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Abstract

Conventional neural network optimization relies heavily on handcrafted learning algorithms,
mainly Stochastic Gradient Descent (SGD) or its variants. This study explores the possibility
of harnessing machine learning to enhance or uncover novel neural network learning algo-
rithms. We explore an existing method, the Message Passing Learning Protocol (MPLP), a
technique designed to learn a neural network optimizer without explicitly providing gradi-
ents. An often-encountered problem of methods like MPLP is meta-training difficulties like
early stagnation and long training times. It is often uncertain which hyperparameters lead
to successful results.

To overcome these limitations, we will discuss existing strategic design choices and techniques
that can facilitate the meta-training of MPLP-like methodologies. Especially, we draw at-
tention to a regularization method that can make the meta-training of our configuration
much more predictable. Finally, we reverse engineer a learned MPLP and show that it has
learned an SGD-like learning algorithm.
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1 Introduction

Recent years have witnessed significant advancements in deep learning techniques, partic-
ularly in the fields of computer vision and natural language processing [Goodfellow et al.,
2016; LeCun et al., 2015; He et al., 2016; Vaswani et al., 2017]. Part of these advancements
was thanks to the development of optimization algorithms. These optimization algorithms
are designed by humans and can still be suboptimal. To improve optimization algorithms
even further, meta-learning techniques have been proposed to automatically learn optimizers
that could outperform existing ones.

There are different architectures for learning optimizers, ranging from lightweight techniques
to more advanced, end-to-end approaches. Lightweight learned optimizers aim to enhance
existing optimization techniques without introducing much overhead, but they may lack
expressiveness. These types of learned optimizers are often based on SGD-like optimizers
and often get explicit gradient information [Andrychowicz et al., 2016; Li and Malik, 2017a;
Harrison et al., 2022; Metz et al., 2022]. Biasing the learned optimizer’s architecture towards
existing optimizers makes it less likely to discover novel optimization methods. Therefore, to
discover potentially new optimization techniques, the learned optimizer should be less biased
towards existing algorithms. By making the optimizer more expressive additional compu-
tational cost is introduced and therefore, these optimizers are still only mainly interesting
from a discovery and scientific perspective.

For the existing more expressive learned optimizers that have been developed the training
process is often underreported on [Sandler et al., 2021; Kirsch and Schmidhuber, 2021].
Problems during the training of the optimizers are mentioned but exact data, e.g. outer-
learning curves, is not reported. It is unknown under what conditions some methods are
able/not able to be trained. This makes the development of learned optimizers particularly
painful.
The term outer here refers to the training of the optimizer itself. The term inner refers to
the learned optimizer being applied to a neural network.

The research on outer-training dynamics that has currently been conducted focuses on, the
more practical, lightweight SGD-like learned optimizers [Metz et al., 2019, 2022; Andrychow-
icz et al., 2016]. Some of this knowledge can be transferred to more expressive optimizers
but not all. E.g., the training of more expressive optimizers is more likely to get stuck at
the beginning of training [Randazzo et al., 2020; Kirsch and Schmidhuber, 2021].

In this thesis, we investigate the Message Passing Learning Protocol (MPLP) framework
[Randazzo et al., 2020], a learning-to-optimize method that occupies a unique position be-
tween lightweight and end-to-end approaches. MPLP serves as an optimizer for the weights
of a neural network while still having the flexibility to learn different optimization methods,
such as those distinct from SGD. Unlike approaches with direct access to gradients, the
MPLP relies on message passing through the neural network being optimized to determine
how to update its weights. We will provide a detailed explanation of the framework’s main
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idea and its underlying mechanisms. While the MPLP-like optimizer has been reported as
difficult to meta-train [Randazzo et al., 2020], the precise nature remains unclear. Our goal
is to better understand the MPLP framework and its meta-training dynamics. We hope that
the found knowledge will allow us to better understand the training dynamics of expressive
learned optimizers in general.

We pose the following research questions:

Research Questions:

• How does the MPLP framework relate to SGD?

• What are the meta-training dynamics of MPLPs, and what techniques can we use to
improve them?

Contributions:

• We show that the MPLP framework is expressive enough to mimic SGD.

• We train an MPLP and show that it has learned to do SGD.

• We give examples of what the outer-training curve of an MPLP can look like.

• We investigate various techniques to improve the training, including learning a learning
rate, increasing message size, and exploring normalization methods.

• We show that in certain settings the MPLP can get stuck at the beginning of training.

• We show how a modification of batch entropy regularization can be used as a technique
to help prevent the MPLP from getting stuck at the beginning of training.

Through this investigation, we hope to deepen our understanding of the MPLP framework,
its training dynamics, and potential methods to improve its training. By doing so, we aim
to contribute to the broader field of meta-learning.
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2 Background

The background section of this thesis provides the necessary foundation for understanding
the problem setting and the methods used in learning to optimize. We will discuss the
key concepts and techniques relevant to our investigation of the Message Passing Learning
Protocol (MPLP) framework.

Inner and outer optimization: In learning to optimize and meta-learning the naming
can be confusing because there are multiple optimization processes and it can be confusing
to which one is being referred to. Therefore, we use the following, much used, naming
convention of the inner and outer optimization process. The outer-loop is referred to as
the meta-learning process, in our case learning an optimizer. Outer and meta are used
interchangeably.
The inner-loop is referred to the learning process of the optimizee, in our case a neural
network that gets optimized for a certain task. We will stick to this formulation throughout
this thesis.

Problem setting of learning to optimize: In the field of learning to optimize, the main
objective is often to achieve the lowest possible test loss using a given training dataset. This
requires discovering an optimization strategy A that can effectively generalize to new, unseen
data and quickly adapt to novel tasks. To put it formally, we are given a training dataset
Dtrain = (xtrain

i ,ytrain
i ) and a test dataset Dtest = (xtest

j ,ytest
j ), which are both unseen to the

optimization algorithm A. Here, xtrain
i and xtest

j denote vectors of the input features, while
ytrain
i and ytest

j represent vectors of the corresponding target values in the train and test
datasets, respectively. Our goal is to find an optimization algorithm A that minimizes the
loss L(A(Dtrain),Dtest) when assessed on the test dataset Dtest.

The optimization strategy A can be designed to perform well on specific tasks. For example,
suppose we want to develop an optimization algorithm that excels in image classification
tasks. In this case, we can train A on a variety of image classification datasets, such as
MNIST or ImageNet [Lecun et al., 1998; Deng et al., 2009], to ensure that it learns effective
optimization strategies for this type of task. Once the algorithm has been trained on these
datasets, it might be capable of generalizing to new, unseen image classification tasks, thereby
minimizing the loss when applied to their respective test datasets. By focusing on a specific
task domain during meta-training, the learned optimization strategy A is more likely to
exhibit strong performance when encountering similar tasks in the future.

Definition of stochastic gradient descent (SGD): SGD is a widely used already existing
optimization algorithm that serves as a baseline for many learning tasks. The update rule
for SGD is given by:

θt+1 = θt − α
∂L(θt;xt,yt)

∂θ
, (1)

where θt denotes the inner-parameters at iteration t, α is the learning rate, and L(θt;xt,yt)
represents the loss function L parameterised by θt for the input-output pair (xt,yt). We will
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use the concept of SGD to provide a foundation for understanding how learning to optimize
could be achieved.

Parameterization of the update function: One approach to enhancing the perfor-
mance of optimization algorithms like SGD, is to parameterize the update function of SGD
[Andrychowicz et al., 2016]. By introducing flexibility and adaptability in the optimization
process, the model can learn better optimization strategies, potentially improving the per-
formance of the underlying learning task. Let the update function be denoted by f . Then,
the parameterized update rule can be expressed as:

θt+1 = θt − f(ϕ;xt, yt, θt) (2)

Here, ϕ represents the meta-parameters we want to learn. The main idea is that ϕ determines
how the weights θ of the model should be updated. The next step is to find the meta-
parameters ϕ such that the update function performs well. To do this we first specify the
objective that should be minimized such that the performance is high, we call this the
outer-loss.

Definition of the outer-loss: The outer-loss is a crucial concept in meta-optimization.
It is defined as the weighted sum of inner-losses experienced while optimizing, and serves
as an objective function for the meta-optimization process. This enables us to evaluate the
performance of the learned optimizer in terms of its ability to minimize the loss on tasks.
Mathematically, the outer-loss Louter(ϕ) can be defined as:

Louter(ϕ) =
K∑
t=1

wt · L(θt;xt,yt) (3)

Here, K represents the number of update steps that are performed before calculating the
outer-loss. wt is a weighting factor for the different inner-losses, allowing for a trade-off
between optimization speed and the final loss. In this thesis, we use wt = 1 for all t,
which is equivalent to minimizing the area under the inner-loss curve [Li and Malik, 2017b].
L(θt;xt,yt) is the inner-loss after t update steps.

ϕ are the meta-parameters that are used to update the weights in each update step. ϕ is
only represented on the left side of the equation because the outer-loss here is shown without
the explicit updates of the inner-parameters θt. In our setup ϕ determines how the inner-
parameters θt are updated between loss calculations (See e.g. Eq. 2). This means that each
loss has a dependence on the losses that were calculated before itself.

Note, how the meta-parameters ϕ affect the outer-loss in a recurrent way similar to how
the parameters of RNNs do this [Vicol et al., 2021]. From the perspective of RNNs, Eq. 2
calculates the next state using the recurring parameters ϕ and the previous state θt. Figure
1 illustrates this well. The parameter α from the illustration is the recurring meta-parameter
we are interested in optimizing. This recurrence can make the outer-loss highly sensitive to
changes in the outer-parameters as explained by Metz et al. [2019].
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Figure 1: High level illustration of a computational graph of the optimization process of a
neural network like model using gradient descent. α stands for the learning rate. Incor-
porating the forward, backward and update step in a single computational graph allows us
to analytically calculate the gradients of the outer-loss with respect to α. Subsequently,
allowing us to do gradient descent on α. Similar computational graphs are constructed when
calculating the outer-loss. After each forward pass an inner-loss is calculated, this inner-loss
is used in the calculation of the outer-loss (See Eq. 3). Source of illustration: [Wu et al.,
2018]

Meta-parameter optimization: Our goal is to find the meta-parameters ϕ such that
the outer-loss is minimized, effectively learning an optimizer. The most used method to
optimize the parameters of an optimizer is that of stochastic meta descent [Schraudolph,
1999]. SMD is very similar to regular gradient descent. Given a parameterized loss function
we want to minimize, we can calculate the gradient of the loss with respect to the parameters.
We can then use this gradient as a descent direction to update the parameters. The only
difference between SMD and regular gradient descent is that the gradient is calculated using
the outer-loss instead of the inner-loss. In practice this means that the loss landscapes can
look different and will give different training dynamics. E.g. the recursive occurrence of the
outer-parameter ϕ can lead to different training dynamics than regular, non-meta, learning
settings [Vicol et al., 2021].

There are multiple methods to calculate the gradients of the outer-loss with respect to the
meta-parameters. Some of these are backpropagation through time (BPTT), evolutionary
strategies (ES) and real-time recurrent learning (RTRL) [Mozer, 1995; Metz et al., 2019;
Williams and Zipser, 1989]. After the gradients have been calculated, they can be used
as our descent directions in the outer-parameter space. The advantage of using gradient
descent compared to other optimization methods is that it can be used to optimize models
with many parameters efficiently.
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Meta-gradient calculation methods: There are several methods to compute the gradi-
ents required for meta-optimization, including:

• (Truncated) Backpropagation through time ((T)BPTT): A method for computing gra-
dients in recurrent neural networks, which can also be applied to other sequence-based
models. BPTT involves unfolding the computation graph over time and applying stan-
dard backpropagation to compute the gradients [Mozer, 1995].

• Evolution strategies (ES): A population-based optimization technique inspired by nat-
ural evolution, where gradients are approximated using a set of random perturbations
applied to the meta-parameters. ES is particularly useful when the optimization land-
scape is non-differentiable or when gradient information is unavailable [Metz et al.,
2019]. An advantage of ES is that it is better suited for longer truncations because we
do not need to keep the computational graph on which the gradients are calculated in
memory. The downside is that the variance gets too large when estimating the gradi-
ents of too many parameters. The variance can be reduced by increasing the number
of samples at the cost of computation [Vicol et al., 2021].

• Real-time recurrent learning (RTRL): An online learning algorithm for recurrent neu-
ral networks that computes gradients incrementally as new input-output pairs are
encountered. RTRL maintains a running estimate of the gradients, allowing for on-
line parameter updates [Williams and Zipser, 1989]. The downside of this method is
the large amount of computation and memory required. For most settings RTRL is
infeasible.

Each of these methods has its advantages and disadvantages. In this thesis, we use TBPTT
because for our setting it has the lowest computational costs. The main disadvantage of
TBPTT is that truncation bias is introduced when the computational graph is not fully
unrolled.

Everything can be parameterized: Using the concept of an outer-loss, it allows us to
learn what would normally be considered hyperparameters. We will give a few examples
of how we can parameterize and learn different parts of the optimization process. The
most common thing to parameterize is the update function of an SGD-like optimizer [Metz
et al., 2019; Li and Malik, 2017b; Andrychowicz et al., 2016; Vicol et al., 2021; Harrison et al.,
2022]. The forward pass of the neural network can be parameterized. This is similar to doing
architecture search [Liu et al., 2019; Sandler et al., 2021]. Very common optimizer hyper-
parameters like learning rate and weight decay can be parameterized [Maclaurin et al., 2015;
Chandra et al., 2022] using this method. It is possible to learn the initialization parameters
of the optimizee such that they generalize on a category of tasks [Finn et al., 2017]. Finally,
it is also possible to parameterize the full backward pass, including gradient calculations, of
the optimization algorithm. This is what we will focus on in this work.

Using the notion of an outer-loss to optimize single hyperparameters like the learning rate
would be computationally expensive because more full optimizations runs have to be done
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in comparison to black box methods like random search. It becomes more computationally
efficient when large amounts of hyperparameters have to be optimized and if the hyperparam-
eters can be transferred to new tasks. For example, it might be computationally expensive
to learn an optimizer, but if the optimizer can be used for all problems without having to
tune any of its hyperparameters it can save computation [Metz et al., 2022].

3 Related work

In the field of learning to learn there exists a spectrum of methods. At the beginning of the
spectrum there are methods that are heavily based on existing learning algorithms. Often
partially parameterized SGD-like algorithms that are applied to neural networks. At the
other end of the spectrum, we have learning algorithms that are fully end-to-end. Which
means that the method is fully black-box. The input is {(x1, y1), ..., (xt, yt), (xt+1, 0)} and
the output is a prediction of yt+1. The black box both represents the optimizee and the
optimizer but they are intertwined within the box.
We have separated this section into methods that are based on update functions of SGD-like
algorithms and into methods that are not based on update function of SGD-like algorithms.
The latter includes end-to-end based learning methods but also neural network optimization
based learning methods. E.g., [Sandler et al., 2021; Randazzo et al., 2020] are based on
optimizing a neural network but are too distinct from SGD-like optimization methods to
include them in that category.

3.1 Update function based

The first update functions based on SGD-like algorithms were learned by Bengio et al.
[1995], they learned Hebbian-like update functions but also provided the gradients as input
features in some of their experiments. Hebbian-like learning methods are biologically inspired
algorithms that adjust neural network connections based on correlated activity, following the
principle “neurons that fire together, wire together” [Brown, 2020].
Learning update functions was later popularized by the work of [Andrychowicz et al., 2016],
in this work, at each weight of a neural network a RNN is used to calculate how the weight
should be updated. The input to the RNN is the gradient and the previous state of the RNN.
The inspiration to use an RNN to update the weights comes from optimizers that keep track
of running statistics, like momentum and second-order momentum in Adam [Kingma and
Ba, 2015]. This work also popularized backpropagating through the optimization process
using TBPTT.

Many architectural changes have been made to the work of [Andrychowicz et al., 2016],
e.g., adding more features as input to the optimizer [Lv et al., 2017], swapping the RNN
for an MLP [Metz et al., 2019, 2020a], creating a hierarchical optimizer [Wichrowska et al.,
2017; Metz et al., 2020b] etc. In addition to architectural changes there have also been
changes in the training procedures. To increase generalization a larger set of training tasks
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was used [Metz et al., 2022; Wichrowska et al., 2017]. Optimization methods like evolution
strategies are used to increase training stability and reduce truncation biases [Metz et al.,
2019; Vicol et al., 2021]. Arguably, the current best-performing learned optimizer is that
of [Metz et al., 2022] which uses a combination of the developed techniques to train an
optimizer that generalizes well and is competitive with non-learned optimizers.

3.2 Not update function based

To the best of our knowledge, the first work on learning an update rule not based on an
SGD-like algorithm was by [Schmidhuber, 1987]. In this work, genetic programming is used
to learn programs that can learn. The connection is made to neural networks but they were
not used in the work. The first work that we could find that was more related to neural
networks is that of [Bengio et al., 1991] and [Bengio et al., 1995]. The method tries to
find new learning rules inspired by nature e.g., similar to Hebbian-like update rules. In this
work mostly local information is used to calculate the weight updates and thus, the method
is not very expressive. [Runarsson and Jonsson, 2000] learns to optimize a single hidden
layer neural network using an evolutionary search algorithm and successfully learns to do
backpropagation on a limited set of problems.

One of the first, more modern, is by Hochreiter et al. [2001]. The paper uses an end-to-end
approach to learning to learn. It does this by using an RNN that does both the modeling
and the optimization. At each timestep the RNN is given the input xt and the ground truth
of the previous timestep yt−1. If at each timestep the RNN is given the ground truth of
the current timestep yt it would be able to cheat by outputting the ground truth yt at each
timestep. To prevent the RNN from cheating at each time step the input xt and the previous
ground truth yt−1 are passed to the RNN.
Intuitively, you can look at the RNN state that is being passed to the next timestep as the
parameters of the optimizee and the size of the state is often in the order of hundreds. The
parameters of the RNN could then be viewed as the optimization algorithm. A problem
with systems like these is that the “optimizer” would have many more parameters than the
“optimizee”. Generally, it is preferred for the optimizer to have less parameters than the
optimizee [Kirsch and Schmidhuber, 2021].

[Kirsch and Schmidhuber, 2021] recognizes the issue of the optimizer having many more
parameters than the optimizee and tries to solve this by changing the architecture thoroughly.
Instead of using a single RNN, multiple RNNs are placed in a network like structure that
share the same parameters. By using multiple RNNs there are also multiple states at any
moment in time. Thus, increasing the number of parameters the “optimizee” can have. The
method is being optimized using Evolution Strategies (ES) because ES would be more stable
than analytical methods. This work parameterizes both the forward and the backwards pass.
A drawback of the method is that for a single forward pass all RNNs have to run for each layer
in the network to mimic the sequential layer execution. This is computationally expensive.
The authors of the paper show that the method can mimic the behavior of SGD. And
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suggest that it can in an unrestricted setting also learn qualitatively different optimization
algorithms.

[Sandler et al., 2021] uses a method that is a modification of how neural networks are
generally constructed and trained. I.e. they do not use RNNs architectures to update the
state but instead use the SGD update rule to update the state from Eq. 2. In this method
the forward pass and the backward pass are dissected in smaller parts. Then these smaller
parts are parameterized such that novel learning methods can be learned. They show how
their method can learn gradient descent but interestingly they show evidence of how their
method differs from gradient descent. In the work they also noted that normalization plays
a crucial role in getting the meta-learning stable.

The Message Passing Learning Protocol [Randazzo et al., 2020] is similar to that of [Sandler
et al., 2021] in the sense that it more closely resembles the SGD algorithm. MPLP does
not modify the forward pass. Only the backward pass is modified. By looking at a neural
network as a computational graph, we can place message passing neural networks that pass
messages from output to input. These messages can then be used to update the parameters
of the network. The MPLP method was only used on few-shot learning. The MPLP is at
the core of our work and the details of the MPLP are described further in 4.1.

Finally, more recent work, has shown that, under the right circumstances, transformers can
learn gradient descent [von Oswald et al., 2022; Akyürek et al., 2023]. Given the expressivity
and the better-conditioned loss landscapes, transformers are a promising class of architec-
tures to do meta-learning with [Kirsch et al., 2022]. The forward and backward passes are
done entirely end-to-end. The disadvantage of this is that you are limited to the amount of
data and the amount of “update steps” you can do. This would make using transformers as
learning algorithms for very large datasets currently infeasible. On tabular data transform-
ers have shown to be competitive with other machine learning methods like random forests
[Hollmann et al., 2022].

4 Method

4.1 Message passing framework

As mentioned before, the learning to optimize framework we use is based on the MPLP
framework [Randazzo et al., 2020]. In this section, we will explain the framework. In case
we have deviated from the original framework we will mention this and explain why.

In summary, the MPLP framework is a regular MLP looked at from the perspective of a
computational graph (See Fig. 2 for an example of such a computational graph). During
the backward pass, messages are generated and passed through this graph to calculate how
the parameters of the MLP should be updated.

We explain the MPLP framework in two parts, the forward and the backward pass. In the
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forward pass, we will explain how the computational graph is constructed. In the backward
pass, we will explain how the messages are passed and how the weights are updated.

Currently, only MLPs are supported but it could be extended to other architectures as well
in the future. We have implemented the framework such that any arbitrary MLP can be
constructed. The source code can be found here: https://github.com/SimonsThijs/MPLP.

Forward pass

As previously mentioned, the forward pass can be any arbitrary MLP. In this section we
explain how we can represent the MLP as a computational graph such that messages can
flow through this graph.
In Table 1 we define the 3 types of nodes that are used in the computational graph of an
MLP. The nodes are defined as follows: the linear node is a node that performs a linear
transformation on the input by multiplying it with a weight in the MLP. The linear node is
statefull because it keeps track of a weight. The activation node is a node that performs a
nonlinear transformation on the sum of the incoming values. The loss node is a node that
computes the loss between the input and the ground truth. The loss nodes are the output of
the computational graph. Note that we can have multiple loss nodes when we are e.g., doing
multi-class classification. In the case of multiple loss nodes there is an additional node that
sums the losses together. This sum node can be ignored when doing the message passing
because we want to minimize each node individually. In Figure 2 we show an example of a
computational graph of an MLP with a sum node. The sum node is highlighted red because
it can be ignored in the message passing.

Table 1: The 3 types of nodes used in the forward pass of an MLP. The variables can be
explained as follows: x is the intermediate result generated by the previous node during the
forward pass (from input to output). If a node does not have incoming nodes, x represents
the input data. θc is a single weight/parameter at the coordinate c of the node. y is the
ground truth. The outputs of the linear nodes get summed before being passed to the
activation node, this is done implicitly and not shown.

Input Computation/k(. . . )
Linear x, θc x · θc
Activation x act(x)
Loss y, x loss(y, x)

Within the framework one can have multiple types of activation functions, e.g., Relu in the
hidden layers and sigmoid in the output layer. The exact loss function that is used can also
be chosen, e.g., cross-entropy for classification and mean squared error for regression.
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Figure 2: Example of how an MLP, with 2 input nodes, 1 hidden layer with 3 nodes and
2 output nodes, would look like in the MPLP framework. Note that the sum node does
not pass messages in the backwards pass. Its mere purpose is to combine the losses at each
output in the forward pass.

Backward pass

During the backward pass each node in the computational graph generates a message to be
passed to the connected nodes in the direction of the input. This process is similar to the
calculation of reverse mode differentiation [Griewank, 2012], where the error is propagated
from the output to the input of the network. The messages are generated sequentially,
starting from the loss nodes and ending at the input nodes.

For each node type, there exists a different function that generates and passes a message
backward through the network:

glin(ϕlin;m, θc)→ R|m| gact(ϕact;m,x)→ R|m| gloss(ϕloss;m,x, y)→ R|m| (4)

|m| is the size of the generated messages. m is the incoming message. ϕ are the meta-
parameters and are not shared between nodes of different types but are shared between
nodes of the same type. There can be multiple types of activation nodes of which the meta-
parameters are not shared. E.g. the message passing function of a ReLU node is different
than from a Sigmoid node. In the original MPLP work there is also the option of not sharing
any parameters but we have decided not to do this to keep the number of parameters low
and decrease the risk of overfitting.

The incoming message of the loss node is the sum of the output of all the loss nodes. If there
is only a single loss node then it is the same as the output of that node. This first message
is not necessary for the MPLP to be able to learn but it can be hypothetically useful.
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Activation nodes can receive multiple messages. In this case, the messages are summed
together before being passed into the message generating function g,

m =
n∑

i=1

mi

where n is the number of incoming messages. In the original MPLP framework the messages
are not summed but averaged. We have decided to sum the results because this more
closely resembles how gradients would normally be calculated. See Appendix B for further
explanation.

With only message passing functions there would be no way to update the weights of the
network. Therefore, in addition to the message passing functions there also exists a weight
update function that calculates ∆w (See Eq. 2). The weight update function is calculated
for each linear node in a network:

flin(ϕf ;m,x)→ R1 (5)

Similar to the message passing functions, m is the message that was passed backwards by the
connected nodes. In the case of a MLP the message that flin receives is from the activation
node (See Fig. 2). ϕf are the meta-parameters of the weight update function. These are
shared between all linear nodes.

The update function flin is often extended by multiplying the output with an extra param-
eter, the learning-rate. The learning rate can then be learned. However, it is also possible
to not learn the learning-rate and fuse the learning rate into flin. We investigate the effect
of adding the extra learning-rate parameter in experiment 5.2. In any case, we scale the
output of flin by 0.001 to prevent the weight updates to be too large at the beginning of
outer-training. In addition to scaling, we clip the calculated weight updates between -1 and
1 such that the magnitude of the weights can not become too large too quickly. This helps
in numerical stability.

In the original paper there are additional states introduced such that the MPLP can track
information about the optimization process. E.g., momentum or second order momentum
could be learned using these additional states. We have chosen to not use these additional
states to keep the framework more simple and better understandable. These states could be
added in the future if needed.
In the original paper bias nodes are treated as a separate node type with their own message
generating function gbias. We have decided to not do that in our implementation because of
the similarities it has with linear nodes and thus we can treat them the same as linear nodes.

4.2 Expressiveness to imitate SGD

The way the architecture of the MPLP framework is constructed makes it able to imitate
SGD without momentum. Table 2 shows what the functions g and flin have to be for the
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MPLP framework to mimic SGD without momentum. The derivations of the functions can
be found in Appendix A.

The reason the MPLP framework cannot imitate momentum or anything similar to mo-
mentum is that there is no state in which information can be saved between optimization
steps.

Table 2: The definitions of g and flin for them to mimic SGD without momentum. Message
size is 1. m is the incoming message. The way we derived the functions of Table 2 can be
found in Appendix A.

Function Definition
flin α · x ·m
glin w ·m
gact act′(

∑n
i=1 xi) ·m

gloss
∂
∂x⃗
loss(y, x)

The crossentropy loss is a special case because it contains the softmax function which has
cross-dependencies between the pre-activations and activations. The function gcrossentropy,
such that SGD without momentum can be mimicked is defined and further explained in
Appendix C.

4.3 Meta-training

Algorithm 1 shows the most standard L2O learning algorithm [Vicol et al., 2021]. The unroll
function used in the algorithm is where the outer-loss gets calculated. This is the same as Eq.
3. After the full unroll is done, the resulting computational graph can be used to calculate the
gradients of the outer-loss with respect to the outer-parameters. These gradients can then be
used to update the outer-parameters using gradient descent. The algorithm is repeated for a
certain amount of outer-optimization steps S. The algorithm can be extended by combining
multiple gradient updates into a single update to create an outer-batch. The parameter T
determines after how many inner-steps we sample a new task from our distribution of tasks.
The truncation length K determines the amount of update steps we do before we calculate
the gradients of our outer-parameters. K has a large impact on memory and computational
resources needed for a single meta update step.
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Algorithm 1 standard learning to optimize algorithm

Input: ϕ0, initial outer-state
K, truncation length for unrolls
T , full horizon length
S, total number of outer optimization steps
p(T ), the task distribution

Initialize ϕ = ϕ0

Initialize t =∞, current inner step
for i = 1, . . . , S do

if t+K ≥ T then ▷ Reset the inner problem after T inner-update steps
Randomly Initialize the inner-parameters, θ
Sample T ∼ p(T ) ▷ Learned optimizer should work on multiple tasks
t = 0

end if
L,θ = unroll(θ, K, ϕ, T ) ▷ Calculate outer-loss and update the inner-parameters
g = δL

δϕ
▷ Can also be an estimation of the gradient

s = update(ϕ, g) ▷ do the meta descent step
t = t+K

end for

We use Algorithm 1 to train the MPLP framework. The computational graph is being
unrolled by alternating the forward and backward pass similar to how SGD works. After
K iterations of unrolling we calculate the outer-loss using e.g., Eq. 3. We then update the
meta-parameters such that we expect the outer-loss to decrease. This process is repeated
many times. Every T iterations of unrolling we resample a task and reinitialize the inner-
parameters. We need to resample a task because we want the optimizer to generalize to
more than a single task.

In our implementation we clip the outer-gradients between -1 and 1 to counteract any po-
tential exploding gradients.

For more details on how the unroll functions works, we have it further specified in Algorithm
2.

In the original paper the MPLP framework is only trained for few-shot learning. That means
that the total number of unrolls T done on a new task and inner-initialization is very small.
Then the truncation length K is set to be equal to T such that full unrolls are done. Instead
of this, we use longer unrolls with more truncations to allow the optimizer to work for longer
time horizons.
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4.4 Batch entropy regularization

Batch entropy regularization is a technique that was initially developed to facilitate the
trainability of deep neural networks (with at least 30 layers) without relying on additional
methods such as normalization or residual connections [Peer et al., 2022]. In this work,
we adapt the batch entropy regularization approach to enhance the trainability of MPLP-
like learning to optimize methods. We begin by outlining the central concept of batch
entropy regularization and subsequently illustrate its applicability as a valuable measure for
improving the trainability of MPLP-like learning to optimize methods.

The key idea behind batch entropy regularization is to analyze and optimize the flow of
information through individual layers in a neural network. This is achieved by quantifying
the flow of information as the average amount of information propagated through each
neuron within a layer. Intuitively, a single activation node that always fires or never fires is
a superfluous activation node. Introducing a regularization term based on this idea enables
the training of deep neural networks without additional training techniques. Batch entropy
for a single node is defined as follows,

H =
1

2
log(2πe σ2

j + 1), (6)

where σ2
j is the standard deviation of a single activation node within a neural network of an

inner-batch.
Then the batch entropy of an entire layer can be calculated by averaging over the nodes
within that layer. Mathematically expressed as follows,

H l =
1

2n

n∑
j

log(2πe σ2
j + ϵ), (7)

where σ2
j is the standard deviation of neuron j of layer l.

Now we will discuss how this batch entropy can be used in a learning to optimize setting.
The main idea is that we can learn an optimizer to increase the entropy within a network by
incorporating a batch entropy term within the outer-loss. Learning to increase the entropy
could be a simpler task than learning to optimize. After the optimizer has learned to increase
the entropy the optimizer can proceed to learn how to optimize. This approach is particularly
beneficial when the optimizer encounters difficulties during the initial outer-training phase.
For instance, as illustrated in Figure 9b, an increase in batch entropy is associated with the
optimizer overcoming obstacles during the initial training stage. Consequently, optimizing
for higher entropy could contribute to the training process of the optimizer.

For our purposes, we are not interested in finding the optimal batch entropy for each layer
but rather want to regularize such that the batch entropy will never fall below a certain
threshold value. This can be expressed as follows,

Ll
be =

{
p−H l, if H l ≤ p

0, otherwise
, Lbe =

1

l

l∑
j

Lj
be (8)
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Where p = 0.5 is the threshold value. H l is the entropy for a layer l in a network. The final
batch entropy loss Lbe is the average of all the layers in the network.
From anecdotal evidence, we found that the threshold parameter p is not sensitive. We
can partly explain this by that the batch entropy regularization does not compete with the
learning to optimize and the regularization merely serves as a way of finding a good starting
state.

Concretely, we calculate the batch entropy after each forward pass during the unrolling of
the computational graph. We scale the batch entropy loss such that Lbe ∈ [0, Lfinal) where
Lfinal is the final loss in a single unroll. The exact procedure is shown in Algorithm 2.

Algorithm 2 unrolling

Input: θ0, starting inner-state
K, truncation length / number of unrolls
ϕ, outer state
T , task

θ = θ0
aggLbe

= 0 ▷ Keep track of the batch entropy loss
aggL = 0 ▷ Keep track of the regular outer loss
for i = 1, . . . , K do

x, y = nextbatch(T )
ŷ, Lbe, o = forward(θ, x) ▷ o is intermediate info that is needed in the backwards pass
L = loss(ŷ, y)
aggLbe

+= Lbe

aggL += L
if i < K then ▷ Only do backwards if loss is calculated afterwards

∆θ = backward(ϕ, x, y, ŷ, o) ▷ here we use o from the forward pass
θ = θ −∆θ

end if
end for
Lbe = 2 · aggLbe

/K ▷ scale the loss between 0 and 1
Lbe = L · Lbe ▷ Give same weight to Lbe as to latest L, L is detached from comp. graph
Louter = aggL
Ltotal = Louter + Lbe

return Ltotal, θ

5 Experiments and results

In this section we describe the experimental settings and our results.

In the first experiment, we learn an optimizer with a message size of 1 such that we can
visualize what the MPLP has learned. In the second experiment, we experiment with design
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choices to see how they affect the training of the optimizer. In the third and final experiment,
we train the MPLP on a more realistic problem, namely, MNIST. We find problems during
the initial training phase which we solve using batch entropy regularization.

5.1 Learning SGD

In this experiment, we are going to train the MPLP on the sinewave problem. We use a
message size of 1 such that we can easily visualize what functions the MPLP has learned.
We compare the learned optimizer against SGD and see if they are similar.

The setting that was used in this experiment is one of the simplest. The function of the
experiment is to get a better understanding of the training dynamics and to compare the
learned optimizer to SGD.

5.1.1 Setup

We will train the MPLP and compare it to the functions found in Section 4.2. We have
summarized the configuration of the experiment in Table 3.

Table 3: Overview of the setting that was used to train the MPLP. The outer-architecture
was used for all functions f , glin, gact and gmse. |m| is the message size, T is the full horizon
length, K is the truncation length and S is the number of meta steps.

Inner Outer
Architecture lin(1,20),ReLU,lin(20,20),ReLU,lin(20,1) lin(|i|,80),ReLU,lin(80,|o|)
Optimizer MPLP Adam β1: 0.99 β1: 0.999
Task family y = sin(x+ p), p ∈ U(0, π) -
Additional params batchsize: 32 T : 200, K: 10, S: 3 · 105, |m|: 1

The task family on which we train our optimizer is that of the sinewave. A sinewave task
is defined as follows, y = sin(x + p) where p is sampled from U(0, π). This task family has
only a single parameter p, this is to keep the problem simple. Before every forward pass 32
new train points are sampled from the task where x ∈ U(−5, 5).

The architecture of the network that is optimized by the MPLP is static and not changed
throughout the training. Thus the MPLP is only trained on a single MLP architecture and
will probably not generalize to other architectures.

We set the message size to 1, this means that each node will only receive a single floating
point during the backward pass. If we would use a higher message size, we would not be
able to easily compare the learned optimizer to SGD (because SGD also uses message size
1 essentially). Higher message size would also be harder to visualize because of the extra
dimensionalities. From the results in Section 5.2 we see that higher message sizes give much
better results for this specific task. Therefore, it would be interesting to find a way to better
understand the found optimizers with message sizes larger than 1.
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The inputs to the message passing functions are the same as in Eq. 4 except for the message
passing function of the loss node. Instead of the ground truth, the prediction and the
incoming message we only use the ground truth and the prediction as our input. We do
this to keep the dimensionality lower for the visualization. The incoming message is not
necessary to imitate SGD (Table 2).
The inputs to the weight update function is the same as in 5.

We validate the optimizer on 10 different randomly initialized neural networks and 10 ran-
domly chosen sinewave tasks using p ∈ U(0, π). The tasks and initializations on which we
validate are chosen at the beginning of training and are not changed throughout the training.

5.1.2 Results

The outer-training process of the optimizer is shown in Figure 3a. We observe an initial
flat area in the loss curve, after around 50000 steps it escapes this phase and starts learning
something meaningful. The training of the MPLP is not very predictable i.e. the learning
curve does not decrease monotonically and shows multiple phases of descent.

We randomly chose an optimizer state between 100000 and 130000 outer-training steps
because this area showed relatively good performance without many outliers. This state is
then used in the rest of the results section. The red dot in the Figure 3a shows the chosen
state.

To give an intuition of how well the optimizer performs we have given an example in Figure
3b of the learned optimizer fitting a neural network to a sinewave from the same task family
it was trained on.
In Figure 3a we see that our optimizer performs worse compared to learning-rate-tuned
Adam on the outer-loss metric. It does, however, perform better than learning-rate-tuned
SGD. Note that this comparison is made after 200 inner-update steps. If we would use the
optimizer for more steps SGD would eventually outperform the learned MPLP.

It is convenient to visualize the learned functions because there are always only two inputs
and a single output. Therefore, we can simply plot the functions in 3D space. Next to the
message passing functions g and the update function flin, we also plot the functions that
mimic SGD without momentum from Table 2.

The ranges of the plots were established by using the found optimizer to inner-train 20 newly
sampled tasks and keeping track of the ranges of the inputs during this inner-training. We
took the 1st and 99th percentile of the recorded values as the range.
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(a) Outer-learning process of a MPLP on a family of
sinewave tasks. The loss is the average of 10 meta-validation
runs. Initial learning phase is flat until around 50000 steps,
after which it starts converging. The red dot is the check-
point we used to compare to SGD. The horizontal lines are
the performance of learning-rate-tuned SGD and Adam.

(b) An example of how the learned
MPLP can fit a sinewave. The op-
timizer that was used is the red dot
from Figure 3a.

Figure 3: Outer-training (left) and example fit (right) of the learned optimizer.

Figure 4: Left: learned update function. Right: update function of SGD. Shape of MPLP
is negated version of the shape of SGD.
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Figure 5: Left: learned message generating function of the linear node. Right: SGD mes-
sage generating function of the linear node. Shapes are very much similar. Both represent
multiplication.

Figure 6: Left: learned message generating function of the loss node. Right: SGD message
generating function of the loss node. Shapes are the same but MPLP has learned ŷ−y while
SGD is y − ŷ.
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Figure 7: Left: learned message generating function of the ReLU node. Right: SGD message
generating function of the ReLU node. Shapes show similar properties but MPLP can return
negative values. Which is never the case for the ReLU activation function.

Looking at the results, we suspect that the learned optimizer has learned SGD but is less
precise and only works for a certain input distribution. We can see that for some learned
functions the shape of the surface is very similar. E.g., grelu (Fig. 7) and especially glin (Fig.
5) are very similar to what the function of SGD looks like. gloss (Fig. 6) is also similar to
the SGD function however instead of y − ŷ it has learned to do ŷ − y. This means that the
“gradients” (the messages) that flow backwards are negated. This explains how the update
function flin (Fig. 4) relates to SGD because the flin function is also the negated version of
the SGD function.

We noted some interesting things from the surface plots. First of all, the learned grelu shows
negative values for x < 0. If we look at the learned function as if it would calculate the
derivative of the ReLU activation function it suggests that there is a decreasing slope in
the ReLU activation function, which there is clearly not. In Appendix D we show what
activation function the learned grelu is the derivative of. The differences we find in Figure
13 could be explained by that an approximation is good enough to reach the outer-loss that
we did. Note that the outer-loss is fairly high (around 25).

The second interesting thing we noticed is that the messages that grelu receives are mostly
non-zero (minimum value is -0.57). It is unclear to us why this happens. It would be helpful
to compare this to SGD and see if there is a large difference.

5.2 Training dynamics

From Figure 3a we observed that the outer-training behaviour of the MPLP is not well
behaved. First of all, there is an initial phase in which it does not learn, this phase can take,
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depending on your computing power and configuration, a few hours. During these few hours
you are uncertain if it is going to train at all and this can make developing these systems
very painful. Secondly, the training can generally take a long time, can we improve on the
training time?

In this experiment we investigate what the effect of certain hyperparameters are on the
outer-training dynamics.

5.2.1 Setup

For the experiments we use sinewave tasks with not only random phases but also random
amplitude. This is done to make the MPLP also learn tasks of different scales which arguably
gives a more realistic setting.

Table 4: Overview of the setting that was used to train the MPLP. The outer-architecture
was used for all functions f , glin, gact and gmse. T is the full horizon length, K is the
truncation length and S is the number of meta steps.

Inner Outer
Architecture lin(1,20),ReLU,lin(20,20),ReLU,lin(20,1) lin(|i|,50),ReLU,lin(50,|o|)
Optimizer MPLP Adam β1: 0.99 β1: 0.999
Task family y = a · sin(x+ p), p ∈ U(0, π), a ∈ U(1, 5) -
Additional params batchsize: 32 T : 100, K: 5, S: 1.2 · 105

The inputs that the message generating functions and weight update function receive are
the same as in Eq. 4 and Eq. 5.

We will introduce a set of design choices that could affect the training behaviour of the
MPLP. These different design choices are:

• Learning a learning rate: Up until this point there was no explicit learning rate that
was learned during the training of the MPLP. The learning rate had been explicitly
fused into the update function f . We are going to add an outer-parameter to the
MPLP which is a scaler to the output of the update function f also known as the
learning rate.

• Normalization: In the original paper it was mentioned that normalization can have
a positive effect on the outer-training process [Randazzo et al., 2020]. E.g., it was
mentioned that the MPLP could not be trained without normalization under certain
configurations. We decided to use batch normalization because it gave the best per-
formance compared to other normalization methods we have experimented with [Ioffe
and Szegedy, 2015]. We do not keep running averages of the mean and std in the
batch normalization because of the large changes in these statistics between tasks.
The normalization is applied on the input of the functions f , glin, gact and gmse.

25



• Increasing the message size: Increasing the message size allows the MPLP to pass
more information through the network. We hypothesize that a higher message size
allows for more descent directions and could help to improve the initial phase of the
training. In the original paper it is stated that both performance and outer-training
speed improves with higher message sizes but no evidence is given [Randazzo et al.,
2020]. We experiment with a message size of 1 and 8.

We validate the optimizer on 20 different randomly initialized neural networks and 20 ran-
domly chosen sinewave tasks using the same task family we train on (random amplitude
and random phase). The tasks and inner-initializations on which we validate are chosen at
the beginning of training and are not changed throughout the training. We share the same
inner-initializations and tasks used for validation across all experiments. We validate every
300 outer-training steps for computational reasons.

5.2.2 Results

We have run each configuration 5 times to take into account the randomness of the meta-
initialization. We have plotted the median and the standard deviation over the 5 runs
in Figure 8. Due to computational constraints, this is the maximum we could reasonably
achieve.
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Figure 8: Outer-training curves of all possible combinations of the hyperparameters that
we have experimented with. Batch normalization has shown faster convergence under all
configurations. Increasing the message size leads to a much lower outer-loss. Learning the
learning-rate especially has mainly shown advantages in the top-right configuration when
there is no batch normalization applied. The red horizontal lines show the performance of
learning-rate-tuned Adam.

From the results in Figure 8 we find that first of all, batch normalization improves conver-
gence speed in all settings. Especially in the bottom-right configuration, we find a large
difference for the use of batch normalization. Additionally, when using batch normalization
the training of the optimizer less often gets stuck at the beginning of the training.
Secondly, learning the additional learning-rate parameter shows mixed results. We found
that it would generally speed up convergence but in some cases more than others. E.g.
when the message size is 1 the speed up is minimal, if even significant, but for message size
8 we find a large difference when no batch normalization is used. A disadvantage of the
additional learning-rate parameter is that it seems to make the training more unstable. We
hypothesize that this is due to the general sensitivity of the learning rate parameter [Metz
et al., 2019].
Thirdly, increasing the message size has, as expected, increased the performance of the opti-
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mizer significantly, it allows more information to be passed backwards through the network.
Using these results we can not accept the hypothesis, that a higher message size can prevent
the optimizer from getting stuck in the beginning phase, at least in this setting. Using the
higher message size we still find scenarios where there is an initial flat training phase.

Using a learned learning-rate in combination with batch normalization and a higher message
size gave the best performance. The performance of this configuration is still worse than
learning-rate-tuned Adam. Especially since the learned MPLP is only trained to optimize
for 100 update steps and has no guarantees to work well on other families of tasks. The
optimizer does perform better than SGD for the best performing configuration.

5.3 Training on MNIST

Up until now we have only experimented with tasks from the sinewave family. To learn an
optimizer that can optimize neural networks for more realistic problems, we have to also
train the optimizer on more realistic problems. Therefore, in this experiment, we train the
optimizer on the MNIST problem [Lecun et al., 1998].

5.3.1 Setup

Table 5: Overview of the setting that was used to train the MPLP. The outer-architecture
was used for all functions f , glin, gact and gmse. T is the full horizon length, K is the
truncation length, S is the number of meta steps and |m| is the message size.

Inner Outer
Architecture lin(28*28,32),ReLU,lin(32,20),ReLU,lin(20,10) lin(|i|,40),ReLU,lin(40,|o|)
Optimizer MPLP Adam β1: 0.99 β1: 0.999
Task family MNIST train split -

Additional params batchsize: 32
T : 100, K: 5, S: 1.5 · 105, |m|: 24,
batchnorm: True, learnedlr: True

Because MNIST is a classification problem we use the crossentropy loss. The crossentropy
includes a softmax activation to normalize the incoming logits. The definition of the cross-
entropy can be found in Eq. 23.

The inputs that the message generating functions and weight update function receive are
the same as in Eq. 4 and Eq. 5.

We validate the optimizer on the first T batches of the MNIST test set. After every 150
outer-training steps we validate the optimizer.

5.3.2 Results

We run the experiment 5 times to account for the random initialization of the meta-
parameters. We have plotted the results in Figure 9a.
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(a) Training the optimizer on MNIST shows a long initial
phase where it gets stuck. It can start to learn but it is hard
to predict when this happens. In one of the runs it did not
start to learn even after 150000 steps.

(b) Purple line is the same training
session as the purple line in Figure
9a. Batch entropy of the final layer
of the optimizee increases when the
optimizer starts to learn how to op-
timize. No batch entropy regular-
ization has been applied.

Figure 9

From Figure 9a we find that there is a long initial phase where it is not learning. It can
however start to learn but it is hard to predict when this exactly happens. In one of the
runs the optimizer did not start to learn after 150000 outer-training step. This is especially
problematic when you are developing the optimizer, make changes and are not sure if the
change you just made has caused the optimizer to not be able to be trained anymore.

In Figure 9b we find that the batch entropy seems to be correlated with the outer-loss. I.e.
that regularization on the batch entropy property could prevent the initial flat phase. To
test this hypothesis we add the regularization term as described in Section 4.4. The rest of
the configuration stays the same. The results are visualized in Figure 10b.
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(a) Batch entropy regularization removes the ini-
tial flat phase and allows for immediate training.

(b) The batch entropy component to the loss
quickly decreases to a value close to 0. This
shows the batch entropy does not compete with
the other loss term.

Figure 10

From Figure 10a we find that batch entropy regularization has resulted in the disappearance
of the initial phase in which the optimizer did not train. This enables us to train the optimizer
with much more confidence.

Figure 10b shows the batch entropy loss during the training of the optimizer. We find that
after the batch entropy loss is decreased it stays close to 0. This is in line with Figure 9b,
which shows that learning the optimizer correlates with an increase in batch entropy. Note
that the batch entropy is only regularized if it falls below a certain threshold (See Eq. 8).

We want to emphasize that we have only tested batch entropy regularization for this specific
configuration. Different optimizer types, e.g, learned optimizers that only learn an update
function might not benefit from batch entropy regularization. But there will probably also
be configurations in which the optimizer would not be able to train without batch entropy
regularization. Thus, batch entropy regularization should be seen as a tool to enable the
training of optimizers when without it, the optimizer does not train.
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Figure 11: The learned MPLP and Adam show similar convergence-speed on MNIST.

Figure 11 shows the inner-training of the learned optimizer on the MNIST test set on 20
random inner-initializations. We find that the learned MPLP performs similarly to tuned
Adam. This is interesting because the learned MPLP optimizer cannot calculate statistics
similar to momentum. After all, it can not transfer information between update steps. This
suggests that the learned MPLP has found a fundamentally different way to speed up the
training process.
We are limited in the amount of inner-training steps we could do because the MPLP is only
trained for a limited amount of inner-training steps. Therefore, if we would run the MPLP
optimizer for a longer amount of time Adam would likely outperform MPLP.

6 Discussion & future work

In our experiments, we found that different configurations showed different outer training
dynamics. E.g., in Section 5.2 (Sinewave) for all runs we could successfully train the MPLP
without using batch entropy regularization, whereas in Section 5.3 (MNIST) batch entropy
regularization was necessary. The main differences between the two experiments are the data
on which the optimizer was trained on and the architecture of the optimizee. E.g., MNIST
classification requires more inputs and outputs in the optimizee than Sinewave regression
does. It is currently unclear what exactly causes the training problems in the initial training
phase.
We hypothesize that the RNN-like training in combination with the nature of the problem
makes the training process of these expressive optimizers sensitive to their exact configu-
ration. Understanding what exactly has caused the training problems in the MNIST ex-
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periments might not solve training problems that will be encountered in similar expressive
optimizers. E.g., adding more input features to the message generating functions could cause
new training problems which are not solved by understanding what caused the training to
get stuck for the MNIST experiment. Therefore, to reliably train optimizers similar to the
MPLP, some sort of regularization seems to be required.

Learning to optimize from scratch, e.g., without explicitly providing the gradients, seems to
be a problem that is hard to solve using a greedy strategy during the beginning phase. At
the beginning of the outer-training there is no clear descent direction that causes consecutive
steps of decrease in the outer-loss. After the initial phase the training shows a more preferred
monotonic trend. We think batch entropy regularization allows us to more quickly find the
outer-state in which phase two of the outer-training starts.

Furthermore, in general, there are still many hyperparameters to the MPLP framework that
can be experimented with. There are still many arbitrary choices that have been made. E.g.
the architecture of the update functions and the message generating functions is still fairly
arbitrary. It would be interesting to change the width and depth of the architecture or to
change the activation functions. Currently, the output of the message generating functions is
not activated. Also, the inputs to the update function and the message generating functions
can be extended. Right now we have decided to use the same inputs as SGD would normally
have access to. In the literature, often, running statistics of the weights, current timestep
of the inner-optimization etc. are extra inputs that are available [Metz et al., 2022]. Often,
the current weight is also given to the update function flin to allow the MPLP to learn to
do weight decay.

Currently, we have only visualized a suboptimal performing optimizer because we are depend-
ing on the dimensionality of the message size for the visualization. From our experiments,
we found that message size has a large effect on performance, therefore, we would like to be
able to understand where this performance increase comes from. For this, we would have
to think of ways to visualize the higher-dimensional messages. One direction to go in is to
use dimensionality reduction on the messages. However, this would still make visualization
difficult. E.g., reducing the dimensionality from 16 to 2 still leaves us with 5 dimensions (2
outputs, 3 inputs) to visualize. Therefore, the visualization methods have to be changed.
What is possible is to look at how the weights of the optimizee get updated compared to
other optimizers like Adam and/or SGD. Kirsch and Schmidhuber [2021] compared the ac-
curacy of the optimizer during the inner-optimization process to SGD. But also, empirical
step sizes could be compared to see if this is significantly different from how the status quo
optimizers work. If we can find ways to better understand these learned optimizers, they
can be used as a good source of inspiration to improve current optimizers.
Especially, optimizers that would generalize better on a wider set of optimizee architectures
and tasks would be interesting to better understand if we see a performance increase. The
distributions of the architectures and the tasks can be relatively small to make the training
process more simple.
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In this thesis, we have only experimented with TBPTT with short unrolls to train the
MPLP. Despite seeing acceptable results using this method, it would be interesting to see
how the training dynamics would change when we would e.g. use Evolution Strategies with
longer unrolls to train the MPLP. The literature suggests that when using longer unrolls
the outer-loss landscape becomes more chaotic [Metz et al., 2019] which are better suited
to optimization methods that smooth the outer-loss landscape e.g. Evolution Strategies.
Currently, this is too computationally expensive on our available hardware.

In general, this field would benefit from a more diverse benchmark dataset that can be used
to train and test the optimizer. This could serve as a guideline for finding methods that
better generalize but also make the training process computationally cheaper. E.g. it is
currently unknown what would be a good schedule for truncation lengths during training to
achieve good performance with relatively little computation. The datasets in this benchmark
have to be relatively small and diverse. The benchmarks that exist are mostly designed for
optimizers that are less computationally expensive to train/use [Metz et al., 2022].

7 Conclusion

The first research question we will try to answer is: How does the MPLP framework relate
to SGD?

In Section 4.2 we show what form each component of the MPLP should take to imitate SGD.
Thereafter in Section 5.1 we show in an experiment that the MPLP has highly likely learned
an optimization algorithm similar to SGD.

For settings where the message size is larger than 1, it is harder to understand what kind
of learning algorithm is learned. Because the messages are passed in a similar way to how
gradients flow through a computational graph it is likely that for larger message sizes, in
addition to other information, still some gradient-like information is learned.

What are the meta-training dynamics of MPLPs, and what techniques can we use to improve
them?

This question consists of multiple questions. The first one, very broad, about the outer-
training dynamics of MPLPs. First of all, the way we do the outer-training gives us similar
dynamics as to how RNNs are trained, namely, there is a recurrent dependence because we
calculate the gradients over the inner-optimization process. This can lead to unstable and
chaotic training as discussed by Metz et al. [2019]. These dynamics apply to all learned
optimizers.
What is more unique to the MPLP is that we have encountered situations where there is an
initial phase where the training is stuck. We hypothesize that the additional expressivity of
the MPLP gives these initial training problems.

To answer the second part of the question, we have experimented with multiple techniques
to improve the training of the MPLP. Firstly, we have experimented with increasing the size
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of the messages that get generated by the message generating functions. For our setting we
saw that the message size has a large influence on the performance and convergence speed.
Secondly, batch normalization increased convergence speed in all cases and generally pro-
duces a better performing MPLP. Furthermore, learning the learning-rate showed increased
performance in our setting. It did however make the training more chaotic.

Additionally, we have modified an existing technique called batch entropy regularization
to improve the trainability of the MPLP framework on the MNIST problem. We show
how batch entropy correlates with certain training stages. We then show that this can be
exploited by adding the batch entropy as a regularization term. Batch entropy regularization
could especially be helpful to enable the training of expressive learned optimizers similar to
the MPLP.
The learned MPLP shows similar performance to tuned Adam on the MNIST setting without
making use of running statistics like momentum. This suggests that the MPLP has learned
a fundamentally different technique to speed up the training.

Given the gained knowledge about training an MPLP, we think the most logical next step
would be to train an MPLP to make it generalize on a wider set of optimizee architectures
and tasks. If this optimizer would show better performance than e.g. tuned Adam it would
especially be interesting to try to better understand the mechanics of this optimizer such
that we can ultimately discover new optimization techniques.
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Appendices

A Finding the message passing functions for SGD

In this section we find the functions from Eq. 4 and 5 such that the backwards pass mimics
ordinary SGD without momentum. Finding these functions will show us that this framework
has at least the capacity to imitate SGD without momentum.

Ordinary stochastic gradient descent without momentum is defined as follows,

θt+1
c ← θtc − α∆θc (9)

∆θc =
∂L

∂θc
(10)

Where c is the coordinate of a linear node. θc is then the weight/parameter at node c. L is
the loss and α is the learning rate which is constant. We assume no batches are used for now.
This is done to simplify the derivation. It can be easily shown that batching is essentially
taking the average of the ∆θc over the batches as the final weight update.

We start with finding the function flin(...,m, c). The purpose of flin(...,m, c) is to calculate
the weight update α ·∆θc. We find that for a linear node i

flin(...,m, i) = α
∂L

∂θi
(11)

We can rewrite this to

flin(...,m, i) = α
∂L

∂ki(xi, θi)

∂ki(xi, θi)

∂θi
(12)

Where ki(...) is the computation that corresponds to the node i and can be found in Table
1. In this case, because flin(...) is always calculated at a linear node ki(xi, θi) = xi · θi.

This gives us
∂ki(xi, θi)

∂θi
= x (13)

We then assume the following
∂L

∂ki(xi, θi)
= m (14)

We can then rewrite Eq. 12
flin(x,m, c) = α · x ·m (15)

Where xi is the input to the i node at which flin is calculated.

We have now found the function flin such that it mimics ordinary SGD without momentum.
However, the found function is dependent on the message m that is received for it to work.
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We call the node that generates this message node j. The node j can be of any type. We
found in Eq. 14 that the function g that generates this message must be the following

gnodetype(...,m, j) =
∂L

∂ki(x, θi)
(16)

Again, j is the node that generates and passes a message backwards to node i.

We can rewrite this to

gnodetype(...,m, j) =
∂L

∂kj(..., xj)

∂kj(..., xj)

∂ki(xi, θi)
(17)

Because the output of node i is the input to node j,

∂kj(..., xj)

∂ki(xi, θi)
=

∂kj(..., xj)

∂xj

(18)

We also assume,
∂L

∂kj(..., xj)
= m (19)

We can then rewrite Eq. 17

gnodetype(...,m, j) =
∂kj(..., xj)

∂xj

·m (20)

We have now also found the mssage passing generation functions g. Again we see that
gnodetype(...,m, j) is dependent on the message that is generated from the node after j. Be-
cause the message is always of the same form (see Eq. 14 and 19) we get this recursive
behaviour.

The recursion ends at the loss node. Where,

gloss(..., j) =
∂L

∂ki(xi, θi)
=

∂kj(xj, y)

∂xj

(21)

B Summing more closely resembles gradients

Whenever a node within a computational graph receives multiple messages as input we need
to decide how we are going to aggregate the messages. There are multiple options to do this
e.g. summing, averaging, maximizing etc. We have chosen to sum the messages because it
more closely resembles how gradients would normally be calculated.

A node receives multiple messages when it has multiple occurrences in the mathematical
representation of the computational graph. This means that a single node influences multiple
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other nodes in the computational graph. In mathematical notation, this can be written down
as follows,

∂L

∂z
L(p(z), q(z))

Where z is the node that receives multiple messages. p() and q() are operations that are
connected to z. And L is the function we ultimately want to minimize.

We can rewrite this to:
∂L

∂z
L(f(z), g(z)) =

∂L

∂g

∂g

∂z
+

∂L

∂f

∂f

∂z

Which is the sum of the gradients of the two functions that are connected to z. This justifies
the use of summing as the aggregation method.

C Cross-entropy message generator function to mimic SGD

The softmax activation function is a normalization function and is defined as follows,

σ(x, i) =
exi∑n
j=1 e

xj
(22)

Where x is the output vector of the final hidden layer, e.g. x = xprev ·W + bprev. Note that
because of the denominator, σ(x, i) is dependent on all the elements in x. This is different
from e.g., Relu or Sigmoid where there is only a dependence on a single element of x: xi.

For message passing, this is a problem because in our current implementation, there are no
cross connections between the pre-softmax layer and the softmax. However, if we combine
the cross-entropy loss with the softmax activation function this cross-dependence disappears.
The cross-entropy for a single loss node is defined as follows:

L(y, x) = −
n∑

i=1

yi log(σ(x, i)) (23)

We are now interested in how a single pre-softmax output node xi influences the loss. It
turns out the cross-dependence dissapears1:

∂L

∂xi

= −
n∑

j=1

yj
∂ log(σ(x, j))

∂xi

= σ(x, i)− yi (24)

This means that the message passing function for the softmax and the cross-entropy com-
bined can be written as follows:

gcrossentropy(x, yi,m) = σ(x, i)− yi (25)

1An example of how to obtain this derivation can be found here: https://towardsdatascience.com/

derivative-of-the-softmax-function-and-the-categorical-cross-entropy-loss-ffceefc081d1
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Where i is the index of one of the output nodes of the MLP. This means we don’t need the
cross-connections between the pre-softmax layer and the softmax layer to be able to mimic
SGD. Therefore, it is also a logical decision to combine the softmax and the cross-entropy
into a single node.

D Learned ReLU anti-derivative

In the experiment from Section 5.1 we noted that the results from Figure 7 are interesting
in the sense that they do not seem to correspond to the ReLU activation function.

From 2 we find that,
gact = act′(x) ·m (26)

We can therefore divide by m to obtain the derivative of the activation function. We do this
both for the learned grelu and the SGD imitation.

Figure 12: Same as Figure 7 but we divide by m. The result is supposedly the derivative of
its activation.

From Figure 12 we see that MPLP function has learned to multiply by the incoming mes-
sage/“gradient”. I.e. after the division by m, m no longer affects the outcome. Note, that
we cut off the values for m ∈ [0, 5] to remove a chaotic area.

We are now left with the derivative of the activation. If we take the anti-derivative of this
function we can see which activation function it corresponds to.
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Figure 13: The activation functions corresponding to the message generating functions. grelu
does not correspond to ReLU.

We find that the activation function that corresponds to learned message generating function
is very different than the ReLU that is used in the forward pass.
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