.2 Implantation potential
An important factor for successful pregnancy is the implantation potential of an embryo. The
implantation potential is the likelihood of an embryo implanting in the uterus and remaining
attached until birth. On average 8 oocytes(eggs) are retrieved during oocyte pick up, varying
from 1 to 35 oocytes. Only one or two of the highest-quality embryos are typically chosen for
embryo transfer. This increases the chance of a successful pregnancy outcome, because these
embryos have a greater implantation potential. Implantation potential depends on multiple
features, such as cell number(s), embryo fragmentation, multinucleation, blastocyst formation
and inner cell mass distribution [17]. Using the aforementioned markers, assessment based on
morphological and morphokinetic features can be done for obtaining the most viable embryo(s).
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Figure 3: Overview of an embryo time-lapse video as seen by an embryologist. The em-
bryologist determines the development state, shown in the timeline bar at the bottom.
On the right, all the embryos from a patient are shown, ready to be graded.

The embryologist's task is to review embryos for embryo selection. They use various techniques
to tackle this embryo grading task, the current standard being the adoption/screening of
high dimensional time-lapse movies, see Figure 3. After fertilization, embryos are placed in
incubators equipped with cameras that can be programmed to take pictures at certain time
intervals [18]. These embryo time-lapses videos of the embryo are used for grading at di�erent
stages, such as pronuclear, cleavage and blastocyst stage [19].

2.3 Arti�cial intelligence solution
Since the last century, humanity has made big steps in increasing ART successes. However, in
recent years the improvements in this �eld have saturated, due to it being more complicated
to come up with major breakthroughs. This is where AI (arti�cial intelligence) could step in.
AI has shown that it can solve problems that seemed unsolvable by humans. It is able to
learn features and identify patterns in large data sets by mimicking the work of the human
brain. Image classi�cation is one of the many AI deep learning applications. Various studies
have shown the usefulness of AI in healthcare applications [20]. An earlier pilot study showed
the potential to extract features from single IVF images [21]. Another small study was able
to predict uterine activity using multiple time-sequenced ultrasound images [22]. AI could
potentially also be useful for time-lapse embryo development video prediction. By predicting
the implantation potential, it can improve the success rate of IVF. Additionally, AI could also
point out what image features are important through model diagnosis. This could have the
potential to revolutionize the embryo screening procedure.
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2.4 Goals and problem de�nitions
Our goal is to build a model that can predict the implantation potential of an embryo based on
high dimensional time-lapse imaging data. Such a model could potentially evaluate an embryo
in a matter of seconds, while an embryologist can take up to minutes. Unknown embryo implan-
tation features can be discovered through AI, which can improve embryo selection, resulting
in fewer embryo transfers. Implantation of such a model can bene�t the healthcare system by
integrating AI into daily practice, resulting in cheaper, faster and betterIVF treatments for
the patient and the clinic.

1. Research Question: Can an AI model predict the implantation potential of an IVF
embryo based on time-lapse developmental videos?

(a) Sub-Question 1: Is it possible to localize the position of an embryo in the frame?

(b) Sub-Question 2: Is it possible to identify the most informative focal planes for a
given time frame?

(c) Sub-Question 3: What is the impact of the di�erent data set con�gurations on
the performance?

(d) Sub-Question 4: Is a multi-branch network structure able to learn the features of
a speci�c time interval?

(e) Sub-Question 5: Are the traditional models,VGG16 and E�cientNet able to
adapt to our classi�cation task?

12



3 Background
In this section, additional background information about the IVF treatment, embryo develop-
ment and deep learning understanding will be given. The IVF and ICSI treatment are discussed
in Section 3.1. Section 3.2 will zoom in on the di�erent development phases, and their asso-
ciated factors/features. Section 4 gives a brief technical assessment of the machine and deep
learning methods.

3.1 IVF & ICSI fertilization
The two most standard methods for (in vitro) fertilization are IVF and ICSI. During IVF
treatment, sperm cells must swim on their own, before penetrating the oocyte. In contrast, in
ICSI treatment (intracytoplasmic sperm injection), a single sperm is injected into the cytoplasm
of an oocyte. The main di�erence between the 2 methods is the number of sperm cells needed:
where IVF needs 50 to 100 thousand, ICSI requires only a single cell. These processes are shown
in Figure 4. Only one sperm cell can bind to theZona Pellucida, which surrounds the oocyte.
This Zona Pellucidamainly consists of glycoproteins. After fertilization, a zygote is formed
[23].

Figure 4: A simpli�ed visualization of the ICSI and IVF techniques. ICSI involves injecting
a sperm into an oocyte via a sharp injection pipette. In IVF thousands of sperm cells are
used for insemination of the oocyte. Figure adapted from [24].

3.2 Embryo phases
The zygote needs to go through several transitions before it will be suitable for implantation.
During the �rst 5 days, the zygote undergoes rapid cell divisions and develops into a blastocyst.
It is very important for embryo selection that a zygote reaches the blastocyst stage. This is
the stage most likely to lead to pregnancy and is therefore one of the few selection features
[25]. In the selection below, we give a brief overview of the aforementioned phases.

3.2.1 Phase: Blastulation - Cleavage

Cleavage is the �rst step of theblastulation. The cleavage period starts after the �rst mitotic
cell division, resulting in the zygote having two cells. This process of doubling the number of
cells is repeated every 12 to 24 hours. Despite the rapid mitotic divisions, the overall size of the
zygote remains unchanged for each cycle, but the cytoplasmic and nuclear material increases.
The reason for the size remaining the same is of theZona Pellucida, which acts as a protective
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membrane of glycoproteins that surrounds the oocyte cell, also known as the 'eggshell'. At a
stage of 32 cells, themorulais formed [26, 27].

3.2.2 Phase: Blastulation - Blastocyst

The second step of theblastulationis the formation of a blastocyst. This happens on the
fourth and �fth day after fertilization. At this stage, certain outer layer cells of themorula's
undergo permanent di�erentiation and therefore develop more speci�c forms and function.
Blastocyst formation is characterized by the formation of the blastocoel (a uid-�lled cavity)
and thropectoderm cells, as shown in Figure 5. The trophectoderm is formed by trophoblasts
cells (the outer layer of cells) and will later develop into the placenta. The trophoblasts plays
a crucial role in embryo implantation, forming a trophic interface between the embryo and the
mother [28].

The cells forming the inner cell mass within the trophoblast are rearranged to form a hol-
low space that is �lled with a uid-�lled or yolk-�lled cavity called the blastocoel. As shown
in Figure 5, the blastocoel is completely surrounded by the trophoblast. The inner cell mass
cells are important or the body/structure of the embryo [27].

3.2.3 Phase: Implantation natural vs in vitro

In natural conception, the blastocyst travels through the fallopian tube towards the uterus.
Implantation of the blastocyst into the wall of the uterus results in a pregnancy. However,in
vitro implantation the process is a bit di�erent. It starts with selecting the best embryo(s)
according to the embryologist. Next, the embryo is transferred immediately into the uterus.
Surplus embryos from the IVF/ICSI treatment are frozen and stored in liquid nitrogen for
subsequent treatments.

Figure 5: A simpli�ed visualisation of the transition of morula to blastocystphase. Blas-
tocyst contains trophoblast cells at the outer layer, and a hollow space(cavity) is formed
named theblastocoel. Figure adapted from [29].
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4 Technical Background: Deep Learning
Deep learning is a specialized area within the broader �eld of machine learning, which focuses
speci�cally on neural networks. The (multiple) layers of neutrons and their connections de�ne
the neural network architecture. In this section, we will focus on the technical details regarding
neural networks, including the processing of visual data through convolutional neural networks
(CNNs). We will also explore other CNN-based models, relevant to our embryo selection task.

4.1 Neural network
Neural networks are capable of performing a wide variety of tasks, such as recognition of
handwriting, voice recognition and image classi�cation [30]. Before a network is able to per-
form such tasks, it is trained, a process also known aslearning. This type of learning is based
on the idea of information processing and learning in the biological brain. The human brain
consists of approximately 86 billion neurons [31]. Due to this high number of neurons, the
brain is capable of learning and performing complex tasks such as reasoning, problem-solving,
recognizing patterns, understanding language and making decisions [32].

The single-layerperceptronis one of the earliest architectures for translating the biological
neural network architectures to an arti�cial neural network [33]. Here, the perceptron acts as a
neuron by receiving input from other neurons, see Figure 6A. The single-layer perceptrons are
capable of solving any linearly separable task. However, they are unable to solve more complex
tasks, such as exclusive OR problems. This is because of the linearity of the output neurons
[34]. This shortcoming can be solved by stacking multiple layers, creating a MLP (Multi-layer
Perceptron), see Figure 6B [30]. This is important, because the embryo selection is not a
linearly-separable task.

The MLP structure consists of multiple layers stacked on top of each other. A layer con-
sists of neuronsx and each neuron is connected to all other neurons in the subsequent layer,
resulting in adense layer. The strength of a connection is represented by its weightw. The
input of the neurons in a layer is the weighted sumz of all values in the previous layer. The
weighted sum is converted by an activation function� , which will be discussed further in
Section 4.3. Additionally, a bias neuronb with a value of 1.0 can be added to a layer. The
model parameters� include both the bias term and the weights. Computing the weighted sum
of a neuron can be summarized as [31]:

1. First, for each neuron in the next dense layerx i +1 the weighted sumzx i +1 is computed:

zx i +1 = b+
nX

i =1

x i � wi ;

wheren is the number of input neuronsx i for x i +1 connected by the weightswi .

2. The weighted sum is converted using an activation function� :

ax i +1 = � (zx i +1 )
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(a) (b)

Figure 6: Examples of the single and multi-layer perceptrons. Thexn represents the inputs
of the input layer.
a) This single-layer perceptron contains only 1 (output) layer, shown in blue. The lines
represent the weights, eachxn is connected to all neurons in the next layer. The neurons
take the sum of all input values multiplied by the weights of the previous layer and apply
an activation to it. The output layer contains 3 neurons, representing the 3 prediction
classes [30] (modi�ed).
b) A multi-layer perceptron solving the XOR problem. The XOR problem refers to the
classi�cation of binary input data, which cannot be linearly separated. As seen on the
left, no single line can separate the 2 classes. The right part shows the MLP network that
can solve the XOR problem. Each connection, except for the one where the weights are
shown, has a weight of 1.0. The proof can be seen in Appendix A.3. Figure adapted from
[30].

Just like the biological brain must learn to function e�ectively, the network also has to learn
in order to achieve good results. This learning is done during the training phase, a training
set D train � D is part of the full data setD = f (i 1; o1); (i 2; o2); : : : ; (i n ; on )g. Here(i n ; on )
represents the data sample and its outcome. The test setD test � D is used to evaluate the
success of the model. During training, the network is fed one or more instance(s) at a time,
the number referred to as the batch size. The error resulting from an incorrect prediction is
used to update the weights.

4.2 Backpropagation
After the creation of MLPs researchers have struggled for years to train MLPs successfully,
which changed with the invention of backpropagation [35]. Backpropagation is a technique
used to optimize the parameters� (weights and biases) of the model in order to �t the network
to a particular problem. After each feedforward computation, the error is propagated backwards
from the output nodes to the input nodes. The partial derivative of each parameter� j with
respect to the loss is computed using the chain rule, making this step fast and precise. The
partial derivative represents the contribution that the parameters have with respect to the loss,
noted as [30]:

@
@�j

Loss(� )
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The partial derivatives are optimized to minimize the cost function, which is generally done
by GD (Gradient Descent). The goal is to update the� j until the algorithm converges to a
minimum. A partial derivative represents the directions of the greatest ascent (uphill), relative
to the loss function. The opposite direction (downhill) is used to update the� j , because we
want to �nd the local minima; see Figure 7A. Finding the minimum can be challenging, if
there are multiple local minima's; see Figure 7B [30].

(a) (b)

Figure 7: Examples of the gradient descent algorithm for optimizing� . At step 0, the � is
randomly initialized. The horizontal axis represents the change relative to� . The vertical
axis represents theLoss of the model. Figure adapted from [30].
a) The gradient descent algorithm for optimizing the initial� . Each backpropagation step
brings the � closer to the optimal minima �̂ until it converges. The learning rate is a
variable that controls the amount of change of the� per step and is proportional to the
slope, resulting in a smaller change when the parameter gets closer to the minimum. In
this example theLoss does not converge to 0, which is bene�cial, because aLoss of 0
likely indicates over�tting.
b) Example of gradient descent pitfalls visualized by 2 di�erent random initializations.
The left one converges to a local minimum, which is worse than the global minimum. The
right one takes a long time to reach the minimum.

The amount by which the weights are updated during GD is determined by the learning rate.
This is usually a small value ranging between 0.0 and 1.0. A small learning rate could lead to
slower convergence. However, a large learning rate could lead to 'jumping' over the minimum.

The backpropagation step can be done for one training sample; however it is typically per-
formed for multiple training samples, known as amini-batch. This can be bene�cial, because
it speeds up the training process. It averages the loss for all samples in a batch, reducing the
inuence of noisy or outlier samples on the gradients [30].

4.3 Activation functions
In this project, we make use of the activation functionsReLU (Recti�ed Linear Unit) and
Sigmoid. Activation functions take the weighted sumz as input and apply a non-linear math-
ematical function to it. TheReLU function is a commonly used activation function. After
the ReLU transformation, neurons with a negative weighted sum are deactivated [36]. Nev-
ertheless,ReLU is not suitable for implementation in the output layer, because the output
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layer should act as a classi�er, which in our case would be binary. TheSigmoid function is
a commonly used function for binary classi�cation. TheSigmoid is a logistic function that
returns values in the range 0{1, which makes it easy to map these values to 0 or 1 for binary
classi�cation.

ReLU(z) = max(0 ; z)

� (z) =
1

1 + e� z

4.4 Model loss
The Loss function measures the di�erence between the predicted outputô and the actual
output o. This Loss is a crucial component of the training, because it helps to adjust the
model parameters towards the minima through backpropagation. In the �eld of deep learning
there are several di�erent loss functions. For the scope of this project, we are only interested
in binary loss functions. Therefore, only the BCE (Binary Cross-Entropy) loss function is
addressed.

4.4.1 BCE Loss Metrics

After each forward propagation of the inputs, the loss is calculated. The predictionô is given by
the �nal layer of the model and ranges between 0.0 and 1.0. The BCE loss uses the Bernoulli
trial entropyBTE . This function gives the amount of uncertainty found for a given prediction
ô.

BTE (p) = � ô � log2(ô) � (1 � ô) � log2(1 � ô)

Ideally, we want an entropy of 0.0 betweenô and the actual trueo. If a prediction is 0.5,
then the entropy is at its maximum, because according to the Bernoulli trial, the prediction
outcome is just as in favour of label 0 as of 1 [37]. The Bernoulli trial entropy function is closely
related to the BCE function. The di�erence is that the Bernoulli trial entropy function only
measures the uncertainty, whereas the BCE loss uses this uncertainty for penalizing the model
for incorrect predictions. The model will minimize the entropy of the Bernoulli distribution,
through the use of BCE loss function.

B loss = � (olog(ô) + (1 � o) log(1 � ô))

The aforementioned formula for calculating the BCE lossB loss can be separated into 2 parts:
the olog(ô) part calculates the BCE loss foro = 1, and the(1 � o) log(1 � ô) part for the
o = 0 samples. A prediction that di�ers a lot from the ground truth is penalized more by the
logarithmic function than those that are closer to the truth.

The average BCE
�
B loss for all samplesn in data setD is one of the metrics used to evaluate

model performance.

�
B loss = �

1
n

nX

i =1

(olog(ô) + (1 � o) log(1 � ô))
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4.5 Batch normalization
In the backpropagation section (4.2) we discussed the possibility of training a network us-
ing mini-batches. The di�erence is that the model is not trained on a single instance, but
on multiple instances using mini-batches. Research showed that normalization within a batch
can be bene�cial, because it speeds up training and could potentially improve performance [38].

The batch normalization layer takes a batchB as input;B = f x1; x2; x i ; xng. First, the mean
� B and the standard deviation� B of the batch are computed. Second, each batch samplex i

is normalized tôx i :

x̂ i =
x i � � Bp

� 2
B + �

Here, a small smoothing term� is added in case the� B is zero. After normalizing the samples,
the batch has a mean of 0 and a standard deviation of 1. In other words, all samples in the
batch are on the same scale. However, it is not bene�cial for all batches to have a� B = 0 and
� B = 1, because di�erent batches may have di�erent statistics and distributions. This is where
the main strength of batch normalization comes in, by introducing 2 learnable parameters
and � .

The inuence of is to scale the standard deviation, which is achieved by multiplying the
normalized values by a factor . The � parameter is then added, which causes a shift to a
di�erent mean. This operation gives the batch normalized outputZ i [30].

Z i   
 x̂ i + �

These learnable parameters allow each batch normalization layer to set the inputs to a dif-
ferent scale, allowing the hidden layers to e�ectively make use of the normalization through
backpropagation [38].

4.6 CNN Architecture
The embryo data set contains multiple videos, where each video is essentially a stack of images
that are displayed at a certain frame rate. If a traditional fully-connected network were to be
used to train a model, it would require a large number of additional parameters, resulting in
very large networks. This is because a fully-connected network would treat each individual pixel
as a neuron in the input layer. The size of these big networks would have as consequence, that
it could make optimization too computationally intensive. Another drawback of having too
many parameters is that the model is more prone to over�tting, particularly when the data set
is sparse, as in our case.

To overcome these limitations, a convolutional neural network is preferred when processing
visual input such as images or video data. A typical convolutional neural network structure
consists of a series of convolutional layers combined with max-pooling and activation layers,
before being connected to a fully-connected layer, see Figure 8. In this section, we describe the
notion of convolutional layers [30]. We also introduce 3 successful CNN modelsU-Net, VGG16
andGoogle E�cientNet, which are covered later in the Methods section of this manuscript.
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Figure 8: Simple CNN architecture. Convolution and pooling computations are performed
on the input image with only 1 depth. The resulting feature maps are connected to a fully-
connected network. Figure adapted from [30](modi�ed).

Embryo images contain useful features, such as: edges, textures, shapes, and patterns. A con-
volution layer can capture these features using learnable kernels. During the forward-pass of a
single channel image, 2D kernel convolutions are applied across the heightx i and widthx j of
the image by scanning the entire image. The amount of movement during each scanning step
is determined by the horizontal and vertical stridessw ; sh.

The area where the convolution takes place is referred to as thereceptive �eld. The con-
volution is a mathematical multiplication of 2 matrices, including the receptive �eld and the
kernel wk . Each operation returns one value and all these values together form a feature
map z. The number of kernels and their size can vary across convolutional layers. The width
and height of a kernel are represented byf w and f h. The number of feature maps is equal to
the number of di�erent kernels applied to the input. Each kernelwk creates the feature mapzk .

The resulting feature map is smaller than the input layer, because the kernel center is unable
to reach the border pixels while scanning the image. In order to preserve feature information
around the border of an image, padding is used around the outer frame of the input layer,
keeping the spatial resolution the same, see Figure 9.

Figure 9: The convolution operation is performed on a 2D input layer (bottom), which
creates the feature-map (top). The input layer has been zero-padded (shown in gray). The
feature-mapi � j is created using single-kernel convolutions across the height and width
using a kernel size off w=3, f h=3. This results in the feature-mapzijk . The kernel stride
was set to 1. The colored boxes of sizei � j represent the connection between the kernel
and the receptive �eld of the input layer. Figure adapted from [30].

A feature map corresponds to the activation of di�erent part(s) of the image. Each feature
map represents a speci�c feature or pattern that the neural network has learned to recognize in
the input image. By combining multiple convolutional layers on top of each other, the network
is capable of learning more complex patterns and concentrate on small low-level features in
the earlier hidden convolutional layers.
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Above, we discussed convolutions on a single 2D input channel, e.g. a single greyscale image.
However, our embryo time-lapse data set contains many (time) channels. A 2D convolution
with a channel depth higher than 1 acts more as 3D convolution, because the kernel slides not
only over the 2D image with the heightx i and widthx j , but also in the depth dimensionxk0

of the input. This means that the kernel weights also extend in the depth dimension, resulting
in kernel weights as 3D metrics with sizewi � wj � wk0. The sliding windows receptive �eld
size isf w � f h � f n0.

A full convolution ofx ijk 0 with the kernel weightswijk 0 results in a single feature map of
sizezijk , see Figure 10. After a full convolution, the bias valuebk is added to the feature map
valuezijk .

Figure 10: Representation of multiple input channelsx ijk 0 highlighted in blue, the receptive
�eld of the input channels of sizef whn 0 highlighted in blue and red, a �lter with the kernel
weights wvuk 0 in orange, and the feature mapz in green. Each valuezijk in the feature
map is obtained by applying the �lter wvuk 0 to the current receptive �eld. Figure adapted
from [39].

Additionally, the feature maps can be further processed. A useful technique is to reduce the
size of these feature maps by max pooling. The pooling operation applies a sliding window
approach, similar to convolutional operations. However, instead of a trainable �lter, it uses a
�xed maximum operator. For instance, a 400x400 image with a 2x2 kernel results in a feature
map of 200x200. Pooling results in a reduction of spatial information. This helps to reduce
variance and amount of computations. However, excessive pooling has a downside of removing
too much information.
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4.6.1 Existing models

In recent years, researchers have used CNNs to successfully develop complex models [40].
It turned out that the architecture of these models was not necessarily bound to a speci�c
task. In other words, these models could be adapted, to �t a certain purpose, e.g. the embryo
implantation classi�cation task. In this manuscript, 3 well-known CNNs are used:VGG16,
Google E�cientNet and U-Net. Before implementing these models, it is essential to review
the architecture beforehand. This is done in the section below, where we will discuss the
architecture of each model.

4.6.2 VGG architecture

The VGGnetwork is widely known for its image classi�cation capabilities. It won theImageNet
competition in 2014, with 76.3% accuracy. In this competition, 224x224 colored images are
used for object detection and image classi�cation. The architecture of theVGG16network can
be seen in Figure 11. The number 16 in its name refers to the 16 layers containing weights,
which include 13 convolutional layers and 3 fully-connected layers containing 4096, 4096, and
1000 neurons, respectively. The convolutional layers are grouped into 5 convolutional blocks,
each block containing 2-3 convolutional layers, with the following statistics:

ˆ Block 1: 64 �lters, 2 convolutional layers, kernel size 3
ˆ Block 2: 128 �lters, 2 convolutional layers, kernel size 3
ˆ Block 3: 256 �lters, 3 convolutional layers, kernel size 3
ˆ Block 4: 512 �lters, 3 convolutional layers, kernel size 3
ˆ Block 5: 512 �lters, 3 convolutional layers, kernel size 3

Each block is followed by a max-pooling layer. The last block outputs 512 feature maps
connected to the 3 fully-connected layers. Overall, the network includes around 138 million
parameters [41].

Figure 11: The architecture of theVGG16 network. The network consists of 5 convolu-
tional blocks, followed by fully-connected layers. The output layer contains 1000 nodes,
for the 1000-class classi�cation. Figure adapted from [42].
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4.6.3 E�cientNet architecture

In 2020Googleauthored the paper entitledE�cientNet: Rethinking Model Scaling for Con-
volutional Neural Networks[43]. In this paper, the authors propose a framework for scaling,
depth, width, compound and resolution in Convolutional Neural Networks to maximize the
overall e�ciency of the network. This approach resulted in a network that achieved 77.1% ac-
curacy on theImageNetdata set. At �rst glance, this does not look very promising. However,
the fact that this network consists of only 5.3 million parameters, indicates that the network
e�ciently makes use of its parameters. Additionally, it has been shown that the network is
able to adapt to other data sets (CIFAR-100/Flower data set) using transfer learning, see
Section 4.7.

In this paper, a family ofE�cientNet networks is created; to keep this manuscript compact
only the smallest networkE�cientNet-B0 is discussed. The architecture is shown in Figure 12.
The E�cientNet-B0 network consists of in total 237 layers, mainly of MBConv (mobile in-
verted bottleneck convolution) blocks [44]. In short, the MBConv block adapted in the paper
is a combination of several operators in a speci�c order:

1. Pointwise convolution: Cheap 1x1 convolution �lter is applied to the input to reduce
the channels, but preserve the inter-channel relationship. Followed by Batch normaliza-
tion + swish activation.

2. Depthwise convolution: A single convolutional �lter is applied to each individual chan-
nel created by the Pointwise convolution. In this step, a stride of 1 or 2 is used, and
padding is set tosame. Feature maps retain their size by having a stride of 1. At last
batch normalization and swish activation are performed.

3. Pointwise convolution: Followed by batch normalization only.

4. (optional)Residual skip connection: If the input used in step 1 has the same size as
the output of step 3, it is added to the feature maps [43].

Figure 12: The E�cientNet-B0 network has "Conv" and "MBConv" blocks to predict
images. The "Conv" is a simple convolutional layer, with strides set to 2, while the
"MBConv" blocks consist of Pointwise-Depthwise-Pointwise operations. The additional
numbers within the "MBConv" block represent the number of Depthwise operations and
the size of the kernel. The fully-connected layers for the class classi�cation are not shown.
Figure adapted from [45].
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4.6.4 U-Net architecture

The U-Net is a di�erent type of convolutional neural network compared to the previously
discussed networks. Where the previous network tackled a classi�cation task, the U-Net tack-
les an image segmentation task. An U-Net uses an image-in/image-out approach, instead of
image-in/label-out one. Due to its ability to make precise and fast segmentation using a low
number of training images, it is currently considered the gold standard for segmentation in the
biomedical �eld [46]. It can locate an object with high accuracy, making it a good �t for our
embryo localization task. The U-Net achieves precise predictions through an encoder-decoder
structure using skip connections. This model does not include any fully-connected layers, which
reduces the number of learnable parameters [47].

The input is being contracted by the encoder through a series of repeated �lter convolutions
and 2x max-pooling operations. The number of feature channels is doubled at each down-
sampling step. The decoder is responsible for expanding the output through 2x up-sampling,
and utilizes skip connections. The skip connection adds the corresponding encoder feature map
to the decoder feature map via concatenation. Subsequent convolutions are performed on this
feature map. The number of feature channels is halved at every up-sampling step. The �nal
layer performs a 1� 1 convolution to reduce the number of channels to the desired number of
segmentation classes [47].

The U-Net name is based on the shape of the network. The general features are obtained
via the encoder block, which increased the number of feature maps while down-sampling the
spatial size. To reintroduce high-resolution features, skip connections between encoder and
decoder layer are used. This leads to more precise output [47].

4.7 Transfer Learning
Transfer Learning is a technique where a pre-trained model is adapted for another task. Instead
of randomly initializing the weights and biases, we use the pre-trained values. The bene�t of
this approach is that the network does not need to learn from scratch. Therefore, the network
can devote less time to learning low-level structures in images, and more time to learning
higher-level structures, which is referred to as transfer learning. The use of pre-trained models
can speed up the training process and may even reduce the amount of required training data
depending on the task [48]. TheVGG and E�cientNet are both pre-trained networks on the
ImageNetdata set, which contains 1,000 classes. These pre-trained weights could be useful
for predicting the embryo implantation potential.
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4.8 Performance Metrics
The performance of trained AI models needs to be evaluated to ensure that the models are
working properly. The goal is to avoid over�tting or under�tting on the training set. We
measure the performance throughout the training process using four metrics: theAccuracy,
Recall, Precisionand the model loss. Accuracy is the simplest, simply dividing the total number
of true and false positives (TP and FP) by the total number of samples in the training set.
However, focusing solely on accuracy has the disadvantage that it provides no information
about the model's bias towards a certain label.

ôacc =
TP + TN

TP + TN + FP + FN

ôrecall =
TP

TP + FN

ôprecision =
TP

TP + FP

(1)

To address these issues we also make use of recall and precision metrics. Recall measures the
ratio of true positives (TP) against the total number of relevant elements (TP + FN ). A
high recall represents the model's ability to identify instances of a certain label and vice versa.
The precision is the model's ratio between true positives and all the positives. It represents the
ability of the model to correctly identify positive cases. The equation for the metrics is given
in Eq 1.

5 Embryo Data & Incubator
For this project raw videos from 92 embryos were obtained from the embryologists atLeiden
University Medical Center. All video material was captured by theGeri® incubator QRTM329,
with a resolution of 928� 928 pixels. The Geri® incubator has 6 individual chambers, with
16 microwells each, see Figure 3. These chambers are equipped with a long-wavelength light
source (550-650 nm) and a monochrome CMOS camera with a resolution of 2 pixels perµm
and �ve megapixels. The time an embryo was kept in the incubator ranged from 3 to 5 days.
The acquisition time interval of the camera frames was set to 5 minutes. All frames together
result in time-lapse videos consisting of 800 to 1550 frames. Each frame was captured with
di�erent focus settings, creating one video for each of the 7-11 focal planes per embryo. In
total, 774 videos were obtained from the 92 labelled embryos.

The labelling was carried out individually by the LUMC embryologists: Diego Diaz de Pool
and Dr. Gonneke Pilgram. An embryo implantation resulting in an abortion or menstruation
receives a negative label (0), while an embryo ending in a pregnancy receives a positive label
(1). The 92 embryos labels were not evenly distributed; a total of 35 embryos were labelled as
positive and 58 as negative, resulting in a label imbalance of 37% against 63%. All samples
were anonymized prior to processing and are shown in Table 3.
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Table 3: All 92 embryo samples; each sample is provided with aZ1/M0 status indicating
the outcome of the embryo transfer. Unsuccessful pregnancies are labeled with 0, and
successful pregnancies with a 1. The data set has a slight class imbalance, with 37%
resulting in a pregnancy and 63% resulting in an unsuccessful one.

ID Z1/M0 ID Z1/M0 ID Z1/M0
1 4431-1-2021134well07 1 1 4431-1-2021134well10 0 36 H2549-1-H 2021107well03 0
2 4968-3-2021335well04 1 2 5264-4-2021210well07 0 37 H2549-1-H 2021107well06 0
3 5241-6-2021171-1well15 1 3 5313-4-2021246well01 0 38 H2557-1-H2021122well02 0
4 5448-3-2021173well02 1 4 5313-4-2021246well02 0 39 H2563-1-2021132well06 0
5 5476- 3 - 2021132well02 1 5 5330-2-2021298well13 0 40 H2610-1-H2021211well10 0
6 5476- 3 - 2021132well03 1 6 5607-2-2021168well03 0 41 H2625-1-H2021061well03 0
7 5476- 3 - 2021132well04 1 7 5705-2-2022036well05 0 42 H936-2-H2021203well09 0
8 5607-2-2021168well02 1 8 5741-3-2021113well10 0 43 LR1524-5-2021215well01 0
9 5607-2-2021168well05 1 9 5741-3-2021113well11 0 44 LR1524-5-2021215well04 0
10 5623-3-2021214well05 1 10 5815-2-2021238well02 0 45 LR1524-5-2021215well05 0
11 5705-2-2022036well02 1 11 5823-2-2021233well03 0 46 LW2008-7-2021221well04 0
12 5705-2-2022036well03 1 12 5829-1-2021151well02 0 47 LW2008-7-2021221well09 0
13 5741-3-2021113well08 1 13 5850-1-2021198well01 0 48 R1515-2-R 2021051-2well15 0
14 5769-1-2021241well01 1 14 5850-1-2021198well03 0 49 R1566- 2 - R2021046well04 0
15 5806-1-2021121well04 1 15 5850-1-2021198well05 0 50 R1620-2-R2021055well05 0
16 5850-1-2021198well04 1 16 5850-1-2021198well11 0 51 R1624-1-R 2021032well02 0
17 5855-1-2021250well02 1 17 5854-1-2021204well05 0 52 R1624-1-R 2021032well04 0
18 5886-1-2021252well02 1 18 5874-1-2021232well03 0 53 R1627-2-R 2022094well01 0
19 5935-1-2021316-2well02 1 19 5874-1-2021232well05 0 54 R1627-2-R 2022094well05 0
20 5965-1-2022079well03 1 20 5874-2-2022021well01 0 55 R1635-1- R2021047-1well03 0
21 H2516-2-H 2021105well07 1 21 5889-1-2021257well14 0 56 R1635-1- R2021047-1well05 0
22 H2563-1-2021132well02 1 22 5902-1-2021275well01 0 57 R1635-1- R2021047-1well07 0
23 H2617-1-2021220well07 1 23 5933-1-2021310well08 0 58 R1648-1-R 2021071well05 0
24 H936-2-H2021203well01 1 24 6010-1-2022062well01 0
25 H936-2-H2021203well10 1 25 H2471-2-H 2021115well06 0
26 LD 74 - 2 - 2021169well06 1 26 H2485-2-H 2021072well05 0
27 LH912-3-2021114well02 1 27 H2542-2-H2021196well01 0
28 LH912-3-2021114well04 1 28 H2542-2-H2021196well04 0
29 LR1524-5-2021215well06 1 29 H2542-2-H2021196well08 0
30 LW2008-7-2021221well06 1 30 H2547-1-H 2021102well02 0
31 R1624-1-R 2021032well06 1 31 H2547-1-H 2021102well05 0
32 R1627-1-R 2021035well02 1 32 H2547-1-H 2021102well08 0
33 R1627-1-R 2021035well03 1 33 H2547-1-H 2021102well09 0
34 R1628-1-R 2021037well08 1 34 H2547-1-H 2021102well10 0
35 R1635-1- R2021047-2well06 1 35 H2549-1-H 2021107well02 0
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6 Methods
In order to predict the embryo implantation potential using deep learning, the neural network
needs to be fed with correctly classi�ed samples, constituting the training set. How well a
network learns and generalizes depends heavily on the quality and size of the training data
set, and the way the data are pre-processed. Factors such as image thresholding, resizing and
image cropping play key roles; they can make or break the learning ability of a data set. In the
\Methods" section, we will �rst go through all pre-processing steps developed as part of this
project, and in the second part we will focus on the classi�cation task and go deeper into the
network structures.

Figure 13: The 5 steps of the data pre-processing pipeline. The �rst section focuses on
the development of the U-Net for embryo detection. Next, this U-Net is used to crop
out the embryo, through pixel thesholding and connected component analysis. This is
followed by a sharpness analysis performed on all focal planes. Finally, di�erent data sets
are generated, varying in the number of time frames, the amount of focal plane depth and
augmentations applied to the images like brightness and contrast modi�cations.
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6.1 Workow - Pre-processing
The �rst part of the methodology consists in the pre-processing. Here, we convert the embryo
videos obtained by the Geri incubator to a format that makes machine learning the most
e�cient. This part is divided into 5 main steps, see Figure 13. In steps 1{3, part of the image
background is removed from the raw embryo images by cropping out the ROI around the
embryo. This is done by tracking the embryo using a self-made U-Net and manually annotated
center locations. In step 4, the quality of each z-slice is determined by a sharpness analysis. In
the �nal pre-processing step, di�erent training data sets are obtained, varying in time, depth
and data size.

6.2 Determining the center of the embryo
One of the biggest limitations in training a neural network is the limited capacity of virtual
memory in the GPU, which is necessary to �t a training batch along with the neural network
itself. The smaller a training samples is, the more samples can �t into a batch. This raises the
question: is it possible to make our data set more compact without losing valuable information?
First, each video was converted to a set of gray scale images (TIFF). Each image is made
up of pixels with gray scale intensities ranging from 0 to 255. Reviewing the data set shows
that 928� 928 images were captured inside a Geri Dish® micro-well. Remarkable is that the
embryo occupies only a small portion of this space during the �rst 5 days of development1.
This leaves a large part of the image unused, resulting in an unnecessarily large batch size (in
memory) and additional noise in our data set. In order to tackle this problem, the embryo is
cropped out of the image. This is done by determining the center of an embryo using a center
detection neural network, and consequent image cropping. Sections 6.2.2{7 will focus on the
detection and cutting of the embryo out of the frame.

6.2.1 Motivation for rejecting traditional image segmentation
techniques

Training of a neural network requires more preparation and background understanding (see
Section 4) compared to the more straightforward/traditional techniques that rely more on
heuristics such as threshold segmentation, edge-based segmentation, etc. Here, more focus
lies on local di�erences and pixel gradients in an image. Trial and error showed that these
methods would not be suitable for embryo segmentation, because these methods were not
consistent enough when applied to di�erent samples; resulting in di�erent setup per sample,
increasing complexity, and negatively a�ecting reproducibility. We do not want to claim that
this approach would never work, but the amount of �ne-tuning necessary would make it time
consuming and di�cult to use in practice. Hence, time should be better invested in constructing
a robust neural network, also capable of handling new/never seen samples.

6.2.2 Neural network: center detection

The �rst step towards creating a neural network able to detect the center was to create a
suitable data set for network training. This involved manual annotation of the embryo center.

1Throughout the manuscript we will use the term \embryo" as a collective reference name for all the
development phases of the zygote.
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An image used for annotation is 2-dimensional, so we describe the center of each embryo by
its (Cx ; Cy) coordinates. Therefore, theCx andCy coordinates were used as metrics.

This was done for 13 embryos (available at the start of the project) out of the total 92.
A subset of 30 images per sample was selected for annotation. The image subset was evenly
(linearly) distributed across the entire time span of the video, because we wanted our model to
generalize for all phases. In order to increase stable learning, image valuesI are �tted between
[0-1] scale using maximum normalizationI

0
= I

max (I ) . This results in images with a similar
intensity distribution.

The annotation was performed on the central (5th) z-slice, because this slice was found to be
the most in focus over the entire video. The images were downsampled by a factor of eight,
from 928� 928 to 116� 116 (see Figure 14a), which bene�ted our computational e�ciency
(reducing computational resources) and batch quantity. The annotation set consisted of a
total of 13� 30 images, resulting in 390(Cx ; Cy) positions.

The second step is to choose the right neural network architecture to solve this embryo lo-
calization problem. An U-Net network would be a great �t for this task: not only does it
supports an image in/-out approach, but it also has the capability to extract both high- and
low-level features through the encoder-decoder architecture, allowing for accurate and precise
image-to-image mapping [47]. This approach requires the same input size as the output size.
Hence, for each 116� 116 input, an output array of 116� 116 had to be de�ned. Intuitively,
the output consisted of a 116� 116 black grid, with a single white dot marker in the center.
These black and white colors simply correspond to 0 and 1, respectively; see Figure 14b.

(a) (b) (c)

Figure 14: Process of annotating an embryo image. A) The 116� 116 embryo image B)
The manually annotated center of the embryo image, where the center is represented by
a single white pixel. C) The �nal result of the annotation of an embryo image. The single
white pixel is replaced by the radial gradient circular object.

This single pixel is expected to denote the exact center location. However, it is known that the
manual annotation can contain human error(s), meaning that the perfect center location is not
always valid. This introduces potential noise and the risk of over�tting into the training process

To overcome this issue, a di�erent method is chosen for the 116� 116 output array. Instead
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of using a single pixel to indicate the center, a radial gradient circular is used around the
annotated spot. The radial gradient circular has a radius of 12 pixels. The radial gradient
circular uses the center as the brightest spot assigning it an intensity of 1.0, see Figure 15.
The brightness values get smaller as you move from the center to the outer layers of the circle,
resulting in a radial gradient circular with the brightest spot in the middle, see Appendix A.1.

Figure 15: Representation of the radial gradient circular annotation. From left to right
(1) Example of a 116� 116 annotation. (2) All 116 vertical lines were plotted. (3) All 116
horizontal lines were plotted.

Occasionally, it occurred that some frames from the acquired mp4 �le were corrupted or that
there was no embryo present in the well. It would be bene�cial to prevent these frames from
entering our training data set. The task of detecting these frames could also be learned by
the U-Net, each time the network sees a corrupted image it should predict an empty 116� 116
array. Manually labelled samples representing such cases were added to the training set.
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6.2.3 U-Net: training parameter optimization

Like for every other neural network, we need to set several important parameters for the U-Net,
such as the loss function, optimizer, learning rate, kernel size, number of CNN �lters and batch
size. Adam optimizer was used, with the binary cross-entropy loss. The 116x116 output layer
usedSigmoidas the activation function. Hyperparameter analysis was used to �nd the optimal
values for the remaining parameters. Multiple numbers of batch sizes were tested, consisting
of [4,8,16,32,64]. The learning rate was set to10� 3 and10� 4.

Table 4: Hypermarameters used for training the U-Net.

Hyperparameter Value
Epochs 12

CNN kernel size 2, 3
Batch size 4, 8, 16, 32, 64
Learn rate 10� 3, 10� 4

Loss function BCE
Optimizer Adam

U-Net
Feature map
Con�guration

m = 32 : [32, 64, 128, 64, 32]
m = 64 : [64, 128, 256, 128, 64]
m = 128 : [128, 256, 512, 256, 128]

Next, we will describe the changes that have been made to the standard U-Net. Originally, an
U-Net contains4 layer with skip connections. The choice was made to reduce the number of
encoder-decoder connections to 2. This smaller U-Net could be more e�cient and give more
room for experimenting with di�erent amounts of feature maps. During training the input is
processed through the encode-decoder. The number of feature mapsm created across the
network varies according to the depth of the U-Net. Which can be seen in Equation 2:

m � � � � m

2m � � 2m

4m

m ! 2m ! 4m ! 2m ! m

(2)

Meaning that after each max-pooling the number of feature maps doubles and after every
transposed convolution the number of feature maps halves. The feature maps baseline was set
to m = 32, which means a feature maps distribution of:

32 ! 64 ! 128! 64 ! 32

We have also experimented with 2 di�erent feature maps sets:m = 64 and m = 128. An
example of the adapted U-Net withm = 32 can be seen below in Figure 16. Table 4 shows
all the U-Net hyperparameters.
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Figure 16: The U-Net architecture used for the embryo center prediction task. The network
takes a 116� 116 embryo image as input and outputs a 116� 116 image indicating the
embryo center in the form of a radial gradient circular. The initial number of feature maps
for this U-Net was set tom = 32. To obtain the output, the input goes to the encoder part
(left), the bottleneck (middle) and the decoder part (right). In the encoder (1) the input
is converted into 32 feature maps and halved in size by max-pooling(orange), (2) this is
repeated with 64 feature maps. The 29� 29 maps are passed through the bottleneck layers,
resulting in 128 feature maps. In the decoder, the bottleneck output is up-sampled using
transposed convolutions and concatenated through the encoder-decoder skip connections
(blue arrows). This produces 64 feature maps, which are then subjected to the same
process to produce 32 feature maps. Finally, the feature maps are convolved into a single
116� 116 feature map.

6.2.4 Obtaining embryo location from U-Net output

The next task is to translate the image array output from the U-Net to an(Cx ; Cy) center
location. We use multiple techniques to do this. The most straightforward approach is to �nd
the pixel with the highest value and select it as the center, since the brightest spot is expected
to be in the middle. However, after a short evaluation the consistency of this method fell short.

Instead, we opted for a connected component analysis (CCA) approach, which is widely used
in the image processing �eld. This object recognition technique makes it possible to easily
identify objects in an image. More precisely, the U-Net output should contain a single radial
gradient circular object, which can be converted to a binary object by thresholding.

The CCA method involves scanning the binary image with an 8-connected square neighbor-
hood kernel. To identify groups of connected pixels, each pixel hit will result in a pixel being
assigned to a group. This allows for accurate labelling in an image. Before applying the CCA,
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each prediction image is converted to a binary image, using an image threshold. Intuitively, by
looking at the �gure in Appendix A.1, one would attempt to intensity threshold on positive
numbersi > 0. However, this would only output positive values, because aSigmoidfunction
outputs between 0 and 1, but never exactly 0.00 or 1.00. This means that all values will be
above 0, and therefore positive. Instead, a rather low threshold of10� 4 was chosen, see Eq 3.

t = 10� 4;
Bt (x) = H (x � t);

(3)

HereH (x) is the Heaviside step function. It is expected that the binary image contains groups
of pixels at the embryo center point. However, it could also be possible that with a10� 4 thresh-
old other groups of pixels could be classi�ed as an object. To ensure that we have collected
the correct object, an assumption is made, which indicates that the object with the highest
surface area is most likely to be the center object, and the smaller objects are artifacts of the
U-Net prediction.

The next step is to obtain the(Cx ; Cy) center coordinate from the selected connected compo-
nent. This is done by placing a bounding box around the object. The center is determined by
taking the mean coordinates of the horizontal and vertical sides, these 2 coordinates represent
the Cx and Cy coordinates of the 116� 116 image. The �nal step was a simple conversion
back to the original image size of 928� 928, which required multiplication of the coordinates
by a factor of 8.

6.2.5 Embryo extraction & Coordinates smoothing

After the center coordinates were obtained, the embryos could be cut out of the raw 928� 928
image. A 400� 400 box, de�ning the region of interest, was placed at the obtained(Cx ; Cy)
coordinate. This region was cropped out, resulting in a square 400� 400 embryo image. The
whole process is illustrated in Figure 17.

Embryos where the center appeared close to the border of the well could not be captured
completely in a 400� 400 frame. The constant 400� 400 image size was necessary for training
a network, because a neural network assumes a �xed size for the input layer. Thereplicate
borderfunction from theopenCVlibrary was used to extend the border of an image to the re-
quired 400� 400. This function replicates the last horizontal/vertical element until the desired
resolution is reached. This process is shown in Appendix A.2.
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Figure 17: The process for obtaining the cropped images from the original one. This
process is illustrated by 8 images, from the left to the right. It includes (1{4) the input, the
U-Net prediction, the binary thresholding, object detection using CCA and determination
of the center of the object. Next (7{8), a 400� 400 box is placed on the original 928� 928
embryo. Finally, the embryo image is cropped.

Another important information that can be derived from the U-Net prediction is the presence
or absence of an embryo in the well. The decision is made by taking the sum of the prediction
map: if this value is lower than the threshold10� 4 then it is con�dently classi�ed as no embryo
present, see Eq 4.

t = 10� 4

P(ô) = 1
n

P n
i =1 ôi ;

Et (P) = H (ô � t):
(4)

When no embryo is detected or the image is corrupted, this frame is replaced by the previous
one; e.g. if frame 113 does not contain an embryo, it is replaced by frame 112, which means
that frames 112 and 113 will contain the same information.

6.2.6 Coordinates smoothing

During time-lapse video examination, a small jerking e�ect was observed between 2 consecu-
tive time points, which was a side e�ect of human (annotation) error, AI error and scaling of
the coordinates. For example, if two consecutiveCx -coordinates di�er by only one pixel, with
values 50 and 51, then rescaling will result in a shift of 8 pixels shift: 400 and 408, respectively.

In order to smooth the time series, theCx and Cy values are smoothed separately over the
entire time span using theLocally Weighted Scatterplot Smoothing(LOWESS) function [49].
The bene�t of LOWESS is that it can handle outliers quite well because of the underlying
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weighted least squares approach. The LOWESS method makes use of a sliding window, which
slides from time-point 0 to the end of a sequence. The sliding window width is a fraction of
the total sequence length. Here this fraction was set to 0.02.

This sliding window extracts a local subset. A polynomial is �tted to this local subset us-
ing a weighted linear least squares regression. The weight function applied to this segment is
the tricube function, given in Eq 5 and Figure 18.

w(d) =

(
(1 � j dj3)3; if jdj < 1

0; otherwise
(5)

This polynomial ensures that the focal point (d = 0) carries the most weight, and the furthest
point carries the least weight. Each point in the window has a certain weight. The closer a
point is to the focal point the more weight it has. In other words, a point with a closer distance
d to the focal point, has more importance, see Figure 18.

Figure 18: The tricube weight function:w(d) = (1 � j dj3)3

Distancesd closer to the center carry more weight than distances further away.

The aforementioned process can be repeated, in our case we did it 3 times for getting a nice
smoothing e�ect. As result, theCx and Cy coordinates are smoothed, which improves the
cropping process.

6.3 Detection of the sharpest focal plane
In Section 6.2 the shortcoming of limited virtual memory was addressed. It is also necessary
to address this shortcoming when processing the multiple z-slices for each image. Each im-
age contains 7{11 z-slices, making the task more memory intensive. As mentioned earlier in
Section 6.2.2, not all slices have valuable information. It is imperative that stacks with low
information content are removed from the data set. The �rst step for tackling this problem is
to determine which stacks contain valuable information and which do not. Images with more
detail and less blur are considered more useful, for this reason we used sharpness as a mea-
sure. The approach we used to obtain a sharpness rating was a traditional gradient method,
discussed in Section 6.3.1. Other approaches to train a custom neural network capable of
assigning a 0.0 to 1.0 sharpness rating proved to be unstable and were therefore rejected.

35



6.3.1 The average gradient magnitude as sharpness rating

The average gradient magnitude (AGM)was used to obtain the sharpness rating, given in
Eq 6. The gradients is the measure of change in an image across thex (horizontal) andy
(vertical) dimensions. The image gradient is de�ned by the �rst derivatives with respect to
the x ( @f

@x) and y ( @f
@y) coordinates, see Figure 19. The image magnitudejjr F jj represents

the strength of intensity change in the whole image. Large intensity changes often correspond
to edges in the image. The magnitude vector is calculated as the square root of the sum

of the squares of thex- and y-component gradients:jjr F jj =
q

( @f
@x)

2 + ( @f
@y)

2. In order to
get the AGM, the magnitude is divided by the number of all magnitudesn. This AGM value
corresponds to the overall sharpness in our image.

jjr F jj =

s

(
@f
@x

)2 + (
@f
@y

)2

AGM =
1
n

nX

i =1

jjr F jj

(6)

Figure 19: Overview of the gradient calculation on the embryo image. From left to right:
the cropped embryo image, the gradients with respect to the horizontal direction, the
gradients with respect to the vertical direction. The average gradient magnitude of this
image is 3.14.
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6.3.2 Sharpness selection

After obtaining all the image sharpness scores, the distribution over focal planes is analyzed.
This gives an insight into how the sharpness values di�er between the dimensions. In Figure 20
the distribution of the AGM is shown for a small time interval. Initially, it was expected that
the same single focal plane would dominate throughout the whole time-series, because the
same focus settings were set. This would allow for a very simple selection of the sharpest
frame across the time-series. However, evaluation showed that slice shifts do occur regularly
and have to be taken into consideration during this selection.

The intention was to design a data set with the highest possible information density pos-
sible, as sharper images contain more reliable information. An obvious step would be to select
only the sharpest slice in each time step. This will result in the information reduction from
7{11 slices to a single one for each time frame. The disadvantage of this approach is that in
this case we will loose the unique depth information, because only one image slice is picked.
Hence, the top 3 sharpest slices are selected for each time.

Figure 20: The AGM for the sample5313 for the time inverval 642{654. The x-axis
represents the 9 focal planes. They-axis represents the time frames. The lighter color
indicates a higher AGM. It appears that the 9th slice is in focus throughout this local
fragment as the corresponding values are all above 3. These values gradually decrease as
we move away from the 9th focal point.
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Figure 21: The before (left) and after (right) results of the top-3 sharpness normalization
for the sample5313. The x-axis represents the 9 focal planes. They-axis represents the
time frames. The top-3 frames in-focus are the focal planes 7, 8 and 9. With 3 irregularities
found at frames 642, 648 and 654. These irregularities are resolved after normalization,
which is shown by the constant coloring of the top 3 frames.

6.4 Sharpness normalization
In order to be used for training a network, the data should not di�er too much within the train-
ing set, in particular, via unrealistic focus shifts. We want all our time frames to be sampled
similarly. It is expected that small frame shifts will occur rarely. Figure 21 shows an unrealistic
shift at frame 648.

To deal with small and large outliers, outlier detection was used to identify unrealistic fo-
cus shifts in the top 3. A data smoothing approach was implemented to smooth out the
irregularities. A frame is classi�ed as an irregularity if the top 3 focal planes are not adjacent
(contiguous) to each other, e.g. frame 648 with a top 3 being slices [5,8,9] in Figure 21.

A sliding window approach was used for smoothing. This sliding window technique is used
to process the data in a sequential manner. It iterates starting fromTn=0 until the end of the
time sequence, and at each iteration it performs an operation that results in a normalized top
3 selection, see Figure 21.

The slider size was set to 5 in order to examine adjacent time frames fromTn� 2 to Tn+2 .
The top 3 of these frames are used to determineTn . The top 3 combination that occurs most
frequently inTn� 2 to Tn+2 was selected.
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6.5 Data sets for classi�cation
Once we have obtained the sharpest images of the embryo, we can move on to the �nal step
in the data pre-processing workow. This stage involves shaping the data for training. The
data is 4-dimensional, with each embryo characterized by the number of time points (1550),
focal planes (3) and image size. As a result, the array for all embryos has the shape of (92,
1550, 3, 400, 400). There are several problems with this setup.

1. First, not all videos have the same length. Therefore, the number of time frames is
sometimes smaller than 1550. As a result of this inconsistency, empty frames must be
added to �ll up this space, because a neural network input layer expects the same shape
as input, resulting in a higher likelihood of over�tting (due to the neural network simply
memorizing empty frames).

2. Secondly, it would be impossible to train a batch with the current resources, as it would
not �t into the VRAM memory.

Based on the aforementioned arguments, maintaining the same data structure is not feasible.
This raises the question of which structure would be most appropriate for our task. We need
to consider the following factors when making this decision:

1. Di�erent ages of the samples:

ˆ An age threshold must be set so that all the samples in the data set have the same
length. Only samples of the same shape can be processed by a neural network.

2. Selecting an evenly spaced subset of frames for each sample, as discussed in Section 6.2.2.
This process involves the following considerations:

ˆ Determining the optimal number of time frames for the samples.

ˆ Accounting for embryo motion, as removing too much data could leave out the
important context of a frame.

ˆ Investigating the possibility of using only the sharpest slice instead of the 3 sharpest
slices.

3. Downsizing the (400� 400) frame to (224� 224).

The conclusion from this is that it is not possible to create the right data set in advance,
as there are multiple considerations to be taken into account, and there is no one-size-�ts-all
solution. This is because it is not known a priori which characteristics will work best. It would
be naive to expect only one data set will be the best one.

In order to �nd out which data set performs best, exploration must be carried out. The
�rst step is to set an age/frame threshold. The shorter samples have around 800 frames. So it
would make sense to set the threshold to 800. This measure reduces the data structure from
(92, 1550, 3, 400, 400) to (92, 800, 3, 400, 400). Since, not all 800 frames can be used, the
subset is linearly subsampled, for this di�erent lengths of 10, 50 and 75 are chosen, referred
to asTp .
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The disadvantage of this approach is that it removes morphological data, which includes move-
ments before and after the selected frames. To account for this, a data set is created that
also includes the 2 frames before and after the snapshot, denoted as +2 and -2, respectively.
In this case the context is set toTc=5 . In Figure 22, an example of a subset with 5 temporal
samples and a previous/next context is shown.

We also created data sets with only the single sharpest focal plane, instead of the top 3.
In this case the dimensionTd of eachTp in the data set is set to 1. For example, the data set
with (Tp=50 ; Tc=1 ; Td=1 ) would have the data structure of (92, 50, 1, 400, 400).

Finally, it was decided to downsample the 400� 400 frame to 224� 224. As a result, the
samples take up less VRAM memory, allowing for larger batch sizes. It also speeds up the
training process and it could also prevent over�tting. The VGG and E�cientNet models were
also trained with this ratio, which could potentially lead to better transfer learning.

Figure 22: Example of the data representation for a training set including 5 time points
with a context of +/- 1 ( Tp=5 ; Tc=3 ). Five equally-spaced frames are selected between 0-
800, resulting in frames [0, 200, 400, 600, 800]. For each frame, the previous/next frames
are also selected, except for the frames at the ends of the time spectrum. The time is
represented in HH:MM format.
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6.5.1 Image transformations and augmentations

One of the major factors when training a neural network is over�tting, which is more likely
to occur with small data sets, such as ours with only 92 samples. Data augmentation can be
applied to the images to create additional variations in the images. This can help the model to
learn the patterns and features in the images, rather than learning simple features. Two im-
age transformation approaches are proposed, namely the ColorJitter and random pixel Shu�e
methods:

The �rst approach uses thecolorjitter function of thepytorch library to adjust the bright-
ness and contrast of the images. For each training epoch, the brightness and contrast are
selected uniformly between a factor of 0.1 and 1.6. Additionally, a random horizontal and
vertical ip is added with a probability of 0.5 to ensure that the network does not encounter
the same image twice.

The second method involves the use of aRandom pixel Shu�efunction, which shu�es all the
pixel values in an embryo image, resulting in the loss of the structural features while preserving
the pixel intensity distribution, see Figure 23. This is done once before the training started.
This approach is applied to verify if the models are actually learning the embryo structure and
not simply relying on simple features like pixel distribution.

(a) (b)

(c) (d)

Figure 23: Comparison between the original and ColorJitter/Shu�e data set.
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7 Training the proposed models
In this section, we will discuss the neural networks for tackling the embryo implantation clas-
si�cation task. In total, 3 di�erent types of network architectures are proposed:

1. The TimeBlocksnetwork, a network composed of mini-networks dedicated to learning
di�erent time phases.

2. Adapted versions of theVGG network.

3. Adapted versions of theE�cientNet .

The TimeBlocksnetwork was built from scratch, the existingVGG andE�cientNet networks
required modi�cations for both input and output layers to �t our 4-dimensional data set. Sec-
tion 7.1 provides a detailed overview of the models.

The proposed models for implantation potential classi�cation models are trained using an
identical approach. The data set is split into a training and test set with a split value of 0.8,
resulting in a training set of 73 samples, and a test set of 19 samples. The ratio of(0; 1) labels
for the whole data set is (63%, 37%). This ratio was also set within our training and test
sets. This results in a distribution forD train of (46; 27) and forD test of (12; 7), both equal to
(63%; 37%).

Furthermore, parameters were initialised as follows. The networks were trained for 200 epochs.
The learning rate was set to10� 4, and a batch size of 16 was used. Adam and SGD were used
as the optimizers, and binary cross-entropy loss was used to calculate the loss. The implanta-
tion potential was determined using theSigmoidactivation function. Table 6 contains all the
general parameters used to train the models.
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7.1 Proposed models

7.1.1 TimeBlocks network design

TheTimeBlocksnetwork is a network speci�cally designed to classify time series using a multi-
branch structure. In this multi-branch structure, not all time series images are processed by
the same convolutional layers, but are instead divided into a number of branches. Each branch
presents its ownmini-network for a speci�c subset of time series frames. Thismini-network
consists of a set of convolutional and linear layers. The outputs of thesemini-networksare
concatenated and passed through the output layers to produce the �nal classi�cation.

This is di�erent from a single-branch network likeVGG, which processes the input data through
a sequence of layers, where all the layers are connected to each other. Themini-networksper-
form independently of each other, and are therefore able to capture certain time features of
the data set. The structure of amini-block is as follows:

1. A subset of (batch normalized)Tp � 224� 224 is assigned to a mini-block.

2. Multiple combinations ofconvolutions, ReLUactivation andmax poolingare applied to
the Tp � 224� 224 input, resulting in multiple feature maps of size7 � 7.

3. The feature maps are then attened, and connected to a 128-vector, representing the
subset of frames.

All mini-network'svectors are concatenated to form a large layer, where the classi�cation
takes place. In order to avoid over�tting and memory issues, it was not possible for each time
frame to have an individualmini-network. For this reason, we experimented with 5, 10 and 20
numbers of mini-networksTb. In total, the mini-networkinput undergoes 5 convolutions and
max pooling.

The size of themini-networksin the TimeBlocksnetwork depends on the convolution �l-
ter con�gurationTf . Two con�gurations were tested in the experiments:Tf =8 andTf =32 . For
a mini-networkwith Tf =8 the 5 convolutions consist of [8, 16, 16, 32 and 32] �lters and for
Tf =32 of [32, 64, 64, 128, 128] �lters.

The concatenation layer had a size ofTb � 128, whereTb is the number ofmini-networks.
This layer connects to the �nal layer, which contains aSigmoidfunction and a single node.
All custom parameters can be seen in Table 9. The whole network can be seen in Figure 24.

Optionally, theTp � 224� 224 could be batch normalized before passing a subset to the
branches, during training 2 con�gurations were used: with batch normalizationTbn= T rue and
without Tbn= F alse .
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Figure 24: The di�erent parts of the TimeBlocks network, from top to bottom. First,
the time frames Tp are assigned to time blocksTb, which in this example were both
initialized to Tp=5 and Tb=5 . Optionally, a batch normalization is performed for all inputs.
Second, each time frame is processed by a dedicated Timeblock, which functions as a 'mini-
networks'. Through 5 iterations of convolution and max-pooling layers, the 224� 224 input
is transformed into 128 feature maps of 7� 7. The number of feature maps generated per
iteration depends on theTf selected. In this �gure theTf is set to 32. The feature maps are
then attened and connected to a 128-vector. Next, the 5 'mini-networks' are concatenated
into a layer of sizeTb � 128. Finally, this layer is connected to the �nal classi�cation layer,
which contains a sigmoid node to determine the implantation potential.
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7.1.2 VGG-16 and E�cientNet

In order to use theVGG andE�cientNet for our task, 2 major modi�cations are made.
First, the input layer is replaced to handleTp channels instead of the standard 3 color
channels. Optionally, an optional batch normalization was placed at the start of the net-
work.

Second, the classi�cation layer of these models is made to classify for 1000 classes,
whereas our goal is to get a 0{1 value from just a single node. Therefore, we had to
modify the output layer to �t our requirements. Apart from these 2 changes, the core of
the model remains the same.

The VGG16network consists of 16 layers. The 16th layer is removed and replaced by a
single node layer. This layer is connected to the 15th layer, which consists of 512 values
obtained by 2D adaptive average pooling of 7x7 feature maps. The adaptedVGG16net-
work is shown in Figure 25.

The E�cientNet network has 20 layers. The 20th layer is removed, and replaced by
a single node layer. This layer is connected to the 19th layer, which consists of 1280
values, obtained by the 2D adaptive average pooling of 7x7 feature maps. The adapted
network can be seen in Figure 26. In contrast to the di�erent The model includes a
dropout layer with a probability of 0.2. It is also the only model that implements the
dropout layer.

Figure 25: The di�erent parts of the adaptedVGG16 network. The adaptations are
shown in green and the original part is shown in yellow. The �rst adapted part is the
input layer, where the input layer is changed to procces (224, 224,Tp) to (224, 224,
64) feature maps. Optionally, a batch normalization is performed for all inputs. The
layers 2{15 (yellow) of theVGG16 remain unchanged. The second adapted part is
the classi�cation layer, the 4096 nodes from the 15th linear layer are connected to
the classi�cation layer, which contains a sigmoid node to determine the implantation
potential.
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Figure 26: The di�erent parts of the adaptedE�cientNet network. The adaptations are
shown in green and the original part is shown in yellow. The �rst adapted part is the
input layer, where the input layer is changed to procces (224, 224,Tp) to (224, 224,
32) feature maps. Optionally, a batch normalization is performed for all inputs. The
layers 2{19 (yellow) of theE�cientNet remain unchanged. The second adapted part is
the classi�cation layer, the 1280 nodes from the 19th linear layer are connected to the
classi�cation layer, which contains a sigmoid node to determine the implantation potential.
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7.2 Hyperparameter tuning overview
This section includes all the training hyperparameters discussed previously, which are presented
in Tables 5 to 9. The Table 5 provides hyperparameter for the di�erent data sets. Table 6
contains the general training parameters. The Tables 7{ 9 show the parameter speci�c to
E�cientnet , VGG andTimeBlocks.

Table 5: Dataset hyperparameters.

Hyperparameter Value
Time Splits Tp 10, 50, 75

Number of
DimensionsTd

1, 3

Frame context Tc 1, 5

Data
Transformations

Default,
Colorjitter,

Random Pixel Shu�e

Table 6: General training hyperparame-
ters.

Hyperparameter Value
Epochs 200

Batchsize 16
Learn rate 10� 4

Loss function BCE
Optimizer Adam, SGD

Batch normalization Tbn True, False
Train/Test split 0.8

Table 7: E�cient network hyperparam-
eters.

Hyperparameter Value
Pretrained True
Image size 224x224

Table 8: VGG network hyperparame-
ters.

Hyperparameter Value
VGG 16

Pretrained True
Image size 224x224

Table 9: TimeBlocks network hyperparameters.

Hyperparameter Value
Time Block Tb 5, 10, 20

Time Block
Filter con�guration Tf 8, 32

Image size 224x224
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8 Results
In this section, the pre-processing and performances of the classi�cation models are presented
in 3 parts. First the U-Net model performance on the embryo center detection task is presented.
Next, the embryo's trajectory smoothing and detection of the most informative focal planes are
presented. In the third part the model's performance for predicting the implantation potential
is reported.

8.1 Model performance: embryo center detection
The �rst step involved creating models to detect the location of an embryo. This was done
by subjecting the U-Net models to hyperparameter tuning to determine the most optimal
combination. In total, 48 models were trained and evaluated based on their performance on
the training and test set, with the binary cross entropy (BCE) loss used as a metric. The
hyperparameters that were adjusted during the experiment were the batch size, learning rate,
kernel size and the U-Net feature map con�gurations.

Overall, 44 of 48 models converged within the 12 epochs achieving a BCE loss lower than
0.02. Interestingly, the remaining 4 models, which had higher losses between 0.06 and 0.12,
all used the same learning rate of 1e-4, and had a low feature map con�guration ofm = 32.

Out of the 48 models, 40 achieved a loss lower than 0.010. Speci�cally, 23 models had a
loss of 0.005, 11 had a loss of 0.006, and the remaining models fell within the range of 0.007
to 0.010. The hyperparameter causing the largest negative impact on the loss was the batch
size, with larger batches resulting in higher losses; although this was only observed when larger
batches were combined with a low feature map con�guration ofm = 32.

Zooming in on these 40 best performing models, we see no major di�erences for feature
map con�gurations, only thatm = 128 always performed with a consistent 0.005 loss. The
inuence of the kernel size, had no impact. Models using kernel sizes 2 and 3 performed simi-
larly, see Figure 27.

Minor di�erences were observed between the learning rates. However the 8 worst perform-
ing models used a learning rate of 1e-4, which may give a distorted picture, because the better
performing models also used a learning rate of 1e-4.

In general, there were no major di�erences in the training and test losses across di�erent
hyperparameter combinations. Most models had similar performances, with no single model
standing out as the best. Therefore, the decision was made to select the optimal model based
on the average di�erence between training and test loss throughout the training process. The
model with the least di�erence of only 1e-3 between test and training loss was used with a
batch size of 16, a learning rate of 1e-4, feature map con�guration ofm = 64, and a kernel
size of 2, see Figure 28.
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Figure 27: This �gure compares the performance of an U-Net model across di�erent hy-
perparameters using training and test loss metrics. The 4 hyperparameters are: batch size,
number of feature maps, learning rate, and kernel size. The bars correspond to the loss
after the 12th epoch, and the black lines above and below each bar represent the upper
and lower bounds of a 95% con�dence interval. The upper row shows the performances
for each hyperparameter setting. The lower row represents all 48 models. In general, the
models performed similarly when using the same settings. The parameters show to be
more favourable for low batch sizes and learning rates. Notable is that the U-Net models
with a feature map con�guration of m = 128 have consistently led to low losses.
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Figure 28: The model with the smallest di�erence between its training and test losses. This
model has the following settings: batch size of 16, feature map con�guration ofm = 64, a
learning rate of 1e-4, and a kernel size of 2. As we can see, the training loss values decrease
from 0.176 to 0.009 and the test loss values decrease from 0.177 to 0.009 as the number of
epochs increases. The model achieved a training loss of 0.009 and a testing loss of 0.009
after 12 epochs.

8.2 Trajectory estimation and smoothing
The second step involves obtaining the center coordinates of the embryo, by performing bi-
nary thresholding and connected component analysis (CCA) on the U-Net network outputs.
Overall, this approach was able to determine the location of the embryo successfully for all
samples. Also, it was able to detect abrupt embryo changes. However, further investigation of
the embryo's trajectory revealed a small jerking e�ect in the embryo's movements. In a small
fraction of samples, outliers were found, appearing as abrupt spikes in embryo movement. To
address this issue, the LOWESS smoothing function was applied to smooth out the trajectory
movement over the time-span. This step was able to correct for coordinates appearing as
outliers. The correspoding results can be found for all 92 samples in Appendex A.4.

The predicted and smoothed coordinates are illustrated in Figure 29. This �gure represents
what the majority of our data set looks like. The embryo trajectory is tracked over the whole
time range, and non-embryonic images were removed. The LOWESS function successfully
smoothed out the jerking e�ect while still preserving the overall trajectory. Each sample in
Figure 29 has the following speci�cs:

1. LD74 well06/ 5705well03:Across (almost) the whole sequence the jerking can be seen,
shown by the up and down peaks.

2. 4431well07:Outliers around frames 1125, 1250 and 1275 are corrected by smoothing.

3. 5476well03: Around frames 800 a gaps is observed, indicating that no embryo was
detected during this time frame.

In a small part of the data set, extreme outliers were observed, as can be seen in Figure 30.
These outliers mainly occurred when the sample age was beyond the embryo age threshold,
which was set to 800. Figure 30 can be summarized by:
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1. 5623well05:Outliers around frames 825 and 900 are corrected through smoothing.

2. H2563well06:Outliers around frame 1300 are corrected through smoothing.

3. 5607well02:Outliers around frames 1225 and 1350 are corrected through smoothing.

4. H2549well03:The trajectory predictions between frames 125 and 375 are very unstable,
with abrupt positional changes observed for both the X and Y coordinates.

Figure 29: The embryo movement in the x and y directions. The horizontal axis represents
the age of the embryo, and the vertical axis represents the coordinates in the 928x928
frame. The red vertical line shows the age threshold of 800. In general, the samples in this
�gure shows that the jerking e�ect is corrected by the smoothing function.

51



Figure 30: The embryo center trajectory movement in the x and y dimensions. The hori-
zontal axis represents the age of the embryo, and the vertical axis represents the coordi-
nates in the 928x928 frame. The normal and smoothed horizontal trajectories are depicted
by blue and brown colors respectively, while the vertical trajectories are represented by
green and black colors. The red vertical line shows the age threshold of 800. In general,
the samples in this �gure show that the jerking e�ect is �xed by the smoothing function.
However, inconsistencies can be observed in the center determination, for embryo images
older than the age threshold.
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8.3 Detection of the most informative focal planes
In the third step, a sharpness analysis was carried out on all the focal planes. This was done to
obtain the 3 most informative focal planes throughout the video sequence. Altogether, it was
noted that the sharpness distribution remained stable over extended time periods, with the 3
sharpest focal planes being located next to each other in 98.2% of time. Even after focus shifts
the corresponding sequences remained stable. Sharpness consistency and focus shifts can be
seen in Figure 31, for 4 samples:H2547, 5850, 5607andR1635. In the samplesH2547, 5850,
and R1635small shifts were observed, in contrast to5607, where over the whole sequence
the 3 most informative focal planes distribution was stable.

Figure 31: The focal plane sharpness distribution over the time sequence. The horizontal
axis represents the age of the embryo, and the vertical axis represents the focal planes. The
3 sharpest focal planes are depicted in green. In general, the samples in this �gure show
that the distribution remains stable, as indicated by the steady green line. In addition,
there are noticeable shifts in focus, indicated by the abrupt green shifts. Focus shift time
intervals can be seen for all samples around frames 575 (day 2.0) and 1150 (day 4.0).
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The number of correctly classi�ed time frames was 98.2%. Sharpness normalization was ap-
plied to correct outliers and smooth the trajectory for the remaining frames. In Figure 32, the
e�ect of sharpness normalization is shown for two types of samples.

On the left are the ones with minor outliers consisting of samples:5313 and 6010. In 5313
outliers between the frames 600{900 were found and corrected via normalization. For6010
outliers can be found across most of the time-span, shown by the unstable top-3 pattern. For
both these samples the distribution is more stable after the normalization.

On the right side are those with unstable sharpness distributions:H936 and H2549. Sam-
ple H2549 has no clear focus positioning between frames 100 and 200. SampleH936 seems
to be unique in the way that no stable top-3 is found through most of the sequence; meaning
that the top-3 consists of non-adjacent focal planes, indicated by the red gap between the
green part. For these samples the minor shifts were corrected by normalization, but the major
shifts inH2549 in frames 100{200 could not be compensated.

Figure 32: The focal plane sharpness distribution over the time sequence, before and after
normalization. The horizontal axis represents the age of the embryo, and the vertical axis
represents the focal planes. The 3 sharpest focal planes are depicted in green. The samples
all show some kind of irregularity, which is partly corrected by normalization.
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8.3.1 Temporal sampling

Repeated patterns were found when looking at the average gradient magnitude (AGM) values
over the time-span. These patterns repeat themselves after 5 frames. Generally, the pattern
begins with the highest AGM value, after which the AGM values subsequently decrease with
each frame until the last frame, after the cycle repeats itself. Frame 1, which contains the
highest peak AGM value, is classi�ed as the keyframe. For our videos, the key frame period is
set to 5. In Figure 33, the key frame pattern over the time-span is shown. This �gure shows
that this pattern persists throughout the entire time sequence.

Figure 33: The average gradient magnitude (AGM) distribution over the time sequence
for the focal planes 1 (blue) and 5 (red). In the top plot, the horizontal axis represents the
age of the embryo. The vertical axis represents the AGM value. Overall, it is evident that
focal plane 5 is sharper throughout the whole sequence. The bottom plots zooms into the
key frame pattern, with the vertical lines representing the key frames at the start of the
repeating pattern that occurs every 5 frames. Focal plane 1 shows that the peak height
varies between patterns for the 1100-1200 interval. Also, focus shifts are visible around
frames 580, 800, 850 and 1150.
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8.4 Neural network results
In this section the results of training all the neural networks are presented. This is done for
the di�erent network types: the TimeBlocks network, E�cientNet and the VGG16 network.
In total 960 models were trained with di�erent parameters and data sets. All parameters are
reported in Tables 5 to 9.

8.5 TimeBlocks network
The �rst type of model we trained was the TimeBlocks network. We trained a total of 672
models on the 3 di�erent data sets: Default (224), ColorJitter (224), and Shu�e (224).

8.5.1 TimeBlocks - optimizer & batchnorm inuence

The performance was mainly determined by 2 factors: (i) the type of optimizer used, Adam or
SGD and (ii) the presence of a batch normalization (BN) layer. The following section describes
the di�erences in performance between these factors.

None of the models trained with SGD were able to learn on the training set: all models
achieved a 63% accuracy. After further investigation, we found out that these models had a
recall of 1.0 for label 0 and 0.0 for label 1, which explains the consistent 63% accuracy score.

On the other hand, the models trained with Adam andTbn= T rue performed well on theDefault
data set achieving an average training loss of 0.006� 0 and a 100% accuracy after 100 epochs.
In comparison to the models trained with Adam andTbn= F alse needed 200 epochs to reach a
training loss of 0.065� 0.84e-2, and had an accuracy of 98%, see Table 10.

Table 10: The mean TimeBlocks performance per data set after 200 epochs.

Con�gurations Data sets
Training
loss

SD �
Test
loss

SD �
Training
acc.

Test
acc.

opt=Adam
Tbn= T rue

Default
ColorJitter
Shu�e

0.001
0.456
0.050

7.51e-4
0.13
8.3e-2

4.27
2.04
1.43

2.08
1.76
0.57

100%
80%� 8
99%� 3

44%� 8
43%� 8
52%� 11

opt=Adam
Tbn= F alse

Default
ColorJitter
Shu�e

0.065
0.660
0.643

0.84e-2
1.26e-2
2.87e-2

2.67
0.66
0.67

1.69
1.70e-3
2.83e-2

98%� 2
63%� 0
64%� 3

46%� 11
63%� 0
60%� 6

opt=SGD
Default
ColorJitter
Shu�e

0.672
0.674
0.670

2.57e-3
1.75e-3
4.09e-3

0.673
0.674
0.669

2.11e-2
1.67e-4
5.20e-3

63%� 0
63%� 0
63%� 0

63%� 0
63%� 0
63%� 0

In the case of theColorJitter data set only the models trained with Adam andTbn= T rue were
able to learn, albeit at a slower rate with a gradual decrease in training loss starting from the
50th epoch and �nally reaching 0.456� 0.13 at the 200th epoch, with an accuracy of 80%.
All other model con�gurations trained on the ColorJitter data set achieved a mean accuracy
of around 63%, with 1.0 recall for label 0 and 0.0 recall for label 1.
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Results were similar for theShu�e data set, where the Adam andTbn= T rue models were the
only ones able to reduce the training loss within 200 epochs. A training loss of 0.050� 8.3e-2
and a 99% accuracy were achieved.

When evaluating the performance of the models on the test data set, we found 2 outcomes.
1) Models that were capable of learning the training set had on average, higher test loss and
lower test accuracy. 2) Models that were unable to learn had the same training and test loss of
around 0.67 and similar accuracy of around 63%. All the training and test losses and accuracy
are shown in Figure 34.

Another interesting �nding was the recall classi�cation performance, that can be seen in
Figure 35. All models trained with Adam, all started the training with a recall of 1.0 for label
0 and a recall of 0.0 for label 1. During the training the model's the performance increases for
label 1, while it remains stable for label 0, for the models capable of learning on the training
set.

8.5.2 TimeBlocks: parameter inuence

This section investigates the inuence of the hyperparameters over the training process. These
hyperparameters are: dimensionality (Td), context (Tc) and the number of time points (Tp).
In contrast to the VGG16 and E�cientNet we have 2 additional parameters, which are theTf

& Tb, indicating the size and the amount of time blocks used in the network.

In Figures 36{37 the training loss trajectory corresponding to each hyperparameter is shown.
This was done only for the models able to learn, consisting of models trained with Adam &
Tbn= T rue for all the data sets. For theDefault set we also include the models withoutTbn.
The greatest impact had the �lter con�gurationTf . Time blocks starting withTf =32 �lters,
decreased faster in training loss than models withTf set to 8.

Remarkable is that the speed of achieving low training loss for theTd and Tc parameters
was in the order2 of (Td=1 ; Tc=1 ) ! (Td=3 ; Tc=1 ) _ (Td=3 ; Tc=1 ) ! (Td=3 ; Tc=5 ) for the mod-
els trained with theTbn, the order was exactly the opposite.

The number of time pointsTp also had an inuence; having more time points ensuring faster
learning. Models withTp=10 converged slower compared toTp=50 ^ 75. This was not the case
for models withoutTbn.

For the number of time blocks used in the network, the di�erence between theTb was minimal
for the Default and Shu�e data sets. But for the ColorJitter, there was a di�erence forTb=20

with 0.55 training loss compared to 0.4 forTb=5 , after 200 epochs.

2Ordered by convergence speed: from slowest to fastest.
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Figure 34: The average training performance of the TimeBlocks models over the training
trajectory for the models trained with Adam and SGD. The error bar represents the
standard deviation. In general, we see that the models trained with SGD (blue) did not
improve over the training set. In contrast to the Adam models trained withTbn= T rue

(red), these models were able to reduce the training loss for all data sets with average
training losses of 0.001, 0.456 and 0.050 for the Default, ColorJitter and Shu�e data sets.
The models without batch normalization (Tbn= F alse ) (blue) were only able to reduce the
training loss on the Default data set by 0.065. Unfortunately, the test loss increased while
the training loss decreased.
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Figure 35: The average training recall performance of the TimeBlocks models for the
models trained with Adam and SGD. In general we see that the models trained with
Adam (row 1,2) always output a 0 at epoch 1, resulting in having a recall of 1.0 for this
label. During training the models improve the recall of the label 0, while the recall of
label 1 remains constant. For the SGD, we see that the recall between labels 0 and 1 is
approximately equal at epoch 1 but converges quickly in favour of label 0.
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(a) (b)

Figure 36: The average training performance of theTb, Tf , Td, Tc and Tp for the Adam-
trained models with and without Tbn, on the Default data set. The �lter con�guration Tf

of eachTb had the largest impact on training loss. Interestingly, the Adam models with
and without Tbn have opposite performance forTp and Td, Tc; favouring larger data set
for models with Tbn, but the opposite for models withoutTbn.
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(a) (b)

Figure 37: The average training performances of theTb, Tf , Td, Tc and Tp for the Adam
trained models with Tbn on the ColorJitter and Shu�e data sets. For both the data set
we see that a larger data set ensures a faster decrease in training loss, see the plots
for Td, Tc and Tp. This is also the case for largerTf con�gurations, models trained with
Tf =32 decrease faster than models withTf =8 . Overall, the models trained on ColorJitter
were able to achieve a loss of around 0.45 and the Shu�e models were able to achieve a
much lower loss of around 0.1.
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8.6 VGG16
A total of 144VGG16models were trained on the 3 data sets: Default (48), ColorJitter (48)
and Shu�e (48). Many of these models achieved very low training losses, while some models
were not able to learn at all. To gain more knowledge about the training performance, we
noted the number of epochs where the training loss was below 0.35 for each model, which can
be seen in Figure 38. These results are discussed in Section 8.6.1.

8.6.1 VGG16 - Training loss & Over�tting

We start with the 48 models trained on theDefault data set. In total, 24 models were trained
with Tbn= T rue , all of these models reach 0.35 loss within less than 50 epochs, and all achieved
accuracy of 100%. The models that were trained with Adam tend to over�t twice as fast as
those trained with SGD.

Interestingly, the models trained withTbn= F alse were less likely to achieve low losses, with
only 10 out of 24 models achieving a loss of 0.35 after 200 epochs. The other 14 models all
performed above the 64% accuracy, with an average accuracy of 80% on the training set.

In contrast to the models trained on the Default data set, performance on theColorJitter
data set was less uniform, with no models achieving a loss below 0.35 and having accuracy
around 63%. Further investigation revealed that these models had a recall of 1.0 for label 0
and 0.0 for label 1, which explains the consistent 63% accuracy score. There were only a few
exceptions with a training accuracy of at least 78%, which were trained with larger training
sets:Tp=50 _ 75 with (Td> 1 _ Tc> 1) using Adam andTbn= T rue , see Table 11.

Table 11: Model parameters that achieved an accuracy of at least 78% for the ColorJitter
data set.

Tp Td Tc Optimizer Tbn
Training
Acc.

75 1 5 Adam True 90%
75 3 1 Adam True 82%
75 3 5 Adam True 78%
50 1 5 Adam True 86%
50 3 5 Adam True 82%

The Shu�e data set showed the same pattern as the Default data set, which means inability
to learn, except for the models trained withoutTbn, with an accuracy of 63%. The remaining
Tbn models all over�t with a 100% accuracy. Compared to the models trained on theDefault
data set, the (Shu�e) models took longer to reach a loss of 0.35.
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Figure 38: The number of epochs required to achieve a training loss of less than 0.35.
The horizontal axis represents the 48 models for the speci�c data set, the vertical axis the
number of epochs. The training accuracy is shown above each bar. The colour represents
the number of temporal frames in a data set. The top, middle and bottom plots show the
48 models trained on the Default, ColorJitter and Shu�e data sets. TheDefault models
with batch normalization all over�t within less than 50 epochs, with 100% accuracy. The
models trained with Adam over�t twice as fast as these trained with SGD. Models without
Tbn were less prone to 100% over�tting. Only one of theColorJitter model achieved a
loss below 0.35, using 75 time points with aTc=5 and a Td=1 . This Adam-trained model
performed much better than the other 47 models. The batch normalizedShu�e models
were over�tted with 100% accuracy. However, it took them longer to reach a loss of 0.35
compared to the models trained on the Default data set. The models withTbn= F alse had
an accuracy of 63%.
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8.6.2 VGG16: batch normalization and test loss

In this section we focus on the models that usedTbn= T rue , because these were able to achieve
lower loss for the Default and Shu�e data set. Figure 39 shows the average training and test
accuracy and loss for the Default and Shu�e data set.

The accuracy of theDefault set shows that the models using the Adam optimizer gener-
ally converge faster to a 100% training accuracy. Speci�cally, at the 18th epoch, with an
accuracy of 99.1� 0.013, while SGD had an accuracy of 99.0� 0.005 at the 38th epoch.

However, Adam's training loss trajectory is less stable, with large standard deviations dur-
ing the training process. In contrast, SGD shows a stable learning pattern. After the 60th
epochs, the loss reaches nearly zero for both the Adam and SGD trained models. However,
after 115 epochs the Adam models become unstable again.

In the Shu�e data set we observed a similar trend where the SGD is more stable during
training. However, it is noteworthy that Adam has unstable high training losses between the
58th and 84th epoch, with an average loss of 2.2� 5. Another key di�erence from the Default
data set is that it takes longer to reach accuracy close to 100%. The model trained with Adam
reaches an accuracy of 97� 0.49 at the 124th epoch, while the SGD models reaches 98� 0.06
at the 104th epoch.

The models performed the worst on theColorJitter data set, with no evidence of the model
learning. This resulted in a training loss of 0.66� 0.017 after 200 epochs for the SGD trained
models. Although the Adam optimizer demonstrated some learning ability, its performance was
highly unstable. An overview of all model performances can be found in Appendices A.5 to A.8.

While some models show very promising results on the training set, this is not the case for
the test set, with low training loss being proportional to a higher test loss. This can be seen
in the Table 12.

Table 12: Performance of optimizer andTbn choice for all the data sets.

Con�gurations Data sets
Training
loss

SD�
Test
loss

SD�
Training
acc.

Test
acc.

opt=Adam
Tbn= T rue

Default
ColorJitter
Shu�e

0.080
0.897
0.204

0.19
0.65
0.244

8.56
3.59
3.95

6.44
3.5
3.57

96� 11
69� 6
91� 14

53� 8
49� 11
53� 12

opt=Adam
Tbn= F alse

Default
ColorJitter
Shu�e

3.44
0.656
0.659

10.56
5.71e-3
1.92e-4

6.48
0.660
0.658

10.4
4.61e-3
16.3e-4

78� 12
63� 0
63� 0

53� 10
63� 0
63� 0

opt=SGD
Tbn= T rue

Default
ColorJitter
Shu�e

4.91e-4
0.66
1.75e-2

1.07e-4
1.74e-2
3.21e-2

1.63
0.68
2.08

0.472
6.31e-2
0.86

100� 0
63� 2
100� 7.91e-3

55� 11
60� 10
48� 14

opt=SGD
Tbn= F alse

Default
ColorJitter
Shu�e

0.37
0.66
0.65

0.25
3.82e-3
1.77e-2

1.08
0.66
0.67

0.58
6.24e-3
1.99e-2

82� 13
63� 0
63� 1

54� 10
63� 0
62� 3.04e-2
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Figure 39: The average training performance of the VGG16 models over the training
trajectory for the models trained with batch normalization. The error bar represents the
standard deviation. The accuracy and the training loss for the Default data set are shown
on the left. All these models reached a training loss of 0.0 around the 80th epoch. The
SGD optimised models converge slower compared to Adam. Interestingly, the training
loss trajectory of Adam is less stable compared to SGD. Also, after reaching a zero loss,
Adam becomes unstable again after the 115th epoch.
Performance of the Shu�e set is shown on the right. These models take longer to reach
an accuracy close to 100% compared to the Default data set. Remarkable, the Adam
models had unrealistically high training losses between the 70th and 90th epoch. Also,
the training loss was not able to reach zero. Overall, the test accuracy for all models varied
between 40% and 60%.
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8.6.3 VGG16: parameter inuence on the Default data set

This section is used to investigate the inuence of the hyperparameters during the training.
Figure 40 shows the trajectory of the training loss between the hyperparametersTd, Tc and
Tp. This was done only for the models that were able to learn on theDefault data set.

When we examined the models trained withTbn= T rue and SGD, we found that the values of
Tc andTd impacted the speed of training. Models trained on more complex data sets learned
more slowly. We observed that models trained with(Td=1 ; Tc=1 ), (Td=3 ; Tc=1 ),(Td=1 ; Tc=5 ),
(Td=3 ; Tc=5 ) needed on average (36, 32, 24, 23) epochs to achieve a training loss of 0.35. The
same trend was observed for the time points,Tp (10, 50, 75) needed (31, 28, 22) epochs to
reach a training loss of 0.35.

For the SGD models trained withTbn= F alse , we observed no di�erences between the (Tc and
Td) con�gurations, except for the(Td=1 ; Tc=1 ) with a training loss of 0.043 after 200 epochs,
compared to 0.413 for(Td=1 ; Tc=5 ) and 0.51 for(Td=3 ; Tc=1 ) and(Td=3 ; Tc=5 ). The results for
the Tp: (10, 50, 75) were (0.267, 0.419, 0.423) after 200 epochs.

The model trained with Adam did not show a favourable parameter con�guration. All the
results of this section are shown in Table 13.

Table 13: Parameter inuence forTc, Td and Tp for the models trained on the Default
data set.

Con�guration Results
Tbn Optimizer Parameters Epoch Training loss
True SGD Td=1 ; Tc=1 36 0.35
True SGD Td=3 ; Tc=1 32 0.35
True SGD Td=1 ; Tc=5 24 0.35
True SGD Td=3 ; Tc=5 23 0.35
True SGD Tp=10 31 0.35
True SGD Tp=50 28 0.35
True SGD Tp=75 22 0.35
False SGD Td=1 ; Tc=1 200 0.043
False SGD Td=1 ; Tc=5 200 0.41
False SGD Td=3 ; Tc=1 _ 5 200 0.51
False SGD Tp=10 200 0.27
False SGD Tp=50 200 0.42
False SGD Tp=75 200 0.42
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(a) (b) (c) (d)

Figure 40: The average training performance of theTd, Tc and Tp for the models trained on the Default data set. On the left side we can
see that larger data sets enable faster decrease in training loss for models withTbn and SGD. Interestingly, we see the opposite for the
models trained without Tbn. Here we see that data set with (Td=1 ; Tc=1 ) achieve lower losses. This is also the case forTp. On the right
side the Adam models are shown. All models withTbn= T rue achieved losses close to zero within 20 epochs and no di�erences between the
parameters con�gurations could be found. The Adam models withTbn= F alse were unable to achieve loss close to zero again, no di�erence
between parameters con�gurations could be found.
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8.7 E�cientNet

8.7.1 E�cientNet: over�tting

The last type of model we trained was the E�cientNet. We trained a total of 144 models
on 3 data sets: Default (48), ColorJitter (48), and Shu�e (48). Many models reached a very
low training loss. To gain more insights into the training performance, we noted the number
of epochs where the training loss fell below 0.35 for each model, which can be seen in Figure 41.

We start with the models that were trained on theDefault data set. All the models over-
�tted on the training set, reaching 100% accuracy at some point during training. How quickly
this over�tting was achieved depended on the optimizer used. The Adam optimizer was shown
to achieve a training loss of less than 0.35 in around 15 epochs. The models trained with SGD
achieved this loss within 50 to 120 epochs.

The SGD models were not able to learn on theColorJitter data set, as none of them reached
the 0.35 loss, with the average accuracy of 68%. On the other hand, the Adam models were
able to learn with the average accuracy of 95%.

The pattern in theShu�e data set was similar to the Default data set, with all models
over�tting with 100% accuracy. The Adam models were also faster to reach the loss of 0.35.
The Adam models trained on the larger data sets:(Tp=75 ; Tc=5 ; Td=1 _ 3) took more epochs to
reach this loss.

8.7.2 E�cientNet: optimizer inuence

The focus of this section is to explain the di�erences in performance between Adam and SGD
trained models. Figure 42 shows the accuracy and loss for the training and test set.

Starting with SGD, for theDefault and Shu�e data sets the training loss shows a stable
trajectory. The models achieved a training loss of 0.15� 0.05, and an accuracy of 99� 2% for
the Default data set. The models trained on the Shu�e data set achieved a training loss of
0.11� 0.07, and an accuracy of 100� 7% after the 200 epochs. The models performed less well
on theColorJitter data set, with a training loss of 0.68� 0.024, and an accuracy of 0.62� 0.03.

In contrast to the mean SGD training loss, Adam was not stable with large standard devia-
tion errors across the training trajectory. Despite this, the models trained with Adam achieved
accuracies of 98� 9%, 84� 11%, 96� 9% for the Default, Colorjitter and Shu�e data set,
respectively.
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Figure 41: The number of epochs needed to achieve a training loss of less than 0.35
for the E�cientNet models. The horizontal axis represents the 48 models for a given
data set, the vertical axis the number of epochs. The training accuracy is shown on
each bar. The colour represents the number of temporal frames in a data set. The top,
middle and bottom plots show the 48 models trained on the Default, ColorJitter and
Shu�e data sets. Accuracy of 100% is achieved by all models trained on theShu�e
and Default data set. These models also achieve a training loss of less than 0.35.
Adam optimized models achieve a< 0.35 loss faster compared to SGD. Interestingly,
Adam models take longer to reach 0.35 loss, when trained on larger Shu�e data sets.
For the ColorJitter data set, only the models trained with Adam were able to learn
with a mean accuracy of 95%.
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(a) (b)

Figure 42: The mean optimizer performances of the E�cientNet models over the training trajectory. The error bar represents the standard
deviation. On the left the performance for the Adam-optimized models is shown, and on the right is the performance for the SGD-optimized
models. The Adam-trained models show an unstable mean trajectory loss with high standard deviation peaks, especially for the model
trained on the Default and Shu�e data sets. The classi�cation accuracy for these models are 98� 9%, 84� 11% and 96� 9% for the Default,
ColorJitter and Shu�e data sets. The training loss of the SGD models converges slower than Adam, but SGD has lower standard deviation
of 99� 2%, 62� 3% and 100� 7% for the Default, ColorJitter and Shu�e data sets, respectively. Unlike the training loss, both optimizers
were unable to reduce the test loss.
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8.7.3 E�cientNet: parameter inuence

In order to examine the impact on the di�erent parameters, the training loss of all possible
con�gurations is presented in Figure 43 (SGD) and Figure 44 (Adam).

First, we discuss the SGD models trained on the Default and Shu�e data sets. All of these
models reach a training loss of 0.35 within 200 epochs. There is a large di�erence in learning
stability between these two data sets. Models withTc=5 have a less stable training loss curve
compared to the models withTc=1 . The combination ofTc=5 with Td=3 leads to even stronger
instability. In particular, at late time pointsTp=50 and Tp=75 , the impact of a higher context
and dimension make the training loss curve unstable.

On the ColorJitter data set, the network was unable to learn. The cumulative plot for these
parameters is shown in Appendices A.10 and A.11. It is worth to note that the models trained
on theShu�e data set start with a very high training loss in the �rst few epochs, after which
it returns to normal.

The models trained with Adam all had an unstable training loss pattern, except for the smallest
data set(Tp=10 ; Tc=1 ; Td=1 ). The larger the data set, the more unstable the loss curve was.
Interestingly, the models trained on theColorJitter data set had overall a more stable loss
curve; mean losses around 0.25, 0.4, 0.5 were reached forTp of 10, 50, 75, respectively.

The stability of the models could be ordered from high to low asTp = (10; 50; 75) and
within a Tp as (Td=1 ; Tc=1 ) > (Td=3 ; Tc=1 ) _ (Td=1 ; Tc=5 ) _ (Td=3 ; Tc=5 ). This shows that
larger data sets result in more instability during training, with the model trained on the largest
set (Tp=75 ; Tc=5 ; Td=3 ) exhibiting the highest training instability.

The cumulative plot for these parameters can be found in Appendices A.9-A.11.
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(a) (b) (c)

Figure 43: The training loss performance of the E�cientNet models optimized with SGD for all the data set combinations. The models
trained on the ColorJitter data set were not able to improve the training loss. The models trained on theDefault data set were able to
learn; in particular, Tp=10 (blue) reached a loss of around 0.20 in 200 epochs. The training became unstable as more dimensions were added
to the data set. The stability could be ordered from high to low as: (Td=1 ; Tc=1 ); (Td=3 ; Tc=1 ); (Td=1 ; Tc=5 ); (Td=3 ; Tc=5 ). These observations
also accounted forTp=50 (orange) andTp=75 (green). However, for theseTp the training loss showed to be less smooth. Especially, for the
larger data set (Td=3 ; Tc=5 ) , many instabilities were found. TheShu�e data set had similar behaviour, with the exception of modelsTp=75

with ( Td=1 ; Tc=5 ) _ (Td=3 ; Tc=5 ), which showed slightly higher instabilities. Nonetheless, the models trained on theShu�e data set showed
to reach even smaller losses around 0.1 after 200 epochs.
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(a) (b) (c)

Figure 44: The training loss performance of the E�cientNet models optimized with Adam for all the data set combinations. The mod-
els trained on theDefault and Shu�e data sets were able to reach losses close to zero very quickly. However, with the exception of
(Tp=10 ; Td=1 ; Tc=1 ), the training curve of the models was very unstable with large variations. The stability could be ordered from high
to low as: (Tp = 10; 50; 75) and within a Tp as (Td=1 ; Tc=1 ) > (Td=3 ; Tc=1 ) _ (Td=1 ; Tc=5 ) _ (Td=3 ; Tc=5 ). Larger data set results in more
instability during training. The models trained with ColorJitter are more stable, reaching losses below 0.25, 0.4, 0.5 forTp of 10; 50; 75,
respectively; except for the models with (Tp=75 _ 50, Td=3 ; Tc=5 ), which showed higher instabilities during training.
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9 Discussion
In this study, videos of IVF embryos were used to train 960 machine learning models to
investigate whether these models are able to predict the implantation potential. To achieve
this, a workow was developed to extract the most informative content from the videos. These
data sets were then used to train the TimeBlocks, VGG16 and E�ecientNet networks, among
which the TimeBlocks network was speci�cally designed to handle longitudinal data.

9.1 Pre-processing: workow
The �rst part of the workow consisted of cropping the embryo images using an embryo lo-
calization approach. The sub-research question posed was:'SQ1: Is it possible to localize the
position of an embryo in the frame?'. Training the U-Net with multiple con�gurations showed
that the U-Net was able to successfully predict the location of the embryo. In addition, the
U-Net was also able to successfully detect the presence or absence of an embryo.

The U-Net was trained on 116� 116 images downsampled from the original 928� 928 res-
olution. This contributed to the model's generalization as it was only trained on a small subset
of 390 images from 13 embryos. Based on Figure 27 we can conclude that creating 48 U-Net
models might have been too excessive, as they all performed well; especially, the U-Net models
trained withm = 128.

The LOWESS coordinate smoothing proved to be e�ective, successfully correcting the jerking
e�ects. After cropping, the average gradient magnitude value was able to give a sharpness rat-
ing. Figure 31 provides convincing evidence that this approach is able to compute the sharpness
distribution within a sample and can identify the associated focus shifts. What strengthens
this argument is that the AGM results were able to detect the keyframe pattern.

9.2 Proposed models: over�tting
When evaluating the TimeBlocks, VGG16 and E�cientNet models, a common conclusion was
drawn: models that were able to reduce the training loss performed worse on the test set.
The over�tting on the training set became more evident as all the 3 network types were also
able to perform equally well on the Shu�e data set. These �ndings proved that the models
were unable to detect patterns between the time points, but instead relied on some form of
memorization, like pixel counting. Generally, the models over�tted faster on the Default data
set, likely due the combination of multiple trivial features like embryo well placement.

Furthermore, the results revealed that label imbalance also plays a role in the likelihood of
over�tting. Based on Figure 35, we see that the models are mostly �ne-tuned for label 1
(pregnancy). This is not surprising, given that the training set contains only 27 samples for
this label. Models trained on such small sets are prone to over�tting and lack generalization.

The implementation of dropout layers could potentially prevent over�tting and improve model's
generalization. However, the dropout present in the E�cientNet had no e�ect, while this
model, with only 5.3 million parameters, should be the most a�ected by it. It is likely that,
if the dropout would be implemented for VGG, it would be ine�cient, due to its 138 million
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parameters. Limiting the number of learnable parameters could also be an option to prevent
over�tting, but this can only be successful if the likelihood of learning these trivial features is
reduced.

In addition, the "trivial features" argument could also be the reason that the models over�t
slower for the ColorJitter data set. In this data set, the images were augmented di�erently for
each iteration, thus discouraging the learning of "simple" training set patterns.

9.3 Proposed models: parameters
In general, two parameters had a large impact on the training loss curve: (i) The addition of
the batch normalization layer at the start of the network, and (ii) the choice of optimizer (SGD
or Adam). The E�cientNet experienced no di�erence with or without the batch normalization
layer; likely due to the fact that it already includes many batch normalization layers. Only the
VGG16 and TimeBlocks network with the batch normalization layer added were able to over�t
on all data sets, except for the Colorjitter data set. This di�erence could be explained by the
way a batch is normalized, by �tting the data to the mean and variance using the trainable
parameters and � . Normalizing for ColorJitter data set is a greater challenge due to its
varying composition at each iteration.

The choice of optimizer played an interesting role on the 3 networks. The TimeBlocks models
trained with SGD were not able to reduce the training loss, as can be seen in Table 10. For the
E�cientNet and VGG16, the SGD optimizer showed to result in a more stable training loss
curve, with less training loss spikes compared to Adam. This di�erence could be the result of
a too high learning rate of10� 4 for the models trained with Adam. To prevent this measures
like areduce learning ratefunction could be implemented.

Based on Figure 44, we can conclude that the models trained on larger (more complex) data
sets experience high training loss spikes. The models trained with(Tp=10 ) were more stable
compared to(Tp=50 ; Tp=75 ). Investigation of the dimensionality and context parameters showed
the same correlation between data complexity and training stability: the samples trained with
(Td=1 ; Tc=1 ) were the most stable, followed by(Td=3 ; Tc=1 ); (Td=1 ; Tc=5 ); (Td=3 ; Tc=5 ). This
training instability was present to a lesser extent in the ColorJitter data set, which was caused
by the introduced additional variations that regularize the model.

Further investigation of the non-technical parameters: time points, focal planes and contexts
showed that more complex data sets over�t faster; in the particular order for focal planes and
context:

(Td=1 ; Tc=1 ) ! (Td=3 ; Tc=1 ; _ Td=1 ; Tc=5 ) ! (Td=3 ; Tc=5 )

and for the time points:
Tp=10 ! Tp=50 ! Tp=75 :

These results can be explained by the fact the model had more data-rich samples to e�ectively
over�t faster on.

Interestingly, when comparing these statistics against models trained without the batch nor-
malization layer, shown in Figure 36, we see the exact opposite for(Tp; Td; Tc) in terms of
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over�tting time. This could be due to the fact that, without this layer, the larger samples
become too noisy, making even over�tting too di�cult.

9.3.1 TimeBlocks models: speci�c parameters

The TimeBlocks models have 2 additional parameters: the number of time blocksTb and the
(�lter) size of each blockTf . The following relationship was found between the number ofTb

and the likelihood of over�tting: a TimeBlocks network containing 20 mini-networks over�ts
the fastest, followed byTb=10 and Tb=5 . The trend for larger networks to over�t faster also
holds for the second parameterTf .

This can be explained by the fact that larger models have more parameters and it was in-
tended that these additional model parameters would learn speci�c time-interval features.
However, due to the limited training size, these additional model parameters were prone to
over�tting.

9.4 Research Question & Sub-questions
In this the study we attempted to give an answer to the research question and the related
sub-questions (SQ). The sub-questions are repeated and briey answered below, based on the
aforementioned information:

1. Is it possible to localize the position of an embryo in the frame?
Yes, the results showed the trained U-Net was able to successfully detect the location
of an embryo.

2. Is it possible to identify the most informative focal planes for a given time frame?
Yes, the AGM technique could identify the focal planes with the most informative con-
tent. Furthermore, this robust method was also able to identify focus shifts.

3. What is the impact of the di�erent data set con�gurations on the performance?
The inuence of the data set con�gurations on the model performance could not be
determined, due to over�tting. What we did observe is that more complex data sets
were able to over�t faster when models were trained withTbn= T rue .

4. Is a multi-branch network structure able to learn the features of a speci�c time interval?
The trained TimeBlocks models also over�tted, because of this we were unable to de-
termine whether a multi-branch network is able to learn the features of a speci�c time
interval.

5. Are the traditional models, VGG16 and E�cientNet able to adapt to our classi�cation
task?
We are unable to answer this question, given the speci�c circumstances in which the
models were trained. The pre-trained models were unable to generalize and over�tted;
thereby making it impossible to determine whether the (kernel) features optimized for
the ImageNettask could be bene�cially applied to our binary task.
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9.4.1 Research Question: Can an AI model predict the implan-
tation potential of an IVF embryo based on time-lapse
developmental videos?

The primary question of this study was whether an AI model could accurately predict the
implantation potential of an IVF embryo. After analyzing the results, we conclude that all the
960 models analyzed were unable to deliver on this task. This is due to the aforementioned
reasons, including the fact that the data set is prone to over�tting due to limited data and
label imbalance (63% vs 37%).

9.5 Limitations and Future work
The research conducted in this study was limited by several factors. Starting with the initial
data set of 820 compressed videos that contain less detail. Since neural network bene�t from
using high-quality input data, future work should potentially use uncompressed material. If
this option is not available, the possibility of processing keyframes in the data set should be
explored, since these frames are known to encode the most details. The data set consisted of
92 samples, which proved to be too few to build a binary classi�cation model. As this was the
main reason for the over�tting, future research should include at least hundreds or perhaps
thousands of samples.

In addition, the models were trained on a training set using a split ratio of 80% to 20%.
This could result in leakage of embryos from the same donor to be in the training and test sets
leading to generalization problems. This patient information is currently not available for each
sample, nor is the information that strongly correlates with the success, such as patient/oocyte
age, ethnicity, hormone levels. These features could potential be combined with the data set
bene�tting the model.

Furthermore, the data set su�ered from label imbalance, with all models favouring the most
common label 0 (no pregnancy). The introduction of a weight imbalance parameter in the loss
function in future research may prevent or reduce this.

Regarding the pre-processing workow, image cropping was successfully performed using the
U-Net. However, the 400� 400 output frame may contain large amounts of non-embryo con-
tent, or have parts of the well edge, which increases the likelihood of over�tting. To address
this, future research should include full embryo segmentation. This would also address the issue
of older embryos that have reached the blastocyst stage (older than frame 800) that do not
�t into the 400� 400 frame. This makes full segmentation more important for future research,
where we would like to include all embryo phases into the pre-processing. This segmentation
approach would also bene�t the AGM sharpness distribution, as background fragments are no
longer included in the sharpness score.

The data sets in this research were built by sampling a small number of video frames be-
cause it was infeasible to train deep networks on all video frames. This resulted in some crucial
frames being missed, which could be prevented by the use of methods like cumulative temporal
clustering algorithms to identify important frames.
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Alternatively, the network can be trained on a dynamic data set, rather than using a �xed
set of frames [0, 200, 400, 600, 800] for withTp=5 . At each iteration, a frame can be uni-
formly selected between [0 and 200] for the �rst index. This approach would ensure that the
network sees unique samples each time and that all the data can be seen by the network.

10 Conclusion
In this thesis we tried to �nd an answer to the research question:

ˆ Can an AI model predict the implantation potential of an IVF embryo based on time-lapse
developmental videos?

To answer this question, we successfully developed a pre-processing framework, capable of
locating the embryo, obtaining the embryo's ROI and computing the sharpness distribution
within the corresponding image stack.

Our 960 network training experiments on various data sets showed that these models were not
able to learn the features related to the implantation potential. The results showed that the
models over�tted on the training set. This fact was con�rmed by the fact the models were
able to learn on the Shu�e data set, which did not contain any structure except from the
shared pixel intensity distribution. This provided evidence that the models were only learning
the "trivial features". We found that the cause of the over�tting can be traced back to the
following facts: 1) The data set contained too few samples; and 2) The data set was imbal-
anced. Additionally, we conclude that a too complex data set caused faster over�tting and
training instability.

Whether an AI model is able to predict the implantation potential remains an open ques-
tion. Further research and more embryos would be needed to de�nitely answer this question.
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A Appendix

Figure A.1: The radial gradient circular representation with a radius of 12. On the left the
version between 0{255. On the right the normalized version. Referenced in Section 6.2.4.

Figure A.2: Representation of the embryo border replication process. Due to the embryo
being to close to the well border, the 400� 400 crop can not be completed fully, allowing
the maximum size of 384� 400. Using the border replication, the outer last (horizontal)
element is replicated until the 400� 400 condition is satis�ed. Referenced in Section 6.2.5.
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Figure A.3: The XOR calculations for the 4 inputs (0, 1), (1, 0), (0, 0) and (1, 1). The prove that MLP can solve nonlinear tasks. Referenced
in Figure 6.
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