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Abstract

With the ongoing energy transition, there is a push for the electrification of various appliances
and the use of Behind-the-Meter (BtM) smart batteries. In combination with solar panels, the
carbon footprint and household expenses can be reduced by intelligently managing the power
flow around the battery. This can be formulated as a sequential decision making process, where
a Home Energy Management System (HEMS) can decide at each hour whether to charge or
discharge the battery. We introduce an environment where a HEMS has to manage the power
flow around a BtM battery of a residential household, which is equipped with a heatpump and
solar panels. Moreover, the environment makes use of historical data with regards of weather
(forecasts) and grid tariffs, and with as consequence that it is strictly speaking not an online
setting.

In this work, we have conducted an extensive comparison between various reinforcement
learning algorithms, Mixed-Integer Linear Programming (MILP) with perfect foresight and a
Heuristic-Based System. In addition, we propose a novel model-based reinforcement learning
architecture aimed at environments where epistemic uncertainty plays a significant role, Multi
Dynamics- and Q-Learning (MDQL), which consists of sharing state representations between
two ensembles of dynamics models and DDQNs. Moreover, we introduce a novel planning
strategy, Hindsight-Weighed Planning, where the accuracy of the dynamics models at the pre-
vious planning iteration is used to weight the rollouts of the current iteration.

By means of experimentation, we show that MDQL without planning outperforms all other
benchmarks, with the exception of MILP. With planning, the overall performance deteriorates
slightly, which is attributed to the somewhat inaccurate next state and reward predictions.
However, MDQL plus planning over the ground truth shows to outperform MILP by a sig-
nificant margin, thus being a promising solution to the battery dispatch optimisation setting.
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Executive Summary

Battery dispatch management for a residential household can be optimised through the use of
an algorithmic approach, such as linear programming or reinforcement learning (RL). In this
work, we have developed a virtual environment which simulates Shell’s EcoGenie house at The
Hague. The environment simulates a smart Behind-the-Meter (BtM) battery, photovoltaic pan-
els, access to the power grid, variable grid tariffs and a heatpump, and makes use of historical
weather (forecasts) and day-ahead market pricing.

We demonstrate that linear programming and reinforcement learning can save up to 9 euros
in consumption costs each month, thus providing more affordable and more renewable power.
However, incorporating battery-operation related costs (i.e., the deterioration of the battery’s
state-of-health) results in neither linear programming nor reinforcement learning making use
of the battery at all. It suggests that a BtM battery is not cost effective as of 2023, and has
as its only benefit the reduction of the carbon footprint. Incorporating more realistic battery
simulation dynamics is required to confirm this.

In addition, we highlight some potential issues that may arise when deploying reinforce-
ment learning, caused by the fact that the real world is not stationary in terms of weather. At
some point in time, the model might lose its robustness against more frequent extreme weather
occurences. Similarly, a reinforcement learning algorithm might have to be trained for each
region separately in case of different weather/climate characteristics.

Lastly, we argue that in the current problem setting, linear programming seems to be the
preferred choice due to its performance and the lack of a high-dimensional action space in the
environment. But in case of more complex problem settings, we believe that RL would be able
to outperform linear programming, when given an equal amount of computational resources.
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1 Introduction

In order to reach IEA’s climate target of Net Zero Emissions (NZE) by 2050 and limit the rise of
the global temperature to 1.5 ◦C, we have to increase the electricity generation from renewable
sources (e.g., solar, hydro and wind) from 156 TWh in 2020 to 821 TWh in 2030 (IEA, 2021).
Subsequently, a yearly linear increase of 66.5 TWh would be required to reach the target.

However, an increase in electricity generation poses as a major challenge for the power
grid. Overloading the grid will occur more frequently if no further investments are made
into the infrastructure. By investing in smart Behind-the-Meter batteries, each building will
be able to locally store its surplus of self-generated power through photovoltaic (PV) panels,
instead of netting it back into the power grid. Consequently, the load on the power grid will
be decreased, and the building reduces its carbon footprint by maximising its utilisation of PV-
power. An additional benefit is the fact that less electricity will be drawn from the power grid,
thus decreasing the consumption costs. Alternatively, this can be extended to a larger scale,
over a cluster of buildings. This is referred to as micro-grids, which are significantly smaller
compared to the current infrastructure. In this work, we consider one residential building
equipped with PV-panels and directly connected to the power grid.

For the energy management, we must take the unreliable generation of electricity through
PV-panels into account; it is only generated during sun-hours, of which the duration and inten-
sity can differ significantly per week, day and hour. Moreover, the battery might get depleted in
the case of a prolonged period with no sunlight (e.g., winter season) or intensive consumption
profiles. Thus, solely relying on PV-power is infeasible in order to meet the power demands at
all times. The shortage in power will instead be drawn from the grid.

This poses an optimisation problem, where we want to maximise the utilisation of PV-power,
and minimise the costs of drawing power from the grid by exploiting low tariffs. Moreover,
in case of a tariff spike, we may opt for netting the surplus of power in exchange for a small
profit. However, the primary objective is to maintain an acceptable user-comfort, such that all
power-related demands are met.

This problem can be formulated as a sequential decision making problem, where a Home
Energy Management System (HEMS) (Zafar et al., 2020; Zhou et al., 2016) makes, at a con-
stant interval, a decision with regards to the battery: charge, discharge or remain idle. Various
scheduling optimisation techniques for HEMS are already proposed, such as Mixed-Integer
Linear Programming (MILP) (Lokeshgupta and Sivasubramani, 2019), genetic programming
(Hu and Xiao, 2018), and reinforcement learning (RL) (Mason and Grijalva, 2019; Vázquez-
Canteli and Nagy, 2019; Yu et al., 2020a).

In this work, we investigate how reinforcement learning (Sutton and Barto, 1998) can take on
the role as HEMS for one household, specifically Shell’s EcoGenie house in The Hague. This
is a residential house that is kitted out with various devices and sensors, and provides the op-
portunity to experiment with state-of-the-art techniques, related to renewable energies, in the
real world without any major risks. More specifically, the HEMS will manage the power flow
around the smart battery and heatpump, making this a Heating Ventilation and Air Condition-
ing (HVAC) management problem.
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Datasets on weather and grid-tariffs, along with a set of rule-based dynamics, serve as
training data for the reinforcement learning method. Subsequently, no traditional simula-
tor/environment is available, i.e.: the agent is not able to sample new transitions from the
environment continuously in order to lower its epistemic uncertainty. This poses an issue for
online RL methods; when the agent finds itself in an unsupported region of the search space, it
would essentially perform random actions. This is because the actions are based on the knowl-
edge acquired from the supported regions, which may not be applicable in out-of-distribution
states. Thus, there is some degree of uncertainty when the agent interacts with the real environ-
ment. To mitigate this, we can utilise offline RL (Lange et al., 2012; Levine et al., 2020), which
learns a policy from a static offline dataset and takes the epistemic uncertainty into considera-
tion (e.g., introducing uncertainty penalties or forming explicit trust-regions in the state-action
space).

Moreover, model-based reinforcement learning (MBRL) (Moerland et al., 2020; Plaat et al.,
2021) is often deployed in offline settings. By adding an internal model that learns the dy-
namics of the environment based on the static offline dataset, we can mitigate the absence of a
simulator and replace it with the internal model. MBRL also offers the possibility of using the
model for planning at testing time. However, learning an internal model adds more complexity
to the RL-method, on top of the fact that the dataset itself still does not cover the whole search
space. Subsequently, the internal model will introduce a degree of bias in the unsupported sub-
regions. This should not be a major issue, since the environment is based upon the real-world,
which in itself is systematic (e.g., it follows the laws of physics/mathematics/nature/etc.),
and therefore the model should be able to accurately infer the dynamics in the unknown sub-
regions based upon the dataset. In short, internal models will probably generalise better than
value-/policy-approximators in offline settings.

As one of the main contributions of the thesis, we introduce a novel algorithm, Multi Dynamics-
and Q-Learning (MDQL), where two ensembles are utilised to robustly solve the environment.
The members of the first ensemble are trained to estimate the q-values, while the other mem-
bers learn the dynamics of the environment. Due to the high-dimensional state space, neural
networks are used as function approximators. The novelty of the algorithm comes from the net-
work architecture: both ensembles share the first few hidden layers. Consequently, the shared
layers will act as feature extractor, enabling the use of smaller networks for the ensemble mem-
bers, along with providing more rich latent states to both ensembles.

In short, the contributions of the thesis are three-fold:

(i) Providing a novel take on the HEMS problem setting, by developing a new environ-
ment with as aim to accurately model a residential household located in The Hague. In
addition, we evaluate a varied set of benchmarks (MILP, RL-algorithms and a Heuristic-
Based System) on the environment, and empirically demonstrate how the approaches
fare against each other.

(ii) We propose a novel network architecture in the reinforcement learning domain, MDQL,
where a feature extractor is shared between the ensemble of dynamics models and q-
value estimators.

(iii) The use of two ensembles enables a novel strategy of planning, Hindsight-Weighted Plan-
ning (HWP), where we evaluate the accuracy of the dynamics models after we have ex-
ecuted the best action based upon the previous planning iteration. This evaluation then
influences the weight per head for the current planning iteration.

By means of experimentation, we show that MDQL is able to outperform all RL baselines and
a Heuristic-Based System. However, MILP with perfect foresight is slightly better. In addi-
tion, planning has resulted in a slight deterioration of the overall performance, which can be
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contributed to the somewhat inaccurate next state and reward estimations. Given the ground
truths, MDQL plus planning outperforms MILP with perfect foresight by a significant mar-
gin, showing the potential of the proposed algorithm. Moreover, a set of ablations has shown
that each component of MDQL (e.g., ensembles, sharing weights between all approximators,
learning the dynamics) contributes positively to the final performance of the model.

Overall, the behaviour of MDQL on the EcoGenie environment can be summarised as fol-
lows: the agent tries to maximise its PV-utilisation by storing it to the smart battery, and dis-
charges this power to the heatpump during hours without any sunlight. In addition, the agent
sometimes opts for a quick charge of the battery via the grid at midnight, since the battery is
almost depleted at that point in time. The main shortcomings can be found at the time at which
the discharging occurs, since the price spikes are often not fully exploited by the agent. Now,
the agent is sometimes too early or late with its discharge-operation, and misses the peak en-
tirely. On the other hand, MILP receives the exact pricing for the upcoming hours, and is able
to fully exploit the outliers in the grid tariff.

The remainder of the thesis is structured as follows: Section 2 contains related work; Section 3
discusses the required preliminaries; Section 4 describes the problem setting and datasets; Sec-
tion 5 elaborates upon the proposed algorithm, Multi Dynamics- and Q-Learning; Section 6
and Section 7 contain the experimental setup and results, respectively; and lastly, Section 8
discusses the main takeaways from this work along with future work suggestions.
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2 Related Work

This section contains an overview of work that we share one or more domains with. In short,
we discuss research on Home Energy Management Systems, methods from the reinforcement
learning (RL) paradigm, specifically model-based and offline RL. Lastly, RL-environments aimed
at Heating Ventilation and Air Conditioning (HVAC) are discussed.

2.1 Home Energy Management Systems

Home Energy Management Systems (HEMS) have become an increasingly relevant research
topic due to the energy transition. The main task is to efficiently manage the energy flow
within a house/building, for instance through scheduling the charge and discharge cycles of a
smart battery, scheduling household devices and/or predicting future power demands based
on historical data.

For instance, (Mixed-Integer) Linear Programming (LP) (Yu et al., 2013; Lokeshgupta and
Sivasubramani, 2019; Souza Dutra et al., 2019) solvers have been proposed that optimise the
scheduling of appliances with a set of defined constraints (e.g., an appliance must run within
the next 12 hours, the smart battery can not exceed a State of Charge of 13 kWh, etc.). However,
these solvers scale exponentially with the horizon, which makes the method computationally
expensive and quickly intractable. In addition, a (near-)perfect foresight or accurate forecasts
over the horizon is a prerequisite, which makes it less suitable for deployment in the real world.
Instead, LP can quantify an upper-bound on the performance and function as a baseline for
other HEMS.

Other work proposes the use of evolutionary algorithms to optimise the scheduling. For in-
stance, Hu and Xiao (2018) make use of genetic programming to deal with demand response. A
population of candidates can be altered by repeatedly applying mutation, cross-over and selec-
tion to the population. With every generation, the population converges closer to an optimum
in the search space. The selection after each generation is based on a hand-crafted fitness-rule
(i.e., objective function) that incorporates the user-comfort and costs. Similarly, particle swarm
optimisation has also been applied to this domain, for instance by Lugo-Cordero et al. (2011).

Lastly, machine learning techniques have also been proposed as HEMS. For instance, deep
neural networks, which are optimised by a genetic algorithm, have been applied to managing
the power-flow (Matallanas et al., 2012), appliance scheduling (Yuce et al., 2016) or lighting
control (Hernandez et al., 2010; Ahmed et al., 2016) in a residential house.

Most similar to our work, reinforcement learning has also been applied to energy manage-
ment within a household. Various papers have been dedicated to HVAC-management optimi-
sation (Wang et al., 2017; Chen et al., 2018), appliance scheduling (Kim et al., 2016; Bahrami
et al., 2018) and power generation optimisation (Mbuwir et al., 2017; Tan et al., 2018). A sur-
vey by Vázquez-Canteli and Nagy (2019) provides an elaborate overview on the work that has
been done in the HEMS-domain with reinforcement learning. The authors make the observa-
tion that it is difficult to compare the algorithms, due to the varying nature of the problems that
are being solved over the papers. There is no mainstream benchmark available to evaluate a
RL-agent against.
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2.2 Reinforcement Learning

Reinforcement learning (Sutton and Barto, 1998) has had exciting breakthroughs in recent
years. For instance, the Deep Q-Network (Mnih et al., 2013) is able to exceed expert-level
performances in seven Atari 2600 games by utilising Q-learning, convolutional layers and ex-
perience replay. Next, DeepMind’s AlphaGo (Silver et al., 2016) defeated the world champion
of Go in 2016, and a more general version of the model has been published in the form of
AlphaZero (Silver et al., 2017). Both algorithms make use of self-play, however, AlphaGo re-
quires expert games and the rules of the game, while AlphaZero only needing the latter. Lastly,
OpenAI developed OpenAI Five (Berner et al., 2019), a multi-agent RL method able to per-
form at a very high level in the game Dota 2, where cooperation and coordination between
team-members are prerequisites in order to win. In the context of our research, we now discuss
approaches that relate to model-based and/or offline reinforcement learning.

2.2.1 Model-Based Reinforcement Learning

One of the first architectures to be proposed in the subdomain model-based RL (MBRL) is
Dyna (Sutton, 1991), which provides a framework for tabular Q-planning. It utilises the transi-
tions experienced in the environment for learning policy-/value-functions and learning the in-
ternal model. The model itself can then also be used to further learn the policy-/value-function.

In addition to a table as the internal model, papers have also proposed graphs (Eysenbach
et al., 2019; Huang et al., 2019; Zhang et al., 2021), Gaussian Processes (Deisenroth and Ras-
mussen, 2011), and, most notably, deep neural networks (Buckman et al., 2018; Matsushima
et al., 2021), to represent the internal dynamics model.

Neural networks are frequently selected for function approximation due to its ability to learn
complex (non-)linear functions. For instance, Chua et al. (2018) proposed PETS, which makes
use of a bootstrapped ensemble of probabilistic neural networks in order to separately model
the aleatoric and epistemic uncertainty. Each network parameterises a Gaussian, and is trained
on a subset of the available experience. The ensemble is used during the planning phase with
Model Predictive Control (MPC) (Camacho and Alba, 2013), and each ensemble head propa-
gates a set of particles with Trajectory Sampling. The actions are selected with CEM (Botev
et al., 2013), which selects actions in proportion to the historical received rewards.

Janner et al. (2019) took inspiration from PETS, and developed MBPO. The main difference
is that a Soft Actor-Critic (Haarnoja et al., 2018) agent is trained, instead of directly using the
model for planning. The internal model is fitted to the experienced transitions in the real en-
vironment, while the policy is trained on model rollouts. Each model rollout starts at a state
sampled from the set of known environment-states, after which the policy and model are used
to perform the rollout.

Meta-Learning has also proven to be useful in the MBRL domain. MB-MPO (Clavera et al.,
2018) interprets each member of the ensemble as a different task, and then trains a meta-policy
on all tasks to find the meta-objective (i.e., finding the set of parameters such that the optimal
set of parameters for one task can be obtained with few gradient updates). For this, MB-MPO
makes use of MAML (Finn et al., 2017) to update the policy-parameters appropriately. The
authors argue that the meta-policy is forced to find the commonalities between the tasks, thus
minimising the effect of model bias and model exploitation.

One of the main common divisors between the discussed papers is the use of an ensemble
of deep neural networks, aimed at quantifying the epistemic uncertainty. Another approach to
uncertainty quantification are Bayesian neural networks. However, it has been demonstrated
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by Lakshminarayanan et al. (2017) that deep ensembles match or exceed the quality of the un-
certainty estimation, along with overall performance, of Bayesian neural networks on a varied
set of regression and classification tasks.

In contrast, Luo et al. (2019) proposed SLBO, a MBRL method that does not use an ensem-
ble of dynamics models nor explicit uncertainty estimations. SLBO is based on a theoretical
framework the authors provided, which guarantees a monotonic improvement based on the
discrepancy between the real environment and internal model. As for the practical implemen-
tation, the model and policy are trained alternatively. The model is trained on a dataset with
traces collected by a data-collection policy in the real environment. The policy itself is modelled
by TRPO (Schulman et al., 2015), and is trained on a separate dataset with traces generated by
the model. The authors argue that this can be seen as implicitly making use of an ensemble,
since the dataset of the policy contains traces from different instances of the internal model.

2.2.2 Offline Reinforcement Learning

The main challenge in offline reinforcement learning is that a policy has to be learned from a
finite static dataset, with the main issue being that the dataset can not cover the whole state-
action space sufficiently. As a consequence, there is a degree of epistemic uncertainty that
arises in the unsupported regions, where the agent will perform worse, or even random, when
its actions are naively inferred from the dataset. This has been empirically demonstrated by
Fujimoto et al. (2019b), where an off-policy method performs significantly worse than the be-
haviour policy, even though both policies are trained according to the same algorithm and
share the same dataset.

Various approaches have been proposed, such as regularising the policy in order to limit
the distribution shift. For instance, Fujimoto et al. (2019b) propose an offline RL method, BCQ,
where the actions it considers are restricted by the state-action distribution of the dataset. The
set of to-be-considered actions are generated by a Variational Auto-Encoder (Sohn et al., 2015),
after which two Q-networks are used for value estimation. With this, the authors aim to min-
imise the extrapolation error that arises due to poor generalisation to out-of-distribution state-
action pairs.

Model-Based RL is also frequently used in the offline RL setting. The internal model func-
tions as the environment, mitigating the issue of the finite dataset. Similarly to various work
in the online MBRL space, MOReL (Kidambi et al., 2020) and MOPO (Yu et al., 2020b) also
make use of a deep ensemble of internal models for uncertainty estimation. MOReL partitions
the state-action space into two sets; the ‘known’ and ‘unknown’ space. The known space is
supported by the offline dataset, while the unknown space is not. Whether a state-action pair
is supported, is determined by the maximum pair-wise discrepancy of the ensemble. When
it exceeds a preset threshold, the state-action pair is categorised to be unknown. In case of
unknown, the agent receives a negative reward and the episode terminates.

As for MOPO, it enhances the rewards in the static offline dataset with an uncertainty
penalty. It is based on the maximum standard deviation of the deep ensemble. This is then
multiplied with a scalar, and subtracted from the reward given in the transition.

Moreover, deep ensembles are also used for planning. For instance, MBOP (Argenson and
Dulac-Arnold, 2021) combines the ensemble with MPC (Camacho and Alba, 2013). In addi-
tion, bootstrap ensembles are also learned for a behaviour-cloned (BC) policy and fixed-horizon
value function. Given the three ensembles, the algorithm performs rollouts where the action is
selected based on the BC-policy and the previous rollout. The cumulative return of each rollout
is used to select the next action based on the return-weighted average trajectory.
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Chen et al. (2021) took a different approach with the deep ensembles. The authors proposed
MAPLE, a RL-algorithm that learns a context-aware adaptable policy. In short, the policy takes
as input the state along with the context. This context is computed by an extractor, that receives
as input the previous context, along with the transition to the current state. Subsequently, the
context extractor is modelled by a recurrent neural network.

Unlike the earlier discussed offline MBRL work, the algorithm COMBO (Yu et al., 2021)
augments the dataset with one probabilistic dynamics model, thus not requiring explicit un-
certainty estimation. The dynamics model is trained on the offline dataset, after which short
rollouts are executed starting from a state uniformly sampled from the dataset. Transitions
from both the offline and generated datasets are used in the policy improvement step, with the
generated transitions being slightly lowered in importance to the objective function. The agent
is slightly conservative on updating the policy with the generated data, due to the possible
model bias that is present in the dynamics model.

2.3 HVAC Management Environments

The setting of energy management for buildings has been an active field to apply RL algorithms
on. Environments need to accurately simulate the complex processes that occur in managing
the Heating Ventilation and Air Conditioning (HVAC) for buildings. This has been simplified
by the development of open source simulators EnergyPlus (Crawley et al., 2000) and Model-
ica (Mattsson and Elmqvist, 1997), which accurately simulate the main components in building
management (e.g., energy consumption, heat loss, HVAC-devices).

The Gym-Eplus (Zhang and Lam, 2018) and Testbed for EnergyPlus (Moriyama et al., 2018)
provide a wrapper for the EnergyPlus simulator. More specifically, Gym-Eplus provides an
environment tailored to their workplace. The simulator is build according to the properties of
the workplace, after which the system is calibrated using historical data from the workplace.

Other environments aimed at building management and HVAC simulation make use of the
OpenAI Gym framework (Brockman et al., 2016). Sinergym (Raboso et al., 2021) extends Gym-
Eplus, and provides an energy building simulation and control framework. It offers a set of
EnergyPlus models (5-zone buildings, datacenters and workplaces) along with the ability to
customise various aspects of the Markov Decision Process (MDP). For instance, the state space,
action space and reward function (CO2 emissions, thermal comfort and energy consumption)
can be altered. In addition, the weather variability can be tuned with three presets, each rep-
resenting a type of climate (hot dry, mixed humid and cool marine). The weather can also be
simulated, following the Ornstein-Uhlenbeck process (Benth and Šaltytė-Benth, 2005).

BOPTEST (Arroyo et al., 2021; Blum et al., 2021) is another environment build on top of
the Gym framework. It is based on the Modelica building models, and offers the ability to
customise various aspects of the MDP, such as the sampling interval, forecasting period, state
space, and action space. The default reward function consists of the energy consumption and
thermal comfort.

Lastly, Energym (Scharnhorst et al., 2021) provides an environment that combines models
from both EnergyPlus and Modelica. Specifically, eleven buildings are included (e.g., apart-
ments, offices, houses) and can be easily extended to new types of buildings. It also includes
the possibility to add the forecast of the weather, electric-vehicle usage, and power consump-
tion to the state space.

Overall, the three main environments (BOPTEST, Energym and Sinergym) are also included
in the Python package BeoBench (Findeis et al., 2022). It provides a standard for evaluating RL
algorithms in the Energy Management Systems setting.
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3 Preliminaries

In this section, we cover the preliminaries regarding formal definitions of the reinforcement
learning paradigm, along with a brief overview of offline and model-based reinforcement
learning plus the main challenges and benefits that come with the two subdomains.

The machine learning domain can be subdivided into three main types of learning tech-
niques: (i) supervised learning; (ii) unsupervised learning; and (iii) reinforcement learning.
With supervised learning, a dataset with ground truth data is available, such as labels for a
classification task, or numerical values for regression tasks. Given the dataset, we can fit a
model/algorithm to it, such as linear regression models, Support Vector Machines and (deep)
neural networks. On the other end of the spectrum, unsupervised learning problems do not
have ground truth data. In this case, we can use clustering methods (e.g., K-means clustering)
to classify each datapoint into one or more groups based on their attributes. The algorithm has
to find trends or key features based upon which datapoints are subdivided into categories. For
instance, datapoints with similar combination of attributes will be categorised into the same
group. In contrast, reinforcement learning (RL) (Sutton and Barto, 1998) methods do not re-
quire a dataset, and instead create their own training samples. Moreover, reinforcement learn-
ing methods receive partial feedback (e.g., only the immediate reward for the selected action),
while supervised learning receives complete feedback (i.e., the ground truths).

3.1 Reinforcement Learning

The RL paradigm consists of an environment and an agent. At timestep t, the agent receives a
state st from the environment, which describes features of the current state of the environment
(e.g., velocity of a car, outdoor temperature, position of a chess piece). Based upon this, the
agent performs an action at in the environment, after which the environment responds with a
new state st+1 and a reward rt. This forms a cycle in which the agent and environment interact
with each other, which can be used to model sequential decision making problems. Figure 3.1
visualises the cycle, which can continue indefinitely, or end when a terminal state is reached.
When a task has naturally defined terminal states (i.e., checkmate or stalemate in a chess game),
it is defined as an episodic task. Following this, an episode is defined as one complete session
of interactions between the agent and environment; from s0 to a terminal state. The objective
of the agent is to maximise its cumulative reward received throughout an episode.

3.1.1 Markov Decision Processes

A sequential decision making problem can be formalised into a Markov Decision Process (MDP)
(Puterman, 1994)M, where S defines the state space (s ∈ S); A is the set of actions (a ∈ A);
T is the transition function which provides a mapping from state-action pairs to states, i.e.:
T : S × A 7→ p(S); R is the reward function, mapping a transition to a numerical value:
R : S ×A× S 7→ R; p(s0) is the probability distribution of the initial state of an episode; and
γ is the discount factor.

M .
=

{
S ,A, T ,R, p(s0), γ

}
(3.1)
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Environment

Agent

FIGURE 3.1: The interaction between the agent and environment. The agent per-
forms action at at timestep t based on the state st. The environment then processes
the action, and returns the updated features in the form of st+1, and the reward
rt for performing at at st. Note that this loop continues indefinitely or until a ter-
minal state is reached.

Given the MDP, the objective of the agent is to maximise its cumulative reward, and doing so
will result in solving the problem that the environment represents. However, actions influence
not only the immediate reward, but also future rewards. In case of non-episodic tasks (also
referred to as continuing tasks), the cumulative reward would approach or become infinite. To
prevent this, the discount factor γ ∈ [0, 1] is introduced, with which we can scale the impor-
tance of future rewards. For instance, a reward received n steps in the future would be scaled
with γn. Subsequently, the cumulative reward has a finite value, given that we adhere to some
constraints (Sutton and Barto, 1998, p. 55). With this in mind, we can define the discounted
cumulative return from timestep t to t + k on-wards as Gt:t+k:

Gt:t+k
.
= rt + γrt+1 + γ2rt+2 + ... + γkrt+k =

k

∑
n=0

γn · rt+n. (3.2)

The main idea is that the agent will estimate the discounted cumulative return for a given state,
or state-action pair. These estimators are referred to as value functions; the state-value function
v and action-value function q. Based upon this estimation, the agent can select the action with
the maximal estimated return. This is referred to as the policy π of the agent, which can be
either stochastic or deterministic. The optimal policy is denoted by π∗, of which there exists at
least one for each MDP (Sutton and Barto, 1998, p. 62). In addition, the optimal value functions
are denoted by v∗ and q∗.

The state-value function vπ(s) is the expectation of G when starting at s and following
policy π. Equation 3.3 denotes the state-value function, along with its recursive form (i.e., the
Bellman equation).

vπ(s)
.
= Eπ, T

[
G | s

]
= Ea∼π(· | s), s′∼T (· | s, a)

[
R(s, a, s′) + γvπ(s′)

]
︸ ︷︷ ︸

Bellman equation

(3.3)

Action-value function qπ(s, a) estimates G given that we perform action a in state s, after
which we follow the policy. In similar fashion to the state-value function, qπ(s, a) is denoted in
Equation 3.4 along with its Bellman equation.

qπ(s, a) .
= Eπ, T

[
G | s, a] = Es′∼T (s, a)

[
R(s, a, s′) + γEa′∼π(· | s′)

[
qπ(s′, a′)

]]
︸ ︷︷ ︸

Bellman equation

(3.4)
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The value-functions can be learned from traces, which are generated by the agent using its pol-
icy. A trace consists of the following sequence: {s0, a0, r0, s1, a1, r1, s2, ...}. These traces describe
the transitions experienced by the agent from its interactions with the environment. A set of
traces can be seen as our dataset, similarly to supervised and unsupervised learning.

Given this, the objective of the agent is to obtain the optimal policy through the q- or v-value
functions according to the first or second line of Equation 3.5, respectively.

π∗
.
= argmax

π
qπ(s, a)

π∗
.
= argmax

π
vπ(s)

(3.5)

3.1.2 Foundations of Value Estimation

In its simplest form, value estimation can be accomplished with tabular methods. Tables are
formed to represent, for instance, the entire state-action space, where each cell contains a nu-
merical value corresponding to the q-value of one state-action pair. However, these methods
are only feasible for low dimensional spaces. This is due to the fact that the number of states
often grows exponentially with the state space, which is referred to as the curse of dimension-
ality. Additionally, tabular methods are only suitable for discrete state- and action-spaces. In
case of a high dimensional state space and/or a continuous search space, approximate methods
are preferred.

The foundational methods for value learning can be subdivided into three main approaches:
(i) dynamic programming (Bellman, 1966); (ii) Monte-Carlo methods; and, (iii) Temporal Dif-
ference learning. We have to note that there is also a fourth approach, exhaustive search, where
each state-action pair is fully expanded up to a terminal state. However, this is often not fea-
sible due to the exponential nature of expanding each state with all possible actions. In the
remainder of this section, we discuss the three main approaches in its tabular form.

Dynamic Programming. Dynamic programming (DP) requires a perfect model of the envi-
ronment; the transition probabilities need to be known. With this requirement, we can compute
the expectation of the state-value function, for instance. Then, the update rule to approach v∗,
which is based on the recursive form of Equation 3.3, is as follows:

vπ(s)←∑
a

π(a | s)∑
s′,r

p
(
s′, r

∣∣ s, π(s)
)[

r + γvπ(s′)
]
. (3.6)

Then, using policy evaluation, we iterate over the whole state-space and update the state-value
function for every state until convergence. Note that the update rule is partially based on the
estimation of vπ itself, which is referred to as bootstrapping.

This update scheme is part of the policy iteration method, where we also use policy im-
provement after policy evaluation, in order to greedily update the policy based on the updated
value-function. The method alternates between policy improvement and evaluation, and guar-
antees a strict improvement after each iteration (given vπ ̸= v∗).

One of the drawbacks of DP is the fact that it requires a lot of computational efforts (i.e., we
have to update every state, even though not all states will be part of the relevant sub-region of
the search space). In addition, the transition model is for most environments not known, thus
making DP only suitable for specific use-cases.
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Monte-Carlo methods. Monte-Carlo (MC) methods make use of traces that are generated
by the policy. For each state in a trace, we compute the exact cumulative discounted return
when following our policy. This means that, in contrary to DP, Monte-Carlo methods do not
bootstrap its values and, subsequently, that the return for every state can be computed only
after an episode has terminated.

As a first approach, we can update the value function in an on-policy manner, by generating
traces with the target policy (which will approximate π∗) plus ϵ-greedy. Next, after a set of
traces have been generated, the action-value or state-value is computed by taking the mean
reward over all traces according to first-visit MC or every-visit MC. In case of first-visit, we
update the approximator with the mean discounted return starting from the first occurence of
a state or state-action pair, up to the terminal state. For every-visit, we divide the cumulative
discounted return of all traces by the number of times that a state or state-action pair occurred
in said traces.

The second approach, where we use a separate policy to interact with the environment,
is called off-policy learning. Moreover, the additional policy is referred to as the behaviour
policy πb. However, the main issue that arises is the fact that a different distribution is used to
generate traces, compared to the target policy. This is taken into account by scaling the return
for each transition according to Importance Sampling (IS). The scalar ρt:k−1 is computed per
transition:

ρt:k−1
.
=

∏k−1
l=t π(al | sl)T (sl+1 | sl , al)

∏k−1
l=t πb(al | sl)T (sl+1 | sl , al)

=
k−1

∏
l=t

π(al | sl)

πb(al | sl)
. (3.7)

Scaling the return is only required for multi-step back-ups, since the distributions between π
and πb are different, with πb covering π (i.e., if π(a | s) > 0 then πb(a | s) > 0). For instance, to
obtain vπ(st) we scale the cumulative discounted reward from st on-wards with ρt:k−1.

Temporal Difference. Lastly, Temporal Difference (TD) learning also makes use of previ-
ously experienced transitions. In its simplest form, TD(0), the learning strategy updates value-
estimates over one transition at a time:

v(s)← v(s) + α
[
r + γv(s′)− v(s)

]︸ ︷︷ ︸
TD-error, δ

. (3.8)

In Equation 3.8, α is the step-size (also known as the learning rate) with which we update
the value-estimator. The learning scheme can also be generalised to TD(n), unrolling the dis-
counted reward term to multiple transitions. The TD-error would then become:

δ
.
= Gt:t+n − v(st) with Gt:t+n

.
= rt + ... + γn−1rt+n + γnv(st+n). (3.9)

Note that, similarly to Monte-Carlo, we can not immediately update the value estimates. Now,
we can update v after the next n transitions have occurred. In addition, also note that TD(∞) is
identical to Monte-Carlo.

The two main ways of approximating π∗ with the target policy are SARSA and Q-learning,
which are on-policy and off-policy methods, respectively.

3.2 Deep Reinforcement Learning

As touched upon in Section 3.1.2, tabular methods are only suitable for discrete state-action
spaces and MDP’s with a relatively low state-space dimensionality. For high dimensional prob-
lems, we have to use function approximators as value function and/or policy. The subdomain
deep reinforcement learning (Arulkumaran et al., 2017) provides algorithms which use deep
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neural networks as function approximators. An adaptation on TD learning can be used to
compute the gradients in order to update the weights.

Variations upon neural networks have been proposed in recent years, such as convolu-
tional layers and recurrent layers. With convolutional layers, RL algorithms are able to directly
learn from images by essentially abstracting them into denser representations with lower di-
mensionality, thus lowering the computational efforts and reducing the effects of the curse of
dimensionality. Recurrent layers have proven to be useful when the dynamics of the MDP fol-
low some recurring pattern, such as power grid tariffs that are lower during night-time, or the
amount of PV-radiation (zero during nighttime, high around noon).

3.3 Model-Based Reinforcement Learning

Model-based reinforcement learning (MBRL) (Moerland et al., 2020; Plaat et al., 2021) methods
learn (or receive) an internal model1 that models the dynamics of the MDP. For instance, it can
be represented as a deep neural network, that receives as input a state-action pair, and returns
the reward and next state. The main benefits of the internal model are three-fold:

1. MBRL is more sample efficient than model-free RL algorithms. With model-free RL,
experience is directly used to train the policy and/or value-functions, after which it is
thrown away at the end of the episode (or eventually replaced in the replay buffer). In
contrast, MBRL methods train the internal model on this experience, such that the transi-
tions are preserved in the model. Overall, the MBRL methods will have a higher sample
efficiency, which is especially beneficial when sampling from the environment is expen-
sive.

2. MBRL enables the use of planning: decision-time planning can be used to map out the
possible next actions over a longer horizon than the traditional one-step planning. For
instance, a search tree can be formed where each path from the root (the current state in
the episode) to a leaf-node represents an imaginary trace of actions and states. Then, we
can assign the expected return to each leaf node using rollouts and back up the value to
the corresponding action below the root. Moreover, a variation on this is the Monte-Carlo
Tree Search (Chaslot, 2010), where we have a dynamic depth and breadth of the search
tree, and expand nodes that look promising.

Lastly, we can also use Model Predictive Control (MPC) (Camacho and Alba, 2013)
instead of building a search tree. With MPC, we continuously plan over a constant short
horizon, select the first action of the most promising trajectory based upon some metric,
and then start planning again over the short horizon.

3. Deploying two-phase exploration: differing exploration schemes can be used during
background and decision-time planning. For instance, when we are training the inter-
nal model, more exploration during data gathering might be beneficial such that a more
diverse subset of the state-action space will be seen by the dynamics model. However,
more exploitation could be beneficial during decision-time planning, since we are only
interested in expanding actions that look promising.

The main drawback of MBRL is the fact that it adds another layer of complexity on top of
learning a policy/value function, in case the internal model is not given. The model may not
be accurate over the whole search space and may introduce bias in the sub-regions with little
to no datapoints. This can lead to model exploitation by the policy, where the internal model
gives higher rewards for transitions in comparison to the environment itself. In other words,

1Also referred to as the dynamics model
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during training with the imagined traces, it will seem that the policy is performing well and
receives high rewards, however this performance does not transfer to the real environment.

3.4 Offline Reinforcement Learning

Offline reinforcement learning (Lange et al., 2012; Levine et al., 2020) deals with problem set-
tings where there is no traditional environment/simulator available to generate traces with.
Instead, we receive a static finite dataset D =

{
(si

t, ai
t, ri

t, si
t+1)

}N
i=1 containing a set of traces

throughout the search space. These traces are generated with a data-collection policy πb, such
as a handcrafted heuristic. In short, offline RL deals with methods that have a deployment
efficiency of one, while its counterpart, online RL, may require thousands up to tens of millions
deployments.

The main objective of offline RL is to infer what would happen if the policy diverges from
the traces and traverses to unsupported regions of the search space. This is required, since we
would otherwise train the policy to resemble the data-collection policy, with as consequence
that the policy would not be able to outperform πb. In addition, the more the policy is trained,
the more it will deviate from the traces as it will become increasingly different from πb. This is
referred to as the distributional shift, and poses the main challenge of offline RL.

Without taking the distributional shift into account, the agent would become unstable in
the unsupported regions. In these regions, the actions are based upon the knowledge acquired
from the static dataset, and may not apply to the out-of-distribution states. Consequently, the
agent would essentially perform random actions. Instead, we have to incorporate the distribu-
tional shift into the RL method. For instance, the target policy can be constrained to πb (e.g.,
forming trust regions), or the epistemic uncertainty can be estimated and taken into considera-
tion during the decision making process.

An additional issue is the evaluation of the policy. Since we are not able to deploy the policy
into the environment, and with it producing differing traces from the static dataset, we do not
have explicit rewards. One option is to use the offline traces, in combination with IS, to evaluate
a candidate policy. Here, we multiply the discounted cumulative reward from the offline traces
with the ratio ρ, computed according to Equation 3.7. There exist variations upon IS, such as
weighted, per-decision and marginalised IS. In addition, the IS-ratio can also be directly in-
corporated into the policy gradient estimation. However, since the behaviour and candidate
policy will become increasingly different, the importance weights will have too much variance
to be useful for high dimensional state-action spaces and over long horizons (Levine et al.,
2020). Thus, in case of utilising IS, the candidate policies have to be constrained by πb to some
degree in order to limit the variance.

Model-based RL has often been applied to the offline paradigm. The internal model augments
the static dataset such that the RL-agent is less constrained by the dataset. Inferring the un-
supported regions can be more accurately done by learning the environment dynamics, due to
the fact that environments are often based on the real world. Thus, the transitions follow some
form of system (e.g., laws of physics, mathematics, etc.). Consequently, the model should be
able to infer unknown sub-regions accurately from the provided datapoints.
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4 Problem Setting

As discussed in Section 1, Behind-the-Meter (BtM) smart batteries play an essential role in the
energy transition. In the upcoming years, more (residential) buildings will be equipped with
photovoltaic (PV) panels, consistently generating electricity. However, in case of a surplus of
PV-generated power and an absence of a smart battery, the surplus can often not be netted back
to the power supplier due to the grid already operating at its maximum capacity. Subsequently,
the PV-panels will instead be turned off, resulting in wasting PV-power. By deploying a smart
battery along with a Home Energy Management System (HEMS), the utilisation of PV-power
can be maximised by managing the power flow around the battery.

This section contains the components of the EcoGenie environment, along with its defini-
tion in MDP-form. Lastly, we cover the datasets used by the environment.

4.1 EcoGenie Environment

The EcoGenie environment models a residential household equipped with a smart battery and
heatpump (HP). It specifically models the properties and circumstances of Shell’s EcoGenie
house in The Hague. The HEMS controls the power flow around the battery, and is able to
select the operation of the battery on an hourly basis. In addition, the heatpump will be con-
tinuously demanding power in order to maintain a comfortable indoor temperature which is
specified by the User Profile (UP). Given this, the main objective of the HEMS is to minimise
the costs made by consuming power from the grid, which can be achieved by maximising the
PV-utilisation and drawing power from the grid at low tariffs. However, to prevent the HEMS
from unnecessarily using the battery, prolonging the battery lifespan has been added as a sec-
ondary objective.

Action Space. The action spaceA is discrete, consisting out of five actions, where each action
corresponds to an operation of the smart battery. Table 4.1 denotes the five possible actions
a ∈ A can take.

TABLE 4.1: Discrete action space A of the EcoGenie environment.

Action Description

IDLE Do not charge nor discharge the battery.
CHARGE_GRID Charge the battery with power from the grid.
CHARGE_PV Charge the battery with power generated by the PV-panels.
DISCHARGE Supply power from the battery to the heatpump.
NETTING Sell power stored in the battery back to the supplier.

Note that concurrently charging and discharging (i.e., float charging) is not supported, since
float charging severly deteriorates the battery’s state of health (Wang et al., 2011). In case
DISCHARGE is not selected, the HP power requirements will be met by drawing power from
the grid. This is to ensure that the user comfort is maintained at all times. In addition, the
(dis)charge rates are maximised, and constrained by the SoC and maximum (dis)charge rates
of the battery itself. Important to note is that the heatpump can only receive power from one
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source at a time, which means that if the action DISCHARGE is selected despite it having insuffi-
cient power, the power will instead be entirely drawn from the grid.

For the NETTING action, we have to adhere to a regulation: when the amount of netted
kWh’s exceeds a threshold, we receive a ‘reasonable’ compensation per kWh instead of the
grid tariff. The threshold is set to a fraction of the current amount of power consumed from the
grid. For example, if we net 5 kWh while being 3 kWh below the threshold, then we receive
for 3 kWh the current tariff, and for the remaining 2 kWh the reasonable compensation. In The
Netherlands, netting for the actual tariff is expected to be phased out from 2025 to 2030 (Wilt,
2022), after which a household can only receive the reasonable compensation. In our problem
setting, the fraction will be set to 1.0.

State Space. The state space S consists out of 17 features, which are denoted in Table 4.2. The
environment is partially based on historical data, namely the weather and pricing features are
sampled from a dataset. For these features holds that we have one trace of the weather and
pricing features available, and subsequently an entry of the dataset will always be followed by
the same next entry. The remaining features are computed according to a set of dynamics rules.

The EcoGenie environment is not a traditional online environment, since it contains an
offline component in the form of the weather and tariff features. For these features, we have a
finite number of datapoints, and they are independent on the actions. Thus, not the whole state
space is covered by the environment, given that the dataset is finite. We define this as a pseudo-
environment, since we are not able to continuously sample from the environment in order to
lower the epistemic uncertainty of an algorithm. However, the exploration-exploitation trade-
off is still something that has to be considered, unlike traditional offline settings, since an agent
still has to gather its transitions.

TABLE 4.2: State space S of the EcoGenie environment. The ‘†’ denotes features
that are sampled or inferred from a historical dataset. For the outdoor temper-
ature and PV production, we plug in the values of the previous timestep, since
those of the current can not be known by the HEMS.

Feature Symbol Unit Description

Battery State of Charge SoCt kWh The amount of charge in the smart battery.
Battery State of Health SoHt % Estimation of the health, based on discharge cycles.
Indoor temperature Tin

t
◦C Temperature of residential house.

Outdoor temperature† Tout
t−1

◦C Temperature outside the residential house.
Forecasted outdoor temperature† T f

t
◦C Mean forecasted outdoor temperature over the next 24 hours.

Heatpump input power HPin
t−1 kWh Number of kWh inserted into the heatpump.

Heatpump output power HPout
t−1 kWh Heat produced by the heatpump.

PV production† PVt−1 kWh Available power generated by the solar panels.
Forecasted PV radiation† PV f

t kW Forecasted cumulative PV radiation over the next 24 hours.
Grid tariff† pt €/kWh Tariff of drawing/netting 1 kWh from/to the power grid.
MA grid tariff† pMA

t €/kWh Moving average (MA) of grid tariff over the current episode.
Mean grid tariff day-ahead† pµ

t €/kWh Mean grid tariff for day-ahead market.
Min. grid tariff day-ahead† pmin

t €/kWh Minimum grid tariff for day-ahead market.
Max. grid tariff day-ahead† pmax

t €/kWh Maximum grid tariff for day-ahead market.
Netting ηt - Boolean indicating whether we can net for the full tariff.
Workday - - Boolean indicating whether it is currently a workday.
Hour - - Denoting hour of the day.

Reward Function. The reward function R consists out of two components: (i) the costs c
made over the previous timestep; and, (ii) the deterioration of the battery SoH as a result of
performing the selected action. The reward function is denoted in Equation 4.1, where λSoH is
an importance scalar for the SoH, κ the cost per percent of SoH, and λw,t a scalar for the overall
reward. The cost per percent of SoH is computed by dividing the rated number of discharge
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cycles with the cost of purchase.

rt
.
=

(
− ct − λSoH · κ · SoH∆

)
· λw,t with SoH∆

.
= SoHt−1 − SoHt (4.1)

The scalar λw,t is added to the reward function to penalise the agent when an action was se-
lected that did not change the battery SoC, thus wasting an action. Its value at a given timestep
t is determined based on Equation 4.2.

λw,t =

{
m, if at ∈ A \ {IDLE} and SoC∆ = 0
1, otherwise

(4.2)

Overall, the EcoGenie environment consists out of both stochastic and deterministic elements,
e.g.: the weather and battery dynamics, respectively. However, the environment has no termi-
nal states (i.e., continuing task), and instead episodes will be ended after a predefined number
of timesteps. An overview of the environment dynamics is shown in Figure 4.1.

Two of the main components of the environment, the battery and user profile, are discussed
in further detail in the next subsections. In addition, Appendix A denotes the values for the
constants that are part of the environment (e.g., battery capacity, battery purchase price, maxi-
mum PV-panel generation, etc.). The dynamics of the heatpump are described in Appendix B,
and are based on an environment developed internally at Shell.

Behind-the-Meter

Photovoltaic
Panels

Smart
Battery

Offline
Dataset

Heatpump

Compute
Heat Loss

CHARGE GRID
CHARGE PV
DISCHARGE
NETTING

UP

EcoGenie Household

Power Grid

FIGURE 4.1: Overview of the EcoGenie environment, which models the battery
dispatch problem setting on a smaller scale. The heatpump demands power in or-
der to meet the comfort requirements set by the User Profile (UP), and the HEMS
should efficiently manage the power flow such that the consumption costs are
minimised and the battery lifespan is maximised. As shown, a subset of the en-
vironment is based on an offline dataset, which is highlighted with the dashed
arrows. Note that the environment consists of five discrete actions; the one not
shown in the figure is IDLE.

4.1.1 Smart BtM Battery

The sonnenBatterie10 1 is used as reference for the smart battery dynamics in the environment,
which consists out of LiFePO4 energy cells. While simulating the battery, we take the limits
on charge/discharge rates, battery capacity and the effect of float charging into account. The

1Specifications of the sonnenBatterie10 can be found at https://sonnenbatterie.co.uk/products/

sonnenbatterie-10/

https://sonnenbatterie.co.uk/products/sonnenbatterie-10/
https://sonnenbatterie.co.uk/products/sonnenbatterie-10/
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maximum charge and discharge rates are constants, and are conservatively approximated due
to the potential losses that can occur during the charge- and discharge-operations. In order
to preserve the battery health, it is not possible to fully charge the battery nor let it get fully
depleted.

Lastly, the SoH of the battery is estimated by the number of discharge cycles it has endured,
compared to the number of discharge cycles it is rated for. One discharge cycle is defined as
discharging the battery for its maximum capacity. This does not have to be uninterrupted nor
from maximum to minimum capacity.

We have to note that this is a simplistic approach to model a battery, and there are numerous
complex reactions/processes occurring in a battery that influence the mechanics. For instance,
operating and ambient temperature, capacity fade, and depth of discharge all influence the
performance and lifespan of the battery (Wang et al., 2011; Zhang, 2011), but have not been
implemented in the environment.

4.1.2 User Profile

The comfortable indoor temperature is dynamic and changes based on whether it is day- or
nighttime. A crossover point from day to night to day is sampled for each day from a Gaussian
distribution with a variance of 0.5 and mean t̃µ. Night starts at t̃night and ends at t̃day. At
nighttime, the comfortable temperature is lowered with a constant offset (see Equation 4.32,
where t̃ refers to the actual time, instead of a timestep). With this, we simulate how households
would manually operate the thermostat; lower temperature before going asleep, and normal
during daytime. However, we have to note that this approach does not take into account that
a residential house may be unoccupied at certain moments in time, such that during daytime
the thermostat is also set to a lower temperature.

Tcomfort
i, t

.
= Tcomfort

i − Toffset · 1{t̃night ≤ t̃t < t̃day}, i ∈ {low, high} (4.3)

4.2 Data

As Table 4.2 denotes, some features of the state space are sampled from a static offline dataset.
The outdoor temperature and PV production are sampled from the National Solar Radiation
Database (NSRDB) of the National Renewable Energy Laboratory (NREL)3, which is part of
the U.S. Department of Energy. As for the grid tariffs, the day-ahead market prices, which are
being reported by ANWB Energie4, have been used. In addition, weather forecasts for tem-
perature and PV production are sampled from the ERA5-Land dataset (Sabater et al., 2021),
which can be obtained from the Climate Data Store (C3S, 2022). For all datasets holds that we
retrieved the data that is applicable to the EcoGenie house over the years 2017, 2018 and 2019.
They have identical granularity, i.e.: a datapoint every hour. Thus, no further transformations
were required to the data.

In the next subsections, we discuss some noteworthy signals and patterns that were found
during data exploration. These insights indicate that the use of certain techniques or features
may result in performance boosts of a HEMS.

2In this context, the semantic meaning of ‘<’ and ‘≤’ is changed from smaller than to is before.
3The data viewer of NSRDB can be accessed here: https://nsrdb.nrel.gov/data-viewer
4The day-ahead market prices can be found here: https://energie.anwb.nl/actuele-tarieven. However,

we have to note that the historical prices have been scraped from the API that is provided by EnergyZero (https:
//api.energyzero.nl/v1/).

https://nsrdb.nrel.gov/data-viewer
https://energie.anwb.nl/actuele-tarieven
https://api.energyzero.nl/v1/
https://api.energyzero.nl/v1/
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4.2.1 NSRDB Weather

The relevant attributes that have been sampled from the NSRDB dataset are the outdoor tem-
perature in degrees Celcius and Global Horizontal Irradiance (GHI) in kWh/m2. GHI denotes
the total amount of terrestial irradiance received by a surface horizontal to the ground, and in-
cludes solar radiation received directly (Direct Normal Irradiance) and indirectly (Diffuse Hor-
izontal Irradiance) from the sun. We argue that GHI is a reasonable, but conservative, value to
take as the potential PV-production, taking into consideration that the efficiency of commercial
PV panels is around 15% to 20% and that there is around 10 m2 of PV-panels installed at the
EcoGenie house.

Figure 4.2 shows the boxplots for the hourly temperature and GHI attributes over the three
years. The plots highlight how there is a clear pattern occurring for both attributes; the GHI
peaks around noon, while the temperature is higher during daytime, unsurprisingly. The
trends highlight that a RL method might benefit from recurrent layers, in order to make more
accurate predictions based on the last n timesteps. In addition, adding the hour-feature into
the state space should make it easier to predict when the sun will rise and set, and combine it
with the GHI and temperature features to identify whether it is a sunny or cloudy day.
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FIGURE 4.2: The hourly Global Horizontal Irradiation (GHI) (left) and temper-
ature (right) over 2017, 2018 and 2019. Noteworthy is the number of outliers in
the GHI boxplot, which can be explained by switching between daylight saving
time and standard time. The darkness of an outlier denotes the frequency of it
occurring.

4.2.2 ERA5-Land Weather Forecasts

Next to the true weather data, we also provide weather forecasts to a HEMS. The forecasts are
made by a numerical model (i.e., Numerical Weather Predictions, NWP), and in case of the
ERA5-Land dataset (Sabater et al., 2021) are based on a reanalysis of historical weather data.
From this, we have taken the outdoor temperature and GHI at The Hague. Table 4.3 denotes
four error metrics on the accuracy of the forecasts, in comparison to the ground truth weather
data.

The forecasted temperature mostly follows the true temperature, as indicated by a root
mean squared error (RMSE) of 1.35. However, the peaks of the forecasted GHI are often more
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extreme, given that the maximum recorded error over one hour is 716.32 kWh/m2, compared
to the true GHI. Fortunately, the maximum mean error over 24 hours is significantly lower.
Given these statistics, we argue that the features regarding weather forecasts, T f

t and PV f
t , are

reasonable approximations of the true weather for the upcoming day.

TABLE 4.3: Four metrics on the weather forecast data. The maximum error over
one hour denotes the maximum absolute difference of one datapoint. In addition,
the max. and min. mean error over 24 hours is denoted in the rows below.

Metric Temperature (◦C) GHI (kWh)

RMSE 1.35 110.59
Max. error (1 hour) 7.33 716.32
Max. mean error (24 hours) 3.68 170.35
Min. mean error (24 hours) 0.01 0.00

4.2.3 Day-Ahead Market Tariff

Lastly, the tariff data is based on the Day-Ahead (DA) Market taken from ANWB Energie. In
this market, the hourly tariffs of the next day are made public one day beforehand at 15:00 CET.

Figure 4.3 shows two boxplots with the hourly pricing data binned per hour and weekday.
Most notably is the fact that the power grid pricing is quite volatile. For instance, the outliers
can be up to five times as high as the mean found for an hour or weekday. Similarly, the pricing
can also be significantly lower, or even negative. In case of negative pricing, a residential
household would get paid to consume power from the grid.

In addition, there are clear trends visible in the boxplots. Grid tariffs are on average higher
during the hours 6 to 10 and 15 to 18, which is when the demand on power is at its highest,
and the generation of PV-power relatively low. The valley in between the peaks is the result of
the peak in PV-radiation, during which there is often a surplus of power. As for weekdays, the
tariffs are slightly lower during weekends, and with less extreme outliers.
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FIGURE 4.3: Boxplots for the hourly pricing (left) and daily pricing (right) over
2017, 2018 and 2019. The darkness of the outliers denotes its frequency. Note how
the range over the hours 6 to 10 and 15 to 18 are significantly wider, and also with
more extreme outliers. As for the datapoints binned per weekday, the weekend
has slightly lower tariffs compared to workdays.
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5 Multi Dynamics- and Q-Learning

We now turn our attention to a novel reinforcement learning approach, that has been applied
to the EcoGenie environment introduced in the previous section. It is, next to benchmarking
reinforcement learning to energy management, one of the main contributions of this work.

Sharing state representations between multiple value- and/or policy-approximators has shown
promising results in the reinforcement learning (RL) paradigm. As the main benefit, the state
representations are generalised over the subsequent function-approximators, providing rich
latent states. In addition, fewer weights are required by the overall model.

Research has been dedicated to network architectures where state predictors/discriminators
are used as a way of regularising the shared weights. For instance, Leibfried and Vrancx (2018)
empirically demonstrate that next state predictions offer useful signals to a q-value approxi-
mator in environments with sparse rewards. Similarly, Moon et al. (2022) show that adding an
auxiliary task to the objective function, in the form of discriminating true and false next states,
can improve generalisation when training an agent on multiple environments concurrently.

On the other hand, Oh et al. (2017) propose the Value Prediction Network, where state
abstractions are learned. The reward, discount factor next abstract state (given an action), plus
its state-value, are predicted based upon the current abstract state. Subsequently, it enables the
model to unroll a state multiple steps, thus being able to deploy a planning strategy, such as
Monte-Carlo Tree Search (Chaslot, 2010).

Lastly, it has been shown that ensembles are able to accurately quantify the epistemic uncer-
tainty that arises in offline RL settings (Kidambi et al., 2020; Yu et al., 2020b). However, sharing
the weights between the ensemble members can theoretically reduce the effect of bootstrapping
over the members, thus reducing its capabilities to detect sparse sub-regions in the state-action
space. However, Osband et al. (2016) empirically show with Bootstrapped DQN that this effect
is neglegible. In addition, sharing weights over an ensemble of q-value approximators (Smit
et al., 2021) has also shown to yield performance gains in the offline RL setting.

In this work, we take it a step further by proposing to share the state representations between
two ensembles; ensembles of q-value and dynamics approximators. Subsequently, the feature
extractor (i.e., the layers that are shared between the ensembles) is forced to generalise over
the multiple beliefs of the ensemble members, while also providing rich latent states which can
be linearly mapped to the next state and immediate reward. We refer to this model as Multi
Dynamics- and Q-Learning (MDQL).

In addition, the novel network architecture enables the use of a novel planning strategy,
Hindsight-Weighted Planning (HWP). The strategy consists out of weighted rollouts by pairs
of q-value approximators and dynamics models.

5.1 Architecture

MDQL consists out of two ensembles along with a shared feature extractor F , with each en-
semble consisting out of n members. In addition, there is also a separate reward function
approximator that is shared by all ensemble members. The feature extractor converts a state
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st to a latent state, which is fed into a function approximator. As for the ensembles, the first
one consists out of q-value approximators, which are all modelled as a Double DQN (DDQN)
(Hasselt et al., 2016). Each DDQN receives the latent state, with which it predicts the q-value
for each action.

The second ensemble D̂ consists out of dynamics models, which receive the latent state con-
catenated with an action in its one-hot encoding form. Each member predicts the state differ-
ence s∆, given that we perform action at. Next, there is a shared reward function approximator
R̂, which predicts the immediate reward when action at is executed at state st.

In addition, we also propose a recurrent variation upon MDQL, namely rMDQL. In this
variation, we replace the fully connected layers in F with LSTM layers (Sak et al., 2014). Fig-
ure 5.1 visualises the network architecture of MDQL. Each fully connected layer (bar the final
layer) is followed by the ReLU activation function. In addition, Dropout-layers (Hinton et al.,
2012) have been added to the dynamics models and reward approximator, in order to minimise
overfitting on the training transitions.

DDQN Ensemble Dynamics Ensemble

⧺

Reward

FIGURE 5.1: Network architecture of Multi Dynamics- and Q-Learning. The algo-
rithm makes use of shared state representations, which are generated by feature
extractor F . The ensemble highlighted in green consists out of heads Qi that es-
timate the q-values of a state. The other ensemble, highlighted in red, contains
the heads D̂i that predict the state difference s∆. Lastly, there is a shared reward
function approximator R̂, highlighted in purple. The latent state and action are
concatenated, which is denoted with ‘++’. In addition, we also propose the recur-
rent variant of MDQL, namely rMDQL, with LSTM layers in F .

All networks are parameterised by θ. In addition, a set of target networks have been created
for the Q-heads and F , which are parameterised by θ′. The predictions that MDQL, and its
recurrent counterpart, can make are summarised in Equation 5.1. The next state can then be
obtained as follows: st+1 = st + s∆.

Qθ,i
(
Fθ(st, zt−1)

)
7→ q⃗i, zt

D̂θ,i
(
Fθ(st, zt−1), at

)
7→ s∆,i, zt

R̂θ

(
Fθ(st, zt−1), at

)
7→ r̂t, zt

(5.1)
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For all upcoming equations and notations, we have omitted the hidden states z unless it is
specifically aimed at rMDQL.

Next, we form pairs between the two ensembles that share the same replay buffer, for instance,
pair (Q0, D̂0) share replay buffer D0. Subsequently, we will have n separate replay buffers for
experience replay. For bootstrapping, we divide the transitions over the n buffers, where each
transition is represented as a tuple (st, at, rt, dt, st+1), with dt being the terminal flag.

However, in case of rMDQL, we create transitions of l steps. This results in tuples of the
form (st, at, rt, dt, st+1, at+1, rt+1, dt+1, st+2, ..., st+l). This is to ensure that there is no overlap be-
tween the replay buffers, and that rMDQL is trained on traces of at most l steps.

At testing time, the next action is selected based on the aggregation of the Q-heads. As ag-
gregation strategy, we take the Confidence Lower Bound (CLB) over the estimated q-values,
which we refer to with q⃗CLB. Given this vector, we take the action with the maximum CLB
value. Consequently, we penalise actions with high disagreement between the Q-heads, which
should be higher in state-action regions with sparse datapoints. Thus, we penalise actions that
have high epistemic uncertainty.

The CLB q-values are computed according to Equation 5.2, where q⃗µ and q⃗σ are the mean
and standard deviation over the q-values of the Q-ensemble, respectively. The penalty term
has been taken from the work conducted by Smit et al. (2021).

QCLB
(
Fθ(s)

) .
= q⃗CLB = q⃗µ − q⃗σ (5.2)

Intuitively, state-action pairs with a high epistemic uncertainty will more likely have outliers
for the q-values. The standard deviation captures this, and thus can act as a way to quantify
this uncertainty.

5.2 Learning

In this section, we cover the components related to optimizing the MDQL; the loss-functions,
exploration strategy, maintaining high diversity in the replay buffers and overall training pro-
cess.

Loss Functions. The ensembles of MDQL are optimised through two separate loss functions;
LQ andLD̂ for the Q- and D̂-heads, respectively. The Q-loss function largely follows the default
DDQN loss function, with some slight adaptations to accommodate for F .

In addition, the reward approximator is optimised on its own loss function LR̂, and is
trained to predict the normalised reward. We normalise the reward through min-max feature
scaling, where the minimum and maximum are based upon multiple runs conducted in the
environment (denoted in Appendix A). All three loss functions are denoted in Equation 5.3.

LQi

.
= smoothℓ1

(
r + d · γ ·Qθ′,i

(
Fθ′(s′), argmax

a′
Qθ,i

(
Fθ(s′), a′

))
−Qθ,i

(
Fθ(s), a

))
LD̂i

.
= smoothℓ1

(
D̂i

(
Fθ(s), a

)
+ s− s′

)
LR̂

.
= smoothℓ1

(
R̂
(
Fθ(s), a

)
− r

) (5.3)

Note that at this point in time, the dynamics models are mainly used for representation learning
by the feature extractor. Thus, there is no background planning occurring during training.
Moreover, we have opted for the smoothℓ1 loss function since it is less sensitive to outliers than
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more traditional regression losses, such as the MSE loss. Consequently, this property results in
less severe (if at all) exploding gradients (Girshick, 2015). Given the separate losses, the feature
extractor F is optimised over the summation, see Equation 5.4.

LF
.
=

n−1

∑
i=0

[
LQi + LD̂i

+ LR̂
]

(5.4)

We also considered taking as target q-value an aggregation strategy over the whole Q-ensemble,
similar to PEBL (Smit et al., 2021). However, this results in less distinctions between the Q-
heads, thus less accurate quantifications of the epistemic uncertainty. We provide empirical
evidence on this in Appendix E.

Lastly, the loss functions of rMDQL require a slight adaptation. Given the l-steps that occur
in one sample of the replay buffer, we still compute the losses between one step at a time.
However, we take the average loss over the l steps in order to reduce the gradient updates.
Following this, the loss function is the mean over all 1-step losses.

Exploration. Since we are dealing with a pseudo-environment (see definition in Section 4.1),
the algorithm still has to collect its transitions according to a strategy in order to optimise the
ensembles efficiently. Thus, the exploration-exploitation trade-off is still present in the EcoGe-
nie environment. As exploration strategy, we opted for ϵ-greedy with exponential decay. The
training samples are gathered from the environment by one Q-head at a time, while in addition
we alternate between Q-head after every interaction. Consequently, there is also implicit explo-
ration occurring, since the state Qi receives is dependent on the actions taken by the preceding
Q-heads. Then, when head Qi has interacted with the environment, the resulting transition is
stored in replay buffer Di.

Maintaining Data Diversity. The network architecture restricts us in how the weights can be
optimised. The traditional approach is to first train the dynamics models on the available data,
after which the dynamics models remain frozen while the policy- and/or value-approximator
is optimised. In our case, both ensembles have to be optimised concurrently, since it is sharing
a set of weights. This makes the overall training process more complex, since the Q-ensemble
will converge to a set of optimal trajectories through the environment. Subsequently, the replay
buffers will be filled with more similar transitions over time, reducing the data diversity for the
dynamics models, with the risk of forgetting the suboptimal transition dynamics.

We propose to split up the training procedure into two phases; Q-Ensemble Training (QET)
and Diverse Dynamics Training (DDT). During Q-Ensemble Training, we primarily focus on
obtaining a high cumulative return through the Q-ensemble. All components are trained on
transitions generated by the Q-ensemble plus ϵ-greedy. During this phase, we keep track of
the mean dynamics model loss over the last ten evaluations on the validation environment.
When the loss did not improve over this period, we can say that the Q-ensemble has somewhat
converged. This can be inferred from the fact that once the dynamics models do not improve
in terms of loss on the validation environment, it means that the Q-ensembles produced near-
identical traces during the evaluations. Once the convergence point has been reached, the
algorithm switches to the second phase.

With Diverse Dynamics Training, MDQL creates a new replay buffer for each pair of the en-
sembles, which is substantially larger than the buffers from the first phase. These buffers are
immediately filled with new transitions. Every 10% of the buffer is filled with traces from the
training environment with a unique ϵ ∈ {0.1, 0.2, ..., 1.0}. Subsequently, each replay buffer will
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contain a diverse set of transitions. Next, each pair (along with the reward approximator) is
then trained on its new replay buffer for the remainder of the training process.

To ensure that the Q-ensemble does not deteriorate, the target update coefficient is set to
zero, such that each DDQN is still able to finetune its one-step estimations, but will not be
influenced by the suboptimal traces. As an additional benefit, it prevents the Q-heads from
overestimating its state-action values. Experiments have shown that Q-learning is prone to
diverging in this environment. More details on this are discussed in Appendix E.

Training Process. With the environment being based on three years of historical data, we
opted to not use the dynamics models in order to generate new samples and possibly im-
prove the sample efficiency. The overall training process is described in Algorithm 1, where
the blue highlighted parts are only applicable to rMDQL. In this context, T is the total number
of timesteps MDQL is trained on, and I and E are the frequency of updating the target net-
works with τ and evaluating the model on the validation environment, respectively.

Algorithm 1: Recurrent Multi Dynamics- and Q-Learning

Input : Empty buffers DQET =
{
DQET

0 , ...,DQET
n−1

}
, randomly initialised θ

Output : θ∗

1 Partially fill DQET
0 , ...,DQET

n−1 with random transitions
2 for t = 0, ..., T do
3 if phase is QET then ▷ Q-Ensemble Training (QET)

4 i← t mod n ▷ Select next head to interact with the environment

5 Reinitialise z with previous l − 1 states
6 Gather trace with Fθ , Qθ,i and ϵ-greedy
7 DQET

i ←
(
st, at, rt, dt, st+1, ..., st+u

)
8 D ← DQET

9 end
10 else ▷ Diverse Dynamics Training (DDT)

11 D ← DDDT

12 end
13 if t mod n = 0 then ▷ Update Online Networks

14 LF ← 0
15 forall (Qi, D̂i) pairs do
16 Bi ∼ Di ▷ Sample Batch Bi
17 Compute LQi , LD̂i

, LR̂ with Bi, via Eq. 5.3
18 Add LQi + LD̂i

+ LR̂ to LF
19 end
20 LF ← LF/l ▷ Compute mean loss over l steps

21 Update θ via backpropagation on LF
22 end
23 if t mod I = 0 then ▷ Update Target Networks

24 θ′ ← θ′ · (1− τ) + θ · τ
25 end
26 if t mod E = 0 then ▷ Evaluate MDQL

27 score← evaluate(θ)
28 phase, τ, DDDT ← is_converged(score) ▷ Check whether Q has converged.

If so: switch to DDT, set τ to zero and create DDT replay buffer

29 end
30 end
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5.3 Hindsight-Weighted Planning

The dynamics models enable the agent to plan its actions ahead at testing time, as an alternative
to selecting the action with the highest qCLB-value. However, the accuracy of one dynamics
model may fluctuate significantly during evaluation. This can occur when the distribution of
datapoints occurred such that its density in certain parts of the state-action space are low. In
these regions, it is most likely less accurate than another dynamics model which has a high
density in that region. We argue that during planning, the agent should rely more on the
dynamics models that are accurate, and not treat all heads equally.

We propose a variation upon Monte-Carlo rollouts, namely Hindsight-Weighted Planning
(HWP). For each action, we perform n paired rollouts of length u, thus one rollout per pair
(Qi, D̂i). At the end of u steps, we take the maximum value of Qi as the state-value. Figure 5.2
visualises the backup diagram of Hindsight-Weighted Planning, where s(i)t+1 is the predicted
next state by dynamics model D̂i.

FIGURE 5.2: Backup diagram of Hindsight-Weighted Planning. For each action,
the model generates n paired rollouts, with each pair (Qi, D̂i), of length u. The
weighted cumulative reward over all rollouts is then assigned to the correspond-
ing action. In the backup diagram, s(i)t+1 represents the prediction made by D̂i. In
addition, some actions at the root node may be pruned (e.g., a1 in this example),
which is based on QCLB

(
Fθ(st)

)
.

For each rollout, the states are generated by D̂i, while the actions are greedily selected by the
corresponding Qi-head. Given this, the cumulative return G(a)

i , when selecting a as the first
action, is computed according to Equation 5.5. Note that the terminal flags are omitted, since
the EcoGenie environment is a continuing task.

G(a)
i

.
= R̂θ

(
Fθ(st, a)

)
+

t+u−1

∑
j=t+1

[
γj−t · R̂θ

(
Fθ

(
s(i)j

)
, argmax Qθ, i

(
Fθ(s

(i)
j )

))]
+ γu ·max Qθ, i

(
Fθ

(
s(i)t+u

)) (5.5)

Due to bootstrapping, each dynamics model member will have a different confidence for a
sub-region in the state space. We argue that during the paired rollouts, the dynamics models
that are more accurate at the current location in the state space should be more predominant
than others. The confidence of a dynamics model D̂i is determined by comparing the predicted
next state s(i)t+1 at the previous planning iteration, with the true next state st+1 we received
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from the environment at the current iteration. The confidence is quantified by LD̂i
between the

prediction and true next state, and is computed at the start of the planning iteration.
In addition, we argue that if a dynamics model is inaccurate for the selected transition at

the previous planning step, then it will probably also be inaccurate for the next step. Thus, we
have to reduce its importance during this planning step.

Given the loss for each dynamics head, we compute the hindsight-weights W. By dividing
the minimum loss seen at the current planning iteration with the loss of a dynamics head, we
scale the weights based on the best dynamics head at that point in time. If the difference is
small between the heads, then all hindsight weights will be close to 1. Next, the score G(a)

for action a at the root can be computed by taking the weighted sum over the paired rollouts
according to Equation 5.6. In this equation, ω is a small number to prevent division by zero.

G(a) .
=

n−1

∑
i=0

[
G(a)

i ·
minj∈{0, ..., n−1} LD̂j

+ ω

LD̂i
+ ω︸ ︷︷ ︸

Hindsight-weight Wi

]
(5.6)

When all scores G(a) have been computed, the action with the highest value is selected and the
remainder of the tree is thrown away. Note that at the start of an episode, all hindsight-weights
are set to 1. Figure 5.3 illustrates an example of how the weights shift per planning iteration.

In addition, it is also possible to prune a set of actions at the root of the backup diagram
based on QCLB (see the gray node of a1 in Figure 5.2). Consequently, we do not perform roll-
outs on actions that do not seem promising. In addition, actions with high disagreement are
filtered, which is an additional benefit since the rollouts would be inaccurate for some (if not
all) (Qi, D̂i)-pairs. We define k as the top-k actions that are not pruned at the root.
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FIGURE 5.3: Example of how the hindsight-weights for an ensemble of two mem-
bers (blue and orange) would theoretically proceed. The left plot shows the den-
sity plot of how the datapoints in the two replay buffers are divided. In this
example, we assume that the density of transitions in the state space directly cor-
relates to the loss. Next, the planning starts at the star, after which each step is
represented by a dot in the state space. The trajectory in S shows that we first re-
main in the region with high and low density for blue and orange, respectively.
Here, the hindsight-weight for blue is significantly higher than orange. How-
ever, in the end, when both are near-identical in terms of accuracy, orange and
blue have similar weights. Important to note that all the data in the example is
randomly generated.
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6 Experimental Setup

By means of experimentation, we evaluate Multi Dynamics- and Q-Learning (MDQL) against
a set of benchmarks from different domains: a Heuristic-Based System (HBS), Mixed-Integer
Linear Programming with perfect foresight and a few model-free reinforcement learning (RL)
algorithms. In addition, the most important environment configuration settings are discussed
along with the strategy behind the hyperparameter optimisation.

All experiments are conducted on a shared compute cluster, where we can specify what
(and how many) CPU’s and GPU’s we require. For this work, we requested a compute unit
with the following specifications:

• CPU: 1 Intel Xeon Gold 6248 core @ 2.50 GHz
• GPU: 1 NVIDIA Tesla V100 (32 GB HBM2 VRAM)

6.1 Implementation Details

This section contains a brief overview of some of the implementation details of MDQL and the
EcoGenie environment.

MDQL. The neural network architecture is implemented in PyTorch (v1.13.1) (Paszke et al.,
2019), with the parameters being optimised according to the AdamW optimiser (Loshchilov
and Hutter, 2019) with AMSGrad enabled. In addition, the gradients have been clipped by
value (100) and norm (1.0).

For experience replay, we make use of Prioritized Experience Replay (Schaul et al., 2016) in
order to speed up the training process. To ensure a fair comparison against other RL-methods,
each method (if applicable) is able to save N transitions in its replay buffer. However, this
does not apply to MDQL due to its training process being split up into two phases. For the
implementation, we opted for the CPPRB library (Yamada, 2019), which offers an easy to use
interface while the computations are sped up by utilising Cython. Important to note is that
all losses of MDQL — LQ, LD̂ and LR̂ — are taken into account when computing the sample
probabilities.

EcoGenie Environment. The environment is implemented as a Gym environment (Brockman
et al., 2016), with the heatpump and heat loss dynamics being based on an environment that
has been developed internally at Shell.

6.2 Environment Configuration

The reward function is configured such that we incentivise the agent to use the battery primar-
ily for the household. In order to accomplish this, we enable the battery SoH component of the
reward function only when the NETTING action has been chosen. In addition, its scalar λSoH is
set to 1.0. Consequently, netting power back to the grid is only profitable during high spikes of
the grid tariff, since otherwise the SoH component would nullify the profits made.
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Moreover, since we are dealing with a pseudo-environment, we have to approach the eval-
uation of an algorithm differently to traditional environments. In our case, we opted to split
the dataset up into a train, validation and test set, with a split of 26:5:5. The training set con-
tains the first 26 months of the three years of data, i.e.: from January 2017 up to, and including,
February 2019. The remaining months are divided over the validation and test set by alterna-
tively assigning a month to the test and validation set. This results in the following split:

• Train set: 2017, 2018, {January, February} of 2019.
• Validation set: {April, June, August, October, December} of 2019.
• Test set: {March, May, July, September, November} of 2019.

The reasoning behind alternatively assigning a month to validation/test is to ensure that each
set contains roughly the same number of spring, summer, fall and winter months. This is since
winter months will have significantly different weather to summer months, thus the optimal
behaviour is dependent on the time of year. During validation and testing time, we evaluate
the method on all five months, but with the initial state of the battery, heatpump input/output
power, User Profile and household temperature randomised within a predefined interval. We
refer the reader to Appendix A for the exact settings of the environment.

A training episode takes 1,420 hours (i.e., ∼2 months), irrespective of the actions taken by
an agent. This means that the agent is able to face the long-term consequences of actions taken
at an earlier stage in the episode. The initial state is initialised similarly to the validation and
test environment, with the only difference being that the initial point in the 26 months is uni-
formly sampled (with the constraint that at least 1,419 datapoints follow it).

Lastly, the features of the state space are normalised by min-max feature scaling. The mini-
mum and maximum have been obtained from the whole dataset. Moreover, features expressed
in the same unit, such as the (forecasted) outdoor and indoor temperature, have been nor-
malised with the same minimum and maximum values.

6.3 Baselines

Three types of methods have been evaluated on the EcoGenie environment, and serve as bench-
marks for MDQL. In addition, we also quantify a lower-bound on the performance in the form
of the ‘Idle’-baseline. With this baseline, only the action IDLE will be selected, irrespective
of the state. It demonstrates what the power consumption and costs would have been if the
household would not have had access to a smart BtM battery nor PV-panels.

For all algorithms that contain a stochastic component holds that we ran it for three replica-
tions with differing random seeds. Over the replications, we report on the mean and standard
deviation. Next, we save the weights/configuration that obtain the best score on the valida-
tion environment, which will then be evaluated on the test environment. This also applies to
MDQL, but with the additional constraint that the dynamics models must first be converged
(i.e., we select the best weights from the set of weights generated during the Diverse Dynam-
ics Training phase). We consider the models to be converged when the mean loss LD on the
validation environment did not improve over the last ten evaluations, with each evaluation
occurring every twenty episodes.

In addition, learn curves and losses are smoothed with the Savitzky-Golay filter, taken from
SciPy (Virtanen et al., 2020). The window length is set to 21 and the order of the polynomial
fitted to the samples is set to 4.

Lastly, the RL-methods are trained for 100 epochs, where each epoch consists of 20 training
episodes. Subsequently, each model is trained on 2.8M timesteps. With the machine specifica-
tions reported above, the training time is around 3.5 hours per replication for MDQL.
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6.3.1 Heuristic-Based System

As the first baseline, we introduce a Heuristic-Based System (HBS), which is modelled as a
binary decision tree. It consists of a sequence of six handcrafted if-statements, with all but
one containing parameters from the set of parameters Φ = {ϕ0, ..., ϕ7}. Algorithm 2 contains
the pseudocode of the HBS. Note that the HBS also interacts with the EcoGenie environment
implemented in Gym, i.e.: it receives normalised features.

Algorithm 2: Heuristic-Based System

Input : SoCt, PVt−1, pt, pMA
t , ηt

Output : at
1 if PVt−1 ≥ ϕ0 and SoCt ≤ ϕ1 then ▷ Statement 1

2 return CHARGE_PV

3 end
4 if pt ≤ 0.0 and SoCt < ϕ1 then ▷ Statement 2

5 return CHARGE_GRID

6 end
7 if SoCt ≥ ϕ2 and pt ≥ pMA

t + ϕ3 then ▷ Statement 3

8 return DISCHARGE

9 end
10 if SoCt ≥ ϕ4 and pt > pMA

t + ϕ5 and ηt then ▷ Statement 4

11 return NETTING

12 end
13 if SoCt ≤ ϕ6 and pt ≤ pMA

t + ϕ7 then ▷ Statement 5

14 return CHARGE_GRID

15 end
16 if PVt−1 > 0.0 and SoCt + PVt ≤ 1.0 then ▷ Statement 6

17 return CHARGE_PV

18 end
19 return IDLE

A brief explanation of each statement is given below:

1. Charge the battery if the PV-production of the previous timestep exceeds threshold ϕ0,
while the battery SoC is below threshold ϕ1.

2. In case the current grid tariff is zero or negative, and the SoC is below threshold ϕ1: charge
the battery from the grid. With this special case we try to maximise the use of free power.

3. When the SoC is above threshold ϕ2 and the current tariff is relatively high: discharge to
the household. This way, we prevent that the heatpump uses expensive power.

4. If the SoC is above threshold ϕ4, the current tariff is relatively high and we are able to net
for the full tariff (i.e., ηt): net power back to the grid.

5. If the SoC is below threshold ϕ6 and the current tariff is relatively low: charge the battery
from the grid.

6. If there is some PV available and the battery is not fully charged: charge from PV to
prevent the waste of PV-power.

The intuition behind the ordering of the six statements is that the HBS should first consider
charging the battery with PV-power or free power from the grid, after which it should consider
discharging its power into the heatpump, such that the power consumption of the household
will be minimised. The next two statements are aimed at minimising the costs of the household,
while the final statement is to prevent the waste of PV-power.
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The parameters {ϕ0, ϕ1, ϕ2, ϕ4, ϕ6} are optimised in the range (0, 1), while {ϕ3, ϕ5, ϕ7} are opti-
mised in the range (−0.02, 0.02). Moreover, Φ is optimised over the whole training and valida-
tion environment. As optimisation approach, we used Bayesian Optimisation with 200 random
initial points and then another 800 iterations generated by the optimiser. The implementation
of the optimiser is taken from GitHub, and is written by Nogueira (2014). The exact values of Φ
after optimisation, plus some insights into the behaviour of HBS, are discussed in Appendix C.

We have to note that there are many features in the state space that remain unused by the
HBS, such as forecasts, time and heatpump status, but we were unable to logically incorporate
those into the statements.

6.3.2 Mixed-Integer Linear Programming

The next type of baseline is Mixed-Integer Linear Programming (MILP) with perfect foresight,
for which we have developed a solver specifically aimed at the EcoGenie environment. Given
a horizon of the next h timesteps in the environment, the program computes the optimal ac-
tion sequence based on its objective function. For this, we provide perfect information to the
MILP, i.e.: the exact PV-production, grid-tariff, and heatpump power requirements. This is not
feasible in practice, and this baseline is instead aimed at quantifying an upper-bound on the
performance that can be achieved. The package GEKKO (Beal et al., 2018) is used to write the
program.

The solver requires as input variables the following: SoCt, PVt:t+h, HPin
t:t+h and pt:t+h. Im-

portant to note is that the input variables are not normalised, unlike the HBS and RL-methods.
Furthermore, the decision variables of the program are represented by a Boolean matrix X of
size h× |A|. The intermediate variables, constraints, and objective function are described next.
In addition, we use i as an offset to the current timestep, where each definition applies to all
i ∈ {0, ..., h− 1}.

Intermediate Variables. Four arrays of intermediate variables are computed while finding
the sequence of actions that solves the horizon. First, we compute the maximum possible
(dis)charge rates ψ for the actions in A \ {IDLE, DISCHARGE} with Equation 6.1. For DISCHARGE,
there is only one rate possible, namely equal to the required power by the heatpump. In this
case, it is sufficient to check that the SoC remains positive (see Equation 6.5) in order to verify
that it is possible to execute DISCHARGE.

ψCHARGE_GRID

i
.
=min

(
ψmax, c, SoCmax − SoCt+i

)
ψCHARGE_PV

i
.
=min

(
PVt+i, SoCmax − SoCt+i

)
ψNETTING

i
.
=min

(
ψmax, d, SoCt+i − SoCmin) (6.1)

In these equations, ψmax, c and ψmax, d are the maximum charge and discharge rate of the battery,
respectively. Furthermore, SoCmin and SoCmax are the minimum and maximum capacity of the
battery. The values for the four battery constants can be found in Appendix A.

Given the (dis)charge rates, we can compute the battery SoC after each timestep with Equa-
tion 6.2.

SoCt+i+1
.
= SoCt+i + Xi, CHARGE_GRID · ψCHARGE_GRID

i

+ Xi, CHARGE_PV · ψCHARGE_PV

i

− Xi, NETTING · ψNETTING

i

− Xi, DISCHARGE ·HPin
t+i

(6.2)
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Constraints. With the input, decision and intermediate variables in place, we define a set of
constraints to ensure that the program returns a feasible solution. First, constraints are made
such that the program has to select exactly one action per timestep.

∑
a∈A

Xi, a = 1 (6.3)

Next, we define constraints in Equation 6.4 for the battery SoC, such that it is not possible to
exceed the upper and lower bound at any timestep.

SoCt+i ≤ SoCmax

SoCt+i ≥ SoCmin (6.4)

Lastly, we want to prevent that an action (with the exception of IDLE) is selected that does not
have any effect on the battery SoC. To achieve this, the maximum possible rate must exceed a
constant threshold Ψ = 0.2 in case the corresponding action at that timestep is selected. As for
DISCHARGE (i.e., the final constraint in Equation 6.5), we only have to verify that the discharge
rate can be met by the battery, explaining why Ψ is replaced with 0.(

ψCHARGE_GRID

i · Xi, CHARGE_GRID
)
+

(
1− Xi, CHARGE_GRID

)
≥ Ψ(

ψCHARGE_PV

i · Xi, CHARGE_PV
)
+

(
1− Xi, CHARGE_PV

)
≥ Ψ(

ψNETTING

i · Xi, NETTING
)
+

(
1− Xi, NETTING

)
≥ Ψ

SoCt+i − SoCmin −HPin
t+i ≥ 0

(6.5)

Objective Function. The objective of the program is to minimise the costs made over the hori-
zon by finding the optimal sequence of actions. Thus, the program has to solve the following
minimisation task:

f (X) =
h−1

∑
i=0

[
Xi, IDLE ·

(
pt+i ·HPin

t+i
)

+ Xi, CHARGE_GRID ·
(

pt+i ·
(
HPin

t+i + ψCHARGE_GRID

i

))
+ Xi, CHARGE_PV ·

(
pt+i ·HPin

t+i
)

+ Xi, DISCHARGE · 0

+ Xi, NETTING ·
(

pt+i ·
(
HPin

t+i − ψNETTING

i
))

+ Xi, NETTING · ψNETTING

i · λSoH · κ
]

(6.6)

Note that the objective function is currently written for the environment configuration as de-
scribed in Subsection 6.2, i.e.: the SoH-penalty only applies to the NETTING action. In case it
should also apply to DISCHARGE, or dismissed altogether, then some minor changes will need
to be made to f (X).

One issue that arises with this is the fact that the program does not take the future into consid-
eration when optimising its horizon. Due to this, we introduce the execution horizon e. With
this, the program still solves the h timesteps, but only the first e actions are executed in the en-
vironment. Thus, the first h− e states of the next horizon will be equal to the last h− e states of
the previous horizon. This way, we implicitly let the program take the near future into account.
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Due to the nature of the program, where the decision variables exponentially increase with
horizon H, it is infeasible to solve horizons of multiple weeks or months at once. In order to
speed up the process and maximise the horizons, we initialise the decision variables by solving
the problem with the BPOPT solver of GEKKO. Thus, we first relax the constraints on the de-
cision variables (i.e., they can be continuous), and the result of this is used as initialisation for
APOPT.

Moreover, we have also set a time constraint of two minutes within which the solver has to
come up with a solution. If the solver was not able to find a feasible solution, it throws an ex-
ception. When this occurs, we execute the IDLE action in the environment once, after which we
try again with the solver. Thus, we have to find the optimal values h and e. Figure 6.1 shows
the validation and test cumulative returns for a set of h and e values. In the figure, we plotted
the different h values, with e = h/2. Indeed, the number of exceptions shows to exponentially
grow with h. For instance, in ∼23% of the timesteps an exception occurred at h = 24. Thus,
with the current constraints in place, the optimal h and e according to the validation curve is
h = 12 and e = 6. Consequently, the program will not quantify the absolute upper bound on
the performance, and instead one that is tractable given the current constraints.
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FIGURE 6.1: The performance of MILP with varying h and e values. For all points
holds that e = h/2. In addition, the number of exceptions occurred while solving
the validation/test environment is plotted at the top. The curves show that we
are dealing with diminishing returns. Even when only considering h = 2 to
h = 12, where there are few exceptions, the curve tapers off. With larger h, the
number of exceptions significantly increases, with as consequence that it harms
the overall performance (in all those cases the IDLE action is executed).

6.3.3 Reinforcement Learning

Lastly, we compare MDQL to a set of reinforcement learning algorithms, for which we selected
algorithms from different subdomains within RL. The exact hyperparameter configuration for
each algorithm is denoted in Appendix D.
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• DQN (Mnih et al., 2013): This algorithm is an online model-free RL method and makes
use of Q-learning. In addition, it is one of the building blocks of MDQL. The implemen-
tation is taken from Stable-Baselines3 (Raffin et al., 2021).

• PPO, rPPO (Schulman et al., 2017): An on-policy optimisation algorithm, which is also
model-free and online. In addition, its recurrent variant, rPPO, is also taken as a baseline.
The implementations are taken from Stable-Baselines3 (Raffin et al., 2021) and Stable-
Baselines3 Contrib, respectively.

• BCQ (Fujimoto et al., 2019b; Fujimoto et al., 2019a): An offline model-free RL algorithm,
which restricts the policy to the batches in the static dataset. Since we are dealing with
a discrete action space, we used the author’s implementation of Discrete BCQ, which
can be found at https://github.com/sfujim/BCQ. However, since we are dealing with
a pseudo-environment, where the agent still has to collect its transitions, we have made
some small changes to the algorithm. We added a replay buffer and ϵ-greedy as explo-
ration strategy. For the value of ϵ, we utilised a decay scheme that exponentially decays
ϵ from 1.0 to 0.05 in the first 10% of the training timesteps.

6.4 Hyperparameter Optimisation

The hyperparameters of each RL algorithm have been optimised through one or more grid
searches. In addition, we ran each hyperparameter configuration for three replications.

The best configuration is primarily decided upon the peak performance obtained by the
algorithm. If there is no significant difference between the peak performance of two configura-
tions, then we consider the overall stability and shape of the learning curve, where a monotonic
learn curve is the most desireable. The hyperparameter optimisation process is denoted below.

• DQN: First, we ran a grid search over the learning rate α ∈ {0.001, 0.0001, 0.00001} and ϵ
reduction period in {0.1, 0.3, 0.5} (i.e., over what period in the training process we sched-
ule ϵ from its initial value to its minimum value). Given the best configuration, we ran a
second grid search over the network architecture, for which we evaluated two, three and
four hidden layers, and with 32 to 256 nodes per layer (note: not all possible combinations
were evaluated). Lastly, we also looked at the strategy of updating the target network;
hard updates every 10,000 timesteps and soft updates with τ = 0.001 every timestep.

• PPO, rPPO: First, we optimised the network architecture through a grid search of five ar-
chitectures. Given the best architecture, we optimised the learning rate and entropy coef-
ficient over {0.001, 0.0001, 0.00001} and {0.01, 0.001, 0.0001}, respectively. Lastly, we eval-
uated three values for the Generalized Advantage Estimator, namely {0.90, 0.95, 1.00}.

• BCQ: Here, we have taken the epsilon reduction period from DQN. Given this, we op-
timised the learning rate and its threshold, ΦBCQ, regarding how much the policy is al-
lowed to deviate from the dataset. The settings are optimised over {0.001, 0.0001, 0.00001}
and {0.1, 0.3, 0.5}, respectively.

• MDQL: Various hyperparameter settings, such as network architecture, ϵ reduction pe-
riod, and target network update strategy, have been taken from the DQN grid searches.
Given this, we optimised the learning rate over {0.001, 0.0001, 0.00001, adaptive}. For the
adaptive learning rate, we use the ReduceLROnPlateau-scheduler from PyTorch. It halves
the learning rate if no improvements, in terms of validation performance, have been made
over the last ten evaluations. The starting learning rate is set to 0.001. Its threshold for im-
provements and minimum learning rate are set to the default values of PyTorch. Lastly,
the settings k and u for planning are optimised over {3, 4, 5} and {4, 6, 8, 10}, respectively.

https://github.com/sfujim/BCQ
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7 Experimental Results

Given that all algorithms are optimised on the validation environment according to the experi-
mental setup, we conducted a set of experiments that have been subdivided into the following
three categories:

(7.1) Benchmarking MDQL. We empirically compare the optimised MDQL against all op-
timised benchmarks. We consider the learning curves on the validation environment,
along with how the (trained) methods score on the test environment based on a set of
metrics. These metrics include the cumulative reward, PV-utilisation, battery usage, and
grid consumption, for instance. Lastly, we identify how each approach differs in its opti-
mal behaviour on the test environment based on the action distribution.

(7.2) MDQL Ablation and Sensitivity Study. We have conducted an ablation and hyperpa-
rameter sensitivity study, considering the main components of the algorithm. For in-
stance, we empirically measure the benefit of Hindsight-Weighted Planning, shared state
representation learning, and the use of LSTM layers in the feature extractor. As for the
hyperparameter sensitivity study, the sensitivity of the rollout depth and pruning dur-
ing planning, along with the ensemble size are investigated. Lastly, we also investigate
to what extent the amount of training data attributes to the performance of the Q- and
D̂-ensemble.

(7.3) Insights into the EcoGenie Environment. Lastly, we take the best performing RL-model,
and train it on three different configurations of the reward function. The first configura-
tion is the default, as described in Section 6.2. As the second configuration, the battery
SoH penalty is applied to both NETTING and DISCHARGE. Thirdly, we dismiss the battery
SoH penalty altogether. In addition, we observe how the agent behaves on an hour-to-
hour basis over a period of a few weeks, and provide a more in depth understanding of
the decision making process of the agent.

In addition, we provide additional results with regards to the Heuristic-Based System be-
haviour/optimisation in Appendix C, and regarding Q-learning and the dynamics models of
(r)MDQL in Appendices E and F, respectively.

7.1 Benchmarking MDQL

In this experiment, we empirically determine how MDQL and rMDQL compare against other
approaches on the EcoGenie environment.

Learning Curves on the Validation Environment. First, we plot the learn curves on the val-
idation environment in Figure 7.1. Note that this excludes (r)MDQL with planning, due to the
fact that this would increase the training time significantly.

The figure shows how MDQL, and to a lesser extent rMDQL, outperform all benchmarks,
with the exception of MILP. MDQL has an asymptotic learn curve, while rMDQL slightly drops
off after its initial peak at 500k timesteps. Noteworthy is the learning curve of DQN, one of the
building blocks of MDQL, which initially shows a similar curve. However, it then drops off
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significantly to the level of the ‘Idle’-benchmark. This is the result of diverging q-values due to
bootstrapping. It is caused by the fact that the EcoGenie environment returns a negative reward
for almost all actions. We provide more results on this in Appendix E, but it is something that
rMDQL also seems to suffer from, but to a lesser extent in comparison to DQN.

In addition, rMDQL obtains a lower peak performance than MDQL. We believe that this
is due to the fact that the state space already provides features that indicate the state of the
environment in the near future (e.g., weather forecasts, minimum/maximum grid tariff over
next few hours). Thus, adding recurrent layers to be able to predict how the environment will
change seems to be less beneficial, and may instead introduce instability, as is demonstrated by
recurrent PPO.
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FIGURE 7.1: Smoothed learn curves on the validation environment. Benchmarks
without a learn curve are denoted with the dashed lines. Note that the parame-
ters of the HBS are optimised on both the training and validation environment.
Moreover, MDQL and rMDQL do not make use of planning here. As the figure
shows, MDQL performs the best out of all benchmarks, bar MILP with perfect
foresight (which mainly serves to quantify an upper bound). Somewhat surpris-
ingly, adding recurrent layers to the feature extractor results in a measurable de-
terioration of the overall performance.

Moreover, the difference between DQN and BCQ is noteworthy. It shows that the offline aspect
of the environment plays a minimal role in obtaining a high cumulative reward on the valida-
tion/test environment. Instead, constraining the updates to the data distribution resulted in a
conservative policy, since BCQ only barely outperforms the ‘Idle’-baseline.

Lastly, PPO shows a stable learning curve and obtains a performance similar to the Heuristic-
Based System (note that HBS is trained on both the training and validation environment). No-
tably, PPO seems to not have settled yet, and more training time might result in approaching or
exceeding MDQL. With the current amount of training time, PPO is currently outperformed by
DQN and some replications of recurrent PPO, in terms of peak performance. Recurrent PPO
proves to be rather unstable, with the largest standard deviation out of all algorithms. Perhaps
a different hyperparameter configuration would be able to resolve the instabilility.

Test Environment Performance. Next, we take the best weights of each algorithm and eval-
uate them on the test environment. Table 7.1 denotes the metrics on the test environment. It
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includes PV utilisation, consumption/netting profile, mean monthly spendings and cumula-
tive reward.

Noteworthy is that no method makes extensive use of the NETTING action. The action is
selected in rare occasions, mainly when the grid tariff is relatively high, as is denoted by the
mean grid tariff metric for netting. It shows that only with high tariffs it is possible to overcome
the battery SoH-penalty. So instead, the power is used by the residential household itself.
Compared to the ‘Idle’-baseline, all other methods consume less power from the grid. Over the
five months in the test set, the methods are able to consume up to 0.5 MWh’s less than ‘Idle’.
Consequently, this saves the household up to nine euros each month.

TABLE 7.1: Metrics of each method on the test environment. For each metric,
we report on the mean and (if applicable) standard deviation, which are top and
bottom per metric, respectively. The units reported in Table 4.2 also apply here,
unless specified otherwise. In addition, we highlight the overall best metrics in
italic, while we also underline the best metrics excluding MILP. As for MDQL, the
non-recurrent and recurrent versions are denoted with ‘D’ and ‘R’, respectively,
and the versions with planning enabled are denoted by the ‘P’. Lastly, for netting,
we only consider the replications that have netted some power.

Metric
MDQL

Idle MILP HBS DQN BCQ PPO rPPO D D+P R R+P

PV util. (%) 0.00 64.00 52.63 72.32 50.27 74.73 75.69 76.54 76.77 74.01 68.03
4.40 13.96 1.74 9.44 12.45 2.67 0.01 0.03 1.35

Montly costs 89.07 79.87 83.13 82.35 86.49 82.99 82.72 80.78 81.19 81.92 81.71
0.29 0.52 0.09 0.53 1.17 0.30 0.20 0.57 0.26

Cum. reward -445.34 -400.69 -417.89 -414.35 -436.94 -418.24 -421.55 -405.76 -407.83 -413.84 -410.86
1.29 1.98 0.61 1.69 7.93 1.06 1.09 3.64 2.31

Consumption
No. MWh 8.73 8.38 8.45 8.37 8.48 8.35 8.35 8.35 8.35 8.36 8.40

0.02 0.07 0.01 0.04 0.05 0.01 0.01 0.01 0.01
Costs 445.34 399.59 415.65 411.77 433.51 414.96 413.62 403.97 405.99 409.75 408.56

0.01 2.56 0.31 2.66 5.84 1.48 1.00 2.91 1.31
Mean tariff 0.051 0.048 0.049 0.049 0.051 0.050 0.050 0.048 0.049 0.049 0.049

0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

Netting
No. kWh 0.00 3.96 0.00 0.91 16.66 0.42 0.00 0.86 0.30 3.01 0.48

0.00 1.28 6.13 0.59 0.00 0.67 0.33 1.40 0.22
Profits 0.00 0.24 0.00 0.04 1.06 0.02 0.00 0.05 0.01 0.16 0.02

0.00 0.05 0.39 0.03 0.00 0.04 0.02 0.08 0.01
Mean tariff — 0.061 — 0.050 0.064 0.042 — 0.057 0.048 0.053 0.053

— 0.001 — 0.000 0.002 0.002 0.014

Interestingly, all methods have a PV-utilisation below 80%. This can be explained by the fact
that the battery is only able to perform one action at a time, so achieving a PV-utilisation of
100% and having a high cumulative reward is extremely difficult, if not impossible. It would
mean that in order to achieve 100% PV-utilisation, the battery must charge continuously during
daytime, and is only able to provide power to the heatpump at night. This in itself is not cost-
effective, since the general trend of grid tariffs shows that they are relatively low during night
time (see Figure 4.3). So instead, the algorithms show that it is more cost-effective to sometimes
‘waste’ PV-power.

For instance, MILP has one of the lowest PV-utilisation at 64%, and instead makes up for
this by exploiting lower tariffs and providing power from the battery to the heatpump at high
tariff periods. This can be derived from the grid consumption costs and mean tariff, where it
has the lowest (or joint lowest) values, while its grid consumption in terms of MWh’s is slightly
higher than other methods.
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Final insight is the difference that Hindsight-Weighted Planning (HWP) makes in terms
of cumulative reward for MDQL and rMDQL. As is shown, MDQL with HWP deteriorates
slightly, while rMDQL with planning improves slightly. This indicates that perhaps the er-
ror accumulation during the rollouts is quite significant for the non-recurrent MDQL, and that
LSTM layers seem to help to minimise the error. We discuss this aspect in more detail in Sec-
tion 7.2 and Appendix F.

Lastly, Figure 7.2 visualises the action distribution for one replication and for each algorithm.
The figure confirms some of the insights described above, such as that BCQ takes a more con-
servative strategy, and selects the IDLE action relatively frequently. Moreover, it is also the only
method that makes use of NETTING action. Overall, all methods seem to converge to similar
strategies, after which the efficiency of managing the battery is the main difference between
MILP and the other approaches (e.g., MILP has relatively few IDLE and many DISCHARGE ac-
tions).

MDQL

rMDQL

DQN

BCQ

PPO

rPPO

MILP

HBS

IDLE
DISCHARGE

CHARGE_PV
NETTING

CHARGE_GRID

FIGURE 7.2: Action distribution per algorithm of one replication. (r)MDQL with
planning are omitted in these distributions, due to them being similar in perfor-
mance and distribution itself. The hatched parts highlight when an action has
been wasted, e.g.: selecting CHARGE_PV while the battery is already fully charged.
Recall that in these cases the penalty multiplier m is applied to the reward func-
tion. Overall, we can observe that most algorithm converge to similar action
distributions, where the NETTING action is rarely selected. Despite the penalty
multiplier, there is still a significant portion of actions that are being wasted by
the RL-agents. Perhaps a more severe penalty would solve this. Lastly, BCQ does
not follow the other algorithms, and takes a more conservative approach by se-
lecting IDLE relatively often.

7.2 MDQL Ablation and Sensitivity Study

For the second set of experiments, we study the impact certain components and hyperparame-
ters have on the overall performance of MDQL, namely the ensemble size (Section 7.2.1), plan-
ning hyperparameters (Section 7.2.2), and ablation study (Section 7.2.3). In addition, we also
look at the effect of supplying less training data to the algorithm (Section 7.2.4).
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7.2.1 Ensemble Size Sensitivity

In this section, we evaluate how MDQL performs with different number of heads in the Q-
and dynamics-ensembles. Figure 7.3 shows the validation performance and mean Q-head dis-
agreement for ensemble sizes of {1, 2, 4, 8}.

Firstly, we observe that there are significant differences in validation performance between
the four ensemble sizes. In the first 250k timesteps, all configurations show a similar linear
increase of validation performance. However, the more heads there are in an ensemble, the
less steep this increase is. This can be explained by the fact that the data is divided over more
heads, and therefore each head receives fewer transitions when the ensemble size is high and
will require more timesteps in order to converge. After the initial peak, the ensemble size of
1 shows a steep decline in performance and settles to a significantly lower cumulative reward
compared to the other configurations.
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FIGURE 7.3: Validation performance (left) and Q-head disagreement (right) for
differing ensemble sizes. The Q-head disagreement is computed by taking the
action-wise standard deviation over the whole ensemble, after which the mean
over all the standard deviations is taken as the Q-head disagreement for that eval-
uation episode. Based upon this, we report on the mean and standard deviation
over the three replications. Note, the sudden stop in the increase of Q-head dis-
agreement is caused by setting τ to zero when the dynamics models have been
converged on the validation traces. The convergence point occurs at around 500k
timesteps.

Increasing the ensemble size results in measurable performance improvements up to an en-
semble size of 4, from which the performance deteriorates slightly. A possible explanation for
this is the fact that Q-head disagreement decreases when increasing the ensemble size (see right
plot of Figure 7.3).

We hypothesise that there are few optima in the search space, with as consequence that
some heads can converge to the same point. With larger ensembles, this probability increases,
and with as consequence that similar heads in an ensemble will result in underestimations
of the epistemic uncertainty. This is also supported by the standard deviation of the Q-head
disagreement, which is relatively large for an ensemble size of 2, and significantly smaller for
4 and 8.
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7.2.2 Planning Hyperparameter Sensitivity

In order to identify any sensitivity in the two main hyperparameters of Hindsight-Weighted
Planning (HWP), we conducted a grid search over k ∈ {2, 3, 4, 5} and u ∈ {2, 4, 6, 8, 10}. Recall
that k is the top-k actions that are not pruned at the root of the planning tree, while u is the
rollout length. Figure 7.4 shows two heatmaps for HWP and unweighted planning.
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FIGURE 7.4: Heatmap of the cumulative reward received on the test environment
for different hyperparameter configurations. At the left, we denote the scores ob-
tained with MDQL and Hindsight-Weighted Planning, while on the right we de-
ployed unweighted planning (i.e., the HWP rollout-strategy without weighting
the estimated returns). We report on the mean over three replications for each
(k, u)-combination. As context, MDQL obtained a cumulative reward of -405.8
without planning.

The main takeaway is the fact that HWP does not seem to influence the final performance at
all. Its scores are near-identical to unweighted planning. We hypothesise that the loss of the
dynamics heads were all similar on this environment, resulting in similar hindsight weights.
Moreover, the offline aspect of the EcoGenie environment seems to have little influence, as is
also discussed in Section 7.1. HWP might be better suited for true offline environments.

When we compare the planning performance with MDQL without planning (-405.8), we ob-
serve that planning results in a slight to substantial deterioration of the test performance. And
most notably, the best score is obtained with the lowest possible k, thus with the most restric-
tions on the planning strategy. Moreover, increasing k results in a significant drop off. This
also holds for the rollout length u, but to a lesser degree. Based upon this, we believe that
the dynamics models are still inaccurate for suboptimal (according to the Q-ensemble) actions,
despite the measures we have taken to mitigate this (i.e., high minimum epsilon of 0.4, and Di-
verse Dynamics Training). In addition, accumulation of errors by increasing the rollout length
is also present, while the best obtained scores for each k are obtained with u = 4.

Planning with rMDQL follows the same trends as shown in Figure 7.4, see Figure 7.5. No-
tably, it is able to improve upon the non-planning performance, albe-it by a small margin. For
instance, if we take k = 3 and u = 4, then rMDQL with HWP improves on average three
points compared rMDQL without planning. Overall, setting k to 2 or 3 results in improving or
equalling the performance of rMDQL without planning.
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FIGURE 7.5: Heatmap of the cumulative reward received on the test environment
for different hyperparameter configurations. At the left, we denote the scores
obtained with rMDQL and Hindsight-Weighted Planning, while on the right we
deployed unweighted planning (i.e., the HWP rollout-strategy without reweight-
ing the estimated returns). We report on the mean over three replications for each
(k, u)-combination. As context, rMDQL obtained a cumulative reward of -413.8
without planning.

To identify what component causes the subpar planning performance, we ran the planning
strategy with the ground truth values on the state transitions and/or reward function. The re-
sults are denoted in Table 7.2, where we compared the different planning configurations with
k = 4 and u = 8. In addition, we also include MDQL where none of the weights are shared
between the approximators (referred to with ‘without F ’), with which we can verify whether
the lack of performance is inherent to the network architecture.

TABLE 7.2: Mean cumulative reward on the test environment for different plan-
ning configurations. We also report on the standard deviation in the second row
of each entry. The hyperparameters k and u are set to 4 and 8, respectively. The
best obtained scores per column are highlighted in italic. In addition, scores that
outperform MILP (-400.7) are underlined. Note: for the ground truths, we made
use of unweighted planning.

Planning Configuration MDQL rMDQL MDQL w/o F
No Planning -405.76 -413.84 -410.93

1.06 3.64 1.17
HWP Planning -415.15 -417.95 -414.79

2.95 2.07 0.74

Ground Truth
Transitions -409.45 -415.69 —

1.14 1.52
Rewards -401.71 -402.20 —

1.57 0.89
Rewards and transitions -393.79 -394.64 —

0.28 0.53
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The results show that with the ground truth on the transitions and rewards, (r)MDQL is able
to outperform MILP by a significant margin. Moreover, only providing the true rewards also
results in an improvement upon the non-planning performance, and is equal or slightly worse
than MILP. Utilising the true next states does result in an improvement, but is still worse than
no planning. When compared, providing true rewards has a greater benefit than true states.
Therefore, we can say that the main bottleneck lies in the accuracy of the reward approximator.

We also evaluated MDQL without any weight sharing, in order to identify whether the net-
work architecture is the main cause of the performance deterioration with planning. The table
shows that, also without weight sharing, the planning seems to suffer from inaccurate pre-
dictions. Based upon this, we believe that the main cause in the lack of performance is not
inherent to the main characteristics of MDQL. We hypothesise that incorporating the aleatoric
uncertainty into the approximators might yield a significant performance boost, since the two
stochastic components of the environment — the outdoor temperature and PV production —
play a substantial role in the heatpump dynamics and battery charging, respectively.

For instance, mispredicting the outdoor temperature could result in that the expected heat-
pump input power is underestimated, such that the agent opts for DISCHARGE to supply power
from the battery to the heatpump. While in reality, the input power is higher, and then it can
be the case that the battery SoC is too low, resulting in a wasted action instead. This results in
significantly different reward signals.

All in all, planning does show to be promising in the problem setting of battery dispatch opti-
misation, with it even able to outperform MILP (with perfect foresight) given the ground truth
over the whole rollout. But, more accurate next state and reward approximators are essential in
order to observe any gains. Appendix F describes how the features attribute to the loss of the
dynamics models. We have to note that planning with the ground truths ignores the aleatoric
uncertainty, and does not exactly quantify the gains of having a perfect model. A perfect model
can predict the transition probabilities perfectly, but the actual predicted next state can still be
different to the environment, and will lead to rollouts that can still deviate from reality.

7.2.3 Ablation Study

Next, we investigate the performance attribution of each component of MDQL by means of an
ablation study. For all entries holds that we omit planning altogether, as it has already been
discussed in the previous experiments. Six different configurations are evaluated, namely:

• Default: MDQL with all components enabled. All ablations are applied to this model,
which means that most configurations will not use LSTM layers.

• With LSTM layers: MDQL with LSTM layers in the feature extractor F , i.e.: rMDQL.

• No Feature Extractor F : None of the weights are shared between any of the approxima-
tors. In order to ensure a fair comparison, the layers that were originally in the feature
extractor are now added to all approximators. For instance, given F and D̂i with [1024,
1024] and [256, 256] as their network architectures, respectively, we now set the architec-
ture of D̂i to [1024, 1024, 256, 256]. The same applies to R̂ and the Q-heads.

• No Ensemble: The ensemble size of MDQL is set to one.

• No Dynamics: The D̂-ensemble and reward approximator are omitted. Thus, we are
dealing with an ensemble of DDQNs, which still make use of weight sharing.

• DDQN: No dynamics learning, no ensemble, no weight sharing.
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We have to note that setting τ to zero, when the convergence point has been reached, does
not apply to ‘No Dynamics’ and DDQN. Subsequently, these configurations may suffer from
diverging q-values, as the learning curve of DQN demonstrates in Section 7.1. In addition, Di-
verse Dynamics Training is not deployed for configurations that do not contain any dynamics
models. Instead, the whole training procedure follows Q-Ensemble Training.

Figure 7.6 contains the learning curves of the six configurations on the validation environment.
First of all, the ‘No Dynamics’ and DDQN configurations also seem to suffer from diverging
q-values to different extents. However, the configuration without ensembles also experiences a
drop off in validation performance, which has been contained by setting τ to zero around the
500k timesteps. Moreover, the peak performance of ‘No Ensemble’ is also significantly lower
than the default. This highlights how ensembles positively contribute to the overall perfor-
mance by being able to quantify the epistemic uncertainty, and also delay the issue of extreme
q-values.

Notably, MDQL without a feature extractor also performs worse than the default, indicating
that sharing state representations is beneficial to learning the optimal Q-approximators. This is
also highlighted by the difference in peak performance of DDQN and ‘No Ensemble’, where the
latter only uses the dynamics model for weight regularisation. Overall, each component, with
the exception of including LSTM layers, has a positive attribution to the performance without
planning.
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FIGURE 7.6: Learning curves of the ablations on the validation environment. We
report on the mean and standard deviation over three replications. We refer the
reader to the enumeration denoted above for a description of each ablation. The
main takeaway is that each component of MDQL has some positive attribution
to the validation performance, with the exception of utilising LSTM layers. For
instance, not sharing weights between all approximators results in a significant
performance drop. Moreover, weight regularisation through the dynamics mod-
els also shows an improvement, which has been derived from the difference in
peak performance of DDQN and ’No Ensemble’.
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7.2.4 Training Data Sensitivity

With this experiment, we aim to determine how much training data is required to learn an
adequate policy, and whether adding more data would have improved the Q-heads and/or
dynamics models. During this experiment, we only alter the training set, i.e.: the validation
and test sets remain constant, as described in the experimental setup. The train set contains 26
months of data (January 2017 — February 2019), from which we create the following splits:

• 22 months: May 2017 — February 2019
• 18 months: September 2017 — February 2019
• 14 months: January 2018 — February 2019
• 10 months: May 2018 — February 2019
• 6 months: September 2018 — February 2019

The n most recent months are kept in each split. This does mean that the distribution of months
over the four seasons changes significantly to the validation and test set. For instance, in the
extreme case of taking the most recent six months, the dataset mostly contains datapoints that
lie in the fall/winter seasons. Subsequently, training an agent on this split, after which it is
evaluated on months from all four seasons, should result in a suboptimal performance.

Figure 7.7 visualises the Q-ensemble performance on the validation environment at the left,
and the mean dynamics/reward loss over the whole ensemble at the right. The majority of the
results are in line with expectations; more data results in more accurate dynamics models and
reward approximator, less overfitting and in a higher cumulative reward. However, we are
dealing with diminishing returns, with insignificant gains from 22 months onwards.
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FIGURE 7.7: Validation performance (left) and mean dynamics/reward loss
(right) for different training splits. For the losses, we report on the training loss
(solid) and validation loss (dashed) over the traces generated by the Q-ensemble.
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Notably, MDQL obtains a higher validation score with 18 and 22 months, compared to the
original 26 months. This is surprising, since the 26 months of data is the superset of all other
training splits. Moreover, this difference is also somewhat present on the test environment,
where MDQL is able to obtain a mean score of -407.91, -404.69 and -405.76 when trained on
18, 22, or 26 months, respectively. We suspect that those additional four months contain some
signals/attributes that are not in line with the validation/test environment, which can be ex-
plained by the fact that there is two years between the four months and the validation/test
months. A lot can change in that period of time, especially regarding the power market, and
may cause that the learned knowledge of that time period is not applicable to more recent
months.

As for the dynamics and reward loss, we are dealing with diminishing returns on the validation
environment. Adding more months to the training set would likely not yield any significant
performance boosts in terms of accurate state- and reward-estimations.

7.3 Insights into the EcoGenie Environment

In the last set of experiments, we investigate how a reinforcement learning agent behaves in the
EcoGenie environment, along with how the optimal behaviour changes given different reward
function configurations. For all experiments holds that we deployed MDQL without planning.

7.3.1 MDQL Behaviour Analysis

In order to analyse the behaviour and reasoning of the agent, we have plotted two weeks from
the test environment: one week from July and one from November. These two weeks vary sig-
nificantly in terms of outdoor temperature and PV radiation, and should provide some insights
as to how the agent acts under various circumstances. Figure 7.8 shows the two weeks for one
replication, with the top and bottom plot corresponding to the weeks from July and November
2019, respectively.

In the first week of July, the agent mainly charges the battery via the PV panels. As the fig-
ure shows, the majority of the available PV power has been covered by the agent. Then, this
power is consumed by the heatpump in the hours where there is little to no daylight. In ad-
dition, the agent sometimes opts for a quick charge from the grid at midnight, possibly since
the grid tariffs are often relatively low during that point in time. Unfortunately, these drops in
tariff are not fully exploited. For instance, the agent does not opt to charge the battery during
the low tariff at the end of the 6th of June, despite the battery being nearly depleted.

During the second week of November, there is little to no PV power available. Here, the
agent mainly relies on the power grid to charge the battery, and mainly provides the heatpump
with power from the battery during periods with a relatively high grid tariff. For instance,
during the tariff peak in the afternoon of the 8th and 13th (but unfortunately not at the absolute
peak) of November. However, there are also timesteps where the agent selects an action that
does not change the battery SoC, e.g.: around noon on the 9th, in the afternoon/evening of
the 11th, and in the evening of the 14th. It shows that, despite the reward multiplier, the agent
still misinterprets the limitations of the battery, and still opts to charge/discharge under some
circumstances despite it being not possible.

Overall, the agent tries to maximise its PV-utilisation and supply this power to the heatpump
during periods with no sunlight. In case there is an overall lack of PV radiation, the battery is
used to a lesser extend and the required HP-power is mainly supplied by the grid. Moreover,
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these two weeks show that there are still some points in time where the decision making was
suboptimal, and highlight how there is still some improvements to be made over short-term
periods.

FIGURE 7.8: MDQL acting over two weeks in July (top) and November (bottom).
Each plot consists out of four subplots describing, from top to bottom, the reward
signal, PV radiation, grid tariff and progression of the battery SoC. Moreover, the
background color denotes the action that has been selected at that point in time.
The two weeks show a different approach in supplying power to the heatpump,
due to a different amount of PV being available during those two periods.
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7.3.2 Influence Reward Function Configuration

As the final experiment, the influence of the battery SoH reward-component on the MDQL
behaviour has been investigated. We introduce three scenarios {S1, S2, S3} for the comparison:

S1. The default reward function configuration, as described in Section 6.2, with λSoH = 1.0.
The battery SoH penalty is only applied to NETTING, which is an action outside of the
main objective of providing power to the household.

S2. The SoH penalty is applied to all discharge actions, i.e.: DISCHARGE and NETTING. The idea
is to use the battery when it is absolutely beneficial to the household. The scalar λSoH is
set to 1 for both actions.

S3. Lastly, we omit the SoH-penalty altogether such that the health of the battery does not
matter. In this scenario, NETTING should become more attractive in order to minimise the
household costs.

Figure 7.1 shows the learning curves of MDQL on each of the scenarios. For scenarios 2 and 3,
we used the optimal hyperparameter settings we obtained from the grid search on scenario 1.
The plot shows significant differences in cumulative reward after convergence; scenario 3 has
the highest and is closely followed by scenario 1. Notably, scenario 2 is below the ‘Idle’-
baseline.

Without the SoH-penalty in place, the agent is able to make substantial profits by selling
its power during price spikes. Subsequently, the overall power consumption (and with it the
carbon footprint) of the household will be higher. The number one priority becomes to min-
imise the costs of the household. As for scenario 2, the SoH-penalty can not be overcome by the
agent with either discharge-actions. As a result, the highest cumulative reward is obtained by
selecting the action IDLE. The gap between the ‘Idle’-baseline and scenario 2 can be explained
by the reward multiplier in case of wasting actions.
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FIGURE 7.9: Learning curves of MDQL on the validation environment for the
three scenarios. We report on the mean and standard deviation over three repli-
cations. The cumulative reward at convergence differs significantly between the
three scenarios. Most notably, applying the SoH-penalty to all discharge actions
results in a cumulative reward lower than the ‘Idle’-baseline. This means that it
is rarely possible to overcome the penalty for both DISCHARGE and NETTING.



7. Experimental Results 47

Figure 7.10 confirms the insights regarding scenarios 2 and 3 for one replication of MDQL. In
scenario 2, the actions IDLE and CHARGE_PV are mostly selected, since those do not decrease the
reward signal any further (given the action is not wasted). MDQL still selects the other actions
at some point during the evaluation, but it is classified as a wasted action in almost all of the
occurences.

With scenario 3, the problem resembles more a power trading setting; the agent mostly
discharges its power back to the grid for small profits. In addition, more charging from the
grid, compared to scenario 1, occurs. This indicates that the agent tries to buy power cheaply,
and then sell it back for a higher tariff. Most likely, this also occurs when no profits are made
at all, i.e.: charge the battery with n kWh’s for a tariff of x EUR/kWh, and discharge the same
amount for the same tariff in the following timestep. In the reward function is no mechanism
in place where this is punished, so the agent receives the same reward for the earlier described
action sequence, as for selecting IDLE twice.

Scenario 1

Scenario 2

Scenario 3

IDLE
DISCHARGE

CHARGE_PV
NETTING

CHARGE_GRID

FIGURE 7.10: Action distribution of MDQL on the three scenarios. The distribu-
tions are taken from an evaluation run on the test environment with one replica-
tion. The inclusion of the SoH-scalar has a great impact on the final behaviour of
MDQL; with scenario 2, the two discharge actions are almost never able to over-
come the penalty. Consequently, the way to obtain the highest possible cumula-
tive reward is to remain idle. As for scenario 3, the majority of the discharging
is directed to the grid. Moreover, the battery is more frequently charged from
the grid. Based upon this, we can say that the problem becomes a power trading
optimisation problem, where the main objective is to make as much profits as
possible; the household consumption is almost completely disregarded.

Overall, the final behaviour of the three scenarios demonstrates that the SoH-penalty is difficult
to overcome. In case of the current battery setup, the battery shows to be too expensive in order
to consider it during the decision making process. This does raise the question as to whether
utilising a Behind-the-Meter battery is cost-effective in 2023 (given that our approach for SoH-
approximation is somewhat accurate). A more realistic approach to the battery dynamics, along
with a more sophisticated SoH-approximation should clarify this. Otherwise, the main benefit
that remains is a lower carbon footprint, until cheaper and/or more durable batteries enter the
market.
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8 Discussion

With the energy transition in mind, there is a push for the electrification of various appliances
and the use of Behind-the-Meter (BtM) smart batteries. In combination of photovoltaic (PV)
panels, the smart batteries can be deployed to lower the carbon footprint and expenses of the
household. This can be achieved by intelligently charging the battery from the PV panels and
power grid, along with discharging it to the household at appropriate timeslots. The aim is
to provide more affordable and renewable power to a heatpump of a residential household,
namely Shell’s EcoGenie house at The Hague.

In this work, we provide a new take on the Home Energy Management System (HEMS)
problem setting by introducing the EcoGenie environment, developed to accurately simulate
the setting of the EcoGenie house. It consists out of a BtM battery, access to the grid, a heatpump
and PV panels. The HEMS is able to select one action every hour, with which it can control the
power flow around the battery; charge it from the grid or PV, or discharge to the heatpump or
to the grid (i.e., netting). Historical data regarding outdoor temperature, PV radiation, weather
forecasts and power grid tariffs are used to implement the environment, along with rule-based
dynamics for the heatpump and heat loss of the house itself. Subsequently, we are dealing with
an environment where epistemic uncertainty can not be mitigated by continuously sampling
new transitions, unlike traditional reinforcement learning environments.

Given the environment, we have conducted a comparison between baselines from various
domains; Mixed-Integer Linear Programming (MILP) with perfect foresight, a Heuristic-Based
System and a set of reinforcement learning (RL) algorithms.

In addition, we propose a novel reinforcement learning network architecture, Multi Dynamics-
and Q-Learning (MDQL), that shares state representations between two ensembles of q-value
and dynamics model approximators, along with a shared reward function approximator. The
Q-ensemble is utilised to quantify the epistemic uncertainty by computing the confidence
lower bound over the ensemble. In addition, a recurrent variant, rMDQL, is also proposed,
which makes use of LSTM layers in the shared layers of the network architecture.

The main drawback of MDQL is the fact that all approximators must be trained simultane-
ously, which in the case of RL algorithms means that the training samples must stay diverse.
Otherwise, catastrophic forgetting may occur for the dynamics models and reward approxima-
tor, because the Q-heads will generate traces that become less diverse due to convergence and
the exploration strategy.

Moreover, we introduce Hindsight-Weighted Planning (HWP), a planning strategy consist-
ing of weighted rollouts with the dynamics models and Q-approximators. After each planning
iteration, the accuracy of each dynamics model is evaluated on the next state in the environ-
ment. With this accuracy per dynamics model, hindsight-weights are computed to weight each
rollout during the next planning step.

Benchmarking MDQL. Based upon the experiments, we demonstrate that MDQL outper-
forms all RL algorithms (DQN, BCQ, PPO, recurrent PPO) and the Heuristic-Based System.
However, it still falls short of MILP with perfect foresight, which quantifies an upper bound1

1Note: this is not the absolute upper bound, due to a set of constraints (time budget, limiting the horizon) that
have been imposed on MILP.
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on the performance.
When enabling HWP, the performance of MDQL slightly deteriorates, which is due to the

inaccurate next state and reward predictions. Given the ground truth on the next state and
reward, MDQL plus planning is able to outperform MILP by a significant margin. Therefore,
we can say that planning is a promising approach in the battery dispatch optimisation setting,
but it requires more accurate predictions. However, we have to consider the fact that planning
with the ground truth results in omitting the aleatoric uncertainty of the environment, thus the
actual performance with a perfect model would be less extreme than demonstrated by plan-
ning over the ground truths. Moreover, we were able to demonstrate with a set of ablations
that the issue is not inherent to the network architecture, nor to the limited amount of data or
weighting the rollouts.

Moreover, we have shown that each component of MDQL attributes positively to its perfor-
mance through an ablation study. In particular, the use of ensembles and sharing weights
between the approximators contribute the most to the performance improvements. Recurrent
layers have shown to result in a slight performance deterioration, which might indicate that
recurrent layers and long-range dependencies are not as important as we initially expected.
However, some replications of recurrent PPO have shown significant improvements over the
default PPO, but they also come with more instability. In addition, the environment already
provides features with regards to the short-term future (e.g., PV production over the next 24
hours, maximum grid tariff over the next day-ahead, etc.), which might result in less pro-
nounced improvements by incorporating recurrency or transformers. Intuitively, there still
remain important dependencies over long periods of time (e.g., the weather might turn bad
in a couple of days time, resulting in less PV production and lower outdoor temperatures).
However, charging the battery is achieved quite quickly, with as a result that it would be suf-
ficient to start preparing for the bad weather when it arrives in a one or two days. Overall,
we hypothesise that it should be sufficient to look one or two days ahead in the decision mak-
ing process (this is also highlighted by the diminishing returns when increasing the horizon of
MILP), which can be achieved by incorporating it into the state space.

Linear Programming versus Reinforcement Learning. The main shortcoming of this study
is the fact that MILP has access to the perfect information, resulting in an unfair comparison
against the other approaches. In addition, a set of constraints have been imposed on MILP
(e.g., limiting the decision horizon, time budget) due to its computational properties. This does
raise the question as to how its performance would be without any constraints and making its
decisions based on forecasts or the information of the previous n days.

On the other hand, we have observed that MDQL with planning over a shorter horizon
on the ground truths, for which we argue that it is similar to MILP with perfect foresight, is
able to outperform MILP by a significant margin. The main drawback is that MILP is not able
to incorporate the short-term future into its decision making process, which we have tried to
mitigate by introducing an execution horizon.

We believe that given accurate forecasts, MILP would be able to obtain a similar performance
compared with access to perfect information; a minor error in, for instance, the outdoor tem-
perature or PV radiation would not be detrimental in its decision making process. The main
uncertainty lies in how accurate the forecasts can be. As an example, the Numerical Weather
Predictions models we utilised for the temperature and PV radiation forecasts were often quite
accurate (e.g., a reasonable root mean squared error). But there were datapoints with a large
error, which would result in suboptimal decisions by MILP.

When compared to RL approaches, the main question to answer is which approach would
be best to deploy in the real world. For this, we have to consider a set of factors:
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(i) Computational requirements: The main difference between RL and MILP is the fact that
the former requires a significant amount of training time initially, after which its deploy-
ment costs are relatively low. Once the neural network weights are optimised, a HEMS
has to simply forward the network to receive its next action, which does not require a
powerful machine. On the other hand, MILP has the opposite: no initial training costs,
but with the drawback that a significant amount of computational power goes into com-
puting the next set of actions. The computation time would not exceed its time budget
of a few hours, but running it for a prolonged period of time might result in MILP hav-
ing used more resources than RL at the end of it. The length of this period is dependent
on various factors, such as MILP horizon, RL training time, and machine specifications,
which makes it difficult for quantification.

(ii) Robustness: Weather and power grid tariffs have shown to be non-static, i.e.: it slowly
changes over time (e.g., higher mean temperatures due to climate change), for instance.
As a consequence, the optimal behaviour will also change over time, which has been
demonstrated by comparing MDQL’s behaviour in July and November, and also by re-
ducing the training data. This in itself is not a major issue, since those mean values will
increase very slowly over the years. However, extreme weather occurrences might occur
more frequently, upon which a RL approach is trained too little or not at all. This raises
the question as to whether it is required for a RL approach to be retrained after a certain
period of time, in order to ensure its robustness against extreme weather. Similarly, to
what extent can RL be deployed in other countries with different climates; to what extent
is transfer learning a feasible solution for this? As for MILP, it would simply require a
different forecasting model per country, its actual program remains unchanged.

(iii) Increasing complexity: The problem setting can be expanded upon, for instance by
adding more household appliances, making the action space continuous, or having mul-
tiple actions to select at once (e.g., one action for managing the battery flow and one for
appliance scheduling). This often results in a larger state-action space, and due to the
curse of dimensionality, MILP with the current horizon might not be feasible anymore.
In these cases, RL might be the preferred choice.

All in all, we argue that in the current problem setting, MILP seems to be the preferred choice
due to its performance and the lack of a high-dimensional action space in the environment.
But in case of more complex problem settings, we believe that RL would be able to outperform
MILP, when given an equal amount of computational resources.

EcoGenie Environment. The strategy of MDQL in the EcoGenie environment mainly consists
of maximising the PV utilisation, and deploying it to the household outside sun-hours. In
addition, the battery is often charged from the grid at midnight since the power is relatively
cheap at that point in time. However, an in-depth analysis shows that there are still gains to be
made by exploiting the grid tariff spikes more effectively.

Moreover, the final experiment has shown that incorporating the battery State-of-Health
(SoH) into the reward function results in the agent not utilising the battery at all. With the
current setup, it is too difficult to overcome the penalty for both discharging to the household
or netting to the grid. This does highlight as to whether the current setup is cost-effective, since
the costs of the battery would effectively nullify the savings. The remaining benefit becomes
minimising the carbon footprint of the household. Additional research is required in the form
of incorporating more advanced and realistic battery dynamics along with a more accurate
SoH, and would indicate whether the setup of a BtM battery with PV panels is worthwhile.
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8.1 Future Work

Algorithmic Work. The experiments regarding MDQL have shown that there is potential in
planning over the dynamics models. So one of the main suggestions would be to improve
the dynamics models by supplying more diverse data, or more hyperparameter and network
architecture tuning. In addition, Hindsight-Weighted Planning might be more suited to true
offline environments, where we do not have access to an environment, so it would be inter-
esting to confirm whether the approach holds up in these settings. Another idea would be to
utilise a different planning scheme altogether, such as Monte-Carlo Tree Search.

In general, it would be interesting to investigate for how long historical data is relevant to
reinforcement learning (or deep learning altogether) approaches. With what frequency would
an agent have to be retrained with relevant data, if at all. Different train/validation/test
splits might already provide more intuition in this area. Similarly, is there a need to have
an agent trained specifically for each climate/country? As we have demonstrated, the optimal
behaviour differs for each season, which might extend to different climates.

As mentioned earlier, the main weakpoint of this study is the fact that MILP makes use of
perfect information, resulting in an unfair comparison against other approaches. Future work
should benchmark MILP that makes use of forecasts or historical data. This would demon-
strate whether the current performance gap still holds in a more realistic setting for MILP, and
whether reinforcement learning or linear programming is the preferred approach given the
current problem setting.

Moreover, the computational costs of deploying MILP versus reinforcement learning should
also be factored into deciding between the two approaches. MILP requires more compute time
and/or better hardware, which both result in higher operating costs.

Environment Work. When we consider the current state of the EcoGenie environment, its
main shortcomings are the battery dynamics with its State-of-Health approximation, along
with the discrete action space. More realistic battery dynamics might make the SoH-penalty
more dependent on the previous actions that have been selected (e.g., using a battery frequently
over a short interval results in a high operating temperature, which can have various side ef-
fects). In addition, this would also indicate whether the current setting of having PV panels
with a BtM battery is cost-effective. If not, then the optimisation objective can also be changed
such that the carbon footprint is minimised (i.e., maximising the PV-utilisation) instead, which
is currently implicitly incorporated into the reward function.

As for the action space, making it continuous will give the HEMS more control over the
battery power flow. Currently, the charge/discharge rate is maximised, but we believe that it
can be beneficial to reduce the rate in order to keep the battery operating temperature low (in
case the battery dynamics have been improved) and reducing the costs of drawing power from
the grid during higher tariffs.

In addition, the user profile currently assumes that the household is occupied at all times.
A stochastic method could be developed to make this aspect more realistic and simulate empty
households during vacations/travel.

Lastly, it might be interesting to apply the algorithms to more complex problem settings, such
as optimising the power consumption of a microgrid consisting of multiple households, which
can be achieved through, for instance, the use of a cooperating multi-agent RL approach or
graph neural networks. In case of a single household, new appliances (e.g., washing machine,
dishwasher, induction stove) can be added to the problem setting, such that the HEMS would
also be able to take those activities into account, or even schedule them (only applicable to
deferrable appliances).
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A Environment Specifications

To ensure reproducibility, we denote the exact values for all constants in order to accurately
recreate the EcoGenie environment in Table A.1.

TABLE A.1: The EcoGenie specifications with corresponding symbols if used.

Attribute Symbol Unit Value

BtM Sonnen Battery
Max. battery capacity SoCmax kWh 13.5
Min. battery capacity SoCmin kWh 1.0
Max. charge rate ψmax, c kWh 3.5
Max. discharge rate ψmax, d kWh 3.5
Netting threshold — — 1.0
Rated no. discharge cycles — — 10,000
Purchase price — EUR 9,415

PV panels
Max. production — kWh 2.5

Heatpump
Max. consumption HPc kWh 2.5
Max. coefficient of performance CoPmax — 4.0
Min. coefficient of performance CoPmin — 1.0

EcoGenie House
Property size S m2 192
House volume V m3 576
House insulation U W/m2K 0.4
Required heating power per degree Celcius P kW 0.2
Household room air heat — kJ/kg 1.012

User Profile
Comfortable lower temperature Tcomfort

low
◦C 20.0

Comfortable upper temperature Tcomfort
high

◦C 22.0
Comfortable night temperature offset Toffset ◦C 4.0
Start day mean t̃µ

day — 07:00
Start night mean t̃µ

night — 23:00
Variance of Gaussian for generating shift — — 0.5
Max. no. hours in shift from mean start day/night — — 3

Miscellaneous
SoH scalar for scenarios 1 and 2 λSoH — 1.00
Wasted actions reward multiplier m — 1.05
Reasonable compensation NETTING — EUR 0.01
Min. observed reward @ scenario 1 — — -2.00
Max. observed reward @ scenario 1 — — 0.10
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B Heatpump and Heating Dynamics

In this appendix, we describe the computations for the heating and heatpump dynamics. They
have been taken from an environment internally developed at Shell. First, the predicted tem-
perature loss TL at timestep t is computed via Equation B.1, where U and S are the insulation
value and surface area of the house, respectively. Next, Tin and Tout are the indoor and out-
door temperatures, respectively. Lastly, P is the number of kWh required to heat the house per
degree Celcius, which can be approximated by multiplying the household room air heat with
the air density and house volume.

TL
t

.
=

(
U · S ·

(
Tin

t−1 − Tout
t

) /
103

)/
P (B.1)

Given the predicted heat loss, we compute the coefficient of performance (CoP) of the heat-
pump for the next timestep with Equation B.2. Since the efficiency can not be 100%, we conser-
vatively approximate the true CoP by assuming the efficiency is 80%.

CoPt
.
= max

(
CoPmin, min(CoPmax, CoP′t)

)
with CoP′t

.
= 0.8 · Tin

t

max
(

1,
∣∣Tin

t−1 − Tout
t

∣∣) (B.2)

Next, the temperature difference T∆ to the lower and upper comfortable temperatures Tcomfort
low

and Tcomfort
high are computed according to Equation B.3. If the indoor temperature is below the

lower comfortable temperature threshold, then T∆
low will become negative. In similar fashion,

T∆
high will become negative if the current indoor temperature is above the upper comfortable

temperature.
T∆

low, t
.
= Tin

t−1 − Tcomfort
low

T∆
high, t

.
= Tcomfort

high − Tin
t−1

(B.3)

In case the indoor temperature is outside the comfortable range of temperatures, we correct it
by subtracting/adding the required degrees Celcius in order to be within the range. This is
achieved by Equation B.4.

Tin
t

.
=


Tin

t−1 +
∣∣T∆

low, t

∣∣, if T∆
low, t < 0

Tin
t−1 −

∣∣T∆
high, t

∣∣, if T∆
high, t < 0

Tin
t−1, otherwise

(B.4)

Next, we compute the required heatpump output power HPout in order to maintain the newly
set indoor temperature and compensating for the earlier computed heat loss TL. Given the
required output power of the heatpump, we also compute the required input power HPin.

HPout
t

.
= P · (Tin

t + TL
t )

HPin
t

.
= HPout

t
/

CoPt
(B.5)

In case HPin
t > HPc, we deploy an auxiliary heating source (CoP = 1) to take care of the remain-

ing heating that the heatpump is not able to deliver.
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C Heuristic-Based System Insights

Due to the stochastic nature of optimising the parameters of the Heuristic-Based System (HBS),
we ran three replications on scenario 1 of the environment. Table C.1 denotes the rounded
parameters of each replication, along with a brief description of the purpose of each parameter.
Since HBS receives normalised features, the values of the parameters (bar the offsets; ϕ3, ϕ5 and
ϕ7) are also normalised. The parameters ϕ3, ϕ5 and ϕ7 are optimised in the range (-0.02, 0.02).

In the end, the three replications obtained a test score of -416.10, -418.47 and -419.11, respec-
tively. In addition, the values of some parameters differ significantly between the replications.
For instance, ϕ4, the SoC-threshold to net power back to the grid, is significantly lower for
replication 3.

TABLE C.1: The best found parameters per replication, optimised on the training
and validation environment. The parameters are optimised with Bayesian Op-
timisation. Note that the values of the parameters have been rounded to three
decimals.

Parameters Φ
Replication

Description
1 2 3

ϕ0 0.338 0.210 0.192 Threshold for the expected PV-production. If
it is above ϕ0, then the heuristic considers
charging the battery with it, which is also de-
pendent on the battery SoC and ϕ1.

ϕ1 0.795 0.996 0.830 Threshold for when the battery SoC is too
high to make charging the battery worth-
while.

ϕ2 0.197 0.214 0.214 Threshold for when there is sufficient power
in the battery to discharge to the residential
house.

ϕ3 -0.017 -0.001 -0.003 Offset to the moving average (MA) grid price.
Indicates when it is profitable to supply the
requested power of the household from the
battery instead of from the power grid.

ϕ4 0.964 0.869 0.645 SoC threshold for when there is sufficient
power in the battery for netting.

ϕ5 0.017 0.005 -0.002 Offset to the MA grid price, when it is prof-
itable to net power back to the grid. Note that
the SoH penalty also has to be overcome in
this case.

ϕ6 0.976 0.814 0.856 SoC threshold when to consider charging the
battery from the grid.

ϕ7 0.011 -0.010 0.016 Offset to the MA grid price when it is not too
expensive to charge the battery from the grid.
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Best parameter configuration. When we review the parameters of the best performing repli-
cation, we can see that its thresholds for the expected PV-production and maximum battery
SoC are relatively high. Thus, it only opts to charge with PV when there is plenty available and
possible to store in the battery. Next, it chooses to relatively quickly discharge the battery into
the household, with a low SoC threshold (ϕ2) and a low threshold for the grid tariffs. NETTING
is only selected with for almost fully charged battery and high grid tariff. Lastly, the thresholds
for CHARGE_GRID are also relatively strict, with a high offset to the MA tariff.

All in all, replication 1 tries to optimise the sequential decision making process by maximis-
ing its PV-utilisation, and then discharge it into the household whenever possible. Figure C.1
confirms this for replication 1, which shows the decision making of the HBS agent over one
week in July 2019, which is a week sampled from the test environment. During this week, the
battery is mainly charged by PV, and then deployed to supply power to the heatpump. But, it
is still wasting some available PV, in these cases the battery was already nearly full. At some
nights, the battery is being charged from the grid for a reasonable tariff, in order to be used
later in the day. However, we also see large periods where the agent decides to do nothing
with its fully charged battery (e.g., the 6th of July).

FIGURE C.1: Battery usage of the HBS over one week in July 2019 (taken from
the test environment). For this, we used the best performing set of parameters,
namely those from replication 1. From top to bottom, the plots show the reward
signal, available PV, grid tariff, and the progression of the battery SoC. For the
SoC, the agent is able to fully use it from 0 to 100%; the margins mentioned in
Section 4.1.1 are outside this range. I.e.: at 0%, there is still some charge left in the
battery, but this can not be accessed by the agent in order to prolong the battery
lifespan. As for the background color, it denotes what action was selected at that
point in time, with the relevant actions also being shown in the tariff and PV plots.
Noteworthy is how the battery is mainly being charged by PV and then deployed
to power the heatpump; there is no NETTING at all. In addition, charging from the
grid mainly occurs at night, when there is no PV available but the battery SoC is
still relatively low.
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General trend in parameter configuration performance. In general, Table C.1 highlights that
different approaches are possible. There does seem to be a trend regarding what parameter
values result in relatively high cumulative rewards. In Figure C.2, we have plotted each Φ that
has been evaluated. In order to visualise it, we applied Principal Component Analysis (PCA)
to reduce the seven dimensions of Φ back to two. The implementation has been taken from
Scikit-Learn (Pedregosa et al., 2011).
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FIGURE C.2: The evaluated parameter configurations plotted in two-dimensional
space with PCA. The color of the datapoints denote the obtained normalised cu-
mulative score over both the train and validation environment. Due to extreme
negative outliers, the scores have been normalised over the top 85% of datapoints.
Thus, the remaining 15% of datapoints have the same color as the worst datapoint
of the best 85%, which is denoted by the pointy end at the bottom of the colorbar.
In general, the scatterplot shows a trend where better scores are obtained in the
lower left part of the plot. However, noteworthy is the fact that minor changes
in that region can still result in a significant deterioration of performance. This is
likely due to a significant change in one of the first parameters that are used by
the heuristic (e.g., setting ϕ0 and ϕ1 to a low and high value, respectively, results
in that CHARGE_PV will often be selected as action).

Noteworthy is the fact that small changes to the parameter configuration can result in a sig-
nificant deterioration in performance, as is highlighted by the purple datapoints that are sur-
rounded by yellow. This can be explained by the nature of the heuristic: the binary decision
tree is in fact a long chain of if-statements. Consequently, changes in parameters that are part
of the first few statements can have a big impact on the overall performance. For instance, if we
set the SoC-threshold ϕ0 for charging from PV too strict, then the battery will never be charged
with PV-power.
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D Reinforcement Learning
Hyperparameter Configurations

The exact hyperparameter configuration for each reinforcement learning (RL) method is de-
noted in this appendix. First, we show the values regarding the baselines, after which we
summarise the configuration of the Multi Dynamics- and Q-Learning models. For all baseline
configurations holds that if an hyperparameter is not denoted here, we have taken the default
value from the corresponding implementation. We refer the reader to Section 6.3.3 for the spe-
cific codebases of each baseline. Table D.1 contains the hyperparameter configurations of all
RL baselines: DQN, BCQ, PPO and recurrent PPO (rPPO).

TABLE D.1: Hyperparameter configuration of all RL baselines. The reduction pe-
riod of ϵ denotes the fraction of timesteps in the training trajectory over which the
ϵ is decayed from its starting value to its ending value. Stable-Baselines3 refers
to this as the ‘exploration fraction’. As exploration strategy, DQN and BCQ use
ϵ-greedy. Lastly, ‘—’ indicates that a certain setting did not apply to the corre-
sponding algorithm.

Hyperparameter
RL Algorithm

DQN BCQ PPO rPPO

Optimiser Adam
Learning rate α 0.001 0.00001 0.0001 0.0001
Batch size 128
Network architecture [256, 256] [64, 64, 64] [256, 256] [256, 128]
Discount factor γ 0.99
Replay buffer capacity 100,000 100,000 — —
Target update coefficient τ 1.00 0.005 — —
Target update frequency 10,000 1 — —
Initial exploration ϵ 1.00 1.00 — —
Final exploration ϵ 0.05 0.05 — —
Reduction period of ϵ 0.10 0.10 — —
BCQ threshold ΦBCQ — 0.10 — —
GAE — — 0.95 0.95
Entropy coefficient — — 0.01 0.01

The best found hyperparameter configurations for MDQL and rMDQL are denoted in Ta-
ble D.2. As the table shows, the only difference between the two architectures is the use of
LSTM layers and planning configuration. For the remainder, the optimal found hyperparame-
ters have been copied from MDQL to rMDQL.
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TABLE D.2: The hyperparameter configurations of MDQL and rMDQL. The Q-
network architectures do not contain any hidden layers, thus it is a direct linear
mapping between the output of the feature extractor to the q-values.

Hyperparameter MDQL rMDQL

Optimiser
Optimiser algorithm AdamW
AMSGrad ✓

Learning rate α 10−4

Learning rate scheduler ✗

Gradient clipping by norm 1.0
Gradient clipping by value 100.0
Loss function smoothℓ1

Network architecture
Ensemble size 4
Feature extractor F [1024, 1024]
Q-network —
D̂-network [256, 256]
R̂-network [128, 128]
Dropout (for D̂ and R̂) 0.3
Activation function ReLU

Experience replay
QET replay buffer capacity 200,000
DDT replay buffer capacity 1,000,000
Prioritized Experience Replay ✓

αPER 0.6
βPER 0.4

Target networks
Coefficient τ pre-convergence 1.0
Coefficient τ post-convergence 0.0
Update frequency 10,000

Exploration
Initial exploration ϵ 0.9
Final exploration ϵ 0.4
Reduction period of ϵ 0.1

Planning
Rollout length u 4 4
Top-k action selection 3 3
ω 10−7

Miscellaneous
Discount factor γ 0.99
Improvement steps for convergence 10
Batch size 128
Transition length l 1 8



68

E Q-Learning on the EcoGenie
Environment

The experimental results demonstrated that DQN and variations of MDQL have similar shaped
learning curves, where they reach peak performance relatively quickly, and then drop off to a
performance similar to the ‘Idle’-baseline. This dropoff seems to be caused by diverging q-value
estimations. Since the environment mostly returns negative rewards, the q-values become more
extreme over time due to bootstrapping.

In order to verify this, we have ran MDQL, without Diverse Dynamics Training nor setting
τ to zero at some point in the training procedure, with four different target q-value computation
strategies.

• Default: As described in Section 5.2, for each Q-head we take the q-values according to
its target network.

• Minimum: For each action, we take the minimum predicted q-value over all target net-
works in the Q-ensemble.

q(a) .
= min

i∈{0, ..., n−1}
Qθ′,i

(
Fθ′(s), a

)
• Maximum: Similarly to the minimum, but instead we take the maximum over all target

networks.
q(a) .

= max
i∈{0, ..., n−1}

Qθ′,i
(
Fθ′(s), a

)
• Confidence Lower Bound (CLB): The confidence lower bound (introduced in Section 5.1)

is computed for each action over the whole ensemble.

q(a) .
= Qθ′, CLB

(
Fθ′(s), a

)
By taking one of the three latter strategies, we hypothesise that the difference between the
ensemble heads will decrease, and consequently the accuracy of quantifying the epistemic un-
certainty.

In Figure E.1, we have plotted the learning curve on the validation environment for each
computation strategy, along with the trajectory of the mean estimated q-values and Q-head
disagreement. We have to note that a slightly different hyperparameter configuration to Ap-
pendix D was used for these experiments, with the main differences being the network architec-
ture of all approximators and the feature extractor, along with a different constant learning rate.

First of all, the middle plot shows that the mean q-estimations keep decreasing linearly, and
notably, with maximum as computation strategy with the least steepest slope. Moreover, maxi-
mum is also the strategy that settles to the highest cumulative reward and obtains the best peak
performance. Thus, these results suggest that indeed the diverging q-values cause the drop off
in performance.
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Next, we have also plotted the Q-head disagreement in the bottom graph. It confirms our
hypothesis that taking a computation strategy where we aggregate over the whole ensemble
results in a significantly lower disagreement.

400

390

380

370

360

350

Cu
m

ul
at

iv
e 

Re
wa

rd

8

6

4

2

0

Q-
va

lu
e

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps 1e6

10 1

Q-
He

ad
 D

isa
gr

ee
m

en
t

Target Q-value strategy
Default Min Max CLB

FIGURE E.1: State-action value trajectory for different target q-value strategies.
The top plot shows the learning curve on the validation environment, while
the bottom two plots show the mean predicted q-value over the whole ensem-
ble and mean Q-head disagreement, respectively. The Q-head disagreement is
computed by taking the action-wise standard deviation over the whole ensem-
ble, after which the mean over all the standard deviations is taken as the Q-head
disagreement for that evaluation episode.
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F MDQL Dynamics Models
Performance

In this appendix, we provide some additional details on the (r)MDQL dynamics models perfor-
mance. Figure F.1 shows the trajectory of the loss of the dynamics models and reward function
approximator.

As is shown, both approximators overfit on the training data to a certain degree. In addi-
tion, the validation loss is slightly higher for rMDQL on both the dynamics and rewards losses.
Moreover, the sudden spike in training loss can be explained by the fact that a switch is made
at that point from Q-Ensemble Training to Diverse Dynamics Training.
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FIGURE F.1: Mean dynamics and reward loss for MDQL and rMDQL. The solid
line denotes the loss on the training environment, while the dashed line is with
regards to traces generated during evaluations on the validation environment.

In Figure F.2, we have plotted the feature and reward absolute error of MDQL. Both for traces
generated with actions according to the Q-ensemble, as well as for random actions. The fig-
ure shows that there are some differences in accuracy between the ensemble heads. Moreover,
traces generated with random actions result in slightly higher errors for some of the features
(most notably battery SoH, netting and the reward). Lastly, the magnitude of the error differs
significantly between each feature, with the PV-feature having the highest mean absolute error,
followed by the battery SoC, grid tariff and weekday.

The main takeaway is that the deterioration in performance when using planning is most
likely due to the inaccurate PV and reward estimations. We think that the following new fea-
tures might be useful for the dynamics model in order to make this prediction more accurate:
the PV-production of the last n hours, along with a categorical variable denoting the month of
the year. In addition, the figure does not show the outliers to ensure readability, but unfortu-
nately there were quite a few outliers of differing magnitudes.
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FIGURE F.2: Feature-wise absolute error for MDQL. The absolute error on the
validation environment is plotted for each ensemble head separately. In addi-
tion, we have plotted each ensemble head twice, first dynamics head 1 twice,
then head 2, 3 and 4 (the distinction between each head is also highlighted by the
white/gray background). For each ensemble head, we plot the absolute error on
traces generated by the Q-ensemble at the left, and traces generated by random
actions at the right. Note: outliers have been omitted in order to ensure readabil-
ity, and there is a different y-axis for the reward-error.
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