
Opleiding Informatica
& Economie

EVALUATING A NEW JAVASCRIPT FEATURE

for a Thesis

Kousar Sedigi

Supervisors:
Felienne Hermans & Joost Visser

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 23/08/2023

www.liacs.leidenuniv.nl

Abstract

The paper presents qualitative research results on the Do-Expression, a proposed feature in
JavaScript.The study uses interviews with the think-aloud method to gather data on using the
Do-expression in JavaScript. Three expert programmers with over five years of experience and
three participants with 0 to 5 years experience in JavaScript were interviewed online in June
2021. The interview was divided into four parts to understand participants’ initial reactions
and perceptions of the Do-expression and their ability to distinguish it from the Do-while
statement and search for resources. The data collected was used for the quantitative analysis
of the study.

The paper highlights the importance of careful consideration and proper documentation
for introducing the Do-expression to avoid confusion and ensure its proper usage. The experts’
attention to detail and experience with programming influenced their interpretation of the
feature, while beginners’ lack of familiarity with expression-oriented programming affected their
understanding of it. It was found that experts consider the Do-expression syntax in JavaScript
a helpful feature and believe it should be developed further. In contrast, beginners were initially
confused but eventually understood its purpose. However, they needed to be convinced of
its usefulness and were unlikely to use it in their work. The insights from the interviews will
inform the development of a future survey with clear and precise questions and examples to
gather more comprehensive data on programmers’ perspectives on the Do-expression syntax.

2

Contents

1 Introduction 4
1.0.1 Research Question . 5

1.1 Thesis overview . 5

2 Background 6

3 Related Work 10

4 Approach 12
4.1 Qualitative method . 13

4.1.1 Participants . 13
4.1.2 Procedure . 14

5 Results 14
5.1 Qualitative method . 15

5.1.1 Experts . 15
5.1.2 Beginners . 17

6 Conclusion 18

7 Discussion 19

References 20

1 Introduction

The first step in adding a new feature to a programming language is to identify a need or desire for the
feature. This requirement could come from various sources, including users of the language, develop-
ers who work on the language, or simply from observation of trends in other programming languages.

Once a need has been identified, the next step is typically to propose the new feature to the
community that develops and maintains the language. Proposing a new feature could involve:

• submitting a formal proposal.

• discussing the idea on a mailing list or forum.

• presenting the idea at a conference or gathering of language users and developers.

The community will then evaluate the proposed feature to determine whether it is desirable, feasible,
and appropriate for the language. This evaluation may involve a variety of criteria, including the
potential impact on existing code, the clarity and consistency of the proposed syntax or seman-
tics, and the compatibility of the feature with the broader goals and design principles of the language.

If the community decides that the new feature is a good fit for the language, the next step is to
formalize the feature. This process could involve writing a specification that defines the syntax and
semantics of the feature, or it could involve writing a prototype implementation to test the feature
in practice.

Before the new feature can be added to the language, it may need to undergo a testing and review
process to ensure that it is stable and well-designed. This process could involve creating test cases to
verify the correctness and performance of the feature, soliciting feedback from users and developers,
or undergoing a formal review by language experts or standards bodies.

Once the new feature has been approved and formalized, it can be added to the language in a
future release. However, adding new features to a programming language can be challenging, as it
requires balancing the needs of existing users with the desire to innovate and improve the language.
In some cases, new features can introduce new bugs or make it more difficult to write correct code,
so it is essential to consider the costs and benefits of each proposed feature before adding it to the
language.

In this paper, we are going to look at do-expression. We will look at the benefits and the drawbacks
by doing experiments. Based on the experiments, we will decide if we will add this feature to
JavaScript?

1 //Do -Expression

2 let value = do {

3 let temp = x + 1;

4 temp * temp

5 }

Listing 1: Example of Do-Expression

4

1.0.1 Research Question

To understand how confusing Do-expression is, the main question we want to answer in this thesis is:

Would JavaScript users benefit from adding Do-Expression to the programming lan-
guage?

We will do that by answering the following sub-questions:

• What are the different interpretations of the new Do-Expression by JavaScript programmers?

• Will the programmers have a better understanding after priming?

• Will programmers confuse Do-Expression with the do-while statement?

1.1 Thesis overview

The paper will likely begin by introducing the Do-Expression feature and explaining its syntax and
semantics. Section 3 will also provide some background on the motivation for adding this feature
to JavaScript, such as the benefits of local block scoping and the potential for reducing memory usage.

The paper will then describe the experiments that were conducted to evaluate the Do-Expression
feature in section 4. This could involve creating test cases that exercise the feature in various
contexts or analyzing existing code to determine how the feature could be used in practice. The
experiments may also compare the performance of code that uses DO-Expressions to equivalent
code that does not use the feature.

The outcome will be discussed in Section 5. Based on the results of the experiments, the paper will
then evaluate the benefits and drawbacks of the DO-Expression feature for potential inclusion in
JavaScript. It may consider factors such as ease of use, performance impact, and compatibility with
existing code and programming practices.

Finally, In Section 6 a recommendation will be made on whether or not to add the Do-Expression
feature to JavaScript. This could involve proposing modifications to the feature based on the
experimental results, or simply recommending that the feature be included as-is. The paper may
also identify areas for further research or development related to the DO-Expression feature or
related features in JavaScript. Section 7 we will interpret and describe the significance of our findings.

This bachelor thesis was part of the PERL group at LIACS, made possible by the support of
Felienne Hermans and Yulia Startsev.

5

2 Background

JavaScript is one of the most widely used programming languages in the world today, and it has a
rich history that dates back to the mid-1990s. The very first version of JavaScript was developed
by Brendan Eich in just 10 days in May 1995. At the time, the language was called Mocha.

A year after Mocha was first developed, its name was changed to LiveScript. This was done to
reflect the fact that the language was designed to be executed in real-time, as users interacted with
web pages. However, in an effort to capitalize on the popularity of the Java programming language,
LiveScript was renamed JavaScript in December 1995.

It’s important to note that despite its name, JavaScript has nothing to do with the Java program-
ming language. JavaScript is a completely separate programming language, and its design and
syntax are quite different from Java. The decision to name the language JavaScript was largely a
marketing move, aimed at attracting Java developers to the new language. Despite this, JavaScript
has gone on to become one of the most widely used programming languages in the world, and its
popularity continues to grow with each passing year.

To standardize the language , ECMA releases ECMAScript 1 (ES1) in 1997. The first standard for
JavaScript. In 2015 ECMA releases the biggest update ever the ES5(ECMAScript 5) and after that
ECMA changes to annual releases in order to ship less features per update.

In order to ensure consistency across different implementations of JavaScript, the European Com-
puter Manufacturers Association (ECMA) developed a standardized version of the language known
as ECMAScript. ECMAScript defines the syntax and semantics of the JavaScript language.

The first version of ECMAScript, known as ES1, was released in 1997. This was the first standard-
ized version of the JavaScript language. ECMAScript 1 was designed to be compatible with the
features of the original version of JavaScript, while also adding some new features such as regular
expressions and exception handling.

Over time, new versions of ECMAScript were released to add new features and improve the language.
ECMAScript 3 (ES3) was released in 1999, and it introduced several new features such as try-catch
statements, named function expressions, and more flexible regular expressions.

One of the biggest updates to the language came with the release of ECMAScript 5 (ES5) in 2009.
ES5 added several new features such as strict mode, which introduced a subset of the language
with stronger error checking and more restrictive rules.

Ecma TC39 is a group of JavaScript developers, implementers and more. They maintain and evolve
the definition of Javascript. TC39 meets every two months to discuss the proposals. There are 5
stages and Do-expression is in stage 1[TC3].

TC39 meets every two months to discuss proposals for new features and changes to the language.
The proposals go through a rigorous process of review, discussion, and testing before they are

6

accepted into the standard. The goal of this process is to ensure that new features are well-designed,
thoroughly tested, and broadly useful to the JavaScript community.

To help manage the proposals, TC39 has developed a process that divides proposals into five
different stages. Each stage represents a different level of maturity for a proposal, with stage 0
being the least mature and stage 4 being the most mature.

Do-expressions is a proposal that is currently in Stage 1 of the process. This means that it is
still in the early stages of development, and there is no guarantee that it will be included in the
final standard. However, the fact that it has progressed to Stage 1 is a good sign that the TC39
committee sees potential in the proposal, and it will continue to be discussed and refined in future
meetings.

In JavaScript, expressions and statements are two distinct categories of code constructs. An
expression is a piece of code that produces a value, while a statement is a complete instruction that
performs an action.
For example, 12 + (7 +2) is an expression that evaluates to the value 3, while console.log(”Hello,
world!”) is a statement that prints a message to the console.

1 // Expressions return some values.

2 Example -> 12 + (7 + 2)

3 // return value is 21

4

5 // Statements just perform some actions but do not produce any value.

6 console.log("Hello , world!")

7 }

Listing 2: Example of Expression and statement

Do-expressions blur the line between expressions and statements by allowing you to put statements
inside an expression. This means that you can write a block of code that produces a value, without
having to use a separate function or variable assignment.
The next example will show us one of the benefits of Do-expression.

1 //Not using do Expression

2 let temp = x + 1;

3 let value = temp * temp;

4

5 //With do Expression

6 let value = do {

7 let temp = x + 1;

8 temp * temp

9 }

Listing 3: Example of code with and without do-expression

As it is shown in the example. The semantics is possible , only the syntax is changed. Now temp
has become a local variable and after the block the value of temp is null.
There are also confusions about do Expression. For example , not being able to figure out what the
expected outcome would be.

7

The example given in the listing 3 suggests that a do-expression can be used to create a block of
code that produces a value, similar to a function, but with a more concise syntax. Specifically, the
example shows that a temp variable can be created and assigned a value within a do-expression
block, and this variable is local to the block, which means that it is not accessible outside the block.

As for the confusion around do-expression, this is to be expected with any new language feature.
When a new feature is proposed, it needs to be thoroughly tested and evaluated to determine its
usefulness, safety, and compatibility with other language features. This process can take some time
and may involve several rounds of revisions.

Additionally, since do-expressions blur the line between expressions and statements, it may take
some time for developers to get used to the new syntax and understand how it works in different
contexts. It is possible that some confusion or ambiguity will arise as developers start using do-
expressions in real-world code.

Overall, while do-expressions offer a new way to write expressive code in JavaScript, it is important
to carefully consider their benefits and drawbacks, and to thoroughly test and evaluate their
behavior in various contexts, before deciding whether to adopt them in your own code.

Do-expression make use of completion values. Completion value is the value that is returned when
a statement completes. Sometimes this contains a value but not always. You might be familiar with
this when you are assigning an expression.
In JavaScript, a completion value is the result of evaluating a statement or expression. A completion
value can contain a value, or it can indicate that the statement or expression completed abruptly,
for example, by throwing an error.

Do-expressions make use of completion values by allowing you to specify a statement block
as the expression. When the statement block completes, the completion value of the last statement
in the block is returned as the value of the do-expression.

For example, consider the following do-expression:

1 let x = do {

2 if (someCondition) {

3 "foo";

4 } else {

5 "bar";

6 }

7 };

Listing 4: Do-Expression

In this example, the do-expression contains an if-else statement block. If someCondition is true,
the string ”foo” is returned as the completion value of the block. Otherwise, the string ”bar” is
returned. The completion value of the do-expression is the same as the completion value of the
block, so in this case, the value of x is either ”foo” or ”bar”.

Completion values can be tricky to work with, as they can contain values or exceptions, and their

8

behavior can depend on the context in which they are used. It is important to understand how
completion values work in JavaScript and to use them carefully to avoid unexpected behavior in
your code.

1 // undefined completion value

2 let foo = 1;

3

4 // defined completion value

5 1;

Listing 5: Completion values

Completion records in JavaScript are objects that include a type and a value. The type of a
completion record indicates why a statement or expression completed, and can be one of the
following:

• normal: the statement or expression completed normally, without any unusual behavior.

• return: the statement or expression completed with a return statement.

• throw: the statement or expression completed with an exception being thrown.

• break: the statement completed with a break statement.

• continue: the statement completed with a continue statement.

In each of these cases, the completion record may also include a value, which is the value that is
returned or thrown by the statement or expression.

Do expressions make use of normal completions, which means that the completion value of a do
expression is the value of the last statement in the block, unless that statement completes with an
exception or a return statement. If the last statement completes normally, its value is used as the
completion value of the do expression.

Due to some potential for confusion there are some limitations. You can’t use Do-expression with a
declaration, an if without an else statement or a loop.

1 //Do -expression with a declaration

2 (do {

3 let x = 1;

4 });

5 //Do -expression with an if without else

6 (do {

7 if (foo) {

8 bar

9 }

10 });

11 //Do -expression with loop

12 (do {

13 while (cond) {

14 // do something

9

15 }

16 });

Listing 6: Limitation of do Expression

3 Related Work

The decision-making process for adding new features to JavaScript is not scientific, as it involves a
discussion among members of TC39. While the champion presents their proposal, other members
of the committee can provide their input and opinions on the proposal, leading to a discussion.
Ultimately, the decision to accept or reject a proposal is made by the consensus of the committee
members. This approach can lead to both positive and negative outcomes. On the one hand,
proposals with potential issues or problems can still be approved if they have a strong advocate or
significant supporters. On the other hand, proposals that could bring significant benefits to the
language may only be accepted if they are well-presented or if there is enough interest or support
among the committee members. The decision-making process can also be affected by other factors,
such as the technical feasibility of the proposal, its impact on existing code, and its potential
adoption by developers. Therefore, it is essential for proposal champions to be well-prepared and
make a strong case for their proposals while also being open to feedback and criticism from other
members of the committee.

Although not much research has been done on evaluating a single feature. There are papers on
evaluating a programming language. Steven Clarke used the Cognitive Dimensions framework to
evaluate a new programming language[Cla01]. The Cognitive Dimensions framework is a framework
for evaluating the usability of programming languages based on different cognitive dimensions
such as viscosity, hidden dependencies, and error proneness. It is often used to compare different
programming languages or language features, as it provides a structured way to evaluate these
dimensions’ impact on a language’s usability.Steven Clarke’s paper this framework to evaluate a new
programming language called Mondrian. The paper compares the effectiveness of two evaluation
methods: a lab-based evaluation and a questionnaire-based evaluation. The lab-based evaluation
involved a group of participants performing tasks in the Mondrian language while being observed
and interviewed by researchers. The questionnaire-based evaluation involved a larger group of
participants filling out a survey about their experience with the language. The paper concludes that
both evaluation methods can be helpful, but the questionnaire-based approach is more practical for
more extensive scale evaluations. However, the paper also notes that the questionnaire format needs
to be improved to analyze a language or language feature comprehensively. Overall, while there may
not be a lot of research specifically on evaluating single language features like the Do-expression in
JavaScript, frameworks like the Cognitive Dimensions can be applied to provide structured and
comprehensive evaluations of programming languages and their features.

Alan F. Blackwell and Thomas R.G. Green proposed a generalized questionnaire based on the
Cognitive Dimensions of Notations framework for evaluating programming languages[BG00]. The
Cognitive Dimensions framework provides a systematic and comprehensive set of criteria to evaluate
the usability of a programming language. However, the authors noted that the use of language in
the questionnaire is crucial to ensure that respondents clearly understand what is required of them.

10

The authors suggest that respondents should be able to choose which features of the language they
want to evaluate, and the questionnaire should be designed to be flexible and customizable to suit
different languages and contexts. They also emphasize the importance of clear instructions and
explanations of the questions so that respondents can provide accurate and meaningful feedback.
The authors also suggest that the questionnaire approach can be supplemented with other evaluation
methods, such as user testing and expert reviews. A more comprehensive and accurate assessment
of a programming language can be obtained by combining multiple evaluation methods.

Keertipati, S., Licorish, S. A., and Savarimuthu explored the decision-making process in Python[KLS16].
The focus was on the normative decision-making process within Open Source Software (OSS)
projects, specifically Python. Their study uses Python Enhancement Proposals (PEPs) to explore
aspects of the normative decision-making processes in OSS development. The research compared
the extracted process models and the processes promoted by the Python community. The aim was
to assess the level of overlap between these two sets of processes. Through interviews, surveys, and
analysis of community discussions and documentation, the researchers examine the decision-making
dynamics in Python. They explore how decisions are made, the criteria used for feature selection,
and the roles of stakeholders, including core developers, community contributors, and the Python
Steering Council. The findings revealed significant differences between the extracted and officially
advertised processes by the Python community. The extracted processes were found to be more
complex. Furthermore, the success of PEPs was often attributed to the significant contributions
of key members within the community. Overall, this paper contributes to a deeper understanding
of the decision-making processes in Python and offers insights into the mechanisms that shape
the language’s evolution. It provides valuable information for language designers, developers, and
stakeholders interested in the decision-making dynamics of programming languages.

Crowston, K. and Howison, J. research examine communication patterns within Free/Libre Open
Source Software (FLOSS) development teams [CH06]. This study aims to understand the social
structure of these teams and its impact on collaboration and team performance. Using social
network analysis, the researchers analyze interactions in 62,110 bug reports from 122 large and
active projects. Contrary to expectations, the study’s findings shed light on the diverse com-
munication structures observed within FLOSS teams. Interestingly, some groups demonstrate
high centralization, while others deviate from this pattern. The research highlights that FLOSS
projects are mostly hierarchical, which aligns with past research but challenges the popular image
of these projects as non-hierarchical. By studying communication patterns and social structures,
this research sheds light on the organizational dynamics of FLOSS projects. It emphasizes the
importance of communication structures in facilitating effective collaboration and team performance
in open-source development. Overall, these findings contribute to understanding distributed work
in FLOSS development teams.

Similar findings were found in the study done by Crowston, K. Wei, K. Howison J, and Wiggins, A
[CWHW08]. Their study offers a comprehensive analysis of the existing knowledge of Free/Libre
Open Source Software (FLOSS) development. The paper conducts a systematic review of the litera-
ture, explaining key insights while identifying gaps that remain unexplored. The authors emphasize
the distinctive attributes of FLOSS development teams as an ideal context for studying distributed
work. They explore the complex social structures persisting within these teams, giving insights into

11

the dynamics of social networks and the presence (or absence) of hierarchical arrangements in FLOSS
projects. The findings challenge common beliefs, revealing instances of both highly centralized and
non-traditional hierarchical structures across teams. Moreover, the article investigates the relation-
ship between project size and centralization, unearthing a negative correlation that suggests larger
projects tend to adopt more modular organizational structures. Overall, this scholarly work provides
valuable insights into the current state of knowledge pertaining to FLOSS development. By out-
lining the knowns and unknowns, this research paves the way for future investigations in this domain.

Sharma, P. N., Savarimuthu, B. T. R., and Stanger, N. focused on the extraction of decision-making
rationale from the Python email archives in their study [SSS21]. The study aims to understand the
decision-making processes and the underlying rationale behind them in the context of open-source
software development. Uncovering the underlying rationale behind these decisions encourages
transparency by bringing them to light. The authors use natural language processing techniques to
analyze a large collection of email messages exchanged among Python developers. Through their
analysis, they identify and extract key pieces of information related to decision-making, such as
reasons, justifications, and discussions. The findings of the study provide valuable insights into the
decision-making practices within the Python community and shed light on the factors affecting the
development of open-source software projects. The research contributes to the understanding of
how decisions are made and documented in the context of open-source software development.

4 Approach

In this paper discussing Do-expression, a mixed-method approach is used to evaluate the feature.
Mixed methods research involves combining both qualitative and quantitative research methods to
provide a complete understanding of the research question at hand.[Lit18].
In the case of evaluating the Do-expression feature in JavaScript, the qualitative research method
is chosen to gain an in-depth understanding of the issues and challenges that programmers may
face when encountering this feature. This process involves interviews with programmers about the
feature. Qualitative research can provide a detailed understanding of the attitudes and perspectives
of users toward the feature.

After using qualitative methods, the authors will also use a quantitative approach to gather data
from a broader audience. This may involve conducting surveys or experiments to measure the
impact of the Do-expression feature on programmers’ productivity, code quality, or other metrics.
Quantitative research can provide more objective and generalizable results and help confirm or
refute qualitative research findings.

Overall, the mixed method approach allows the authors to combine the strengths of both qualitative
and quantitative research methods and provides a complete understanding of the impact of the
Do-expression feature on JavaScript programming.

12

4.1 Qualitative method

For our quantitative method, we have chosen interviews. During the interviews, we will use the
think-aloud method. The think-aloud method is a technique that requires participants to verbalize
their thoughts as they work through a task.This approach is used to correctly identify the issues a
programmer might face [VSBS94].

The interviews were conducted online since the participants were located in different places. This
approach is helpful as it allows for a more flexible and convenient way to collect data. Online
interviews also allow a larger pool of participants to be reached, making it possible to get a more
diverse set of responses.

During the interviews, participants will be asked to provide feedback on their experience using
the Do-expression, including any challenges they faced and any suggestions for improvement. This
data will be collected and analyzed to help answer the research question and identify potential
Do-expression issues.

Overall, the think-aloud method is a helpful tool for understanding how participants approach a
task and can provide valuable insights into the thought processes involved in using a new feature
such as the Do-expression.

4.1.1 Participants

In order to have a diverse group of participants and to capture a broad range of perspectives, it is
essential to choose participants with different levels of experience. In this study, we interviewed three
expert programmers with more than five years of experience in JavaScript and three participants
with between 0 and 5 years of experience with JavaScript.

To recruit these participants, we contacted our professional network and used various online platforms
to find potential participants who met their criteria. Having a diverse group of participants is
essential because it can help uncover a broader range of issues and perspectives related to the topic
of study.
The interviews were conducted in June 2021 and likely followed a structured protocol to ensure
consistency in the data collected. The think-aloud method was used during the interviews to
encourage participants to verbalize their thought processes as they worked through tasks related to
the Do-expression in JavaScript. This approach can provide rich data on programmers’ difficulties
and challenges when using this new feature.

13

4.1.2 Procedure

Figure 1: Procedure

The interview was designed to explore the participants’
understanding and perceptions of the Do-expression in
JavaScript. The first part of the interview was focused on
getting to know the participant and their level of expe-
rience with JavaScript. This part helped the interviewer
to understand the context and background of the partic-
ipant.

In the second part of the interview, the participants
were shown some examples of Do-expression and were
asked what they thought the Do-expression does when
encountered for the first time. This part allowed the
interviewer to understand the initial reaction and
perception of the participants toward the new fea-
ture.

In the third part of the interview, the participants were
asked if they had ever heard of the Do-while statement in JavaScript and if they could distinguish
between the two. This part was essential to identify any confusion that might arise due to the
similarity of names.The participants were also asked how they would search for more information
about Do-expression if they encountered it for the first time. This assessed their ability to search
for resources and learn new language features.The participants were also asked how they would
search for more information about Do-expression if they encountered it for the first time. This was
to assess their ability to search for resources and learn new features of the language.

In the final part of the interview, the same examples from the second part were shown again, but the
participants explained the Do-expression and how it works. This part evaluated the explanation’s
effectiveness and the participant’s ability to understand the feature afterward.

5 Results

The qualitative research results suggest some need for clarification among programmers when they
encounter the Do-expression for the first time. The participants were unfamiliar with the concept
of ”expression-oriented programming” and, thus, found it difficult to understand the semantics of
the Do-expression. Some participants also confused it with the existing Do-while statement, which
caused further confusion.
However, after receiving an explanation and understanding the concept of expression-oriented
programming, the participants found the Do-expression valuable and easy to understand. They
appreciated its flexibility and could see its potential for improving code readability and reducing
redundancy.
Overall, the qualitative research suggests that the Do-expression has the potential to be a helpful
feature in JavaScript. However, its introduction may require careful consideration and proper
documentation to avoid confusion and ensure proper usage.

14

5.1 Qualitative method

We interviewed 6 participants, of which three were experts and three with experience of fewer than
five years. Although we have used the same examples, the findings were different. First, we will go
through the interviews with the experts, and then we will discuss the results from the beginners.
During the interviews with the experts, it was observed that they could understand the concept of
Do-expression quite easily. They identified that the Do-expression is a new construct that has been
added to the language and is different from the Do-while statement. However, they did mention
that the syntax might take some getting used to as it differs from what they are used to.
When presented with examples of the Do-expression in use, the experts could quickly identify what
the code was doing and how the Do-expression was being used. They also mentioned that the
Do-expression could be helpful in specific scenarios, especially when dealing with asynchronous code.

However, despite their familiarity with the language and experience, the experts mentioned some
concerns about Do-expression. For example, they mentioned that the syntax of the Do-expression
might need to be clarified for beginners and that it might take some time for developers to get
used to it. They also mentioned that there might be some compatibility issues with older browsers
and that this might make it challenging to use the Do-expression in production code.

Overall, the experts were generally positive about the Do-expression and felt that it could be a
valuable addition to the language, provided that developers take the time to understand how it
works and can be used effectively.

5.1.1 Experts

The experts only knew that we would discuss a new JavaScript feature. All three of the participants
have around ten years of experience.
The participants were comfortable discussing their thoughts and opinions with the interviewer,
which could be due to their level of expertise and confidence in their knowledge. Additionally,
since the participants had no prior knowledge of the specific feature being discussed, they may
have approached it with curiosity and openness. This could have contributed to their engaged and
detailed answers.

In the second part, where we showed the examples to the experts, we noticed that they were looking
at the whole code rather than only focusing on the Do-expression part. As is shown in the following
example, in line 4, a semicolon was not used, but in line 9, we did. Do-expression has nothing to do
with a semicolon; the experts still noticed it was missing.

The behavior observed during the interview with experts is expected. Experienced programmers are
trained to look for subtle details in code and often scan the entire code rather than just focusing on
the specific element under consideration. The fact that the experts noticed the missing semicolon is
a testament to their attention to detail and experience with JavaScript.

It is worth noting that the missing semicolon is unrelated to the Do-expression itself and would not
affect the code’s behavior significantly. The experts may have noticed it simply because it goes
against the usual style guidelines for writing JavaScript code.

15

1 // first example

2 let x = do {

3 let tmp = 5;

4 tmp * tmp + 1

5 };

6

7 // second example

8 let x = do {

9 let y = 1;

10 };

Listing 7: With and without semicolon

Also in the following example we were trying to find out what participants think happens when we
use the try catch statement. Every expert thought it would return null because the blob statement
was wrong. In line 3 Jan and the number 42 also need quotation marks around it. Therefore
experts taught the funtion would return null rather than parse it.
This example demonstrates how the experts’ experience with programming and syntax rules
influenced their interpretation of the Do-expression. They were able to quickly identify syntax errors
and the incorrect use of variables without fully understanding the purpose of the Do-expression. It
highlights how prior knowledge and experience can impact the interpretation and understanding of
new language features. This is an important consideration when evaluating the adoption and usage
of new language features, as experienced developers may have different expectations and use cases
than beginners.

1 //(Conditionals // control flow)

2

3 const blob = ’{" userid ":Jan , "age ":42} ’;

4

5 function getUserId(blob) {

6 let obj = do {

7 try {

8 JSON.parse(blob)

9 } catch {

10 return null;

11 }

12 };

13 return (obj.userId);

14 }

15 // correct output : Jan

Listing 8: Try/catch statement

In part 3 none of the experts confused the Do-expression with the Do-while statement. Also Do-while
is not used by them in their daily life. Explaining what Do-expression is about went smoothly since
all of them had already a good understanding of what a completion value is. So we only needed to
explain what a completion value is in the context of a do expression. Also all of them would use
MDN which is a web page for resources for developers, by developers in order to find more about
the expression.
Elaborating on the use of MDN, it is a widely used resource for developers to find information about
programming languages, APIs, and other technical resources. The fact that all experts mentioned
it shows that it is a reliable source of information for them. This also highlights the importance of

16

having good documentation for new programming features like the Do-expression, as developers
often rely on these resources to learn and understand new concepts.

In the fourth section of our study, we revisited the examples and provided a comprehensive
explanation of the Do-expression. Interestingly, the majority of the participants responses remained
consistent with their previous answers. In Example 5, presented in Listing 9, participants accurately
predicted the expected outcome both before and after the explanation. This suggests that even
without prior clarification, participants possessed a sufficient understanding of the Do-expression
and its potential outputs. Example 9, also presented in Listing 9., During the exploration of
conditionals. With the while loop, some participants expressed uncertainties. They raised concerns
about what would happen if the loop did not execute. After providing clarification that the while
loop has certain limitations and not all scenarios are permitted, their doubts were addressed. After
that, no other confusion arose, and the participants expressed an interest in understanding the
specific limitations associated with the while loop.

1

2 // Example 5:

3 let age = do {

4 let myMomsAge = currentYear () - 1960;

5 myMomsAge + 1;

6 }

7

8 // Example 9:

9

10 let AmountOfShoes = do {

11 while (ShoeRack != 0) {

12 ShoeRack --;

13 let x = x + 1;

14 }

15 }

Listing 9: Example 5 9 from the interview

Overall they could see how this expression could be useful and wanted to know more about it.

5.1.2 Beginners

The participants mentioned they had almost no experience with JavaScript and were working with
other programming languages more often. One of the participants just started working and the
two others are in the last year of their bachelor. The experience they had was between 2 to 6 months.

During the second segment of the interview, when the participants were presented with examples
featuring the Do-expression, they demonstrated confusion because of their limited experience in
JavaScript. They needed help comprehending the complexities of this functionality and its syntax.
They also had difficulty understanding the completion value, which made it hard for them to
comprehend the purpose of the Do-expression.
Compared to experts the beginners didn’t really noticed the small mistakes like not having quotation
marks in the example in Listing 8. They did confuse it with the Do-while statement. In the beginning
they thought it was a loop. They saw quickly that it couldn’t be since their is no condition to end
the loop.

17

Continuing from the previous response, the beginners had a harder time understanding the examples
in the second part compared to the experts. They were not familiar with some of the syntax used
in the examples and needed some explanation. They also had difficulty grasping the concept of the
completion value and how it relates to the Do-expression.

In the third part, the beginners were more likely to confuse the Do-expression with the Do-while
statement. They were not familiar with the Do-while statement either, but they associated the
word ”Do” with a loop construct. They had to be reminded that the Do-expression is not a loop
construct and does not have a condition to end the loop.
Explaining them in the third part was a little harder, because they had never heard of completion
value. First we had to go verbosely through completion and then describe what it would mean in
the context of Do-expression. In this group everyone mentioned google as a search machine.

At the final part of the interview they did provide the correct output. The were not too curious
about the limitations. When asked how they would solve it. All of them would not even use
Do-expression to start with.
Since it was their first time they heard about the completion value, they didn’t really see how this
feature could be useful for them.

6 Conclusion

In conclusion, our survey findings provide valuable insights into the perspectives of both expert and
beginner programmers regarding the Do-expression syntax in JavaScript. The interviews revealed
that experienced programmers approach code differently, paying meticulous attention to details
like missing semicolons, and possess a strong understanding of completion values. Importantly, all
the experts unanimously regarded the Do-expression as a helpful feature that should be progressed
in development.

On the other hand, beginners initially needed clarification, mistaking the Do-expression for a loop.
However, they could comprehend its functionality after receiving clarification on its purpose. Despite
this understanding, beginners were required to be more convinced of its practicality and expressed
little intention to incorporate it into their work. The insights gathered from these interviews will
significantly contribute to creating a comprehensive future survey better to understand programmers’
perspectives on the Do-expression syntax.

Additionally, our experience underscores the importance of formulating clear and precise questions
and providing well-crafted examples to minimize confusion and ensure that participants effectively
grasp the research focus.

18

7 Discussion

This research aimed to assess the viability of the Do-expression syntax in JavaScript through
interviews conducted with a limited sample size of six participants. However, it is crucial to gather
a more extensive dataset by conducting a comprehensive survey to make a well-informed decision.
Relying solely on the insights from six participants may not provide a sufficiently robust basis for
determining the future of this feature.

Expanding the survey to include a more significant number of participants will yield more diverse
perspectives and a broader range of experiences. By doing so, we can ensure a more representative
sample, allowing for a more accurate assessment of the Do-expression syntax and its potential
impact. Increasing the number of survey participants will enhance the findings’ reliability and
validity, thereby facilitating a more confident decision-making process.

A notable limitation of this research is that participants were presented with examples of the
Do-expression syntax without the ability to execute the code. Programming languages are primarily
designed to be executed, and evaluating code solely based on its static representation can pose
challenges, particularly for beginners with limited experience in comprehending code structures
effectively. To address this limitation, it is imperative to provide participants with the opportunity
to execute the code and modify it according to their understanding and requirements.

By allowing participants to execute and manipulate the code, we can obtain more comprehensive
and practical feedback on the Do-expression syntax. This approach will enable participants, espe-
cially beginners, to better understand the feature and provide more meaningful insights into its
usability, potential challenges, and overall usefulness. Incorporating the execution and modification
of code within the survey methodology will enhance the quality of feedback and contribute to
a more thorough comprehension of the Do-expression syntax. By doing so, we can gather more
valuable data that will aid in making informed decisions about this feature’s future development
and implementation.

19

References

[BG00] Alan F Blackwell and Thomas RG Green. A cognitive dimensions questionnaire
optimised for users. In PPIG, volume 13. Citeseer, 2000.

[CH06] Kevin Crowston and James Howison. Hierarchy and centralization in free and open
source software team communications. Knowledge, Technology & Policy, 18(4):65–85,
2006.

[Cla01] Steven Clarke. Evaluating a new programming language. In PPIG, volume 13, pages
275–289. Citeseer, 2001.

[CWHW08] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. Free/libre
open-source software development: What we know and what we do not know. ACM
Computing Surveys (CSUR), 44(2):1–35, 2008.

[KLS16] Smitha Keertipati, Sherlock A Licorish, and Bastin Tony Roy Savarimuthu. Explor-
ing decision-making processes in python. In Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering, pages 1–10, 2016.

[Lit18] Lia Litosseliti. Research methods in linguistics. Bloomsbury Publishing, 2018.

[SSS21] Pankajeshwara Nand Sharma, Bastin Tony Roy Savarimuthu, and Nigel Stanger.
Extracting rationale for open source software development decisions—a study of
python email archives. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pages 1008–1019. IEEE, 2021.

[TC3] Tc39: Specifying javascript.

[VSBS94] MW Van Someren, YF Barnard, and JAC Sandberg. The think aloud method: a
practical approach to modelling cognitive. London: AcademicPress, 1994.

20

	Introduction
	Research Question
	Thesis overview

	Background
	Related Work
	Approach
	Qualitative method
	Participants
	Procedure

	Results
	Qualitative method
	Experts
	Beginners

	Conclusion
	Discussion
	References

