

Master Computer Science

An empirical analysis of transfer learning for link

prediction in real-world networks

Name: Emilio Sánchez Olivares
Student ID: s2985144
Date: 2023

Specialisation: Data Science [

1st supervisor: Dr. Frank Takes
2nd supervisor: Dr. Akrati Saxena
3rd supervisor: Hanjo Boekhout MSc

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

The task of predicting missing links in real-world networks has been thoroughly stud-
ied in the field of network science. Powerful algorithms have been developed that have
shown remarkable performance in identifying unconnected pairs of nodes in a network
likely to be connected. However, these algorithms often come at the cost of preprocessing
and training time. Transfer learning has emerged as a viable solution to this problem,
reusing previously trained models to predict on different data than they were trained on.
However, limited research has been done on transfer learning for link prediction and how
to efficiently and correctly employ a pre-trained link prediction model.

In this thesis we propose a transfer learning model for link prediction, with a par-
ticular focus on two important issues in this regard. The first is how to adequately test
transfer learning between different train and test networks. The second objective is to
get a detailed understanding of which networks perform well, and why. The latter is
investigated by assessing the relationship between similarity in network structure and
performance in terms of AUC scores. For this, we perform experiments on 49 real-world
networks of varying size and domain in a supervised setting. We find that the transfer
learning performance of a model is related to network statistics associated to how clus-
tered the network used to train the model is. Additionally, we observed that transfer
learning performance in general decreases when employed for networks with divergent
topological properties.

Page 2 of 40

Contents

1 Introduction 4

2 Related Work 7

3 Preliminaries 9
3.1 Networks and Graphs . 9
3.2 Network topology . 9
3.3 Link prediction . 11
3.4 Transfer learning . 12

4 Methodology 13
4.1 Data . 13
4.2 Link prediction model . 15

4.2.1 Pairwise training dataset . 15
4.2.2 Features . 16
4.2.3 Stacked classifier . 18

4.3 Cross-validation training . 18
4.4 Performance metrics . 19

5 Experiments and results 22
5.1 Experimental setup . 22
5.2 Results . 22

5.2.1 AUC scores matrix . 22
5.2.2 AUC loss matrix . 26
5.2.3 Tree-based algorithms for topology importances 28
5.2.4 Dissimilarities vs. AUC loss . 30
5.2.5 Pairwise feature distributions case study 31

6 Conclusion 34

References 35

A Additional Material 39

Page 3 of 40

1 Introduction

The study of networks can be traced back to the beginning of graph theory proposed by
Euler [15] and formalized by Biggs et al. [7]. These works describe a network as a set of
discrete elements (nodes) linked by a set of connections (edges). Later, Erdős and Rényi
in [14] noted that graph properties can be investigated in terms of probability distributions
when they are regarded as stochastic objects. After growing interest in the study of networks,
Barabási et al. [2, 3, 4] and Newman et al. [30] coined network science, which in contrast to
previous work, focuses on the properties of real-world networks. This field, views networks as
not static, but evolving over time; and aims to understand networks not only as topological
objects, but as the framework upon which distributed dynamical systems are built.

Nodes and edges can be almost anything: scientific papers and citations, people and friend-
ships (real or online), websites and hyperlinks. Additionally, networks can be classified in
different ways. First, by their directionality, where edges that link two vertices asymmetri-
cally are called directed, while edges link that two vertices symmetrically are called directed.
Moreover, networks can also be classified by their modality. In bipartite networks there are
two independent sets of nodes, and every set connects a node in one set to the other, whereas
unipartite networks are only made up of a single set of nodes. Furthermore, real-world net-
works also differ from randomly generated networks in the sense that in random networks the
average dominates, and the degree distribution (number of links per node) follows a Poisson
distribution. On the other hand real-world networks, the degree distribution follows a power
law distribution, where a few nodes contain the highest amount of links. Because of this,
in real-world networks the averages are not meaningful, but instead, when networks grow,
nodes prefer to attach to pre-existing hubs rather than to any node randomly. [5]

Networks can grow and change over time, with new connections happening as a network
evolves. Liben-Nowell et al. [23] called this the link prediction problem, where the aim is to
accurately predict the edges that will be added to a network during a certain time interval.
Usually, this is achieved by training a supervised model on existing links and leveraging the
proximity of node pairs. Some unsupervised learning approaches have also been suggested
[21, 28]. Since then, link prediction has drawn attention and advanced machine learning
techniques have been implemented to improve results [13, 25, 32, 43] such as feature selection,
preprocessing or model selection. Furthermore, link prediction has been applied to all kinds of
domains where networks can be found such as social networks [12, 22, 34] and gene networks
[27]. In this paper, we conduct further research into the subject of link prediction.

As previously stated, link prediction is a supervised learning task. To reduce bias in the
training of a model, it is common to split the data into a training and a testing subset. If
the same data was used to train and test the model, it would likely perform remarkably
well, meaning it has memorized the data and therefore cannot generalize to new data. We
developed a framework that allows different splits across our datasets to be tested and
compared.

Page 4 of 40

With the growth of Machine Learning (ML) and Artificial Intelligence (AI), researchers
have developed techniques to improve learning of new tasks. Among those techniques that
have gathered high interest, are transfer learning and pre-trained models [18, 33, 44, 47].
In this thesis, we set to investigate transfer learning in a link prediction setting for real-
world networks. Works such as Torrey et al. [40] and Tsung et al. [41] refer to transfer
learning as an effective framework for tackling new tasks in target domains by transferring
previously-acquired knowledge from a related task. Additionally, in recent years, researchers
have made important improvements to yield significant performance. Notably, AI has been
showing improvements with deep learning, such as the work of Vaswani et al. [42]. In
their research, they explore the transformer architecture for convolutional neural networks,
which has helped to continuously develop better state-of-the-art techniques in the AI field.
Similarly, generative pre-trained AI models have been gaining momentum [11, 36, 37, 38].
These kinds of models are the next step of transfer learning, where a models has already
been trained on certain data and has been fine-tuned enough to perform well on new data
seamlessly.

In this research, we conduct an investigation of transfer learning for link prediction. This
approach seeks to determine how a pre-trained link prediction model for a network can be
employed to predict links in other networks. We focus on network topology since it is often
given (pre-calculated). Therefore, it can be an early indicator of whether a network will be
good for training a predictive model, or a good candidate to have its missing links predicted
by a pre-trained model.

Specifically, we set answer to the following questions:

• To what extent can transfer learning be applied to predict unseen links in real-world
networks by employing pre-trained models?

1. How can we efficiently test and compare transfer learning performance across
different networks?

2. What structural network properties yield good transfer learning performance?

3. What structural network similarities between a train and test set, yield good
transfer learning performance?

To answer these questions, we first propose a structure to perform transfer learning of link
prediction. Then, we analyse the characteristics and topology of networks to understand
how it affects the ability to train or predict links in a network. Moreover, we analyse the
pairwise features of both datasets used for training in order to find out what makes for better
transfer learning performance.

Through our research, we take the first steps towards automated model selection for link
prediction. Based on structural properties of a network dataset, the ideal link prediction
model can be selected from a collection of pre-trained models.

Page 5 of 40

The structure of this thesis is as follows. In Section 2 we discuss previous related research on
link prediction and transfer learning. Section 3 introduces the prior knowledge, definitions
and fundamentals for this thesis. In Section 4, we discuss the approach followed in this
thesis and the data used, as well as the algorithms and evaluation criteria. Finally, Section
5 describes the experimental set-up and results of our research, which are then used to draw
conclusions in Section 6.

Page 6 of 40

2 Related Work

In this section we present some of the works that influenced our research. These works
were chosen either because they define an underlying problem that we are investigating, or
because their methods findings presented groundwork for our own research.

With regards to link prediction, Liben-Nowell et al. [23] described one of the first approaches
to this problem in social networks, where they model a social network as a graph and identi-
fied its edges with a timestamp. They then formulate the link prediction problem, splitting
the data at a certain point in time, resulting in two intervals. With this, the algorithm is
tasked with outputting a list of edges, not present in the first interval, that appear in the
second. Moreover, they detail the methods used to build predictors for their link prediction
model. These can be categorised into methods based on node neighbourhoods, based on en-
semble of all paths, and higher-level approaches. With this, they showed it is possible to use
network topology alone to extract information about future interactions. They also found
that simple measures like common neighbours or the Adamic-Adar [1] index perform well,
as does the Katz centrality. Nonetheless, they also suggest there was room for improvement
in the performance of this task. While our research does not rely on temporal networks to
distinguish between train and test sets, this task is very influential and shows the basis of
the methodology we aim to follow.

Second, Leskovec et al. [22] built on this research to differentiate positive and negative links.
They used features such as Adamic-Adar [1], Jaccard Coefficient, Preferential Attachment
and node2vec [17] to train a link prediction algorithm using a two-step path involving two
nodes. Additionally, they mention a classifier model used for the task, as well as introducing
area under the curve (AUC) and accuracy as evaluation metrics. They determined that
models capture principles that arguably generalize to other domains (which can be seen as a
form of transfer learning, where the model is trained on some data and applied to another).
In their work, Leskovec et al. also account for class imbalance for better predictions by
resampling the training data, similar to what others [24, 26, 39] proposed. We set to employ
methods such as using a two-step path for the feature creation of a pairwise dataset, as well
as evaluating the performance using the AUC score, since it accounts for both precision and
recall and we believe it will show a competent overview of model performance. We will also
take class imbalance into account when training our models.

Third, Ghasemian et al. [16] investigated the use of stacking multiple classification models
into a better ensamble classifier, claiming that combining linear algorithms yields better
performance and nearly optimal predictions. Like Leskovec et al. [22], they use AUC as the
standard evaluator, as well as predictors from topological features (global, node and pair-wise
based), model-based predictors and embedding-based predictors. Additionally, they found
that link prediction may be fundamentally easier in social networks than in biological or
technological networks.

Page 7 of 40

Finally, Bors [9] explored network groupings that effectively generalize the process of selecting
good measures as features in link prediction. Contrary to Leskovec et al. and Ghasemian
et al., they found that topology-based groupings are better than domain-based groupings to
find good measures for link prediction, although they agree with Ghasemian et al. in that
social networks yield better performance. While our research points to a generalisation of
domains, it is in fact guided by the topological similarities these domains show.

Regarding transfer learning, we follow the work by Torrey et al. [40], which aims to make
machine learning as efficient as human learning. They describe methods to transfer knowl-
edge learned in one or more source tasks and use it to improve learning in a related target
task. This way, they attain learning in the target task by leveraging knowledge from the
source task. We relate this problem to using different networks as source and target tasks.

We will loosely base the link prediction models on the ones described in the research by
Ghasemian et al. [16] and Bors [9]. While our aim is not to produce the most accurate
model for a single case, we believe that adapting both of these approaches will result in
reliable transfer learning models that show if link prediction can be transferable.

Page 8 of 40

3 Preliminaries

We describe notation and basic network concepts that will be used throughout the thesis
in Section 3.1, followed by detailing the network structures we use in Section 3.2. Next, in
Sections 3.3 and 3.4 we define the link prediction problem and transfer learning respectively.

3.1 Networks and Graphs

Barabási [4] defines a network as a catalogue of a system’s components, the nodes, and the
interactions between them, called links or edges. A network can be represented as a graph
G, which Bollobas [8] describes as a collection of disjoint sets V and E where V = V (G) is
a set of vertices of G and E = E(G) is an unordered set of edges. Following [6], formally, a
graph is expressed as :

G = (V, E)

• V , a set of nodes;

• E ⊆ {{u, v}|u, v ∈ V and u ̸= v}, a set of edges, where each edge denotes a connection
between two different nodes.

An edge linking nodes u and v can be denoted by {u, v}. If {u, v} ∈ E(G), then u and v

are neighbouring nodes of G. Additionally, we call G′ = (V ′, E′) a subgraph of G = (V, E)
if V ′ ⊂ V and E′ ⊂ E and V ′ includes all endpoints of the E′ (E′ ⊆ {{u, v}|u, v ∈ V ′ and
u ̸= v}).

Moreover, if the edges are ordered pairs of nodes, we call the graph directed. On the other
hand, a graph with unordered edges, where the relation between pairs of nodes does not
have a direction, is referred to as undirected. Additionally, a graph can be either static or
dynamic, which refers to the formation of the edges in the network. While we have been
describing the former, in the latter edges can appear and disappear in a temporal manner.
For this thesis, we focus on static, undirected networks.

3.2 Network topology

Several properties exist that characterise the global structure of a network (Barabási [4]).
These properties guide us in the exploration of how structure relates to the performance of
a link prediction algorithm. Each of the properties is defined on the graph G. Below we
describe these properties.

We begin by aggregating two node properties (degree and clustering coefficient) for the whole
graph as follows:

• Degree Given node u, Γ(u) is the set of all neighbouring nodes of u. The size of this
set |Γ(u)| is called the degree of node u and is represented as k(u). It is also known as

Page 9 of 40

the number of connections involving node u.

– Average degree Given the degree of all nodes, we calculate the average degree
as:

k̄ = 1
|V |

∑
u∈V

k(u)

– Maximum degree The size of the set of neighbours for the node with the most
neighbours.

kmax = maxu∈V k(u)

• Clustering coefficient The clustering coefficient captures the degree to which neigh-
bours of a given node link to each others. For a node u with degree k(u), and L(u)
links between its neighbours, the local clustering coefficient is defined as:

c(u) = 2L(u)
k(u) · (k(u) − 1)

We aggregate the clustering coefficient as the average of all nodes, which is often
referred to as the local clustering coefficient c.

c = 1
|V |

∑
u∈V

c(u)

Then, we calculate the following global properties.

• Number of nodes The number of objects in the system. n = |V |

• Number of edges The total number of connected nodes. m = |E(G)|

• Diameter Given the shortest path between two nodes, the diameter of a network is
the maximum shortest path length in the network.

• Degree assortativity The degree assortativity ρ in a network is defined as the Pearson
correlation coefficient of the degree of connected nodes. A network is said to have
assortativity when high-degree nodes are connected to other high-degree nodes; whereas
in a network with disassortativity, high-degree nodes and low-degree nodes are typically
connected to each other. The assortativity is calculated as:

ρ =
∑

{u,v}∈V (k(u) − k̄) · (k(v) − k̄)∑
{u,v}∈V (k(u) − k̄)2

Page 10 of 40

• Gini coefficient The Gini coefficient g is a topology feature proposed by Kunegis et
al. [19]. It is based on the Lorenz Curve as seen in Figure 1 and it is a measure from
economics used to measure inequality. In this case it is applied to degree distribution.
It can be calculated as:

g =
∑

{u,v}∈V |k(u) − k(v)|
2 · |V |2 · k̄

Figure 1: Graphical representation of the Gini coefficient in relation to the Lorenz Curve
using an example from economics. The Gini coefficient is equal to the area marked A divided
by the sum of the areas marked A and B, that is, G = A

A+B (Image [46]).

• Transitivity The transitivity C is defined as the probability that two incident edges
are completed by a third to form a triangle, It is often also called global clustering
coefficient. Given, the number of triangles in the graph t and the number of connected
triples of vertices s, it is calculated as:

C = 3t

s

3.3 Link prediction

Link prediction is a method that seeks to solve the problem of missing links in a network,
either because the given snapshot is incomplete, or because the network is dynamic (changes
through time). It can be referred to as a supervised learning task. That is, a type of machine
learning task that involves training a model on a labeled dataset, where the labels are the
correct outputs for each input. In supervised learning, the goal is to learn a mapping between
input data (node-based topological features of a pairs of nodes) and the corresponding output
data (whether a link between two nodes exists or not), given a set of training examples.
Further, as Liben-Nowell et al. explained —the link prediction problem asks to what extent

Page 11 of 40

can the evolution of a social network be modeled using features intrinsic to the network
itself. Hence, link prediction seeks to accurately predict the edges that will be added to the
network. In practice, this can be due to different reasons such as an incomplete graph, or a
static snapshot of a dynamic temporal network.

We define link prediction as the task of learning to identify potential missing links in an
incomplete, static network.

3.4 Transfer learning

For the purposes of this research, we refer to transfer learning as a method in which a machine
learning model is trained to learn how to predict the missing links for a specific network and
then using that same model to predict undetected links in a different, unseen network.

Page 12 of 40

4 Methodology

In this section, we describe in depth the steps taken to answer the questions posed in Sec-
tion 1. Figure 2 shows an overview of the process. We will detail all the steps throughout.
In Section 4.1 we first explain the data used in our research. Next, we describe how the link
prediction model is built, including how we set up a node pair dataset, in Section 4.2. Later,
in Section 4.3, we present our approach to training models across datasets. Finally, we detail
our approach to measuring model performance in Section 4.4.

Figure 2: Overview of the experimental pipeline. The AUC (loss) matrix is used to answer
the first research question. The second question is addressed by the AUC decision tree
regressor. And the network topology dissimilarities vs AUC loss analysis will help answer the
third question.

4.1 Data

In order to test the capabilities of transfer learning, we need a wide variety of datasets. With
such a wide variety of datasets, we can thoroughly test how different structural networks
and properties affect the ability to perform transfer learning. Data was gathered from the
KONECT Project [20]. Once the data was retrieved, we performed pre-processing. To be
able to compare the networks, we interpret them as undirected, unweighted and unipartite
graphs. Additionally, we defined the network to contain only the giant connected component,
a subgraph of the original network in which no nodes are isolated. This subgraph contains
the vast majority of nodes and ensures computation of statistical features, that require the

Page 13 of 40

graph to be connected.

In total, we gathered 49 datasets. Some basic statistics are available in Table 6. The networks
were chosen such that they cover a variety of topological properties, sizes and categories (as
reported in KONECT Project [20] and shown in Figure 3 . We excluded the biggest networks
since it would make the experiments too computationally expensive. Note that, as shown
in Figure 3, we gathered a diverse sample of datasets in favour of better test results and
understanding how and when transfer learning works well.

(a) Properties distribution. Properties are scaled (outliers are not
shown because they created a lot of noise).

(b) Category distribution. (cf. KONECT project [20]).

Figure 3: Network properties and categories distributions.

Page 14 of 40

4.2 Link prediction model

In this section, we first detail how we create a tabular dataset to train the predictive model
based on a network, since a network cannot be directly input into these algorithms. This
results in a dataset for each network. Next, we describe the features we compute for the
dataset, which will be used as predictors for the model. Then, we give an overview of the
machine learning algorithm used to predict missing links and we explain how we deal with
splitting the datasets for training and testing.

4.2.1 Pairwise training dataset

It is a common approach to construct a training dataset and use network statistics of pairs
of nodes to distinguish between positive and negative cases of connected nodes. For this, we
sample existing pairs of nodes from the network, creating a dataset to input to the training
and prediction models. In every network, we report each node as a source and all nodes that
can be reached with a walk of distance two as a target, as shown in Table 1 and Figure 4.
Next, we proceed to add a label to node pairs that are already connected at a distance of
one as to distinguish between positive and negative cases. Lastly, we compute features for
each pair of nodes, which are detailed in Section 4.2.2. We do this for each network.

Source Target Label

A B 1

A C 0

A D 1

A G 0

A H 0

Table 1: Link prediction training dataset of nodes at distance two of A.

Page 15 of 40

(a) Original network. Nodes at a walk of distance two from A (B, C, D, G and
H).

(b) Link predictions candidates. Blue links would be positive cases, whereas red
links are negative ones.

Figure 4: Distance two walk from node A. For node A, all nodes but E and F can be
reached by a walk of distance two. Then, node A is already connected to nodes B and D,
thus labelling those as existing links. This is captured in a dataset, represented in Table 1.

4.2.2 Features

The basis of training a machine learning model for link prediction, is to understand why a
pair of nodes might be linked or not. Features are calculated for the model to discriminate
between positive and negative cases of links between node pairs.

We employ features commonly used in link prediction models, with a focus on the work
presented by Bors [9], to come up with a good enough model to test transfer learning.
Therefore, once we compute pairs of nodes to generate datasets for each network, we then
inspect the similarity of the nodes in each pair. The features are selected in a heuristic
approach to balance simplicity, speed and performance.

Common neighbours When nodes are linked to the same neighbours, they are likely to be

Page 16 of 40

similar. For this, the simplest measure is the number of common neighbours shared by two
nodes. It is defined by the size of the set of the intersection of the neighbours of two nodes:

CN(u, v) = |N(u) ∩ N(v)|

Jaccard Coefficient Similar to common neighbours, the Jaccard coefficient normalises for
the number of unique neighbours of both nodes. This is to account for the fact that nodes
with higher degree are more likely to have more common neighbours. It is defined as:

J(u, v) = |N(u) ∩ N(v)|
|N(u) ∪ N(v)|

Adamic-Adar [1] Considering common neighbours again, Adamic-Adar prioritises nodes
with low degree. It is based on the idea that when predicting links, linking a node to a large
hub is not as meaningful as linking to an isolated node. It is calculated as:

AA(u, v) =
∑

x∈N(u)∩N(v)

1
log(k(x))

Preferential Attachment [23, 31] The basic premise, is that the probability that a new
edge involves node u is proportional to |N(u)|, the current number of neighbors of u.

PA(u, v) = |N(u)| · |N(v)|

Node degree The total number of neighbours of a node. We record both the degree of
the source and the target nodes, as well as a ratio to account for difference in the hopes of
identifying isolated nodes and hubs. For a node u with a set of neighbours N(u):

k(u) = |N(u)|

k(u, v) = k(u)
k(v) = |N(u)|

|N(v)|

Triangle count The number of triangles that a node participates in.

t(u) = |{{u, v, w|u ↔ v ↔ w ↔ u}|
6

Page 17 of 40

4.2.3 Stacked classifier

Once we have created a pairwise training dataset and calculated its features, our supervised
learning link prediction classifier is trained (third step of Figure 2). Based on the findings
by Ghasemian [16], we define a stacked classifier using Scikit-Learn [35] as follows:

Figure 5: Stacked classifier.

These classifiers were selected because they are some of the most commonly used classifier
models in the field. After testing them separately, we observed sufficient performance.

4.3 Cross-validation training

As it is common practice, we split the datasets into training and testing subsets to be able
to evaluate the performance of the prediction model. The datasets are split using the Scikit-
Learn k-fold function [35]. In this case, we set k = 4, resulting in a random 75–25% split, to
avoid bias in the sample.

Additionally, due to the sparsity of networks, it is common for the node pair dataset to have
class imbalance which could limit the algorithm’s learning ability. To account for this, we
down-sample the majority class of the training dataset as shown in Figure 8. However, down-
sampling is not necessary in the test set since we seek for the algorithm to learn to distinguish
between positive and negative cases as much as possible, and removing information in this
step could hinder the performance.

Figure 6: Down-sampling for class imbalance.

Since the k-fold split is shuffled randomly, we cannot guarantee that the results (either good

Page 18 of 40

or bad) are due to randomness. Hence, we perform cross-validation training as shown in
Figure 7 to validate a model’s results more than once. Essentially, we train a model for
each fold per dataset. Next, we validate the models on each split of the datasets. Note
that in Figure 7, when testing on the same network, we only train and validate on the same
split. This is because within the same split, the data is disjoint, so we do not have the same
observations in the train and validation sets. Otherwise, we would encounter the same data
in both the training and validation sets, which is not ideal for a machine learning model,
since it adds bias to the model by predicting previously seen data. Thus, we remove those
cases in our testing set.

Lastly, we evaluate the performance of each model with each validation set and append AUC
scores (explained in Section 4.4) to a matrix. With this set-up, we lay the groundwork to
answer our first research question.

Figure 7: Cross-validation training assignments. For each split, we generate a training set
with 75% of the data and a validation set with the remaining 25%. (Letters indicate the
dataset, numbers indicate the split.)

4.4 Performance metrics

Similarly to previous work [9, 13, 16], we measure the performance of the classifier by means of
the Area Under the Receiver Operating Characteristic Curve (AUC), which will be discussed
below. Additionally, we define AUC loss, which we use to measure the loss in accuracy
resulting from doing transfer learning between two different networks.

Page 19 of 40

Area under the ROC curve (AUC)

To evaluate the capabilities of transfer learning for link prediction, we need a metric to
measure the performance of a model on the validation set. For this, we use the area under
the receiver operating characteristic (ROC) curve (AUC). Proposed by Bradley et al. [10], it
is a good single performance metric for classification tasks where classification models output
counts of the correct and incorrect classifications from each class. This metric is based on
the confusion matrix (Table 2), which is used to show the performance of a classification
algorithm.

Predicted condition

Total population

= P + N
Positive (PP) Negative (PN)

Positive (P) True positive (TP) False negative (FN)
Actual condition

Negative (N) False positive (FP) True negative (TN)

Table 2: Confusion matrix [45].

Then, using the results from the confusion matrix, we can calculate the recall or true positive
rate (TPR) and false positive rate (FPR) as:

TPR = TP

TP + FP
FPR = FP

FP + TN

The resulting rates are both in the range [0, 1], where TPR ≈ 1 and FPR ≈ 0 imply better
model performance. By plotting both together as seen in Figure 8, we can calculate the
receiver operating characteristic (ROC) curve. Then, the area under the ROC curve (AUC)
is calculated and used as an overall measure of the performance of a predictive model. Higher
AUC scores indicate the model is better at predicting the correct labels [29]. Due to its
versatility and interpretable results, the AUC is a common measure when scoring classifier
models [9, 13, 16].

Page 20 of 40

Figure 8: Three ROC curves for different models [9].

Once we have trained predictive models for each network, we set to use those same models
to validate link prediction across our set of datasets as shown in Figure 7. This will generate
an AUC score for every ordered pair of datasets, where one dataset is used for training and
the other one for validation, allowing us to assess to what degree transfer learning is possible
for link prediction. Once we have all pairs of scores, we can proceed to analyse and visualise
these results.

AUC loss

Additionally, while the AUC score is useful to get an overview of the performance of the
models, we also need to inspect how transfer learning affects the score. For this we calculate
the loss in AUC from the validation set compared to the train set. The idea behind this is
that the smaller the AUC loss, the better the model is at capturing the knowledge required
to correctly predict links in a different network. This will allows us to make a pairwise
comparison of train and validation datasets that we can then use to analyse along with both
network’s topological properties. We calculate loss Li,j as follows:

Li,j = AUCi,i − AUCi,j

Where, Li,j is the loss of training a model with network i and validating on network j;
and AUCi,j is the performance score of training a model with network i and validating on
network j.

Page 21 of 40

5 Experiments and results

In this section we outline the setup of our experiments and review results. First, Section 5.1
describes the experimental set-up and environment used. Then we discuss our findings in
Section 5.2, starting with an analysis of performance in Sections 5.2.1 and 5.2.2, where we
discuss the extent to which transfer learning was achieved in our experiments. Next, we
compare transfer learning and its relation to topological features in Section 5.2.3, and to
topological dissimilarities in Section 5.2.4. Lastly, Section 5.2.5 presents a case study of two
pairs of networks, where we examine the features of the datasets created from the pairs of
nodes in a network. The goal of this case study is to detect whether the features of the
pairwise dataset features play a role in the effectiveness of transfer learning.

5.1 Experimental setup

In this section we detail the procedure to obtain and prepare the data that is used as input
for the link prediction models. As mentioned before, we use the Python package Scikit-
Learn [35] to train our stacking classifier, as well as other pre-processing techniques needed
to prepare the data for the development of the predictive models.

Following the approach of Ghasemian et al. and Bors, we fit individual models, although in
this case for every split of each dataset, resulting in 196 models with the same feature set.
The parameters for each estimator of the stacking classifier are as follows:

• RandomForestClassifier: n estimators = 10

• LogisticRegression: default

• GaussianNB: default

• QuadraticDiscriminantAnalysis: default

5.2 Results

Below, we analyse the experiments and results used to answer our research questions. We
first discuss the results from the AUC scores and loss matrices in Sections 5.2.1 and 5.2.2
respectively. Next, we investigate the feature importances in Section 5.2.3 and later we
examine the impact of dissimilarities between training and validation networks. Lastly, in
Section 5.2.5 we study the effect of similarity between the pairwise features of different
networks on transfer learning.

5.2.1 AUC scores matrix

In this section, we set to examine how to test and compare transfer learning, i.e., we answer
the first research question proposed in Section 1, which we continue in the following section.
For this, we train and test link prediction classifiers across all the networks to examine their
performance.

Page 22 of 40

Figure 9 shows the heatmap resulting from the cross-validation training procedure detailed
in Section 4.3. It displays the AUC scores from training a model on a network and using that
same model to predict missing links in another network. Rows in the matrix depict training
performance, while columns represent ease of prediction. There, we can see that most of
the AUC scores are above 0.5, which means the models do perform better than a random
classifier which assigns 0 or 1 with the same probability. Moreover, the average AUC score
is 0.71, which suggests a good performance overall.

Additionally, we can already see that networks from the citation and co-authorship cate-
gories (like cora, dblp, hpph, hepth, astroph and astrophysics), as well as miscellaneous
(asoif, sistercities, lesmis), show favourable training performance, suggesting they are
good baseline for pre-trained models. Similarly, computer networks (caida, gnutella25,
and routeviews), infrastructure networks (airtraffic, newyork, euroroad) and metabolic
networks (proteins, yeast) display good validation performance, meaning they are usually
easy to predict. On the other hand, the bible network is the worst performing training
network. Also, some human contact (residence, karate), human social (adolescent), lex-
ical networks (bible, eat, wordnet) and trophic1 networks (florida dry, florida wet,
littlerocklake, chesapeake) show substandard validation performance.

1From The KONECT Project. Relating to biological interactions of species, commonly food chains.

Page 23 of 40

http://konect.cc/categories/Trophic/

do
lp
hi
ns

co
ra

db
lp

he
pp

h
he

pt
h

as
tro

ph
as

tro
ph

ys
ic
s

er
do

s
ne

tw
or
ks
ci
en

ce
di
gg dn
c

fa
ce

bo
ok

sl
as

hd
ot

uc
_i
rv
in
e

ca
id
a

gn
ut
el
la
25

ro
ut
ev

ie
w
s

re
si
de

nc
e

ka
ra
te

ad
ol
es

ce
nt

bl
og

s
fo
ld
oc

ai
rtr
af
fic

ne
w
yo

rk
op

en
fli
gh

ts
co

nt
ig
uo

us
eu

ro
ro
ad

ch
es

s
fo
ot
ba

ll
co

ng
re
ss

bi
bl
e

ea
t

w
or
dn

et
co

pp
er
fie

ld
pr
ot
ei
ns

re
ac

to
m
e

ye
as

t
as

oi
f

si
st
er
ci
tie

s
le
sm

is
pg

p
w
ik
ip
ed

ia
ha

m
st
er
s

tw
itt
er

fil
m
tru

st
flo

rid
a_

dr
y

flo
rid

a_
w
et

lit
tle

ro
ck
la
ke

ch
es

ap
ea

ke

Validated on

dolphins
cora
dblp

hepph
hepth

astroph
astrophysics

erdos
networkscience

digg
dnc

facebook
slashdot
uc_irvine

caida
gnutella25
routeviews
residence

karate
adolescent

blogs
foldoc

airtraffic
newyork

openflights
contiguous
euroroad

chess
football

congress
bible
eat

wordnet
copperfield

proteins
reactome

yeast
asoif

sistercities
lesmis

pgp
wikipedia
hamsters

twitter
filmtrust

florida_dry
florida_wet

littlerocklake
chesapeake

Tr
ai
ne

d
on

Cross-Validation AUC Matrix

0.2

0.4

0.6

0.8

Figure 9: AUC scores matrix. Networks are ordered according to their category.

Furthermore, Figure 10 shows the distribution of AUC scores across al pairs of networks.
The results are in line with what was mentioned before, since we can clearly see that most
scores are greater than 0.5 and a median of 0.71.

Page 24 of 40

Figure 10: Distribution of AUC scores across all networks. Mean and median are highlighted,
while the trend is shown in blue and the quartiles in light grey.

Table 3 presents the aggregated AUC scores by category, showing the average and maximum
scores for each category, both for training and validating. This means we can examine which
categories might be better to train a missing link prediction model, and which are better at
being predicted. We can see that citation and co-authorship networks show the best training
performance, and computer and metabolic networks the best validation performance, which
is in line with previous results. Moreover, human social and trophic networks are also the
worst performing both in terms of training and validation, since they show the lowest scores.
This is likely because of their low degree assortativity and Gini coefficient.

Category
Training

Average AUC Score

Validation

Average AUC Score

Training

Max AUC Score

Validation

Min AUC Score

Animal 0.6698 0.6583 0.86 0.732

Citation 0.7967 0.6698 0.9245 0.8042

Coauthorship 0.7791 0.7172 0.8904 0.8541

Communication 0.7392 0.7666 0.927 0.8564

Computer 0.6619 0.854 0.8972 0.9415

Human Contact 0.6085 0.6398 0.7351 0.7192

Human Social 0.6823 0.6523 0.8022 0.7839

Hyperlink 0.68 0.649 0.7669 0.7786

Infrastructure 0.6676 0.7611 0.8088 0.8382

Interaction 0.7072 0.6586 0.883 0.745

Lexical 0.686 0.6569 0.7823 0.7811

Metabolic 0.7077 0.8136 0.8849 0.8963

Miscellaneous 0.7558 0.7485 0.8808 0.8468

Online Contact 0.7777 0.6949 0.9018 0.7982

Online Social Network 0.7451 0.7734 0.9415 0.8605

Trophic 0.6219 0.5629 0.7458 0.6516

Average 0.7054 0.7048 0.8520 0.8055

Table 3: Performance results by category2. In each column, the top two results are high-
lighted in green, while the bottom two results are highlighted in red.

Page 25 of 40

5.2.2 AUC loss matrix

Further, in this section we continue to investigate the efficiency of transfer learning for link
prediction. In this case, rather than comparing the raw performance of the models, we set
to compare how effectively they manage to retain information and predict missing links in a
different network.

Similar to the last section, Figure 11 is constructed based on AUC loss scores. Since we are
comparing two different networks, we ignore and remove the diagonal from the matrix. In
the end, we have (N × N) − N loss scores where the lower the score, the better, since it
means that we had a lower loss in performance, going from validating on the same dataset
for which the model was trained to validating in a different dataset. The overall individual
conclusions we can draw from this are similar to the ones in the previous sections, where the
same networks and categories seem to perform alike. Nonetheless, this analysis is relevant
for further investigations into the performance when dealing with pairs of networks as in
Section 5.2.4.

do
lp

hi
ns

co
ra

db
lp

he
pp

h
he

pt
h

as
tro

ph
as

tro
ph

ys
ic

s
er

do
s

ne
tw

or
ks

ci
en

ce
di

gg dn
c

fa
ce

bo
ok

sl
as

hd
ot

uc
_i

rv
in

e
ca

id
a

gn
ut

el
la

25
ro

ut
ev

ie
w

s
re

si
de

nc
e

ka
ra

te
ad

ol
es

ce
nt

bl
og

s
fo

ld
oc

ai
rtr

af
fic

ne
w

yo
rk

op
en

fli
gh

ts
co

nt
ig

uo
us

eu
ro

ro
ad

ch
es

s
fo

ot
ba

ll
co

ng
re

ss
bi

bl
e

ea
t

w
or

dn
et

co
pp

er
fie

ld
pr

ot
ei

ns
re

ac
to

m
e

ye
as

t
as

oi
f

si
st

er
ci

tie
s

le
sm

is
pg

p
w

ik
ip

ed
ia

ha
m

st
er

s
tw

itt
er

fil
m

tru
st

flo
rid

a_
dr

y
flo

rid
a_

w
et

lit
tle

ro
ck

la
ke

ch
es

ap
ea

ke

Validated on

dolphins
cora
dblp

hepph
hepth

astroph
astrophysics

erdos
networkscience

digg
dnc

facebook
slashdot
uc_irvine

caida
gnutella25
routeviews
residence

karate
adolescent

blogs
foldoc

airtraffic
newyork

openflights
contiguous

euroroad
chess

football
congress

bible
eat

wordnet
copperfield

proteins
reactome

yeast
asoif

sistercities
lesmis

pgp
wikipedia
hamsters

twitter
filmtrust

florida_dry
florida_wet

littlerocklake
chesapeake

Tr
ai

ne
d

on

Cross-Validation AUC Loss Matrix

0.0

0.2

0.4

0.6

0.8

Figure 11: AUC loss matrix.
2Additional information like the number of datasets per category can be found in Table 5.

Page 26 of 40

As for the distributions of the AUC loss shown in Figure 12, we can still see that with an
average of 0.14 and median of 0.12 the loss is sufficiently low to consider adequate.

Figure 12: Distribution of AUC loss across all networks. Mean and median are highlighted.
Trend is shown in blue, quartiles in light grey.

Additionally, we present Table 4, where we aggregate by category similar to in the last
section, only this time for AUC loss, where we have to take into account that the lower the
loss, the better. Again, the results are in line with the ones discussed in the section above.
However, in this case, co-authorship networks still perform among the best when it comes
to training, but among the worst in terms of validation. This is likely because when the
training and validating with networks of this category, the scores are quite high, whereas
training with other categories and validating with co-authorship networks, the scores are still
relevant, but not as high as in the former case.

Category
Training

Average AUC Loss

Validation

Average AUC Loss

Training

Min AUC Loss

Validation

Min AUC Loss

Animal 0.1909 0.0789 0.0991 0.0253

Citation 0.0518 0.1626 0.0121 0.0368

Coauthorship 0.0702 0.203 0.0317 0.085

Communication 0.1095 0.1197 0.0346 0.0291

Computer 0.1881 0.1097 0.0965 0.0201

Human Contact 0.241 0.1116 0.1103 0.0257

Human Social 0.1715 0.1204 0.0045 0.0558

Infrastructure 0.1818 0.1189 0.0899 0.0403

Interaction 0.1451 0.1537 0.0442 0.0629

Lexical 0.165 0.1863 0.1201 0.059

Metabolic 0.1432 0.1513 0.0711 0.0657

Miscellaneous 0.0934 0.1117 0.0431 0.0121

Online Contact 0.0728 0.1379 0.0367 0.032

Online Social Network 0.105 0.1185 0.0201 0.0291

Trophic 0.2286 0.2088 0.1332 0.1566

Average 0.1425 0.1420 0.0681 0.0476

Table 4: Loss results by category3. In each column, the top two results are highlighted in
green, while the bottom two results are highlighted in red.

Page 27 of 40

5.2.3 Tree-based algorithms for topology importances

Next, we set to understand how the topological features might affect the training performance
of a network, i.e., we answer the second research question. To do so, we train a basic decision
tree and random forest algorithms by using a network’s topology to fit the average AUC score
from Section 4.4. Then, we proceed to investigate the decision tree and random forest by
visualizing the top splits (discriminating decisions). This helps us understand which are
the most important topological features for transfer learning and how the values for these
features affect the performance of transfer learning.

Figure 13 shows the resulting tree fitting the topological features of networks to the average
AUC score as discussed in Section 4. We explored the tree at a low depth in order to be able
to inspect the most important features for transfer learning.

When it comes to the decision tree, we can see that a high number of triangles (per link)
appears to be very indicative of high performance, whereas low triangle count and low
transitivity seem to be causing low performance.

On the other hand, the random forest regressor suggests that low transitivity, low clustering
coefficients, and negative degree assortativity tend to result in lower performance. On the
other hand, a high clustering coefficient seems to be important for high performance, as long
as mean distance is low. (For high performance, clustering coefficient and transitivity are
usually correlated, so as long as a network has high clustering coefficient, it likely will not
have low transitivity).

3Additional information like the number of datasets per category can be found in Table 5.

Page 28 of 40

(a) Decision tree

(b) Random forest tree

Figure 13: Tree-based topology importances.

Using the most important topological features, we can now analyse the average AUC training
scores. Table 5 shows the relation between average AUC scores for each category, and the
average of their most relevant topological features. We can see that categories with both
high clustering and Gini coefficients tend to perform better. Additionally, triangle count,
clustering coefficient and transitivity show some correlation with the training performance.
Nonetheless, there appears to be nothing that implies that a category may perform better
or worse based on their average topologies.

Page 29 of 40

Category
Training

Average AUC

Triangle

Count

Clustering

Coefficient
Transitivity

Average

Degree

Gini

Coefficient

Degree

Assortativity

Category

Size

Animal 0.6698 2.2785 0.5843 0.5998 9.6234 0.2583 0.142 1

Citation 0.7967 2.251 0.2459 0.111 16.448 0.5664 -0.0345 4

Co-authorship 0.7791 3.6671 0.5419 0.3023 11.5925 0.5488 0.0579 4

Communication 0.7392 0.8163 0.0932 0.0485 7.5924 0.6522 -0.0626 5

Computer 0.6619 0.4066 0.1553 0.0071 4.2477 0.5922 -0.1833 3

Human contact 0.6085 0.8582 0.325 0.1981 7.8625 0.3229 -0.2197 2

Human social 0.6823 0.449 0.1467 0.1419 8.2355 0.2899 0.2513 1

Hyperlink 0.68 3.5924 0.3291 0.1696 20.5262 0.4645 -0.1167 2

Infrastructure 0.6676 1.1937 0.2184 0.1558 4.9783 0.3475 0.0958 5

Interaction 0.7072 1.225 0.2793 0.2174 10.3659 0.3908 0.0645 3

Lexical 0.686 1.4976 0.3938 0.1139 13.2331 0.5486 -0.0729 4

Metabolic 0.7077 7.2165 0.1733 0.1665 14.4818 0.5366 -0.159 3

Miscellaneous 0.7558 1.0493 0.2771 0.2057 4.8571 0.5184 -0.0957 3

Online contact 0.7777 4.1429 0.2038 0.2517 16.5235 0.669 0.0775 2

Online social 0.7451 1.3985 0.2627 0.1465 7.539 0.5627 -0.1501 3

Trophic 0.6219 3.4966 0.3609 0.3107 25.1591 0.3102 -0.2142 4

Table 5: Average scores and statistics by category. For every column, higher values are
shown in green, while lower values are shown in red.

5.2.4 Dissimilarities vs. AUC loss

In this section, we examine what structural network similarities between a train a test set,
lead to good transfer learning performance, i.e., the third research question. We do so
by comparing the AUC loss to how dissimilar the topological properties are between two
networks.

In order to analyse the ability to do transfer learning between a model and a different dataset,
we look at the topologies of the training and validation networks. We do so to understand if
there is a relationship between their similarity and the performance of the model. For this,
we compare how dissimilar two networks are by their topological properties, to the loss in
performance when performing transfer learning between both networks. This allows us to
understand what properties to look for in a pair of networks when trying transfer learning.
The features we investigated are the following:

• Number of nodes

• Number of edges

• Number of triangles (per link as to nor-
malise for larger networks)

• Maximum degree

• Average degree

• Diameter

• Gini coefficient

• Degree assortativity

• Clustering coefficient

• Transitivity

Page 30 of 40

Smaller dissimilarity values indicate more resemblance between a pair of networks. Since the
dissimilarity is calculated (by nontrivial normalization) on a per-feature-basis, each pair of
networks has a set of dissimilarity values independent form each other.

Figure 14 illustrates the relation of loss in performance when predicting missing links in one
network using a model trained for another, compared to the topological dissimilarities of
both networks. It is clear that there is a trend in almost all topological features (except for
maximum degree), where the more different two networks are, the more loss in performance
is likely.

Figure 14: AUC loss vs feature dissimilarity.

5.2.5 Pairwise feature distributions case study

Finally, we study other possible biases in the experiments. Namely, we set to explore pairs
of networks based on their node-based datasets used to train the predictive models (which
were explained in Section 4.2), as opposed to their topological properties. While there are
many different cases (one for every pair of networks), in this section we study only two: a
positive and a negative one, where we observed low and high AUC loss respectively.

First, we picked a pair of networks with low loss, astrophysics and networkscience; and
another pair with high loss, bible and newyork. Then, we train a simple random forest
classifier, similar to the one used in the stacking classifiers, for which we were able to calculate

Page 31 of 40

the feature importance, as to get an overview of which features were worth inspecting. These
are shown in Figure 15. As we can see, Adamic-Adar was the most important feature for
this model.

Figure 15: Feature importance of a model trained to predict the missing links in the
astrophysics network.

Next, we compared the distributions of both pairs of datasets, considering that two datasets
with similar distributions might result in lower loss in performance. For this, we considered
statistical tests such as the Mann-Whitney U and Kolmogorov-Smirnov tests. However,
the samples used were considerably larger than what is suggested for these tests. Thus,
we decided to present a visual comparison of the distributions in the form of box-plots, as
seen in Figure 16. This method is helpful to visualize the distribution of one feature of two
datasets side by side and analyse relevant statistics that the box-plot provides such as mean,
quantiles and the length of the legs (to consider outliers).

Page 32 of 40

(a) Adamic-Adar of good per-
forming networks.

(b) Jaccard coefficient of
good performing networks.

(c) Number of commmon
neighbours of good perform-
ing networks.

(d) Adamic-Adar of bad per-
forming networks.

(e) Jaccard coefficient of bad
performing networks.

(f) Number of commmon
neighbours of bad performing
networks.

Figure 16: Network categories distributions.

We can see that when it comes to the Adamic-Adar index, the distributions are more similar
in the pair of networks that perform better, with an almost identical median. When it comes
to the worse performing pair, the distributions are disparate. As for the other features,
there is no indication that the Jaccard coefficient can be relevant, since in both cases the
distributions are different. In the case of common neighbours, the distributions in the better
performing pair seem more comparable.

These findings can be an indication that a similar Adamic-Adar index distribution can lead
to better performance. Nonetheless, this would not be an ideal measure to take into consider-
ation before training or testing a classifier, since there is already some computation required
to get the necessary pairs of nodes and calculate their Adamic-Adar index.

Page 33 of 40

6 Conclusion

This study aimed to investigate transfer learning for link prediction. Specifically, we set
to find whether it was possible for a link prediction model to generate good performance
when tested on a different dataset. Moreover, we set to understand the underlying network
characteristics that result in better or worse transfer learning performance.

To do so, we introduced a technique to perform cross-validation training across a wide sample
of datasets. Through our experiments, we observed that transfer learning for link prediction
is possible and that some network categories perform better as source for training and others
to predict missing links on. The goal of this research was not to test the most state-of-the-art
machine learning algorithms, but merely to test the possibility of transfer learning, which we
successfully achieved. We did so by employing a simple classifier with default parameters, as
well as standard and limited predictors for the node-pair based data input into the predictive
model.

Furthermore, we found that clustering statistics are important indicators when picking a
network to be used for training a predictive model. Namely, a high number of triangles
per edge, or high clustering coefficient. When comparing the networks used for training
and testing, the dissimilarity of their structural properties could also play an important role
in the performance. Specifically, we found that when two networks show very dissimilar
topologies, it is likely that the performance of transfer learning is hindered.

In future work, we would like to explore more advanced machine learning techniques such as
automated machine learning to optimise the parameters of the classifiers. Additionally, we
could add more features to the input dataset of the algorithm.

Lastly, the recent advancements in artificial intelligence prove that there are huge advance-
ments being made that allow for pre-trained models to revolutionise entire industries. With
this knowledge, researchers across all domains of network science could build upon our re-
search to solve complex machine learning problems in networks.

Page 34 of 40

References

[1] Adamic, L. A. and Adar, E. Friends and neighbors on the web. Social networks, 25(3):
211–230, 2003.

[2] Albert, R. and Barabási, A.-L. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

[3] Barabási, A.-L. Linked: The new science of networks. American Association of Physics
Teachers, 2003.

[4] Barabási, A.-L. Network science. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 371(1987):20120375, 2013.

[5] Barabási, A.-L. The hidden networks of everything, 2023. URL https://www.youtub
e.com/watch?v=RfgjHoVCZwU.

[6] Bender, E. A. and Williamson, S. G. Lists, decisions and graphs. S. Gill Williamson,
2010.

[7] Biggs, N., Lloyd, E. K., and Wilson, R. J. Graph Theory, 1736-1936. Oxford University
Press, 1986.

[8] Bollobás, B. Modern graph theory, volume 184. Springer Science & Business Media,
1998.

[9] Bors, P. P. Topology-aware network feature selection in link prediction, 2022.

[10] Bradley, A. P. The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[11] Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., and Sutskever, I. Gen-
erative pretraining from pixels. In International conference on machine learning, pp.
1691–1703. PMLR, 2020.

[12] Daud, N. N., Ab Hamid, S. H., Saadoon, M., Sahran, F., and Anuar, N. B. Applications
of link prediction in social networks: A review. Journal of Network and Computer
Applications, 166:102716, 2020.

[13] de Bruin, G. J., Veenman, C. J., van den Herik, H. J., and Takes, F. W. Supervised
temporal link prediction in large-scale real-world networks. Social Network Analysis and
Mining, 11(1):1–16, 2021.

[14] Erdős, P., Rényi, A., et al. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17–60, 1960.

[15] Euler, L. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae
scientiarum Petropolitanae, pp. 128–140, 1741.

Page 35 of 40

https://www.youtube.com/watch?v=RfgjHoVCZwU
https://www.youtube.com/watch?v=RfgjHoVCZwU

[16] Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E. M., and Clauset, A. Stack-
ing models for nearly optimal link prediction in complex networks. Proceedings of the
National Academy of Sciences, 117(38):23393–23400, 2020.

[17] Grover, A. and Leskovec, J. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 855–864, 2016.

[18] Hosna, A., Merry, E., Gyalmo, J., Alom, Z., Aung, Z., and Azim, M. A. Transfer
learning: a friendly introduction. Journal of Big Data, 9(1):102, 2022.

[19] Kunegis, J. and Preusse, J. Fairness on the web: Alternatives to the power law. In
Proceedings of the 4th Annual ACM Web Science Conference, pp. 175–184, 2012.

[20] Kunegis, J., Staab, S., and Dünker, D. KONECT – The Koblenz Network Collection.
In Proc. Int. Sch. and Conf. on Netw. Sci., 2012.

[21] Kuo, T.-T., Yan, R., Huang, Y.-Y., Kung, P.-H., and Lin, S.-D. Unsupervised link
prediction using aggregative statistics on heterogeneous social networks. In Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 775–783, 2013.

[22] Leskovec, J., Huttenlocher, D., and Kleinberg, J. Predicting positive and negative links
in online social networks. In Proceedings of the 19th international conference on World
wide web, pp. 641–650, 2010.

[23] Liben-Nowell, D. and Kleinberg, J. The link prediction problem for social networks. In
Proceedings of the 12th International Conference on Information and knowledge man-
agement, pp. 556–559, 2003.

[24] Lichtenwalter, R. N., Lussier, J. T., and Chawla, N. V. New perspectives and methods
in link prediction. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 243–252, 2010.

[25] Lü, L. and Zhou, T. Link prediction in complex networks: A survey. Physica A:
Statistical Mechanics and its Applications, 390(6):1150–1170, 2011.

[26] Menon, A. K. and Elkan, C. Link prediction via matrix factorization. In Machine
Learning and Knowledge Discovery in Databases: European Conference, pp. 437–452.
Springer, 2011.

[27] Mignone, P. and Pio, G. Positive unlabeled link prediction via transfer learning for
gene network reconstruction. In Foundations of Intelligent Systems: 24th International
Symposium, pp. 13–23. Springer, 2018.

[28] Muniz, C. P., Goldschmidt, R., and Choren, R. Combining contextual, temporal and
topological information for unsupervised link prediction in social networks. Knowledge-
Based Systems, 156:129–137, 2018.

Page 36 of 40

[29] Narkhede, S. Understanding auc-roc curve. Towards Data Science, 26(1):220–227, 2018.

[30] Newman, M., Barabási, A.-L., and Watts, D. J. The Structure and Dynamics of Net-
works. Princeton University Press, Princeton, 2006.

[31] Newman, M. E. Clustering and preferential attachment in growing networks. Physical
review E, 64(2):025102, 2001.

[32] Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2016.

[33] OpenAI. Gpt-4 technical report. 2023. URL https://cdn.openai.com/papers/gpt-4
.pdf.

[34] Papadimitriou, A., Symeonidis, P., and Manolopoulos, Y. Fast and accurate link predic-
tion in social networking systems. Journal of Systems and Software, 85(9):2119–2132,
2012. Selected papers from the 2011 Joint Working IEEE/IFIP Conference on Software
Architecture (WICSA 2011).

[35] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[36] Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. Improving language
understanding by generative pre-training. 2018.

[37] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. CoRR, abs/2103.00020, 2021. URL
https://arxiv.org/abs/2103.00020.

[38] Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. Hierarchical text-
conditional image generation with clip latents, 2022.

[39] Schlender, T. An empirical investigation of an accredited supervised link prediction
method, 2021.

[40] Torrey, L. and Shavlik, J. Transfer learning. In Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques, pp. 242–264. IGI
global, 2010.

[41] Tsung, F., Zhang, K., Cheng, L., and Song, Z. Statistical transfer learning: A review
and some extensions to statistical process control. Quality Engineering, 30(1):115–128,
2018.

[42] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,

Page 37 of 40

https://cdn.openai.com/papers/gpt-4.pdf
https://cdn.openai.com/papers/gpt-4.pdf
https://arxiv.org/abs/2103.00020

and Polosukhin, I. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

[43] Wang, P., Xu, B., Wu, Y., and Zhou, X. Link prediction in social networks: the state-
of-the-art. CoRR, abs/1411.5118, 2014. URL http://arxiv.org/abs/1411.5118.

[44] WEI, Y., Zhang, Y., Huang, J., and Yang, Q. Transfer learning via learning to transfer.
In Dy, J. and Krause, A. (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 5085–
5094. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/wei18a.h
tml.

[45] Wikipedia, the free encyclopedia. Confusion matrix, 2021. URL https://en.wikiped
ia.org/wiki/Confusion_matrix. [Online; accessed April 2023].

[46] Wikipedia, the free encyclopedia. Economics gini coefficient2, 2021. URL https:
//en.wikipedia.org/wiki/File:Economics_Gini_coefficient2.svg. [Online;
accessed April 2023].

[47] Zhu, C. Chapter 6 - pretrained language models. In Zhu, C. (ed.), Machine Reading
Comprehension, pp. 113–133. Elsevier, 2021.

Page 38 of 40

http://arxiv.org/abs/1411.5118
https://proceedings.mlr.press/v80/wei18a.html
https://proceedings.mlr.press/v80/wei18a.html
https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/File:Economics_Gini_coefficient2.svg
https://en.wikipedia.org/wiki/File:Economics_Gini_coefficient2.svg

A Additional Material

Page 39 of 40

Network Category
Number

of Nodes

Number

of Edges

Max

Degree

Average

Degree
Diameter

90% Effective

Diameter

Median

Distance

Mean

Distance

Gini

Coefficient

Degree

Assortativity

Triangle

Count

Clustering

Coefficient
Transitivity

adolescent Human social 2539 10455 27 8.2355 8 5.3048 5 4.5165 0.2899 0.2513 4694 0.1467 0.1419

airtraffic Infrastructure 1226 2408 34 3.9282 17 8.0542 6 6.0979 0.3987 -0.0152 326 0.0675 0.0639

asoif Miscellaneous 796 2822 122 7.0905 9 4.1437 3 3.4108 0.6094 -0.1156 5651 0.4858 0.209

astroph Co-authorship 17903 196972 504 22.0044 14 5.0028 4 4.1743 0.5992 0.2013 1350014 0.6328 0.3178

astrophysics Co-authorship 14844 119651 360 16.1211 14 7.0119 5 5.1085 0.5767 0.2277 754159 0.6697 0.4253

bible Lexical 1707 9059 364 10.6139 8 3.9365 3 3.3763 0.5531 -0.0519 19936 0.71 0.1625

blogs Hyperlink 1222 16714 351 27.3552 7 3.2894 3 2.7222 0.622 -0.2213 101043 0.3203 0.226

caida Computer 26475 53381 2628 4.0326 17 4.637 4 3.9125 0.6281 -0.1946 36365 0.2082 0.0073

chesapeake Trophic 39 170 33 8.7179 3 1.9552 2 1.8286 0.3175 -0.3758 194 0.4502 0.2842

chess Interaction 7115 55778 181 15.679 13 4.831 4 3.9499 0.607 0.3705 108580 0.1794 0.1258

congress Interaction 219 521 33 4.758 7 3.8707 3 3.1837 0.5255 -0.3395 212 0.2553 0.1191

contiguous Infrastructure 49 107 8 4.3673 11 6.9838 4 4.255 0.2012 0.2334 57 0.4967 0.4062

copperfield Lexical 112 425 49 7.5893 5 2.9806 2 2.4724 0.4173 -0.1293 284 0.1728 0.1569

cora Citation 23166 89157 377 7.6972 20 6.9523 6 5.7382 0.5202 -0.0553 78791 0.266 0.1169

dblp Citation 12494 49578 713 7.9363 9 4.9979 4 4.3722 0.6563 -0.046 43896 0.1181 0.062

digg Communication 29652 84780 283 5.7183 12 5.4019 5 4.6804 0.626 0.0026 4282 0.0054 0.0056

dnc Communication 1833 4366 402 4.7638 8 3.9822 3 3.379 0.7166 -0.3088 9431 0.2157 0.089

dolphins Animal 62 158 12 5.0968 8 5.0523 3 3.4543 0.3283 -0.0549 94 0.2525 0.3079

eat Lexical 23132 297094 1062 25.6868 5 3.8524 3 3.4314 0.6739 -0.0477 409174 0.0888 0.0404

erdos Co-authorship 6927 11849 507 3.4211 4 3.8764 4 3.7914 0.646 -0.1156 5969 0.1239 0.0357

euroroad Infrastructure 1039 1305 10 2.512 62 33.3405 17 19.1812 0.2332 0.09 32 0.0189 0.0353

facebook Communication 43953 182384 223 8.299 18 6.8357 6 5.7112 0.584 0.216 122842 0.1149 0.0851

filmtrust Online social network 610 1119 67 3.6689 13 6.8845 5 5.0101 0.5247 0.017 725 0.1766 0.1883

florida dry Trophic 128 2106 110 32.9062 3 1.8775 2 1.7223 0.2506 -0.1044 8715 0.3346 0.3143

florida wet Trophic 128 2075 110 32.4219 3 1.878 2 1.7259 0.2527 -0.1117 8437 0.3346 0.3119

foldoc Hyperlink 13356 91470 728 13.6972 7 4.5814 4 3.9909 0.307 -0.0122 104221 0.3379 0.1132

football Interaction 115 613 12 10.6609 4 2.8281 3 2.3968 0.04 0.1624 810 0.4032 0.4072

gnutella25 Computer 22663 54693 66 4.8266 11 6.5485 6 5.6154 0.5417 -0.1734 806 0.0053 0.0045

hamsters Online social network 2000 16097 273 16.097 10 4.7972 4 3.6685 0.5488 0.0227 52664 0.5401 0.2295

hepph Citation 34401 420784 846 24.4635 13 5.2299 4 4.3953 0.5235 -0.0064 1276859 0.2856 0.1457

hepth Citation 27400 352021 2468 25.695 15 5.3557 4 4.2696 0.5658 -0.0305 1478698 0.3139 0.1196

karate Human contact 34 78 17 4.5882 5 3.44 2 2.4433 0.3854 -0.4756 45 0.5706 0.2557

lesmis Miscellaneous 77 254 36 6.5974 5 3.3951 3 2.6356 0.461 -0.1652 467 0.5731 0.4989

littlerocklake Trophic 183 2433 105 26.5902 4 2.6487 2 2.1278 0.42 -0.2649 11292 0.3239 0.3325

networkscience Co-authorship 379 914 34 4.8232 17 9.1821 6 6.2853 0.3734 -0.0817 921 0.7412 0.4306

newyork Infrastructure 264346 365050 8 2.7619 720 424.937 258 261.456 0.1891 0.1785 6529 0.0208 0.0254

openflights Infrastructure 3397 19230 248 11.3218 13 5.3951 4 4.193 0.7155 -0.0078 101112 0.4883 0.2483

pgp Online contact 10680 24316 205 4.5536 24 10.0699 8 7.6529 0.5918 0.2382 54788 0.2659 0.378

proteins Metabolic 1615 3106 95 3.8464 13 6.9724 5 5.0931 0.5777 -0.202 96 0.0063 0.0058

reactome Metabolic 5973 145778 855 48.8123 24 5.3904 4 4.142 0.6473 0.2414 4187395 0.6091 0.6055

residence Human contact 217 1839 56 16.9493 4 2.7857 2 2.3275 0.2456 0.096 3629 0.3628 0.3036

routeviews Computer 6474 12572 1458 3.8838 9 4.4492 4 3.6669 0.6069 -0.1818 6584 0.2522 0.0096

sistercities Miscellaneous 10320 17987 99 3.4859 25 10.1647 8 7.6539 0.5167 0.3515 6261 0.0478 0.1114

slashdot Communication 51083 116573 2915 4.5641 17 5.2801 5 4.5891 0.6826 -0.0347 18937 0.0201 0.006

twitter Online social network 22322 31823 238 2.8513 14 7.5594 6 6.1882 0.6147 -0.4901 8784 0.0715 0.0216

uc irvine Communication 1893 13835 255 14.617 7 3.6579 3 3.069 0.6519 -0.188 14319 0.1097 0.0568

wikipedia Online contact 7066 100667 1065 28.4933 7 3.7854 3 3.2495 0.7463 -0.0833 607279 0.1417 0.1254

wordnet Lexical 145145 656230 1008 9.0424 16 6.3189 5 5.362 0.5502 -0.0625 1144648 0.6035 0.0958

yeast Metabolic 1458 1948 56 2.6722 18 9.5891 7 7.0697 0.4626 -0.2095 206 0.0708 0.0518

Table 6: Network Topologies

Page
40

of40

	Introduction
	Related Work
	Preliminaries
	Networks and Graphs
	Network topology
	Link prediction
	Transfer learning

	Methodology
	Data
	Link prediction model
	Pairwise training dataset
	Features
	Stacked classifier

	Cross-validation training
	Performance metrics

	Experiments and results
	Experimental setup
	Results
	AUC scores matrix
	AUC loss matrix
	Tree-based algorithms for topology importances
	Dissimilarities vs. AUC loss
	Pairwise feature distributions case study

	Conclusion
	References
	Additional Material

