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Abstract

Background: Despite its long-standing history, artificial intelligence (AI) has only recently started

enjoying widespread industry awareness and adoption, partly thanks to the prevalence of libraries that

accessibly expose state-of-the-art models. However, the transition from prototypes to production-ready AI

applications is still a source of struggle across the industry. Even though professionals already have access

to frameworks for deploying AI, case studies and developer surveys have found that many deployments

do not follow best practices.

Objective: This thesis investigates the causes of and presents a possible solution to the asymmetry

between the adoption of libraries for applying and those for deploying AI. The potential solution is

validated through designing a software framework called GreatAI, which aims to facilitate General Robust

End-to-end Automated Trustworthy deployments while attempting to overcome the practical drawbacks

of earlier similar tools, e.g., Seldon Core, AWS SageMaker, and TensorFlow Extended.

Methods: GreatAI serves as a proxy for exploring the proposed design decisions; moreover, its initial

focus is limited to the domain of natural language processing (NLP). Its design is created by applying the

principles of design science methodology through iteratively shaping it in two case studies of a commercial

NLP pipeline. Subsequently, interviews are conducted with ten practitioners to assess its applicability

and generalisability.

Results: GreatAI helps implement 33 best practices through an accessible interface. These target the

transition between the prototype and production phases of the AI development lifecycle. Feedback from

professional data scientists and software engineers showed that ease of use and functionality are equally

important in deciding to adopt deployment technologies, and the proposed framework was rated positively

in both dimensions.

Conclusions: Increasing the overall maturity of industrial AI deployments by devising APIs with ease

of adoption in mind is proved to be feasible. While GreatAI mainly focuses on NLP, the results show that

the development and deployment of trustworthy AI services, in general, can be assisted by frameworks

prioritising easy adoption while still streamlining the implementation of various best practices.
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Chapter 1

Introduction

Artificial intelligence (AI) techniques have recently started enjoying widespread industry awareness and

adoption; the use of AI is increasingly prevalent in all sectors [1, 2]. The reasons behind this are manifold

[3], to name a few: recent breakthroughs in deep learning (DL), increased public awareness, an abundance

of available data, access to powerful low-cost commodity hardware, education, but most interestingly, the

rise of high-level libraries making ready-to-use state-of-the-art (SOTA) models easily available. The latter

radically lowers the barrier of entry for applying AI — and with that — can help use cases in various

areas.

However, to achieve robust deployments, the successful integration of AI components into production-

ready applications demands strong engineering methods [4]. That is why it is as essential as ever to also

focus on the quality of deployed models and software. For instance, the lack of a proper overview of data

transformation steps may lead to suboptimal performance and to introducing unintended biases, which

might contribute to the ever-increasing negative externality of misused AI [5].

Concerningly, a peculiar tendency seems to be unfolding: even though industry professionals already

have access to numerous frameworks for deploying AI correctly and responsibly, case studies and developer

surveys have found that a considerable fraction of deployments does not follow best practices [4, 6, 7, 8, 9].

Utilising state-of-the-art machine learning (ML) models has become reasonably simple; applying them

correctly is as intricate and nuanced as ever.

This thesis sets out to investigate the reasons behind the apparent asymmetry between industry adop-

tion of accessible AI-libraries and existing reusable solutions for robust AI deployments. It is hypothesised

that the primary reason for the underwhelming adoption rate of best practices is the short supply of pro-

fessionals equally proficient in the domains of both data science and software engineering. Nevertheless,

even without their presence, practitioners could rely on frameworks to achieve some level of automation

and maturity in their deployment processes. However, the barrier of entry for using such existing libraries

is too high, especially when compared with the simplicity of AI-libraries.

Therefore, we design a software framework called GreatAI and present it in this thesis. The principal

motivation behind the construction of GreatAI is to facilitate the responsible and robust deployment

of algorithms and models by designing a more accessible API in an attempt to overcome the practical

drawbacks of other similar frameworks. Its name stands for its main aim: to assist easily creating General

Robust End-to-end Automated, and Trustworthy AI deployments.

The utility of GreatAI is examined and refined using the principles of design science methodology

[10] through iteratively designing its API and implementation in two case studies concerning the nat-

ural language processing (NLP) pipeline of a commercial product in collaboration with ScoutinScience

B.V. The goal of the aforementioned software suite is to evaluate technology-transfer opportunities in

scientific publications. Subsequently, interviews are conducted with practitioners to validate the broader

applicability and generalisability of the design.
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The choice of case study subject is no coincidence; while working on the ScoutinScience Platform for

the last two years, my colleagues and I have increasingly noticed the same recurring challenges in deploying

and operating AI/ML pipelines. This has motivated me to pursue a general solution. Considering that

the company’s predominant field is NLP, the case studies, and hence, the prototype of GreatAI will also

focus primarily on deploying NLP models. Nonetheless, the motivation for creating a general solution for

all AI/ML contexts remains and will be taken into account every step of the way.

1.1 Research questions

We hypothesise that facilitating the adoption of AI deployment best practices is viable by finding less

complex framework1 designs that are easier to adopt in order to decrease the negative externality of

misused AI. This paper investigates the hypothesis by answering the following research questions.

RQ1. To what extent does the complexity of deploying AI hinder industrial applications?

RQ2. What API design techniques can be effectively applied in order to decrease the

complexity of correctly deploying AI services?

RQ3. To what extent canGreatAI automatically implement AI deployment best practices?

RQ4. How suitable is the design of GreatAI for helping to apply best practices in other

contexts?

In this case, complexity refers to the difficulty faced by professionals (Data Scientists and Software

Engineers alike) when integrating third-party libraries with their solutions. This could also be described

as the barrier of entry or steepness of the learning curve. If the aforementioned hypothesis is correct, the

adoption of best practices can be efficiently increased by decreasing this complexity. AI deployment best

practices entail the technical steps that ought to be taken to achieve robust, end-to-end, automated, and

trustworthy deployments. These are detailed in Section 4.2.

The existence question regarding the problem itself (RQ1) is answered by reviewing the literature of

more than 30 published case studies in Chapter 2. RQ2 and RQ3 are closely connected: the design and

evaluation phases utilised to answer them follow an iterative process. They are examined in Chapters 4

and 5 respectively. The final evaluation step is to ascertain the capability of the framework’s design to

generalise beyond a single subdomain and problem context. This question, RQ4, is investigated through

interviews with industry professionals in Chapter 6.

1.2 Structure

The rest of the thesis is organised as follows: Chapter 2 approaches the problem and the state-of-the-art

from three perspectives: the recent trends of AI-library API designs, the experiences gained from practical

applications, and a comparison of existing deployment options. Next, the methodology utilised for the

subsequent chapters is described in Chapter 3. The design cycle is broken into two chapters, Chapter

4 and 5. The former clarifies the scope and describes the design principles, while the latter details the

specifics of the practical case studies and the framework’s interaction with them. The contributions of the

novel design and obtained results are shown and further validated by conducting interviews with industry

professionals in Chapter 6. The thesis is concluded in Chapter 7.

1The terms framework and library will be used interchangeably in this work stemming from their vague and often holistic

differentiation.
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Chapter 2

Background

Despite the long-standing history of artificial intelligence, industry awareness and adoption have only

recently started to catch up meaningfully [1]. At the same time, more regulations and guidelines are

being published, for instance, the Ethics guidelines for trustworthy AI by the European Commission’s

High-Level Expert Group on AI1. This contains seven key requirements, including human agency and

oversight, technical robustness, safety, transparency, and accountability. When it comes to accountability,

clear advances are being made [11]; however, in the case of the other requirements, the situation is

more nuanced. Thankfully, the field of software engineering for machine learning (SE4ML)2 has been

working towards finding ways to assist data scientists and software engineers in ensuring these (and

more) expectations are met by their software.

In the following, the context of the problem is presented from three perspectives. Starting with its

possible cause: the democratisation of state-of-the-art AI/ML3 architectures and models. Subsequently,

the challenges encountered when applying AI in practice are outlined by case studies and survey data.

Lastly, the existing approaches and solutions are introduced.

2.1 Accessible AI

Most companies prefer not to develop new models but instead reuse prior ones [2], and they are able to

do so increasingly easily. In recent years, there has been a proliferation of highly accessible AI-libraries,

many of which provide reusable models. For example, let us consider the domain of natural language

processing. There are various options for finding AI solutions that work out of the box: FLAIR [14] and

Hugging Face’s transformers [15] let developers access state-of-the-art models and methods in only a

couple of lines of code (in many cases 2 or 3). Using transfer-learning, Hugging Face enables its users

to leverage vast amounts of knowledge learned by pretrained models (such as BERT [16] and its many

improved variations) and fine-tune them for their specific use case. The API exposing this is also extremely

accessible.

It is not just these two libraries, the list of readily available solutions is vast: SpaCy [17], Gensim [18],

scikit-learn [19], and XGBoost [20] are other great examples. The situation is similar in all subdomains of

artificial intelligence: some domain expertise is — admittedly — beneficial but not a hard-requirement.

This, combined with the exponentially increasing computing power affordably available to consumers and

businesses alike [21], results in AI that is accessible by many.

1digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai

2Both in practice and literature, this is sometimes also referred to as AI Engineering and has a large intersection with,

or arguably is the same as, MLOps.

3The terms AI and ML are often not differentiated and are used as synonyms in practice, for instance, see this study by

the FDA [12]. ML is a well-defined subdomain of AI. However, most modern AI applications are also ML applications [13],

hence, conflating the two terms may be slightly imprecise but usually not wrong.
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2.2 State of the industry

In contrast to this trend, the software landscape around packaging, deploying, and maintaining machine

learning (ML) — and in general — data-heavy applications paints a different picture. Fortunately, the

related issues and their ramifications have already been thoroughly investigated.

When looking at AI/ML code in practice through the lens of technical debt, Sculley et al. [9] emphasise

the repercussions of writing glue code between the algorithms and different systems or libraries and define

it as an anti-pattern. The consequence of this is the advice against using generic libraries because their

rigid APIs may inhibit improvements, cause lock-in, and result in large amounts of glue code. This is a

recurring theme in discussions with industry professionals.

Haakman et al. [6] interviewed 17 people at ING, a well-known fintech company undergoing a digital

transformation to embrace AI. They found that the existing tools for ML do not meet the particularities

of the field. For instance, a Feature Engineer working in the Data & Analytics department explained that

regular spreadsheets are preferred over existing solutions like MLFlow for keeping track of experiment

results. The reason behind this is simplicity. Additionally, multiple other interviewees described the

need to self-develop (or highly-customise) dashboards for monitoring deployed models, resulting in many

non-reusable solutions across the company for the same problem. The authors conclude that there is a

research gap between the ever-improving SOTA techniques and the challenges of developing real-world

ML systems. In short, additional tool support is needed for facilitating the ML lifecycle.

In a case study at Microsoft, Amershi et al. [7] interviewed 14 people and surveyed another 551 AI

and ML professionals from the company. One of the main concerns surfaced was relating to automation

which is a vital cross-cutting concern, especially for testing. At the same time, a human-in-the-loop is

still favoured. The survey data pointed out the difficulty posed by integrating AI, especially in the case of

less experienced respondents. This was elaborated on by describing the preferences of software engineers

as striving for elegant, abstract, modular, and simple systems; in contrast, data tends to be of large vol-

ume, context-specific and heterogeneous. Reconciling these inherent differences requires significant effort.

Nevertheless, Microsoft manages to overcome this with a highly sophisticated internal infrastructure.

Using AI is not unique to large corporations; in a study conducted with the collaboration of three

startups [8], the aim was to fill in the gap of understanding how professionals develop ML systems in

small companies. Overall, the results showed they have similar priorities to that of large companies,

including an emphasis on the online monitoring of deployed models. However, less structure is present in

the development lifecycle, as one interviewee explained: some steps are left out from time to time because

they are forgotten. Similarly, Thiée [22] described the slow but ever-growing rate of ML adoption by small

and medium-sized enterprises (SMEs). With the caveat that many more of these companies would wish

to adopt data-driven approaches but are facing new challenges stemming from the domain’s complexity.

Serban et al. [4, 23] described the results of their global surveys aiming to ascertain the SOTA in

how teams develop, deploy, and maintain ML systems. In [4], they compiled a set of 29 actionable best

practices. These were analysed and validated with a survey of 313 participants to discover the adoption

rate and relative importance of each. For example, they determined the most important best practice to

be logging production prediction traces; however, the adoption was measured to be below 40%. In more

than three-quarters of the cases, newcomers to AI reported that they partially or not at all follow best

practices. This tendency decreases with more years of experience, reaching a maximum adoption rate

of just above 60%. Furthermore, Serban et al., in [23], identified another 14 best practices that concern

trustworthy AI, mainly through data governance. They strove to complement high-level checklists with

actionable best practices. Analysing 42 survey responses revealed a familiar pattern: most best practices

had less than 50% adoption.
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John et al. [24] compared and contrasted recent scientific and grey literature on AI deployments

from which they extracted concrete challenges and practices. They also observed that most companies

are placing many more models into production than in previous years. Additionally, they pointed out

that numerous deployment techniques are absent from contemporary literature, which is speculated to

be caused by the immaturity of deployment processes employed in academia. Because for instance, most

models in scientific literature experience only initial deployment and are not constantly replaced or

refreshed as their performance degrades over time.

Finally, in a follow-up study to [24], Bosch et al. [2] organised and structured the problem space of AI

engineering research based on their 16 primary case studies. The authors noted the increasing and broad

adoption of ML in the industry while also emphasising that the transition from prototype to production-

quality deployment proves to be challenging for many companies. Solid software engineering expertise is

required to create additional facilities for the application, such as data pipelines, monitoring, and logging.

They defined deployment & compliance to be one of the four main categories of problems and described

it as highly underestimated and the source of ample struggle.

2.3 Existing solutions

It is noticeable that given enough resources and at the scale of 4195 AI professionals, Microsoft managed

to create a comprehensive in-house solution. A similar impression is given by Uber [25]; they built a highly

sophisticated infrastructure using techniques from distributed and high-performance computing. Though

the authors note that this solution still has shortcomings in the form of rigidity (number of supported

libraries and model types), it also allows for the easy extension of the system. Given the nature of the

concerns and the amount of available resources, it is not surprising that both high-tech Fortune 500

companies needed to and did overcome the problems presented by deploying AI. We can learn from their

approaches; nonetheless, using them may be infeasible for individuals and SMEs. Thus, the issues remain

for the majority of practitioners.

Table 2.1: High-level comparison of popular AI deployment platforms and libraries.

AutoAI Azure ML SageMaker TFX TorchX MLflow Seldon Core

Open-source1 ✓ ✓ ✓ ✓

Self-hosted1 ✓ ✓ ✓ ✓

Vendor-agnostic2 ✓ ✓ ✓ ✓

AI-agnostic2 ✓ ✓ ✓ ✓

E2E feedback3 ✓ ✓ ✓

Distributed monitoring3 ✓ ✓ ✓ ✓ ✓* ✓

Online model selection3 ✓* ✓ ✓ ✓

Versioning3 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Quick setup4 ✓ ✓

No DevOps dependencies4 ✓

1 For privacy and accountability reasons. [2]
2 Minimising required glue code. [9]
3 Implementing best practices. [4, 23, 24]
4 Easy integration into existing processes. [6, 22]
* Only partial support.
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Luckily, the open-source scene of AI/ML/DS tools, libraries, frameworks, and platforms is thriving.

Additionally, there is a considerable number of closed-source — usually platforms-as-a-service (PaaS) —

solutions next to them. Let us look at some prominent examples. Table 2.1 shows a high-level comparison

of frameworks along the dimensions in which practitioners reportedly face difficulties in the Deployment

stage of the CRISP-DM model [26].

IBM’s AutoAI [27] promises to provide automation for the entire machine learning lifecycle, including

deployment. It is a closed-sourced, paid service which — from their documentation — seems to focus

primarily on non-technical users by providing them with a graphical user interface (GUI) for authoring

models. The restrictions caused by the encapsulation of the entire process can be severe: the challenges

of integration were emphasised above [9]. Additionally, an engineer working on Microsoft’s comparable

solution, the Azure ML Studio, highlighted that once users gain enough understanding of ML, such visual

tools can get in their way, and they may need to seek out other solutions [7]. Unfortunately, the main

value proposition of Azure ML Studio is also to provide a GUI for laypeople, and it has also been set to

be retired by 2024. Its successor is Azure Machine Learning which shares many similarities with AWS’s

SageMaker suite [28].

SageMaker offers the most comprehensive suite of tools and services; most importantly, it has a

set of features called AWS SageMaker MLOps. This provides easy and/or default implementations for

multiple industry best practices described in [4, 23, 29]. Among others, it promotes using CI/CD, model

monitoring, tracing, model versioning, storing both data and models on shared infrastructure, numerous

collaboration tools, etc. Nonetheless, SageMaker does not enjoy universal adoption, as indicated by the

survey data. The cause of this may be the lack of a self-hosting option and its relatively high prices: many

companies prefer on-premise hosting for privacy, and financial reasons [2]. Additionally, vendor lock-in

and possibly — in the case where it is not already used for the project — the initial effort required for

setting up AWS integration could be likely deterrents.

When it comes to open-source libraries, we can find the MLOps libraries of both TensorFlow and

PyTorch: TensorFlow Extended (TFX) [30] and TorchX4. TFX comes with a more mature set of features

with the caveat that initial time investment is needed for their setup. The features of TorchX only concern

the distributed deployment to a wide range of providers, including Kubernetes (K8s), AWS Batch, or

Ray [31]. There is no augmentation for most deployment best practices. Given the tight coupling between

these libraries and their corresponding ML frameworks, they cannot generalise to models or algorithms

of other frameworks and technologies. The Open Neural Network Exchange5 format could be an option

for overcoming these incompatibilities. However, wider support would be needed for seamless integration.

Open-source platforms also exist, such as MLflow and Seldon Core. They both rely on Kubernetes

to provide their features. MLflow emphasises the training phase (in deployment, it lacks a feedback loop

which is essential for reaching many of the best practices), while Seldon Core focuses on the deployment

stage. The latter comes integrated with a powerful explanation engine, Alibi Explain [32]. It also boasts

the most comprehensive suite of features, including outlier detection, online model selection (with multi-

armed bandit theory), and distributed tracing.

In short, it seems to be the ideal candidate for the title of framework for robust end-to-end AI

deployments. Its only downside is the amount of complexity propagated to its clients: it is built on top of

Kubernetes and relies on Helm, Ambassador/Istio, Prometheus, and Jaeger for its features. Hence, the

first step in using it is setting up a K8s cluster with all the required components; then, when it comes

to model deployment, a Kubernetes configuration file must be created to use Seldon’s Custom Resource

4pytorch.org/torchx/latest

5onnx.ai
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Definition. These are minor obstacles if the project is already built on top of K8s; however, even then,

software engineers with solid cloud and DevOps backgrounds are actively required to use Seldon Core.

Additionally, increasing attention is given to ML deployments in embedded systems both from a theo-

retical [29] and practical [33] point of view. Prado et al. [33] survey the available deployment frameworks

and end-to-end solutions, including those for embedded devices. They note the inefficiencies of these that

come from the lack of features and too much rigidity. They introduce their framework for embedded AI

deployments, which can be used out-of-the-box but also lets users easily replace and extend its pipeline

to fit their changing needs and advancements in the field.

At the same time, Meenu et al. [29] present and compare different architectural choices for large-

scale deployments in edge computing. They also note that: “...there is a need to consider and adapt

well-established software engineering practices which have been ignored or had a very narrow focus in

ML literature”. In summary, the issues expressed in Section 2.2 can be understood when looking at the

available solutions.

2.4 Summary

The surveys and case studies have shown the industry’s continuous struggle to evolve prototypes into

robust and responsible production-ready deployments. Simultaneously, platforms aiming to help overcome

this challenge already exist but lack widespread adoption. The frequently recurring explanations for not

adopting existing solutions surfaced in Section 2.2 revolve around their complexity and rigidity. These

complaints are validated when looking at the available frameworks in Section 2.3. While using AI has

become more accessible than ever, deploying remains challenging owing to the lack of any easy-to-adopt

framework for robust end-to-end AI deployments.

The coexistence of multiple major obstacles, along with their promised solutions and the lack of their

widespread adoption, leads us to believe that current frameworks are inadequate for many contexts,

especially in cases where teams lack the background in cloud, operations, and more generally, software

engineering. Thus, the answer toRQ1 is that the complexity of deploying AI can severely hinder industrial

applications even in the presence of existing frameworks. There is an unmet need for accessible AI

deployment methods. The revolution brought by FLAIR, Hugging Face, and similar libraries for the

domain of AI/ML remains unmatched in the field of AI Engineering and MLOps.
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Chapter 3

Methods

The chosen methodology for this study is Design Science which emphasises the need to design and

investigate artifacts in their contexts [10]. It consists of a design and an empirical cycle. The purpose of

the former is to improve a problem context with a new or redesigned artifact, while in the latter, the

problem is investigated, and its potential treatment is validated concurrently. This strategy seems fitting

for our problem in consequence of its practical nature.

The design cycle shares similarities with Action Research [34] in which researchers attempt to solve a

real-world problem while simultaneously studying the experience of solving said problem. As for the em-

pirical cycle, the pragmatist approach is taken since the value of this research lies in its utility. Moreover,

pragmatism adopts an engineering approach to research [35], which happens to be in line with the phi-

losophy of design science. Additionally, as no research method is without flaws, it is imperative to try to

compensate for their weaknesses by applying multiple methods. Hence, the study also relies on interviews

with professionals to validate the design decisions and determine the generalisability of GreatAI.

3.1 Design cycle

The aim of GreatAI can be summarised using the terminology of design science in the following way:

Facilitate the adoption of AI deployment best practices by finding a less complex framework design which

is easier to adopt in order to decrease the negative externality of misused AI.

The problem context is the difficulty of responsibly transitioning (while following best practices) from

prototype industrial AI applications to production-ready deployments. With the possible treatment being

libraries with high-level APIs and a set of default settings. It is important to note that GreatAI is merely

a proof-of-concept, and its aim is to serve as a proxy for the design decisions behind it. Through this,

the design can be indirectly evaluated. Hopefully, a by-product will be a library that can be effectively

applied to this problem context.

The practical cases used for the evaluation are further elaborated in Chapter 5. In short, they focus on

individual components of a growing commercial platform which aims to find tech-transfer opportunities

in academic publications. The primary input of the system as a whole is a set PDF files, while the

output is a list of metrics describing various aspects of each paper, such as interesting sentences, scientific

domains, and contributions. The result also includes a predicted score used for ranking. This ranking

is subsequently processed by the business developers of Technology Transfer Offices (TTOs) of multiple

Dutch and German universities, who later give feedback on the results.

Overall, this problem context carries the properties of typical industry use cases: it utilises a wide

range of natural language processing (NLP) methods, contains complex interactions between the services,

benefits from the integration of end-to-end feedback, and has to provide the clients with a platform that

they can rely on within their organisation’s core processes. Since the final ranking affects real people,

explainability and robustness are also central questions.
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Figure 3.1: Implementation of the design cycle of design science [10] for our problem context

of AI/ML deployments. The thinner arrows denote smaller but more frequent iterations.

The goal is to find a simpler, less cognitively-straining-to-use design that still leads to high-quality

deployments, the definition of which will be described in Section 4.2. Before generalising, the framework’s

design is iteratively refined using the feedback acquired from applying it in practical contexts, which in

this case are the research and development of a smaller and a more complex AI component using the

work-in-progress framework.

The design cycle summarising the research approach is shown in Figure 3.1 indicating the role of the

case studies. The concerns arisen in the Treatment validation iterations and their short discussions are

highlighted in the form of Design notes. Afterwards, they are addressed in the following Treatment design

iteration. This way, the issues are immediately considered and the proposed solutions can be traced back

to the problems prompting their introduction.

3.2 Applicability & generalisability

To conclusively answer RQ3 and RQ4, we conduct interviews with software engineers and data scien-

tists with varying levels of professional background. The interview candidates were recruited from the

recommendations of my acquaintances, who were kindly asked to seek out people from their professional

networks with any connection to AI/ML. After the first few interviews, participants were also asked

to suggest other candidates, preferably from different subfields. After two iterations of reaching out to

potential interviewees personally, ten engineers and researchers eventually responded positively and par-

ticipated in the study. Albeit the sample size is small, it still represents a wide range of organisation types:

experts were included from startups, consultancies, government organisations, and research companies.

First, before their interview, participants are requested to complete a questionnaire (shown in Ap-

pendix A) about their last completed AI project; the questions refer to the best practices implemented

by GreatAI. They are also advised to take a quick look at the tutorial page of the documentation.
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The interviews are divided into two halves. In the first part, after a brief introduction, interviewees

are asked to solve a real-world deployment task by finishing a partially completed example project1 using

GreatAI. This is a more straightforward instance of the AI development lifecycle presented in the GreatAI

tutorials. They are also encouraged to think aloud so their feedback can be noted. Successfully completing

the task creates a system implementing a known number of best practices. This way, the added value —

in terms of a larger number of implemented best practices — can be quantitatively analysed by comparing

the qualities of the finished implementation with the previously given answers. The target duration for

the interviews is approximately one and a half hours.

We follow the guidelines proposed by Halcomb et al. [36] for collecting information from interviews and

reporting it. This reflexive, iterative process starts by recording participants (with their permission) and

concurrent note-taking. Reflective journaling is immediately done post-interview, which is subsequently

extended and revised by listening to the recordings. Afterwards, we interpret the gathered information by

applying the methodology of thematic analysis [37]. Thematic analysis is an iterative qualitative inves-

tigation technique consisting of labelling, correlating, and structuring the central recurring topics raised

during discussions. It has been successfully used in previous software engineering studies for extracting

emergent patterns [6, 38].

The second half of the one-on-one sessions consists of a short survey allowing us to create the Tech-

nology Acceptance Model (TAM) [39] of the problem context. The ultimate goal of the presented library

is to help increase the adoption rate of best practices. In order to reach that goal, first, the library itself

has to gain adoption. TAM and its numerous variations provide means of measuring users’ willingness

of adopting new technologies. TAM has been widely applied in literature [40], and due to its general

psychological origins, it proves to be effective in other areas of technology, not just software [41].

We employ the parsimonious version of TAM, which has been measured to have similar predictive

power to that of the original TAM while having fewer variables [42]. Parsimonious TAM observes three in-

terconnected human aspects that influence the actual behaviour (adoption): perceived usefulness, perceived

ease of use, and intention to use. Participants are asked ten questions corresponding to these aspects of

their experience using GreatAI. The questionnaire is shown in Appendix B. The internal consistency of

the answers is calculated using Cronbach’s Alpha [43], after which we reflect on the responses.

1Available at github.com/schmelczer/great-ai-interview-task. The training part of the task has already been done, and

the participants only have to deploy the trained classifier.
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Chapter 4

Designing the framework

Providing users with a high level of abstraction is not unheard of in the context of practical AI/ML

platforms. Many software-as-a-service products offer features for hiding the technicalities of machine

learning. However — as we discussed in Section 2.3 — these tend to abstract away the details of both

data science and AI engineering, overall hindering the development process. The design proposed here

aims to tackle and simplify only the deployment-related concepts.

4.1 Scope

As highlighted by several case studies in Chapter 2, the transition from prototypes to production-ready

systems is often named as the source of unexpected struggle. Maybe it is not a coincidence that a

significant portion of the SE4ML best practices should be implemented in this phase. Unfortunately, it

is easy to gloss over them while tackling the underestimated difficulties of this transition. Therefore, the

aim of GreatAI is to ease this step of the lifecycle. Consequently, its scope is limited to the transition

step.

There have been attempts that at least partially address this issue; however, as we saw in Chapter

2, these have limitations either from the perspective of best practices or stemming from their difficulty

in being adopted. The scope has to be well-defined and limited to provide the best chance of providing

an easy-to-adopt solution. To understand the API of a library, users first need to understand its aim and

surface and have to become familiar with the problems it solves. Thus, limiting the focus solely to the

transition step seems reasonable. This step is highlighted in Figure 4.1.

Figure 4.1: Usual process steps (based on [24]) in the development lifecycle of a data-heavy

software solution. The dashed arrows denote optional paths: after a prototype has been com-

pleted, there are multiple options for its deployment. The steps with blue background show

the primary scope of GreatAI.
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It is interesting to mention that there is a proliferation of platform/software as a service (PaaS/SaaS)

products for deploying AI1. At first, these may look intriguing. However, they tend to only focus on

getting code easily deployed in the cloud: AI best practices are not prioritised in this setup. Nevertheless,

in many cases, it may be a suitable option to use such a service, and these can also complement GreatAI

as illustrated in Figure 4.1: first, the prototype is transformed into a GREAT service and materialised as

a common software artifact implementing best practices. Then, it is either deployed using a deployment

SaaS or the organisation’s existing software deployment setup.

4.2 Requirements

The best practices (which are referenced throughout the thesis) with which the design is concerned are

a subset of those compiled by Serban et al. [4, 23] and John et al. [24]. The core requirements — set of

covered best practices — for a software solution that has the potential to improve our problem context

are presented in the following, along with some explanation and clarification for each of them.

General Albeit not explicitly in the list of best practices, compatibility is vital in encouraging adoption.

Large projects frequently end up depending on numerous packages, each of which may impose some

restrictions on the code: since these all have to be satisfied simultaneously, this can result in severe

constraints.

The open-source scene of data-related libraries is vibrant. To take the example of data validation,

there are at least four popular choices which offer varying but similar features: Alibi detect, Facets, Great

Expectations, and Data Linter [44]. The responsibility of choosing the most fitting solution falls on the

user. Thus, they should not be limited in this by GreatAI. On the contrary, the programming language

(PL) of the library may be its only non-general property. Fortunately, the de facto PL for data science is

Python, so implementing the library in it should not significantly limit its applicability.

Robustness In software development, robustness can be achieved by preparing the application to

handle errors gracefully, even unexpected ones [45]. Errors can and will happen in practice: storing and

investigating what has led to them is required to prevent future ones. In the case of ML, errors might

not be as obvious to detect as in more traditional applications (see the above-mentioned data validators).

Even if a single feature’s value falls outside the expected distribution, unexpected results can happen. In

cases where this might lead to real-world repercussions, extra care has to be taken to construct as many

safeguards as practicable. GreatAI should support its clients in this.

End-to-end In this case, it refers to end-to-end feedback. That is, feedback should be gathered on

the system’s real-world performance, which should be taken into account when designing/training the

next iteration of the model. Static datasets may fail to capture the changing nature of real life and can

become outdated if they are not revised continuously. A well-packaged deployment should make it trivial

to integrate new training data.

Automated The available time of data scientists and software engineers is limited and expensive. For

this reason, humans should only be involved when their involvement is necessary. Steps in the development

process that can be automated without negative consequences must be automated in order to achieve

efficient development processes and let the experts focus on the issues that require their attention the

most.

1Such as MLEM, Streamlit or any AutoML SaaS platform, for example, Akkio as these often have a one-click deployment

feature as well.
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Trustworthy As detailed in the Ethics guidelines for trustworthy AI , human oversight, transparency,

and accountability are some of the key requirements for trustworthy AI applications. For increasing public

acceptance and trust while minimising negative societal impact, trustworthiness is essential.

The requirements were chosen stemming from their general importance and potential to be mostly

implemented by a software framework. That is why these provide an ideal initial direction for tackling

the issue. Of course, these do not cover all best practices; for instance, the ones relating to organisational

processes fall outside the realm of computer science.

4.3 Design principles

Before diving into the concrete issues being solved, let us detail the principles we use while implementing

their solutions. As implied in Section 4.1, the Unix philosophy [46, 47] of software design is followed. Most

notably, the design goal that encourages to write programs that do one thing and do it well. Apart from

providing a clear and simple picture of the intended use cases for the library, this is also in line with the

main notion of A Philosophy of Software Design [48]: APIs should be narrow and deep.

A narrow width refers to having a small exposed surface area, i.e. having a small number of functions

and classes in the public API. In contrast, depth implies that each accomplishes an involved, complex

goal. In a way, the width of an API is the price users have to pay (the effort required for learning it)

to use it, while the depth is analogous to the return they get from it. Having to learn little and being

provided with a lot of functionality maximises return on investment (ROI), hence, developer experience

(DX).

Moreover, the theoretical frameworks presented in The Programmer’s Brain [49] provides us with

explanations and vocabulary from psychology for arguing about the cognitive aspects of API design. In

the following, two of them will be used for detailing the design principles: cognitive dimensions of code

bases (CDCB) which is an extension of the cognitive dimensions of notation (CDN) framework [50],

and linguistic anti-patterns [51]. The former comes with a set of dimensions describing different (often

competing) cognitive aspects of code that influence one’s ability to perform specific tasks.

Linguistic anti-patterns provide guidelines for improving consistency and decreasing the false sense of

consistency when there is none. Also, choosing the right names for identifiers can help activate information

stored in the long-term memory, making it quicker to comprehend and easier to reason about the code

[52]. Finding the most accurate and useful names is more challenging than it first seems. Accuracy and

usefulness are already often competing goals: the more precise the name, the longer and, therefore, less

convenient to use [53]. In short, good names are essential to good APIs; consciously considering the

implications of names must be an integral part of the design process.

Nonetheless, simple APIs come with a high technical cost. The library has to implement these in a

way that still allows for high performance in production [54] and avoids being tied to specific libraries

or technologies. Inspiration for the latter may be gained from the ML pipelines of Prado et al. [33]: they

show that more freedom can be achieved with plug-and-play steps and preconfigured defaults.

4.3.1 Default configuration

Existing frameworks frequently suffer from the entanglement of numerous levels of abstractions.2 Instead

of exposing each implementation detail and encouraging users to interact with most of them, these can be

abstracted away in a more high-level layer. Even where configuration may be helpful for advanced users,

default values can still be chosen automatically while providing an override option where necessary.

2grugbrain.dev/#grug-on-apis
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For example, tracing the evaluations and the model versions used in a distributed fashion is very much

expected of a trustworthy system. Hence, turning this feature on by default but allowing opting-out from

it can result in less scaffolding required from the library’s users. It also decreases their up-front cognitive

load, which by definition flattens the learning-curve [49]. Similar features can be imagined for providing

a service API for the algorithms, giving feedback, marking outliers, and more.

Being automated is listed as a requirement, but it is imperative to only automate for simplifying and

not for hiding decisions. More precisely, guessing must not be a part of automation. For instance — an

otherwise handy WebGL library — TWGL.js, has a feature for automatically guessing the type of vectors

based on their names. Suppose it matches the /colou?r/i pattern. In that case, it is treated as a vector

with three components3. It is easy to imagine that this can help in certain scenarios. Still, it does so at

the cost of immense confusion when correctly renaming a variable breaks the application. In CDCB, this

equates to scoring high on the dimension of Hidden dependencies and low on Visibility.

Learning from this, any guessing must be avoided to create a pleasant API. However, this conflicts

with providing defaults for each configuration value. Even if these would be reasonable defaults derived

from educated guesses, they are still merely guesses. Nevertheless, if the users were required to specify

each configuration option, that would lead to vastly more boilerplate code. This verbosity is captured by

the Diffuseness dimension of CDCB and, of course, should be minimised.

To resolve this conflict, GreatAI should have recommended values instead of defaults. This can mean

a context object (as suggested in [48]), which contains the result of each design consideration that has to

be made for a service’s deployment. If not configured manually, the recommended values are applied au-

tomatically, just like defaults. However, the values chosen for each parameter must be clearly highlighted.

Coming from the library’s single responsibility, the number of parameters should not be immense; hence,

the user can be expected to comprehend them instead of just being overwhelmed and skipping them.

This way, the library attempts to notify its user about the existence of these decisions but does

not force them to decide manually. As a result, no initial configuration is needed for starting out with

the library (high Provisionality, low Diffuseness), and the dependencies are not hidden since they are

explicitly highlighted.

4.3.2 Documentation

Little value can be derived from software without good documentation; undoubtedly, good documentation

is a prerequisite for adoption. Documentations come in many shapes: modern integrated development

environments (IDEs) tend to show a popup of a function’s description when requested (for instance, on

mouse hover), but at the same time, a more comprehensive online manual and example projects are also

still expected. Descriptive error messages can also be viewed as documentation.

The library must have quality documentation for all categories. Accordingly, for structuring it, the

Diátaxis philosophy is preferred [55] which prescribes dividing documentation into 4 parts along 2 axes:

practical-theoretical and passive-active consumption. The four quadrants derived from this are tutorials,

how-to guides, references, and explanations.

Once again, we might notice two competing interests: the level of detail and the length of the doc-

umentation. For example, FastAPI4, a popular Python web framework, has extensive descriptions and

explanations on all topics related to Python’s import system, the HTTP protocol, concurrency, deploy-

ment, and more. The actual framework’s documentation is sprinkled over these overly broad topics. This

is undoubtedly helpful for beginners to acquire knowledge from a single place. Yet, this high level of

3
github.com/greggman/twgl.js/blob/e3a8d0ed09f7f5cd4be0e4cb5976081c2b5013aa/src/attributes.js#L139

4fastapi.tiangolo.com
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accessibility actually hinders the process of finding the relevant sections; in CDCB, this shows a trade-off

between the support of Searching and Comprehension tasks. Diátaxis’ take is that linking to external

resources about the library’s domain is welcome, but the documentation must have a single responsibility:

describing the library itself.

A large portion of software documentations is automatically generated from source code, and this

has the advantage of always keeping it in sync with code changes. However, it might also signal that the

API is too large because it is inconvenient for the developers to document it by hand. Striking the right

balance between handcrafted and automatically extracted documentation may be a vital component of

good documentation.

When it comes to example code, showing at least a minimal starter code and the way of customising

it has to be showcased front and centre. It is a well-known observation that developers only read the

documentation when they are stuck, and there might be some merit to this. Helping them not get stuck

— by providing a starter code from which they can explore the API using IntelliSense-like solutions

— should be preferred. Take the example of another widely popular Python web framework, Flask5, at

this time, has 324 homogeneously styled links on its landing page. Out of these, only two lead to the

quick-start code. Of course, it is not hidden, but we argue that the DX could be improved by displaying

where to start more prominently.

4.3.3 Developer experience

Subjectively, a key component of good DX is Progressive evaluation through which development can be-

come a highly iterative, experimental process. This is well-understood by popular data science tools, such

as Jupyter Notebooks. GreatAI also has to support some level of this, for example, in the form of auto-

reload on code changes. Further key ingredients of good DX are consistency and discoverability. To give

one more example, the MySQL connector’s Python implementation6 has a cursor object which exposes a

fetchone method. Even though this naming scheme is not conventional in Python since it does not fol-

low PEP 8, at least the API is intuitive: changing sql cursor.fetchone() to sql cursor.fetchall()

returns all items instead of just one. Using good and consistent names is the key to good DX.

At the same time, Python codebases are rarely strictly object-oriented (OO). They are a mix of the

functional, data-driven, and OO paradigms. Consequently, relying on classes for grouping related functions

is not always desirable; therefore, it is even more imperative to name similar functions similarly. This

helps discoverability and chunking [49], which amounts to quicker comprehension.

There is one more reason to prefer consistency: humans have limited short-term memory (STM) [56].

Even though flags as function parameters are frowned upon by some [57], they can be useful, especially

when configuring libraries. However, if there is no convention for the default value of a flag, clients have

to remember the flag’s name and initial value simultaneously, quickly overloading their STM. Thus, in

the codebase, all defaults must be the same, let us say, False. Sometimes, it can result in a disable

prefix, which may turn into a double negation. Nevertheless, users should never encounter this since the

doubly-negated version is the default; thus, it is only singly negated when overriding it. This approach

also implies that something may be recommended to be turned on by default.

5flask.palletsprojects.com/en/2.1.x

6dev.mysql.com/doc/connector-python/en

19

https://peps.python.org/pep-0008/
https://flask.palletsprojects.com/en/2.1.x/
https://dev.mysql.com/doc/connector-python/en/


Figure 4.2: A very high-level overview of GreatAI in its context. The main dependencies are

also highlighted.

4.4 Architecture

Although API design has been the central subject so far, it is worth remembering that APIs are usually

expected to have corresponding implementations. GreatAI is no exception. As laid out in Section 4.3, we

strive for narrow and deep interfaces; thus, it is time to address the depth component.

GreatAI stands on the shoulders of numerous open-source packages and integrates them to provide

its various features. The most fundamental dependencies and the entire library in context are shown in

Figure 4.2. Given a Python script or a Jupyter notebook, GreatAI transforms the specified prediction

functions into a production-ready deployment, deployable either as a Docker image, WSGI-server, or an

executable relying on uvicorn. The complete list of dependencies can be found in the repository7.

The general theme in the implementation is that each explicit best practice should have its distinct,

loosely-coupled functions or classes. When collaboration opportunities arise, such as persisting the model

versions (1st component) into prediction traces (2nd component), there are three primary conduits for

realising them. These are the context object responsible for the global configuration per process, the

FunctionMetadataStore specifying the expected behaviour of each prediction function, and finally the

TracingContext that is created anew for each prediction input (session).

After refining the framework with feedback gathered from case studies and users, we will end up with

the core architecture presented in Figure 4.3. The implementation is mixed-paradigm, combining the

expressiveness of functional and the design patterns of object-oriented programming (OOP) in order to

maintain an overall low complexity. Reflection is also utilised, especially for run-time type-checking and

generating the API definitions and dashboard components. Regardless, the architecture is still presented

with a syntax similar to the class diagrams of UML2 [58] because it provides the freedom to express even

the non-OOP design aspects.

For the sake of brevity, Figure 4.3 does not show all fields, and some related entities have been

combined, e.g. the GroundTruthAPI box represents the add ground truth, query ground truth, and

delete ground truth functions. The client project can also access most of the presented entities, but

these optional dependency arrows are not shown in the diagram. The utilities submodule is also left

unexpanded; almost all of its functions are orthogonal with the exception of parallel map. The latter

follows a textbook producer-consumer model facilitated by queues and event signals [59].

7github.com/schmelczer/great-ai/blob/main/pyproject.toml
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Figure 4.3: The core architecture of GreatAI illustrated with syntax loosely-based on UML2

[58]. Given its framework nature, the expected client project and the actor integrating it are

highlighted; the associations between the framework and the client project are achieved through

the use of decorators.
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Chapter 5

The ScoutinScience Platform

The core product of ScoutinScience B.V.1 is its Platform2. The clients are Technology Transfer Offices of

Dutch and German universities, government organisations (e.g. Wetsus), and corporations (e.g. Heraeus

Group and Ruma Rubber B.V.) who wish to extend the scope of their R&D activities. ScoutinScience

connects to multiple data sources of academic publications and integrates them into a single database.

Each new publication is evaluated with a suite of AI components that ultimately determine its technology-

transfer potential. Other markers are also extracted that help the users get a quick overview of the authors,

topics, and contributions of a given piece of research.

Each client organisation gets to see a different filtered view of this database ranked by the predicted

probability of technology-transfer opportunities being present. The main motivation is to make these

business developers’ and other professionals’ work more efficient by showing them which papers have the

highest chance of being considered interesting by them.

To achieve this, we have a service-based architecture [54] on the backend-side — apart from the data

integration, communication, and business logic — it is made up of services wrapping simpler (phrase-

matching, Näıve Bayes) and more sophisticated (conditional random fields, transformer) models. As we

will soon see, these can also depend on each other; for instance, based on the predicted scientific domain,

a different model can be chosen for scoring certain aspects of papers.

I was among the first engineers on the team, which has grown considerably in the past two years. While

architecting, designing, and integrating more and better models into our software solution, I experienced

the same difficulties as were described in Chapter 2. The gap between prototypes and production-ready

services is larger than it seems, and it is also larger than it should be. This has motivated me to investigate

the state-of-the-art, and I have found that it is insufficient in many cases. Since the ScoutinScience

Platform is a typical example of applying AI in the industry, it will serve as the real-life case, problem

context, and testbed for attempting to design a solution that can hopefully advance the state-of-the-art.

This chapter describes the process of designing GreatAI and how it fits into real-life use cases. First,

a simple experiment is presented which investigates a Näıve Bayes classifier’s [60] accuracy at predicting

the fields of papers. This leads to the implementation of a software service that is deployed to production.

Subsequently, as the feature set of the library grows and matures, a more complex component is developed

concerning text-summarisation with SciBERT [61]. After implementing each case, the insights gained are

fed back into the library’s design.

1scoutinscience.com

2dashboard.scoutinscience.com
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5.1 Domain classification with Näıve Bayes

Using different models for slight variations of the same problem is commonplace in the industry. For

instance, UberEats has a vast hierarchical set of models for every country, region, and city for calculat-

ing the estimated time of delivery [25]. We have also found that in order to best process an academic

publication, knowing its domain is essential. One of the reasons for this can be the wildly different vo-

cabularies of different domains. For example, the term framework in computer science almost always

refers to a software artifact (usually implying high tech-transfer potential). In contrast, in most other

domains, framework is used to describe theoretical models that are less central to practical applications.

Of course, it is not merely the meaning of the terms but, more importantly, their distribution that varies

significantly. Therefore, the topic of this section is to design and develop a domain prediction classifier

for academic papers.

5.1.1 Background

Fortunately, this is one of the oldest text classification tasks. In fact, Maron introduced the Näıve Bayes

classifier in 1961 [60] for precisely this purpose: classifying documents’ subjects. However, it is still an

active problem when it comes to academic texts, as indicated by Elsevier-funded research carried out by

Rivest et al. [62]. They created a 176-class classification problem for comparing bibliometric and deep-

learning approaches. However, this comparison is made difficult because 44% of the labels are assigned

suboptimally in the ground truth dataset.

Prior work evaluated SciBERT [61] — a BERT [16] model pretrained on academic publications —

on a simpler version of the task in which the domains of sentences3 have to be decided4. It achieved an

F1-score of 0.6571 after being pretrained on the Semantic Scholar Corpus (SSC) [64] and fine-tuned on the

train split of the Microsoft Academic Graph (MAG) dataset [65]5. To our knowledge, no other published

work exists on this sentence classification task. This may be explained by the task’s lack of practical

relevance and contrived nature (uniform label distribution), as we will see in the following subsection.

Design note After getting familiar with the context, it is time to focus on experimenting and

developing our domain prediction service. At the same time, the difficulties encountered should be

noted and integrated into GreatAI ’s design.

5.1.2 Data

Two datasets are considered for the experiments: SciBERT’s MAG and the SSC. The former is used

to compare the results with SciBERT’s, while the latter is utilised for training a model for production

purposes because it has 19 labels compared to MAG’s 7, and it also contains abstracts instead of just

sentences; thus, it is more fitting for our practical use case.

SciBERT’s version of the MAG dataset has 84,000 and 22,300 sentences in its train and test splits,

respectively. These are mostly in English and have all punctuation and casing removed. Each sentence is

classified as belonging to one of seven fields. Figure 5.1 shows that the classes have a uniform distribution.

3Sentences are more appropriate units for processing due to SciBERT’s maximum token length of 512 which comes from

its attention mechanism’s quadratic complexity [63].

4paperswithcode.com/sota/sentence-classification-on-paper-field

5SciBERT was applied to a preprocessed version of this dataset, available at:

github.com/allenai/scibert/tree/master/data/text classification/mag
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Figure 5.1: Class distribution of the MAG [65] dataset’s 84000 sentences in its train split.

Figure 5.2: Label distribution of the Semantic Scholar dataset [64]. Each publication may be

assigned at most three labels.

SSC is much larger: it contains over 80 million abstracts. Having more data certainly helps in sampling

the term distribution more accurately; nonetheless, the law of diminishing returns applies, especially when

using simple models. Therefore, the data are randomly downsampled to give us a more manageable couple

of hundreds of megabytes of abstracts. We can see the distribution of class labels in Figure 5.2. The dataset

is considerably less balanced: medicine is by far the most voluminous field.

Where should we store this data? “On my machine” seems like an easy answer. However, if

we have a team working with the data or it has intrinsic value, it must be stored in an easy-to-

access, potentially redundant way. Serban et al. [4] expressed this need in the following best practice:

Make Data Sets Available on Shared Infrastructure (private or public). Meanwhile, wherever data is

stored, it should also be versioned to satisfy the next best practice: Use Versioning for Data, Model,

Configurations, and Training Scripts.
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MAG needs no further preprocessing if we aim to match SciBERT’s setup [61]. However, since SSC

contains heaps of metadata, the relevant parts have to be extracted and preprocessed. In this case, these

are the concatenation of the abstract’s text and the paper’s title along with the paper’s domains (there

can be multiple domains for a single paper: it is a multi-label classification task). Lastly, the non-English

entries are discarded because we only expect to process papers in English.

How should we preprocess the data? These simple processing steps (filter, map, project) are

almost always present in the data science lifecycle. For example, cleaning the input text from various

HTML, OCR, PDF, or LATEX extraction artifacts is normally necessary for text analysis. This is

captured in the AI best practices collection under the following category: Write Reusable Scripts for

Data Cleaning and Merging. Also, the best practice of Test all Feature Extraction Code is somewhat

applicable: the applied processing steps must not introduce unwanted side-effects.

5.1.3 Methods

Our aims are twofold: (1) to evaluate a sentence classification model on MAG and compare it with

the prior art; and (2) to retrain and apply this model for classifying publication metadata (including

abstracts). This would allow the ScoutinScience Platform to select an appropriate processing pipeline

which has been trained on a matching vocabulary (and domain) for each publication.

It seems reasonable that only considering the distribution (frequencies) of individual terms may be

sufficient. For testing this hypothesis, a unigram language model — Multinomial Näıve Bayes (MNB) —

is constructed, and its accuracy is compared with SciBERT’s. The former definitely aligns with the advice

to Use The Most Efficient Models. Using the MNB implementation of scikit-learn [19], it only took 71

lines of code to create, hyperparameter optimise, and test a text classifier.6 This further proves how simple

it is to use standard packages. The code can be considered for satisfying the Automate Hyper-Parameter

Optimisation best practice since it also implements an automated hyperparameter sweep.

The sentences are tokenised into words and vectorised with TF-IDF (with logarithmic term frequency)

[66], the hyperparameters found via 10-fold cross-validation on the train split lead to filtering out tokens

which occur in fewer than five documents or more than 5% of the documents.

What could be automated here? As discussed in Section 2.1, libraries exposing algorithms and

even SOTA models can already be considered mature and accessible. In this case, only scikit-learn was

utilised, but subjectively, most popular libraries have a similarly easy-to-use API. Therefore, there

seems to be no urgent need for further action regarding the experimentation step of the lifecycle in

connection with the AI best practices.

5.1.4 Results & Discussion

When this model is applied to the test split of MAG, we get the confusion matrix of Figure 5.3. This

Näıve Bayes classifier achieves a whopping 0.6795 F1 score, which is 2.3% more than SciBERT’s on the

same dataset. Thus, it seems that MNB clearly outperforms SciBERT for this particular use case: it is not

only more accurate, but its model is magnitudes smaller. At the same time, it is also considerably faster

to train (or fine-tune in the case of SciBERT) and use (its running time is in the order of milliseconds

per publication). It also has no upper limit on the input length. Thus, this experiment validates choosing

MNB for the task over SciBERT.

6The code is available at great-ai.scoutinscience.com/tutorial.
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Figure 5.3: Confusion matrix of a Näıve Bayes classifier on the MAG dataset’s sentences. The

matrix is normalised column-wise. Notice, how most mistakes happen between semantically

similar classes, for instance: politics – sociology or business – economics.
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Figure 5.4: Confusion matrix of a Näıve Bayes classifier on the SSC dataset’s sentences. The

matrix is normalised column-wise. Notice, how most mistakes happen between semantically

similar classes, for instance: philosohpy – sociology or history – art.
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It is, of course, not entirely surprising that the sophisticated transformer architecture of SciBERT

is not necessary for a straightforward task like this. Apart from phrases, the relations between separate

words of a sentence do not carry nearly as much discriminative power as the identity of the terms [67];

hence, there is little reason for using an attention mechanism. The fact that SciBERT even works in any

way on this task is already a testament to its general applicability. Nevertheless, this short experiment

has proved that we can safely opt for using MNB for production.

Since Multinomial Näıve Bayes is best at returning a single label and SSC has multiple labels per

datapoint: for evaluation purposes, it is checked whether the returned label is contained in the labels of

the ground truth. On this dataset, MNB achieves a lower macro-average than on MAG, with an F1-score

of 0.59.7 The weighted-average F1 is 0.70, and the overall accuracy is also 70%. The substantial difference

between the macro and weighted averages comes from the unbalanced distribution of the labels. The lower

F1-score is not surprising because this dataset has more than twice as many classes. Additionally, the

mistakes made are defensible when we look at Figure 5.4: most of them are between related domains.

This is the usual point where papers conclude: a proof-of-concept/prototype has been built, and

its performance demonstrated, measured — and usually — explained. Nonetheless, in an industrial

setting, our problem is far from being solved: it has yet to be deployed.

5.1.5 Deployment

First, an inference function needs to be written to take input on the fly and calculate a corresponding

prediction. Since we aim to follow the best practices Explain Results and Decisions to Users and Employ

Interpretable Models When Possible, explaining the results is expected. Fortunately, with our simple

model, it is easy to determine the most influential weights, thus, words. The explanations are derived by

taking the top five tokens from the input text ranked by their feature weights. The last deployment step

is to provide access to our model for others.

How do we provide an interface for the inference function? We either have an offline or

online inference workflow (or both). For the former, we have to provide a way to use it in batch

processing; a simple Python function may be adequate for this purpose, though allowing it to be

easily (or automatically) parallelised would improve its consumers’ DX. If it is an online workflow,

we must have a service running continuously and accepting input at any time. This can be achieved

by a remote procedure call (RPC) interface or, more commonly, a web API. Developers usually refer

to these as REST APIs, and sometimes, they even follow the conventions of REST. Either way, we

must develop a wrapper over the service to make it available to other internal/external consumers.

According to the body of research on the adoption of best practices, this is where many real-world

projects conclude. This also happens to be the gap. Believing that solely focusing on the research and

experiments is good enough is a fallacy: when following this approach, the deployment step ends up being

a rushed attempt of wrapping the AI and putting it in the production environment. This is, inarguably,

a deployment. However, it likely follows very few of the best practices, which can lead to suboptimal real-

life performance, lack of accountability, lack of opportunity to improve, and possibly an overall negative

societal impact.

7The code for this is available at great-ai.scoutinscience.com/examples/simple/deploy.

28

https://great-ai.scoutinscience.com/examples/simple/deploy


How could we implement more best practices? The most notable missing software/operations

features are the lack of automated deployment, automated regression testing, online monitoring,

persisting prediction traces, graceful error-handling, taking feedback on the results (if possible in the

use case), calculating the online accuracy based on the feedback, and retraining the model if necessary

using novel data. These all correspond to best practices.

5.2 Bridging the gap with GreatAI

Let us first revisit the library’s scope for clarification. As concluded in Section 4.1, GreatAI should

ease the transition step between prototypes and production-ready deployments. However, this leaves

open the question of what constitutes this step. There are cross-cutting concerns; for example, feature

extraction is implemented and used in the training phase, but it is also deployed alongside the model.

The robustness criterion has to be met by this procedure even though its implementation is only in

focus in the earlier stages of the project. Since having an untested function deployed into production can

have severe repercussions, we can conclude that assuring its correctness lies within the scope of GreatAI.

Henceforth, cross-cutting concerns should be covered.

This section briefly explores how the problems raised can be solved using GreatAI and the API it

provides to best fit the needs of its users. We first focus on the aspects of data, then we discuss the utility

of helper functions, and lastly, the automated wrapping of services.

5.2.1 Handling data

The obstacles coming from the intertwined nature of different models are widely recognised [6, 7, 9]. This

can lead to non-monotonic error propagation, meaning that improvements in one part of the system might

decrease the overall system quality [7]. The importance of schema versioning in an environment of rapidly

changing models and transformations is highlighted for a specific use case in [68] and more generally by

the Use Versioning for Data, Model, Configurations and Training Scripts best practice. These emphasise

the requirement for versioning models and, in general, data.

We must address two data storage needs: training data and trained models. Proper version control

is one of the most basic expectations for commercial codebases. Based on developer surveys, it is likely

that our code is already tracked under Git and synchronised with GitHub8. Therefore, using Git Large

File Storage (LFS) might seem intriguing. However, it is a paid (and surprisingly expensive) service of

GitHub, especially when we factor in the expected sizes of the models and training data with the fact

that the only way to remove files counting towards our quota is to delete the entire repository9.

An open-source tool, the Data Version Control (DVC)10 provides a nearly perfect alternative. It

comes with a command-line interface (CLI) inspired by Git’s and can be integrated with several backend

storage servers. Its only downside is, of course, that it is one more tool that increases the complexity of

the project and the initial setup time. If this is an acceptable price to pay, then we highly recommend

opting for DVC. Nevertheless, if this may prohibit a team11 from properly handling data according to

the best practices, we present a simpler solution.

8octoverse.github.com/#lets-look-back-at-the-code-and-communities-built-on-git-hub-this-year

9docs.github.com/en/repositories/working-with-files/managing-large-files/removing-files-from-git-large-file-storage

10dvc.org

11As was the case with MLFlow tracking in an ING team described in Section 2.2.
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The complexity of an API can be decreased by relying on its users’ preexisting knowledge, and known

patterns [49, 48]. Therefore, we can reuse familiar APIs, such as the open() method from Python.

Therefore, a method is proposed which provides the same interface; however, the backing storage can be

a mixture of local disk space, S3-compatible storage, MongoDB, or any other storage backend. It provides

a superset of open()’s interface12: the same parameters can be used with it resulting in similar observed

behaviour. The expected features: versioning, progress bars, caching, garbage collecting the cache, and

automatically deleting old remote versions are all present and come with recommended — but easy to

see and change — configuration.

Easing development is not merely about automating everything but also about making the code easy

to change (which is the Viscosity dimension of CDCB). Going from opening a local file on the disk with

the built-in open method, to opening a file from S3 is as easy as changing open(‘file.txt’, ‘w’) to

LargeFileS3(‘file.txt’, ‘w’). In the case of the latter, an additional version keyword argument can

also be given to lock ourselves in using a specific version which can be desirable in the case of models.

5.2.2 Utilities

It is easy to notice multiple recurring tasks when it comes to processing text. Cleaning it from various

extraction artifacts and normalising characters are some of the most common. But splitting sentences,

language tagging, and robustly lemmatising are also often recurring tasks. Because having reusable and

tested feature extraction code covers two best practices, it seems straightforward that a utility module

could be created for this, which could be extensively tested through unit testing.

This is exactly the motivation behind great ai.utilities. Extra care has to be taken not to overfit

these utilities on the cases considered in this chapter; however, we believe these are versatile enough to

be helpful in many text-related contexts. A conclusive answer to this assumption will be found during

the interviews.

Implementing the unit tests uncovered multiple edge cases and even runtime errors; hence, the merit

of Test all Feature Extraction Code best practice is unequivocal. There is one more best practice that

could be partially covered here, especially because its solution also helps both during batch inference but

also at training/feature extraction time: Enable Parallel Training Experiments.

A function called parallel map() is also implemented which closely mimics the API of the built-in

Python function: map. Furthermore, it exemplifies how even a close to trivial function can improve the

DX by magnitudes. Rooted in the global interpreter lock (GIL)13 of CPython, in almost all cases, multi-

threading does not lead to higher performance of CPU-bound tasks. For this purpose, multiprocessing

has to be used. Fortunately, the standard multiprocessing library has a great API. However, doing a

parallel mapping task with a progress bar still takes about a dozen lines. This can deter people (at least

me) from taking advantage of more than just a single CPU core during exploratory experimentation.

With parallel map(), this challenge becomes a one-liner routine task.

5.2.3 Deployment approach

Some of the expectations one might have for data-intensive (such as AI) software are similar to that for

software in general. These are also captured by the best practices: Use Continuous Integration, Auto-

mate Model Deployment, and Enable Automatic Roll Backs for Production Model to name a few. It is

important to notice that these have already been solved by software engineering, more specifically, by the

DevOps paradigm [69]. In line with the findings of John et al. [24] on the SOTA of AI deployments, we

12docs.python.org/3/library/functions.html#open

13wiki.python.org/moin/GlobalInterpreterLock
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suggest wrapping the applications in a format more compatible with existing DevOps toolkits. Instead

of reinventing the wheel, we should rely on more established DevOps best practices for implementing

the SE4ML deployment best practices. Besides, organisations are expected to have their deployment pro-

cesses for classical applications; thus, allowing them to reuse those for AI applications seems to be the

most convenient approach.

Based on personal experiences, three types of software artifacts are identified (in the context of Python)

for which a wide range of established practices exist. WSGI server14 compatible applications, executable

scripts, and Docker Images15. To achieve this, GreatAI provides a compatibility layer between simple

Python inference functions and all the abovementioned common artifacts. Taking functions as input for

the first step also satisfies the requirement to be General. Nevertheless, to also allow customisation,

additional configuration, metadata, and behavioural specification can be given as well.

1 from great_ai import GreatAI

2

3 @GreatAI.create

4 def greeter(name: str) -> str:

5 return f"Hello {name}!"

Listing 1: Simplest example using GreatAI for wrapping a function. In practice, greeter could

be the inference function of an ML model.

The main advantage of the wrapping approach is that it does not require any input from the clients (by

default). We opted for a decorator [70], which lets users wrap their function by adding a single additional

line of code as shown in Listing 1. After which, the created WSGI application can be accessed through

the greeter.app property where greeter is the identifier of the user-defined function. A CLI script

(great-ai), along with a Dockerfile are also provided to cover the other two deployment artifacts.

1 from great_ai import save_model, GreatAI, parameter, use_model, log_metric

2

3 # this could have been called in another script

4 save_model('special_number', 405)

5

6 @GreatAI.create

7 @parameter('positive_number', validate=lambda n: n > 0)

8 @use_model('special_number', version='latest', model_kwarg_name='special')

9 def add_to_special_number(positive_number: int, special: int) -> int:

10 """This docstring will be parsed and exported as documentation."""

11 log_metric('log directly into the Trace', positive_number ** 2)

12 return special + positive_number

13

14 assert add_number(12).output == 417

Listing 2: A simple GreatAI service with behavioural customisations.

14peps.python.org/pep-3333

15docs.docker.com/registry/spec/manifest-v2-2
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Coincidentally, deployment best practices can be easily implemented in this wrapper layer. In the first

iteration, these are input validation, persisting traces, online monitoring, and generating documentation.

Input validation may be used to Check that Input Data is Complete, Balanced and Well Distributed.

Traces are essential for both Log Production Predictions with the Model’s Version and Input Data and

Provide Audit Trails. However, traces can also indirectly help Robustness because even production

systems cannot be expected to be perfect. Saving and letting the users filter on encountered errors while

allowing them to correlate those with the inputs producing them is imperative for facilitating debugging.

Lastly, monitoring and documentation correspond with helping best practices: Continuously Monitor the

Behaviour of Deployed Models and Communicate, Align, and Collaborate With Others respectively.

To allow customising the service’s behaviour to fit different use cases, the default configurations can

be overridden by calling some library functions. An example of this can be seen in Listing 2, while more

details of the semantics can be found in the documentation16.

5.2.4 Summary

Figure 5.5: Screenshot of the domain prediction integrated into the ScoutinScience Dashboard,

where it is used as a filtering option.

After implementing some features of the library, it can already be used for deploying the previously

discussed domain prediction model. In this case, online prediction is expected; hence, the REST API-

based deployment is chosen, which is created by @GreatAI.create and packaged into a Docker image.

This image can be instantiated by the company’s existing DevOps pipeline and cloud infrastructure. In

the end, users can see one more tag in the header section of publication evaluations, where they can also

see the explanation behind the model’s decision as demonstrated in Figure 5.5. Let us now explore how

the framework fares in a more complex case.

16great-ai.scoutinscience.com/how-to-guides/create-service
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5.3 Text summarisation with SciBERT

The ScoutinScience Dashboard contains a full-page evaluation view for academic publications. On this,

the known metadata, historical trends about the paper’s topics, social media mentions, a PDF viewer

showing the document, and other augmentation tools are displayed. One of these is the Highlights section,

which aims to summarise the paper from a technology-transfer perspective.

The current approach uses a simple heuristic based on a set of phrases selected by business developers

and extended with the help of a word2vec model [71]. The user feedback deemed this implementation

slightly helpful but inadequate for providing an accurate overview. Thus, this is the baseline we attempt

to improve on in this section.

Compared with Section 5.1, this time around, the toolset of GreatAI is available at our disposal.

Hopefully, this will streamline the development and — especially — the deployment. Given its ar-

guably higher complexity, the experiment falls closer to industrial use cases and hence, can give more

accurate feedback on how to further improve the API.

5.3.1 Background

Automatic text summarisation (ATS) is also one of the earliest established tasks of text analysis and

boasts numerous promising results [72]. Text summarisation is usually divided into extractive and ab-

stractive approaches. Even though the latter can lead to more fluent summaries, it is also prone to hal-

lucinate content that is unfaithful to the input [73]. For this reason, extractive techniques are preferred

in this case.

Our problem requires generating a special type of summary: it must only concern a single aspect

(tech-transfer) of the document. Aspect-based text summarisation has also seen some progress over the

last decades [74, 75], but these methods require concretely defined topics. Unfortunately, tech-transfer

potential is anything but a clear topic definition.

Numerous discussions and interviews with business developers over the last two years made it clear

that there is no universally agreed-on definition of it. At least all of them agree that they know it when

they see it. Additionally, most of them agree that they can confidently make a decision on the granularity

of sentences. This gives rise to an obvious idea: show the experts something they can annotate. Because

experts’ time is valuable, and relevant sentences are few and far between, extra care needs to be taken

to improve the ratio of positive examples in the dataset. The research of Iwatsuki Kenichi on formulaic

expressions (FEs) [76, 77, 78, 79] provides a promising direction to do so.

A formulaic expression is a phrase with zero or more “slots” which, when filled appropriately, leads to

expressing a certain intent. In the context of scientific text, an example17 could be: it was not until *

that. The asterisk can be substituted with multiple terms, and the intention of this expression is (likely)

to describe the History of the related topics. Iwatsuki et al. identified a set of 39 intentions, compiled

a manually labelled dataset [76], and developed multiple approaches for automatically extracting and

classifying formulaic expressions in large corpora [78, 79].

5.3.2 Methods

In order to compile a new dataset, experts are asked to judge sentences that passed an intention check.

This pooling approach is commonly used in information retrieval [80]. The filtering is expected to sieve

17Taken from the ground truth data available at github.com/Alab-NII/FECFevalDataset.
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out sentences that are probably not relevant from a technology-transfer perspective using Iwatsuki’s

formulaic expression intention classes. Subsequently, relevance judgements — in the form of interesting

or not interesting labels — are gathered for the remaining sentences. Figure 5.6 shows an example of

the annotation task. Our method turns the extractive summarisation into a binary classification task for

which a SciBERT model [61] can be fine-tuned. Ultimately, the summaries are derived from sentences

selected by the classifier trained on the experts’ annotations.

Figure 5.6: The annotator GUI showing a single sentence and the two labels that can be

assigned based on its relevance to technology-transfer.

We have to note two possible shortcomings of this setup: firstly, the FE intentions are assumed to

be strongly correlated with the sought-after tech-transfer opportunities aspect. This may or may not be

true. Secondly, only the individual relevance of the sentences is considered instead of the overall relevance

(utility) of the summary. Nonetheless, we expect that stemming from the length of the documents, and

the sparseness of the selected sentences, any combination of them is likely to have low redundancy.

5.3.3 Results

For the first iteration, 1500 sentences were selected for two experts to annotate in a binary fashion

according to strict guidelines. Afterwards, for measuring the interrater agreement, we calculated Cohen’s

kappa [81] as shown in Equation 5.1, which turned out to be 0.43 for the two annotators. This happens to

be just above the lower end of moderate agreement. Even though the original quality ranges are sometimes

criticised for being too relaxed for the medical domain [82], some leniency is acceptable for many NLP

tasks due to their subjectiveness. Regardless, in the case of summarisation, Verberne et al. [83] argue that

reasonable end-quality can be reached even when the interrater agreement is relatively low. The ground

truth is determined by taking the logical disjunction of the annotations. This is reasonable because the

annotators have dissimilar backgrounds and likely judged slightly different aspects of the sentences.

κagreement ≡
pobserved − pexpected

1− pexpected
= 1− 1− pobserved

1− pexpected
(5.1)
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Reproducibility Reproducible experiments are generally preferred. It is easy to forget to set some

seed values and, for example, end up with different data points in the test-train splits during training

and validation in a Continuous Integration (CI) pipeline, thus, data leakage. For facilitating repro-

ducibility, it would be useful to reset the seeds of each imported library’s random number generators

(RNGs) when GreatAI is configured. Thus, a feature has been added to detect and reset RNGs of

installed and imported libraries. This certainly will not solve the reproducibility crisis [84] on its own;

however, in some cases, it can result in one fewer step to miss.

Figure 5.7: Confusion matrix of the fine-tuned SciBERT model on the summary candidate

sentences dataset.

The next step is fine-tuning SciBERT with the help of Hugging Face transformers [15]. The data

are divided into training and test splits with a ratio of 4:1. A validation split, used for early stopping, is

also derived from the train split. The objective function is the F1-score of the positive class, and the early

stopping patience is five epochs. The learning rate is 5× 10−5 and AdamW [85] is used for optimisation

with a weight decay of 0.05. The code can be found in the documentation18, it is surprisingly slightly

shorter than the code of Section 5.1.

Utility of LargeFiles For the purposes of the documentation, the fine-tuning was conducted in

the Google Colab online environment, which is excellent for providing anyone with GPU time for

free. However, notebook environments are ephemeral, resulting in the need to manually upload and

download all relevant data whenever a new virtual machine instance is granted. The LargeFile

implementation alleviated this problem by automatically handling the uploads and downloads. Of

course, first, backwards compatibility had to be solved for Python 3.7, the only available environment

in Colab.

18great-ai.scoutinscience.com/examples/scibert/train
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Table 5.1: Accuracty metrics of the fine-tuned SciBERT

model on the summary candidate sentences dataset.

Precision Recall Support

non-relevant 0.93 0.83 191

relevant 0.73 0.88 109

Let us check how well the selected sentences correspond with the tech-transfer potential. Users and

in-house experts can rate publications (from a tech-transfer perspective) by assigning them to one of

four categories: A, B, C, and D with A being the most and D the least promising. This feedback is stored

and used for analytic and training purposes. Since both the feedback grade and the relevant (summary

candidate) sentences are supposed to reflect the same aspect of papers, we can reasonably expect some

correlation between the grades and relevant sentence counts.

Figure 5.8: Distribution of mean predicted summary candidate sentence counts (refered to as

highlights) in 4 categories. Category A corresponds to the most, while D to the least interesting

papers based on mean user feedback. The sample size is 1406 (D=715, C=309, B=198, A=184).

The histograms are on the same scale but shifted vertically according to the grade to which

they correspond.

The best validation results were achieved after eight epochs which is slightly more than expected but

is presumably due to the weight decay. The confusion matrix on the test split can be seen in Figure

5.7, and the per class accuracy metrics in Table 5.1. Despite the task’s subjective definition, SciBERT

achieves good quality, indicated by an F1-score of 0.80.

Figure 5.8 shows the ratio of summary candidate sentences as predicted by the fine-tuned model

in 4 categories (grades) of papers. This dataset does not overlap with the training data; hence, the

results come solely from the model’s ability to generalise. It is interesting to see that the Spearman’s

rank correlation coefficient [86] between the normalised “highlights” counts and the ratings of papers

is 0.4784 and is statistically significant (P = 5.4 × 10−74). This proves the presence of a monotonic

association. For context, the correlation between the grades and the number of sentences chosen by the
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Figure 5.9: The tech-transfer summary of an academic publication ([87]). The titles and sen-

tences can be clicked to navigate the paper on the right. Meanwhile, some explanation is pro-

vided by the highlighted words, the opacity of which corresponds to their attention weights.

baseline approach is 0.06597 (P = 0.03). We can conclude that the classifier’s output is indicative of

publications’ tech-transfer potential.

5.3.4 Deployment

To implement the summarisation, at most, the top 7 selected sentences are chosen as ranked by their

log probabilities. They are subsequently reordered according to their position in the text. As a quasi-

explanation, the tokens’ attention scores are visualised and overlaid on the highlighted sentences. The

i -th token’s visualised attention comes from summing up the attention weights of each of the last layer’s

heads between the [CLS] and the i -th token. To improve the end-user experience, a high-pass filter and

a stop-word list are applied to the scores to avoid highlighting the syntax-related tokens (punctuation,

determiners). The service — after being integrated into the Dashboard — can be seen in Figure 5.9.
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Design inspiration In order to get insights into their inner workings, Hugging Face models can

be given output attentions=True in their constructor, which results in a new property becoming

accessible on the results for querying the attentions. The only issue with it is that it is a 5-dimensional

matrix which makes exploring and understanding it non-obvious. In short, it has very low Discoveri-

bility. For example, the attention weights for the GUI are calculated with this expression:

np.sum(result.attentions[-1].numpy()[0], axis=0)[0][1:-1]

Even though the operation is conceptually simple, because of the opaque data structure, this is

anything but obvious to comprehend. Therefore, it is clear that this needs to be avoided in our

library design; it has to have an explicit and discoverable API that can be achieved using type hints,

descriptive property names, and docstrings.

5.4 Improving GreatAI

After having solved two problems by implementing two standalone services and integrating them into

an existing ecosystem while relying on GreatAI as a primary tool, a wide variety of insights have been

gained. In the next couple of subsections, the extra features and design decisions that were motivated

by the Highlights (summarisation) service are presented. After which, the final surface of the API is

described, which will be evaluated by its relation to the deployment best practices [4, 23, 24, 29] in the

next chapter.

5.4.1 Caching

Sustainability is an increasingly crucial concern of ethical AI [88]. Without discussing the pros and cons

of the green computing movement [89], we can still agree that computing time should not be wasted.

To this end, caching the results of expensive operations has to be considered in any AI deployment. In

this case, the Highlights service is often called multiple times from different other services with the same

parameters. With each operation taking up to a couple of seconds, implementing caching can lead to

vastly faster response times and an overall more socially conscious deployment.

5.4.2 Revisiting parallel map

Even though most inference functions are CPU-bound (or GPU-bound), it turns out that sometimes they

involve IO, especially when relying on the results of other remote models. This means a significant per-

formance improvement can be achieved by implementing some inference functions asynchronously [90].

Thus, GreatAI also has to support decorating both regular (synchronous) and asynchronous functions.

One notable consequence is that the batch processing feature must also be compatible with async infer-

ence functions. Batch processing is still a helpful feature since it is likely that async inference functions

are both IO (remote calls) and CPU (local evaluation) constrained at the same time. Thus, they can

benefit from multi-core parallelisation.

However, the standard library’s multiprocessing, the third party multiprocess [91], and, another

popular library, joblib19 all lack the support for efficiently parallelising async functions. For this reason,

parallel map was reimplemented to create an event-loop in each worker process to keep the efficiency

of non-blocking IO while also providing parallelisation for the CPU-bound sections of code.

19joblib.readthedocs.io/en/latest
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Figure 5.10: The header of the automatically generated dashboard of the service from Section

5.1. A generated documentation is shown on the left, while the histogram of response times is

rendered on the right. The current configuration is prominently displayed on the bottom.

5.4.3 Human integration

Even though the REST API of GreatAI services exposes all necessary features20 which are great for pro-

grammatic access, these are not ideal for direct human consumption. To ease the introduction of GreatAI

services, a rudimentary dashboard is — optionally — generated. The dashboard’s main features can be

observed in Figures 5.10, 5.11, and 5.12. The diagrams and filterable/sortable table are interconnected

and are automatically updated; the reactive behaviour is provided by the Dash framework [92].

5.4.4 Programmatic integration

Apart from supporting async calls, a couple more steps can be taken to help integrate any service

with a GreatAI deployment. This is implemented by the call remote great ai function which hides

the networking required to call a GreatAI instance’s REST API. It takes care of validation, automatic

retries, serialisation, and deserialisation. It comes with the added benefit of encouraging decoupled services

because the friction of integrating them is no longer noticeable, which is beneficial for human collaboration

[93].

Additionally, a REST API is generated with its accompanying OpenAPI schema21 and served with a

Swagger template. It also contains metadata about the function, for instance, its docstring, version, and

version of its registered models concatenated in order to be SemVer22 compatible. These can be seen in

Figure 5.13. This, combined with a /version HTTP endpoint for programmatic access and validation

of the service’s metadata, proved to be valuable features when integrating the Highlights service into

ScoutinScience’s service-based architecture.

20Such as providing feedback per prediction, complexly filtering and sorting traces, create-read-update-delete (CRUD)

operations for the feedbacks and traces, accessing live monitoring info (current configuration, versions, cache statistics), etc.

21swagger.io/specification

22semver.org
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Figure 5.11: A dynamically updating, tabular view of traces matching a user-defined filter.

Useful for exploring historical predictions or debugging the cause of exceptions (which are also

searchable). The filters set in the table affect the other diagrams of the dashboard.

Figure 5.12: A parallel coordinates view of the traces displayed in the table above. Adding new

axes is as easy as calling log metric inside the inference function.
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Figure 5.13: Documentation of the automatically scaffolded REST API of a GreatAI ser-

vice. Notice, how its version string includes its registered models in a SemVer compliant way:

0.0.1+small-domain-prediction-v11.
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Chapter 6

Results & discussion

It should not be surprising that neither data scientists nor software engineers can be replaced by software

libraries. However, a non-negligible subset of their processes can be partially or fully automated, especially

when it comes to packaging and deploying AI/ML services. The objective was to design a library with an

API that finds the balance between being simple enough to adopt without friction yet useful enough to

be adopted. Simplicity is subjective and will be discussed separately in Section 6.2. For now, let us look

at the utility of GreatAI.

6.1 Features

For answering RQ3 — To what extent can GreatAI automatically implement AI deployment best prac-

tices? — a comparison is presented in the following, demonstrating a subset of best practices that can be

implemented/scaffolded/configured with little user input; hence, through a simple and streamlined API.

Tables 6.1 and 6.2 summarise the implemented best practices in the context of methods found by prior

surveys of scientific and grey literature [4, 23, 24].

In order to show an accurately nuanced representation, a Level of support is determined for each

best practice on a scale of Partially supported, Supported, and Fully automated. For instance, Use static

analysis to check code quality from Table 6.1 is Supported because the entire public interface of GreatAI is

correctly typed (including generics and asynchronous coroutines) and compatible with mypy and Pylance.

This means that when GreatAI is used in any Python project, various tools can be applied to statically

check the soundness of the project’s integration with GreatAI. However, if the library’s user does not use

type hints in their code and it contains a more complex control flow, it can only be partially type-checked.

In short, this best practice is supported, and a considerable part of it is already implemented by GreatAI,

but clients should still keep in mind that they might also need to make an effort to implement it fully.

This is not the case for Log production predictions with the model’s version and input data because,

by default, it is automatically implemented when calling @GreatAI.create. Users can still specify the

exact expected behaviour, e.g., where to store traces, additional metrics to log, or disabling the logging

of sensitive input. Nevertheless, the best practice is already implemented reasonably well without input

from the library’s user.
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Table 6.1: A subset of AI lifecycle best practices and the level of support GreatAI provides

for them. The level of support is one of Fully automated (✓✓), which means that no action

is required from the user, Supported (✓) only automates the reasonably automatable aspects,

while Partially supported (∼) provides some useful features, but the client is expected to build

on top of these.

Best practice Implementation Support

Use sanity checks for all external data

sources1
@parameter ✓

Check that input data is complete, balanced,

and well-distributed1
@parameter ∼

Write reusable scripts for data cleaning and

merging (for NLP)1
utilities ✓✓

Make datasets available on shared

infrastructure1
large file ✓✓

Test all feature extraction code (for NLP)1 utilities ✓✓

Employ interpretable models when possible1 views ∼

Continuously measure model quality and

performance1, 2
Feedback API ✓

Use versioning for data, model, configura-

tions and training scripts1, 2
@use model, versioning ✓✓

Run automated regression tests1 * ground truth ✓

Use continuous integration1 Docker Image, WSGI application ✓

Use static analysis to check code quality1 Fully typed API with generics ✓

Assure application security1 Code is automatically audited ∼

Automate model deployment, enable shadow

deployment1, 2
Docker Image & scripts ✓

Enable automatic rollbacks for production

models1, 2
Docker Image & scripts ∼

Continuously monitor the behaviour of de-

ployed models1, 2
Dashboard, metrics endpoints ✓✓

Log production predictions with the model’s

version and input data1
@GreatAI.create ✓✓

1 SE4ML best practices from Table 2 of [4], and Table 1 of [23].
2 Reported state-of-the-art and state-of-practice practices from Tables 2, 3, and 4 of [24].
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Table 6.2: A subset of AI lifecycle best practices and the level of support GreatAI provides for

them. The level of support is one of Fully automated (✓✓), which means that no action is required

from the user, Supported (✓) only automates the reasonably automatable aspects, while Partially

supported (∼) provides some useful features but the client is expected to build on top of these.

Best practice Implementation Support

Execute validation techniques: error rates

and cross-validation2
* ground truth ✓

Store models in a single format for ease of

use2
save model ✓✓

Rewrite from data analysis to industrial de-

velopment language2
Jupyter Notebook deployment ✓

Equip with web interface, package image,

provide REST API2
@GreatAI.create ✓✓

Provide simple API for serving batch and

real-time requests2
@GreatAI.create ✓✓

For reproducibility, use standard runtime

and configuration files2
utilities.ConfigFile, Dockerfile ✓

Integration with existing data infrastructure2 GridFS, S3 support ✓✓

Select ML solution fully integrated with

databases2
MongoDB, PostgreSQL support ✓✓

Querying, visualising and understanding

metrics and event logging2
Dashboard, Traces API ✓✓

Measure accuracy of deployed model to en-

sure data drifts are noticed2
Feedback API ✓

Apply automation to trigger model

retraining2
Feedback API ∼

Allow experimentation with the inference

code3
Development mode & auto-reload ✓✓

Keep the model and its documentation

together3
Dashboard and Swagger ✓✓

Parallelise feature extraction3 parallel map ✓✓

Cache predictions3 @GreatAI.create ✓✓

Allow robustly composing inference

functions3
All decorators support async ✓✓

Implement standard schemas for common

prediction tasks3
views ✓

2 Reported state-of-the-art and state-of-practice practices from Tables 2, 3, and 4 of [24].
3 Additional software engineering best practices applicable to AI/ML deployments encountered

while designing and using GreatAI.
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In Table 6.2, we added six additional best practices, which are generally well-known software engi-

neering considerations that are also applicable to AI/ML deployments. These had not explicitly made

it into the aforementioned surveys; however, according to the insights gained from Sections 5.1 and 5.3,

implementing them has a positive effect on deployment quality. In future research, attention could be

given to their level of industry-wide adoption and quantitative utility.

Quantifying the number of implemented best practices would be misleading since their scope and

importance cover a wide range; furthermore, there is some overlap between the different studies and even

within the studies. However, it is still clear that a large number of best practices (17) can be given a Fully

automated implementation by GreatAI ’s design, and many others (16) can be augmented by the library.

This proves the feasibility of designing simple APIs using the techniques of Chapter 4 for decreasing the

complexity of correctly deploying AI services while still implementing various best practices (RQ2).

6.2 Interviews

One of the central takeaways of Section 2.3 is that, for example, Seldon Core is useful for implementing

or helping to implement most of the best practices. Regardless, it also has an initial threshold that

must be surmounted before implementing even a single one. According to the adoption rate surveys,

this may discourage a large portion of practitioners from using it or other similar frameworks. The

presented solution offers a different mix of features: the initial threshold is virtually non-existent; hence,

best practices can be applied immediately. But at the same time, it only covers a more limited range of

practices.

Our hypothesis is that the latter approach aligns better with the expectations of professionals. To

verify this, we conducted a series of interviews with the cooperation of ten industry practitioners with

varying levels of Software Engineering (SE) and Data Science (DS) experience. In this section, the question

of generalisability (RQ4) is investigated using the interview methodology described in Section 3.2. The

participants were gathered through the recommendations of my friends and colleagues. All of the final

interviewees have had at least some expertise in both DS (with a median of 2.5 years) and SE (with a

median of 2 years).

6.2.1 Best practices survey

The practitioners were first asked to fill out a questionnaire about their latest AI/ML project involving

deployment. This point-in-time measurement (shown in Appendix A) served as a baseline for the de-

ployment quality they are used to. Analysing the results show that the amount of software engineering

experience has a moderately strong correlation (rPearson = 0.67 with p = 0.0033) with the overall num-

ber and extent of implemented deployment best practices. This is illustrated in Figure 6.1. Interestingly

but unsurprisingly, there is no similar statistically significant relationship regarding the amount of data

science experience.

The y-axis of Figure 6.1 is calculated by discarding the Not applicable answers and projecting the

5-point Likert scale to a range from 0 to 1, which is subsequently averaged over all questions. The overall

mean adoption rate/extent is just above 0.5, which equates to the Neither agree nor disagree label. These

data are in line with the findings of Serban et al. [4].

Because the survey’s 15 questions were compiled from the Fully automated rows of Tables 6.1 and 6.2,

that means that when using GreatAI, they are all implemented automatically. Consequently, the adoption

rate/extent is doubled immediately just by wrapping the inference function with @GreatAI.create: this
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Figure 6.1: Best practices adoption rate as a function of Software Engineering (SE) and Data

Science (DS) experience. SE experience is shown on the horizontal axis, while the point sizes

denote the practitioners’ experience in DS. The correlation between the axes is significant

(rPearson = 0.67 with p = 0.0033).

is the added value of GreatAI 1. Moreover, this provides further evidence for answering RQ3 showing the

extent of automatically implemented practices over non-GreatAI deployments.

6.2.2 Technology acceptance

Table 6.3: Technology acceptance model survey (presented in Appendix B, sample size = 10)

results per variable. The input values range from 1 to 7.

Perceived ease of use Perceived utility Intention to use

Median 5.8 6.4 6.3

Mean 5.5 6.1 6.0

Standard deviation 1.0 0.9 1.3

Cronbach’s alpha 0.77 0.88 0.95

The participants filled out a form (shown in Appendix B) after finishing their first deployment with

GreatAI to provide data for creating the technology acceptance model of the problem context. The sur-

vey contained ten questions from three categories, which could be rated on a 7-point Likert scale. The

summary of the answers is presented in Table 6.3. The high Cronbach’s alpha values indicate strong inter-

nal consistency [94] for each TAM dimension; thus, averaging the responses per category is semantically

meaningful.

Following the methodology of [38], the connections between the Perceived Utility (PU), Perceived

Ease Of Use (PEOU), and Intention To Use (ITU) dimensions of TAM were analysed. Two statistically

significant (P ≤ 0.05) correlations were uncovered: between PU and ITU (rPearson = 0.81 with p =

0.0048); and PEOU and ITU (rPearson = 0.80 with p = 0.0068). Learning from the findings of prior case

1As explained earlier, measuring quality as a function of best practice count would be dubious. Thus, the achieved

magnitude of the doubling is irrelevant; however, the direction of change is not.
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studies, it is reasonable to believe that both the perceived utility and the perceived ease of use play an

equally important role in influencing professionals’ intention to use the deployment framework.

The assessment of ease of use lags behind the rest, but it is still quite high. It may be possible

that PEOU would go up with further use. Nevertheless, the high perceived utility implies that GreatAI

shows its value early on. This, combined with the correlations uncovered within the context’s technology

acceptance model, validates the hypothesis that focusing on good API design is just as necessary as

providing practical features.

6.2.3 Task solving & exit interviews

In order to give qualitative depth to the previously presented quantitative results, it is time to discuss the

main segment of the interviews. The participants’ backgrounds covered a vast and fascinating cross-section

of industrial AI/ML. The financial sector was represented by a researcher working on market prediction

models for the Hungarian State Treasury and two people building an upcoming digital bank’s core services.

Image processing contexts were illustrated by professionals predicting Sun activity at the European Space

Agency and different ones creating pose-recognition at a startup for people with disabilities using 3D

cameras. Moreover, investigating companies’ AI use as part of due diligence processes and intrusion

detection from network packet traces are just some of the other core activities the interviewees had been

doing recently.

Stemming from this diversity, these semi-structured interviews could be expected to provide valuable

insights into the generalisability of GreatAI. The methodology of Section 3.2 was followed by applying

reflective journaling and thematic analysis. After labelling each aspect of the feedback, and two iterations

of merging redundant or related topics, we ended up with three overarching themes: Functionality, API,

and Responsibility to adopt. As we will soon see, these correspond to the perceived utility, perceived ease

of use, and intention to use components of TAM fairly well.

Functionality The library’s feature-set was complimented during most interviews, with one participant

noting that, although the overall number of features is relatively small, most of them are utilised in most

cases. Similarly, the utilities submodule was appreciated for helping greatly in the interview task, but

non-NLP researchers noted its likely inadequacy for their area. Still, they would like to see “bundle” or

“toolbox”-style modules for their fields because it would save them from a lot of copy-pasting.

The effortless parallel feature extraction and large file handling support were highlighted multiple

times for the reason that the particular interviewees had not encountered other libraries providing these

features. Other concrete features, such as the searchable exceptions column in the Dashboard’s table and

the feedback mechanism, were also popular. One professional highlighted the latter for coercing users to

consider a human-in-the-loop approach which was said to be often expected in modern systems.

When reflecting on the framework from a bird’s eye view, the generality and extensibility of the API

were emphasised. As explained by a senior engineer, this is mainly because once you commit to using it,

it is important not to find yourself at a dead end for a specific use case forcing you to look for a different

library. However, two participants also noted that for complete generality, MATLAB support would be

necessary. Regarding non-functional features, private hosting (especially in banking and government),

open-source auditability, and good scalability (by means of an external database) were the top subjects

of praise.

API Regarding the surface through which clients interact with the library, the feedback is also positive

but more nuanced. Many participants liked that the functions’ behaviour is easy to guess from their names.

The decorator syntax caused minor confusion but consulting the documentation solved the issues in all

three cases. The CLI app great-ai was appreciated for having a close to trivial signature; the participant
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noted that she strives to use as few CLI commands as feasible. Surprisingly, even the practitioners with

more data science background appreciated the Docker support. Nonetheless, one expert had a feature

request for a configuration GUI because his colleagues are used to handling MATLAB App Designer

applications.

The recurring theme of the discussions focused on the question of “How simple is too simple?”.

The argument is that an API cannot be simpler than the domain in which it exists. More precisely, it

can only be simpler at the cost of losing transparency. Let us take the example of saving models using

save model(). If a project is set up correctly, it either has an initial configure() call to the storage

provider backend, or it has an appropriately named credentials file in the project’s root, for instance,

s3.ini or mongo.ini. Once set up, it is trivial to use as long as we do not divert from the happy path.

However, if an issue arises, such as an upgrade or migration of MongoDB, debugging the application is

non-trivial for its lack of transparency.

In other words, we could say that the average (cognitive) complexity is low while the worst-case is as

high — if not higher — than without using save model(). This proved to be somewhat controversial.

However, ultimately, optimising the happy path of the AI/ML development lifecycle was deemed worth-

while by the participants in most cases. With the argument that the majority of the time spent during

a project is spent on this path anyway. However, this raises the question of who exactly are the target

users of GreatAI and who will fix arising issues?

Responsibility to adopt Let us first look at some insightful anecdotes that surfaced during the

interviews. Especially in more research-oriented environments, production deployment pipelines can be

of questionable robustness. This phenomenon was demonstrated by one account of a simple single-machine

deployment pipeline: it is an interplay of cron jobs calling a series of shell and MATLAB scripts resembling

a Rube Goldberg machine. But connecting a couple of Google Colab accounts to a GitHub repository

and Weights&Biases2 to implement parallel model training can also be found in the wild.

Moreover, various research companies were mentioned that for multiple years used to or still have an

R&D department consisting solely of data scientists. In one extreme case, the staff was described as more

than 30 data scientists and 0 other technical employees. In such a setup, it is unreasonable to expect even

professionals to have the capabilities and focus to set up the required foundation for handling all best

practices. All but one interviewee verified this assumption. They also referred to their previous projects,

which usually required many researchers and experts from various fields, and too often, software engineers

had not been prioritised to be included.

Doing software engineering without software engineers is difficult. GreatAI is not a viable replacement

for any well-trained expert, though it is still better than nothing. During the interviews, we realised that

the likely underlying reason for not employing AI engineers or software engineers as part of AI/ML

projects is a lack of awareness. This was theorised by some and demonstrated by six participants who

had, even though followed some, not explicitly sought out information on AI deployment best practices.

Thus, raising awareness — especially by presenting a value proposition, e.g. lower maintenance costs

and better long-term quality — might be crucial for improving AI deployments in general. Verifying this

hypothesis could be a worthwhile direction for future research.

During the larger discussions,GreatAI was deemed appropriate for raising awareness since it showcases

how even a simple library is able to implement a lot of best practices. Additionally, it was noted that it

could also be considered for one-person projects where — by definition — it is admissible to have no SE

2wandb.ai
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expert on the “team”. To further help such cases, integrating a one-click Heroku3 app deployment was

also recommended to simplify the entire last portion of the lifecycle.

6.2.4 Discussion of interviews

The overall takeaway from this is that most features were well-received, and the high mean value of

perceived utility is credible. The criticism of being NLP-centric is also justified: the initial scope of the

proof-of-principle framework was limited to this domain. Nonetheless, learning the experts’ opinion that

they wish to have a similarly specific solution to their problem contexts is reassuring because it proves that

the API is not only generalisable but is expected to be generalised. At the same time, it is crucial to admit

that no one-size-fits-all solution can exist for such a diverse domain. Therefore, allowing customisability

and easy extension of the system must remain central design questions.

Regarding the API’s level of abstraction, we have to agree with the experts that the problem of

deployment cannot be “magically” solved by a trivial API. However, solving deployment problems can be

streamlined, at least in simpler cases. At the same time, the complex ones can be left to the professionals

with relevant knowledge. This parallels the AI-libraries that have inspired GreatAI. For instance, Hugging

Face transformers streamlines fine-tuning and applying SOTA models, but it does not provide any

facilities to help you create the next SOTA architecture because that is a vastly more complex task that

most users are not expected to tackle.

In order to reach its goal of improving best practice adoption, GreatAI can help raise awareness

by presenting a verifiable value proposition, i.e. a couple of lines of code can already result in more

maintainable, robust, high-quality deployments. This might prompt users or technical decision-makers

to invest more in software engineering in AI/ML projects. Additionally, it can help the effectiveness of

AI/software engineers by handling the grunt work of implementing some best practices, leaving them

with more resources to focus on the complex and creative aspects of GREAT deployments.

In summary, the answer to How suitable is the design of GreatAI for helping to apply best practices in

other contexts? (RQ4) is — unsurprisingly — subjective. Combining the high value of intention to use

from Table 6.3, the generally positive feedback regarding the library’s added value, and the numerous

feature requests for fitting it to specific needs, we conclude that there is some chance of suitability

for generalisability. The existence of this potential is already exciting and presents an opportunity for

experimenting with building on the design of GreatAI.

6.2.5 Threats to validity

Two potential threats to the validity of the experiments and their results are identified. Firstly, the

claimed utility of the framework derived in Subsection 6.2.1 does not take into account the practical

significance of the implemented features and, therefore, may be subject to bias. However, the perceived

utility evaluations indicate that the participating engineers and scientists identify practical value in the

features of GreatAI. Nevertheless, in the future, we intend to extend the range of implemented best

practices, which would in turn, give higher confidence about the achievable quantitative improvement

through using the library.

Secondly, the survey answers and, in general, the interviewees may be subject to bias. The small

sample size of practitioners can reasonably lead to some groups being over- or under-represented. The

presence of selection bias is also plausible. These could be mitigated by gathering more data in future

research. Coming from the exploratory nature of this analysis, many insights could be gained from the

collected data. However, for confidently generalising the results, more data are needed.

3heroku.com
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6.3 Future work

The primary purpose of the library was to serve as a proxy through which its design decisions could be

tested and evaluated in their practical context. For this reason, its design aimed to be a proof-of-principle

for validating hypotheses and answering research questions. After successfully doing that, it has been

turned into a practical software library suitable for production-use4.

The library’s main limitations come from its bias toward NLP deployments. This is not unreasonable

given the design’s exploratory nature and the context of the case studies. Nevertheless, future work must

focus on introducing and balancing support for many more fields’ deployments. Although GreatAI has

already proved its utility, it has also shown that generalising and extending its functionality would be

worthwhile. Therefore, many potential improvements are presented below.

6.3.1 More ML domains and modalities

The cases presented in Chapter 5 revolved around NLP. This, of course, heavily influenced the design

process. The two most notable effects can be found in the REST API’s /predict endpoint and some

utilities functions. The former is streamlined to accept JSON-compatible data (which caters to tex-

tual and tabular data), while the latter gives robust feature extraction support only for textual input.

However, in practice, sound, image, and video are also widely taken as input. Furthermore, with the rise

of multimodal models [95], even different combinations of them may be simultaneously taken as input.

Supporting the easy, direct upload of larger non-JSON files — e.g. by saving them to S3 and showing

a preview of them on the Dashboard’s traces table — and extending utilities to handle multimedia

formats should be sufficient for counteracting the NLP bias. Hence, widely expanding the scope of ap-

plicability of GreatAI. As we have seen in Section 4.4, the architecture is otherwise adequately general;

therefore, incremental extensions can be applied.

6.3.2 More best practices

In order to greatly simplify its API, each GreatAI Trace is a single document with a well-defined schema

that clients can also extend by calling log metric. MongoDB provides a convenient (and popular) method

for persisting such documents; however, if there is some existing database in the environment, storing

Traces in that can be favourable. PostgreSQL [96] is a popular choice, and it also features good JSON

document support. Hence, introducing first-class integration for PostgreSQL could benefit some clients.

Data-intensive services can fall into three broad categories: online systems, batch processing, and

stream processing (near-teal-time systems) [54]. As of yet, GreatAI only provides streamlined support for

the first two. Thus, developer experience could be improved by providing simple, direct integration with

popular message queues/protocols, such as Apache Kafka [97], AWS SQS [98], or AMQP [99]. Moreover,

some metrics of GreatAI, such as the cache statistics, versions, and derived data from traces, can already

be conveniently queried from its REST API. Nevertheless, adding support for the de facto standard

metric gathering tool, Prometheus5, could save the library’s users from one more integration step.

The common theme among the opportunities mentioned above is that they could be implemented rea-

sonably well without any user input, which aligns with the library’s philosophy. Of course, the open-source

nature of GreatAI already allows anyone to provide support for a wide range of integrations. Addition-

ally, the scope could be reasonably extended, i.e. more practices could be incorporated by including more

criteria next to the GREAT ones.

4Available at pypi.org/project/great-ai and hub.docker.com/repository/docker/schmelczera/great-ai.

5prometheus.io
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Chapter 7

Conclusion

Concerned by the asymmetry between the industry’s adoption of accessible AI/ML-libraries and existing

solutions for their robust deployment, we investigated this phenomenon’s causes and potential resolution.

When looking at various recent case studies, a recurring theme was revealed: transitioning from prototypes

to production-ready AI/ML deployments is a source of adversity for small and large enterprises alike.

Even though several frameworks and platforms exist for facilitating this step, surveys on the execution

of best practices continue to expose the industry’s shortcomings. This signals that existing libraries are

underutilised, which may lead to poor deployments that underperform or develop issues that go unnoticed

and might inflict societal harm.

We hypothesised that presenting a library which implements best practices and is also optimised for

ease of adoption could help increase the overall quality of industrial AI/ML deployments. To test this,

we designed and implemented a framework based on the principles of cognitive science and the prior

art of software design. Subsequently, we tested and refined the design in an iterative process. First, we

developed and deployed a model for classifying the domains of academic publications. Then, we fine-tuned

and deployed a SciBERT model for generating publications’ technology-transfer summaries. GreatAI had

been proven helpful; therefore, after feeding back the insights gained into its design, we turned it into

an open-source library. Furthermore, GreatAI has been successfully integrated into every production

deployment of ScoutinScience since then and receives thousands of monthly downloads.

During the refinement of the framework, six previously unaddressed AI/ML deployment best practices

were identified. Including these, the framework fully implements 17 best practices while it provides support

for another 16. We validated the value provided by implementing or helping to implement these practices

through interviews with ten industry professionals from various subfields.

The interview participants completed two questionnaires, the results of one of which indicated that

using GreatAI in an example task increased the number of implemented best practices, on average, by

49% compared with their latest project. We also calculated the technology acceptance model of the

context; a significantly strong correlation was measured between the perceived ease of use, the perceived

utility and the intention to use dimensions. Overall, proving that ease of use is just as important as core

functionality when adopting AI deployment frameworks.

The open-ended exit interviews revealed that value can be derived from the library even in its current

form and that the API’s design has the opportunity to generalise to other fields of industrial AI/ML

applications. However, they also highlighted that adoption issues do not necessarily come from a lack of

willingness but a lack of awareness. Even if the returns achievable from good deployments are well worth

the investment. Nevertheless, this value proposition needs to be conveyed and proved to data science

professionals and technical decision-makers; and GreatAI might just be the ideal candidate for doing

that.
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GreatAI may have the potential to bridge the gap between data science and software engineering.

Stemming from the bidirectional nature of bridges, we can look at the framework from two perspectives:

for professionals closer to the field of data science, it provides an automatic scaffolding of software facilities

that are required for deploying, monitoring, and iterating on their models. For software engineers, it

highlights the necessary steps needed for robust and improvable deployments. At the same time, it also

saves them from the menial work of manually implementing these constructs. While most importantly,

it proves that increasing the adoption rate of AI/ML deployment best practices is feasible by designing

narrower and deeper APIs.

Good deployments benefit all of us. Accordingly, continued research into the means of good deploy-

ments remains crucial. However, next to that — as the presented results have shown— better deployments

can also be achieved by facilitating the transition step of the AI lifecycle with a focus on adoptability.

Having automated implementations, even if for just the straightforward best practices, leaves profes-

sionals additional time to tackle the more complex deployment challenges and fewer opportunities to

miss critical steps. Overall, resulting in more general, robust, end-to-end, automated, and trustworthy AI

deployments.
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[55] Procida D.: Diátaxis documentation framework.

URL https://diataxis.fr/

[56] Miller G. A.: The magical number seven, plus or

minus two: Some limits on our capacity for process-

ing information. Psychological review: vol. 63(2),

p. 81 (1956)

[57] Martin R. C.: Clean code: a handbook of agile soft-

ware craftsmanship. Pearson Education (2009)

[58] Rumbaugh J., Jacobson I., Booch G.: Unified Mod-

eling Language Reference Manual, The (2nd Edi-

tion). Pearson Higher Education: ISBN 0321245628

(2004)

[59] Wang L., Wang C.: Producer-consumer model

based thread pool design. In Journal of Physics:

Conference Series: vol. 1616: p. 012073: IOP Pub-

lishing (2020)

[60] Maron M. E.: Automatic indexing: an experimen-

tal inquiry. Journal of the ACM (JACM): vol. 8(3),

pp. 404–417 (1961)

[61] Beltagy I., Lo K., Cohan A.: SciBERT: A pre-

trained language model for scientific text. arXiv

preprint arXiv:1903.10676 (2019)

[62] Rivest M., Vignola-Gagné E., Archambault É.:
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Appendix A

Best practices assessment

Similarly to the approach of [4], participants are asked about their team’s level of adoption of AI/ML

deployment best practices. The questions come from the entries of Tables 6.1 and 6.2 where GreatAI was

determined to provide a support level of Fully automated.

How well did the previous AI deployment that you collaborated on implement the fol-

lowing best practices? Each statement can be rated on a 5-point Likert scale or as “Not applicable”.

1. Write reusable scripts for data cleaning and merging

2. Make datasets available on shared infrastructure

3. Use versioning for data, model, configurations and training scripts

4. Continuously monitor the behaviour of deployed models

5. Log production predictions with the model’s version and input data

6. Store models in a single format for ease of use

7. Equip with a web interface, package image, provide REST API

8. Provide simple API for serving batch and real-time requests

9. Integration with existing data infrastructure

10. Querying, visualising and understanding metrics and event logging

11. Allow experimentation with the inference code

12. Keep the model and its documentation together

13. Parallelise feature extraction

14. Cache predictions

15. Allow robustly composing inference functions
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Appendix B

TAM questionnaire

Following the methodology for the parsimonious technology acceptance model of Wu et al. [42], each

statement can be rated on a 7-point Likert scale.

Perceived usefulness (PU)

1. I believe the use of GreatAI improves the quality of AI deployments.

2. I believe the use of GreatAI would increase my productivity.

3. I believe the use of GreatAI can lead to robust and trustworthy deployments.

4. Overall, I found GreatAI useful when working with AI.

Perceived ease of use (PEOU)

1. I found the GreatAI easy to learn.

2. I found it is easy to employ GreatAI in practice.

3. I found it is easy to integrate GreatAI into an existing project.

4. Overall, I found GreatAI easy to use.

Intention to use (ITU)

1. Assuming GreatAI is applicable to my task, I predict that I will use it on a regular basis in the

future.

2. Overall, I intend to use the GreatAI in my personal or professional projects.
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