

Universiteit Leiden

ICT in Business and the Public Sector

UML Use Case generation from textual requirements using
NLP techniques

Name: Anna Roussou

Student-no: s2955156

Date: 15/11/2022

1st supervisor: Dr. Guus J. Ramackers

2nd supervisor: Dr. Suzan Verberne

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)

Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

Business establishments have come to realise the benefits of involving users in the software
development life cycle. User requirements, expressed in natural language, are gathered and
transformed into UML Use Case models, which represent the interaction between the users

and the system. To reduce the time and cost needed for this process, this research presents an
NLP pipeline that generates UML Use Case metadata from textual user requirements. The
pipeline consists of transformer-based models, trained with supervised learning, and rule-

based matching. To train the models, we synthesised a new data set that consists of
requirements texts, use cases and user stories. We annotated the “Actors”, “Systems” and “Use
Cases” in these documents, as well as the relationships between these use case elements. To
extract “Preconditions”, “Post-conditions” and “Triggers”, we created rule-based patterns

that match the respective phrases in a requirements text. Furthermore, we integrated the NLP
pipeline into the Prose to Prototype project, and implemented a UML use case metadata

model, together with a set of APIs, to facilitate the future development of a UML Use Case
diagramming tool.

Acknowledgements

First of all, I would like to thank my first supervisor and mentor, Dr. Guus Ramackers, who
entrusted me with the task of developing a UML Use Case modeller for the P2P project. He

was always there when I needed him and he helped me overcome all the obstacles I
encountered. He kept me motivated throughout the whole project and he sought to improve
my general skillset. As a UML expert, he helped me grasp the fundamental ideas behind the

creation of UML Use Cases and create proper annotations for the dataset. I would also like to
thank my second supervisor, Dr. Suzan Verberne, because she showed a real interest in this

research project. As an NLP expert, she provided guidance and she helped me understand the
NLP concepts. With her expert opinion and keen eye for detail, I managed to create a quality

data set and train the NLP models properly.

I would also like to thank Willem-Peter van Vlokhoven, Pepijn Griffoen and Max Boone, for
their assistance in integrating the Use modeller into P2P system. I would be lost without
them!

Finally, I would like to thank Greg, Nala and Chelf for their constant support during this
challenging period.

Contents

1 Introduction ..6

1.1 Problem statement ..6

1.2 Research objectives ..7

1.3 Research method ..8

1.4 Academic contribution ...9

1.5 Overview ..9

2 Background and Related Work...10

2.1 UML Use Case models ...10

2.2 User Stories ..11

2.3 Prose to Prototype project ..12

2.4 Related Work ..13

2.5 NLP models architecture ..14

2.5.1 Transition-based Named Entity Recogniser ...15

2.5.2 Named Entity Recogniser with RoBERTa-base transformer18

2.5.3 Span categoriser ..19

2.5.4 Relation extractor ...20

3 Data ..22

3.1 Data Collection ...22

3.1.1 Public Requirements Data Set (PURE) ..22

3.1.2 User Stories Data Set ..23

3.1.3 Tera-PROMISE ..23

3.2 Data Annotation ..24

3.2.1 Annotation tools ...24

3.2.2 Annotation guidelines ...25

3.2.3 Annotation process ...26

3.2.4 Annotation statistics ...29

4 Methods ..31

4.1 NLP Supervised Learning techniques ..31

4.1.1 Implementation and Libraries ...32

4.2 Rule-based matching ..33

5 Experiments and Results ..35

5.1 Actor, System and Use Case extraction ..35

5.1.1 NER with Tok2Vec component and Span Categorisation35

5.1.2 NER with Transformer component ..38

5.1.3 Token-Level evaluation of the Transformer – NER model39

5.2 Relation Extraction ...40

5.3 Rule-based Matcher ..41

5.4 Evaluation with out-of-sample data ..42

6 Integration into Prose to Prototype ...48

6.1 System Design ..48

6.2 Use Case model specification ...48

6.2.1 UML Use Case metadata generation pipeline ..48

6.2.2 Use Case metamodel ..50

6.2.3 Use Case model methods ..51

7 Discussion...52

7.1 Limitations ..53

7.2 Future work ..53

8 Conclusion ..55

References ..56

Appendix ..61

Appendix A ...61

Appendix B ...64

1 Introduction
In the first chapter we present an overview of the research project, from its conceptualisation
to its realisation. We first state the problems that arise during the software requirements
elicitation phase regarding the interaction between business stakeholders and IT experts.
Then, we present the research objective, namely a solution that facilitates the communication
among stakeholders during the software development process. To highlight our research
approach, we list a series of research questions that were our main focus in this project. We
also describe the research methodology followed in this research project, as well as our
academic contribution. Finally, we provide a chapter overview of the thesis.

1.1 Problem statement

When developing a new system, large and small corporations follow the Software
Development Lifecycle (SDLC) framework to tackle the transformation of complex business
requirements into a new software system [1]. The SDLC framework consists of six phases:
plan and requirements analysis, design, implementation, testing, deployment and
maintenance.

During the planning and requirements analysis phase, business experts and senior
stakeholders are being interviewed or participate in workshops in order provide information
regarding the expected functionalities of the developed software [2]. This information is
provided in natural language, in a textual or vocal form. This stage in SDLC is considered to
be the most fundamental, as it is the pilar on which the project will be built.

After gathering user and system requirements, the next phase of the SDLC framework is to
design the system features based on these requirements. The designs derived from the
requirements have the form of UML models and pseudo-code and their functionality is to
provide structured and clear information to the system developers.

In agile development methods the steps of the SDLC framework are implemented iteratively,
namely over multiple short sprints. This approach deliberately involves business experts in
the whole system development life cycle. Requirements in the form of user stories and use
case models are being gathered and prioritised at the start of each iteration and at a later state
of the program increment, a testing phase is being added as the final task of each iteration.
During testing phase, users are being presented with a working demo and provide feedback
based on how well the demo fits the requirements. As a result, many changes in system
requirements occur, which need to be manually documented and modelled by IT experts.

Although software systems are developed based on the specifications provided by the
business experts, their involvement in the development process is challenging. The reason is
that the available UML modelling tools are addressed only to software developers and are not
equipped with functionalities to facilitate communication and rapid feedback between
business stakeholders and IT experts. Furthermore, the currently available UML modelling
tools do not provide automated model building and model adaptations. This procedure,
especially in large projects, becomes a challenging and time-consuming task for the IT
experts, while also increases project costs.

The majority of the early solutions presented in the research field, require constant human
intervention during the process of UML model generation [3], leading in poor results
regarding time and cost reduction. On the other hand, proposed solutions that opted for 100%
automated requirements-to-UML model transformation are only feasible if the text input has,
at least, a semi-structured form.

The proposed solution to the problems stated above is the development of a web-based UML
Use Case modeller that is focused on transforming unstructured textual requirements to UML
Use Case models with the utilisation of advanced NLP techniques. Besides unstructured text,
requirements in the form of use case and user story templates are also considered. To address
the challenge of the ambiguity of natural language, rule-based NLP techniques supplement
the model-based NLP algorithms. To reduce human intervention, most of the manual tasks
will be automated. However, this research intends to present an interactive human-in-the-loop
approach, as a user assisted information system will perform better on the ambiguity
challenge, and also address the issue of incompleteness of specifications texts in the early
requirements analysis stages [4].

The UML Use Case generator will be a component of the larger Prose to Prototype tool,
among other UML modellers such as Class and Activity [4].

1.2 Research objectives

The main objective of this research is to reduce time and cost for both the users and the
system analysts by enabling rapid development of high-quality requirements. In addition, it
aims to involve business experts and users more effectively in the requirements analysis stage
by providing them with tools that enhance interaction among them. This research focuses
specifically on the development of a UML Use Case transformation tool, since use cases
represent system requirements from the user’s perspective. The derived research question is:

How can the requirements definition process be improved by implementing NLP techniques to
automate the development of UML Use Case models?

Subsequently, available model-based NLP tools will be studied and their fit to this project
will be evaluated. These frameworks can be used for a wide variety of NLP tasks such as
sentiment analysis, question answering and named entity recognition. To fine tune the model-
based tools for this specific project, rule-based models that use linguistic rules and patterns
will be utilised. This hybrid approach will answer the question:

Which combination of ruled-based and model-based techniques best fit this application?

We base the first research objective on these research questions, namely:

RO1: Develop a prototype to transform requirements texts and user stories into a UML use
case model using a combination of supervised NLP and rule-based techniques.

To train the NLP models with supervised learning we need a large annotated data set that
encapsulates specific aspects of business requirements documents and user stories. The data
set will also facilitate the development of rule-based models, as it will provide insight about
the rules that we need to create to extract relevant information. Therefore, we also need to
consider:

How can we build a quality data set for training, evaluation and development of the UML Use
Case transformation model?

The actors presented in the use case requirements texts make use of different functionalities in
the software. These functionalities must be adequately represented in the prototype, to allow
users a better understanding of the software implementation. As such, it is also important to
explore:

How can the prototype reflect software requirements from multiple points of view?

The research questions stated above lead to the definition of the second research objective:

RO2: Research, synthesise and annotate a requirements data set to adequately train and
evaluate NLP models.

Although the objective of an automated solution is to minimise human intervention, flawless
information extraction from texts cannot be achieved fully, mainly due to the ambiguity of
natural language. To overcome this issue, this research intends to involve the human element
mainly in tasks that further improve the performance of the application. The derived question
is:

How can a human-in-the-loop approach augment the automated solution?

The third research objective is based on the last research question:

RO3: Explore available models and methods that best fit the human-in-the-loop approach.

1.3 Research method

The research method applied in this this is Design science, a research method that produces
knowledge in a domain that derives from the design and development of a new solution to a
research problem rather than review and evaluation of existing solutions and is usually
implemented in Information Systems. According to Peffers et al. [5] design science “includes
six steps: problem identification and motivation, objectives for a solution, design and
development, demonstration, evaluation, and communication.”

Problem identification and motivation: In the first chapter, the research problem of
minimising manual tasks during the requirements analysis phase of SDLC is defined, and the
value of utilising the available NLP tools and relevant datasets to produce a solution is
presented.

Objectives of a solution: The objectives of the research paper are inferred from the problem
definition. This part includes the characteristics of the artifact that we developed, namely an
application that uses NLP techniques to extract information from requirements and transform
them into UML Use Case models. In the second chapter, the proposed solution is compared to
the current ones in order to highlight the advantages of the solution and further promote its
importance in the academic, as well as, the business world.

Design and development: In the second chapter, we describe the architectural design of the
NLP models and in the third chapter we present the development of an annotated

requirements data set. The development of the proposed solution is presented in the fourth
and the fifth chapter.

Demonstration: In the sixth chapter that includes the integration of the model to the ngUML
project, a concrete example accompanied by detailed documentation is presented to show the
efficacy of the model to solve the problem.

Evaluation: In the fifth chapter, we present the results of the experiments with various models
and we evaluate and discuss their performance. In the seventh chapter, the observed results
are compared to the objectives of the solution described in the previous chapters in the
seventh chapter.

Communication: The utility and novelty of the proposed solution are communicated in
Chapter 7, as well as its current limitations and proposed future improvements, to motivate
researchers and relevant audiences to study and further develop the artifact.

1.4 Academic contribution

The academic contribution of this research is to provide a solution that facilitates the
communication between IT and key-users, that involves the latter more in the software
development life cycle. The proposed solution is the development of a pipeline that
transforms user requirements and user stories into Use Case models. The pipeline consists of
novel NLP models that are trained with supervised learning on a custom created data set that
has been annotated by us. For this research topic, this is the first time that supervised learning
is used to train models on a large data set. Furthermore, this research aims to offer useful
insight of the techniques and challenges of developing such a tool. It also provides motivation
to future researchers to experiment with it and further improve it. More specifically, the
exploration of multiple NLP models, will provide useful knowledge regarding the suitability
of those tools for the purposes of transforming text into UML models.

1.5 Overview

Chapter 1 of this thesis was an introduction to the research project. We described the problem
and outlined the proposed solution. In the first half of Chapter 2 “Background and Related
Work”, we provide information about UML Use Case models and User Stories, as well as
information about the Prose to Prototype project and other research projects with objectives
similar to ours. In the second half, we present the architecture of the NLP models used for
training. Chapter 3 is dedicated to the data set used to train the models. We present the
collected requirements texts and user stories and describe the annotation process. In Chapter 4
we show the methods that were used for the information extraction, namely Named Entity
Recognition and Relation Extraction with supervised learning for Actors, Systems and Use
Cases and Rule-based matching for Triggers, Preconditions and Postconditions. In Chapter 5,
we list our experiments with various models and we present the results. Furthermore, we test
the models with out-of-sample data and evaluate their performance. In Chapter 6 we describe
the integration of the UML Use Case modeller to the ngUML project. In Chapter 7 we discuss
the results, limitations and future work. The thesis is concluded with Chapter 8, where we
present the key takeaways of this research project.

2 Background and Related Work

This Chapter is dedicated to presenting the basic concepts of UML Use Case models and User
Stories, as well as information regarding Prose to Prototype project. We also present the
architecture of the machine learning models that we trained to build the Use Case transformer
and we provide an overview of the research previously conducted related to the subject.

2.1 UML Use Case models

The first steps of a system development process are the definition and modelling of
requirements. During this phase, product requirements are clearly defined, documented and
modelled. A Software Requirement Specification document is compiled for the
documentation, while standardised UML models are developed by the IT team. UML Use
Case models in particular, specify the required functionalities of the system from the user
perspective, by showing the relationship between a set of actors and the tasks they perform
[6]. A simple example of modelling a textual requirement as a UML Use Case is the
following:

Dinner at a Restaurant: The customer arrives at the restaurant and the receptionist confirms
his/her reservation. Once the customer is seated, a waiter hands him/her the menu. The client
reads the menu and gives hir/her order to the waiter. The customer can optionally order wine
to accompany his/her dinner. The waiter takes the customer’s order and informs the chef who
cooks the food. When the food is ready, the waiter serves the food to the customer and also
his/her wine in case it was ordered. After finishing his/her meal, the customer pays the bill.

The textual form of this requirement can be represented as a UML Use Case model comprised
of the necessary Use Case Elements and their relationships as shown in Figure 1.

The first Use Case element is the Actor, a type of entity that can be a human, an organisation,
a device or an external system that interacts with the system [7]. In this example the Actors
are the Waiter, the Customer, the Receptionist and the Chef. An Actor can be associated to
one or many Use Cases, the second element of a UML Use Case model. Use Cases are verb
phrases which specify how the Actors interact with the system. For example, the act of the
Chef cooking the food ordered by the Customer is represented by the Use Case “cook Food”
which is linked with an Interact relationship with the Actor “Chef”. Apart from the Actor, the
Use Cases can be related to each other through Extension and Inclusion. An extending Use
Case is a Use Case that can be optionally “inserted into the behavior defined in the extended
Use Case” [7]. In the Restaurant example, the “order wine” Use Case is extending the “order
food” relationship, as an optional action of the Customer. On the other hand, the behavior of
an included Use Case is part of the behavior of its including Use Case and “must be available
in order to completely describe the included Use Case” [7]. For example, the customer can
read the menu to decide his/her order, but first he/she has to get the menu from the waiter. At
the Use Case model this requirement is represented with an including Use Case “read menu”
that is related to the included Use Case “get menu”. The interactions between Actors and Use
Cases are set on a defined interface, called System Boundary, in this case the Restaurant.

 Figure 1 Example of a UML Use Case model

A UML Use Case model often contains additional information derived from the requirements,
conditions that indicate the beginning and the end of a Use Case. The preconditions have to
be true for a Use Case to begin and the post-conditions describe the state of the Actors and the
System when the Use Case ends. Finally, a Trigger describes a time or a change event that
triggers the start of the Use Case. These conditions are not part of the Use Case diagram, but
are described in a Use Case template that supplements the diagram. For example, a
Precondition for the Use Case “confirm reservation” would be, “Customer must make a
reservation before visiting the restaurant.” A Trigger for the Use Case “read menu” is
“Customer is seated”. Finally, a Post-Condition for the Use Case “serve food” would be, “The
waiter has received the cooked food from the Chef and has served it to the Customer.”

A UML Use Case model consists of other components such as the Exceptions and the
Alternative Flows but will not be described as, these detailed aspects of the UML Use Case
model could not be addressed within the timeline of this research project.

2.2 User Stories

 As the elicitation of requirements, when developing a new system, is a challenging task due
to the ambiguity of natural language, companies have employed various ways to structure the
requirements in a way that will facilitate the software development phase. One of the
solutions, especially used in Agile methodology, is to build the requirements in a semi-

structured way, using a User Story template. The User Story template represents a
requirement that is focused on the user and his/her interaction with the system [8]. A
commonly used User Story template [9] has the following structure: As a [type of
User/Actor], I want to [interaction with the System/Use Case], so that I can [goal of the
interaction/Post-Condition]. A User Story example is: “As a Claims Administrator, I want to
have access to the customer’s insurance data, so that I can properly evaluate the claim.”

 Figure 2 “Connextra” User Story modeled into a UML Use Case

Other User Story templates emphasise the added value of a requirement: “In order to [goal of
the interaction/Post-Condition] as a [type of User/Actor], I want to [interaction with the
System/Use Case].” [10] , or provide a more detailed description of the requirement but
utilising the “Five Ws” framework: “As [who][when][where], I [what] because [why].” [11].

2.3 Prose to Prototype project

The objective of this research project was to build a UML Use Case transformer as part of the
Prose to Prototype wider project. P2P aspires to be a development tool that “provides
automated support for synthesising UML models from requirements text expressed in natural
language” [4] by combining state-of-the-art NLP and AI techniques, and a human-in-a-loop
approach to tackle the ambiguity of the natural language. The synthesised UML models can
be executed as runnable prototypes that allow end-users and domain experts to evaluate the
system specification.

The development tool consists of several subsystems as shown in Figure 3: The NLP pipeline
includes a Speech to Text component, which transcribes audio fragment that describe
requirements, a Text Condensation component, which summarises superfluous textual
requirements, a Text Classification component, which classifies text fragments into UML sub-
model “buckets” and a Specification Mapping component that applies Part-of-Speech tagging
and keyword analysis to the bucketed input, to generate UML specification models [4]. The
UML Use Case transformer is a part of the Specification Mapping component which also
includes a UML Class and a UML Activity modeller.

 Use Case Template
Post-Condition Claims Administrator has evaluated the

claim.

 Figure 3 Prose to Prototype architecture

The Human-in-the-Loop subsystem which allows users to interact with the NLP pipeline
consists of the following components: a Conversational component which enables users to
converse with the system, a Recommender component with proposes instances that might
interest the user, a UML modeller which allows the user to visualise and edit the generated
models from a visual perspective and a Runtime Editor which allows the user to make
changes directly to the UML model and consequently the running prototype [4].

Additionally, the Domain Knowledge component contains existing UML models and
requirements texts organised by business and application domain, the Artefact Management
component is used to store several artefacts such as UML models, requirement texts and code
snippets and the Import/Export component allows the user import the specification models
into other tools for application implementation [4].

2.4 Related Work

The challenge of reducing time and effort required in the first phases of system development
has been the objective of many researchers that specialise in the Information Systems domain.
Research focuses mainly on transforming text requirements, usually provided in a semi-
structured form, into various analysis models, including UML Use Case models.

In 2009, Deeptimahanti & Babar developed the “UML Generator from Analysis of
Requirements” (UMGAR) tool. The model builds UML models, such as Use-case diagrams,
Analysis class models, Collaboration diagrams and Design class models from requirements
texts. The generator is built using a rule-based approach by utilising various natural language
processing tools, like the Stanford Parser [12] that was used to generate a parse tree for each
requirement to extract UML Class and Use Case elements, Wordnet [13], an English language
lexical database to perform morphological analysis and JavaRAP [14] that replaces pronouns
with its correct noun form UMGAR parses the extracted information generating XMI files
that can be importing into suitable UML tools for visualising the generated models [15].

In 2012, More & Phalnikar presented a desktop tool called “Requirement analysis to Provide
Instant Diagrams” (RAPID). RAPID’s architecture is based on UMGAR’s syntactic
reconstruction rules for extracting information from requirements documents. OpenNLP POS
tagger was used for the lexical parsing, while OpenNLP Chunkier, which chunks a sentence
into phrases, was used for the syntactic parsing [16]. Domain ontology is being used to
facilitate the performance of concepts identification [17].

 In 2017, Narawita et al. proposed the “UML Generator” system, which generates use case
and class diagrams from text requirements. The authors highlight the need of auto-generating
UML based documentations to achieve cost and time reduction in the requirements analysis
phase [18].

Yue et al. composed a systematic review of transformation approaches between user
requirements and analysis models. They compare and evaluate 20 primary studies using a
conceptual framework that provides common concepts and terminology [19]. Moving in the
same direction, Osman et al. focus their research on literature works that use NLP techniques
to transform textual requirements into visual models. Their study describes the different tools
used in the information extraction process, as well as the issues of each proposed approach
[3].

Ramackers et al. presented a vision of an automated development tool that creates UML
models from textual requirements with the utilisation of machine learning and more
specifically NLP techniques, while enabling human interaction with the system to further
improve the generated UML models [4]. One of the first components of this tool was
designed and developed by Tang, namely a UML Class Generator that receives functional
requirements as text/audio input and transforms them into UML Class metadata [20].

Other studies focus on specific forms of user requirements, for example user stories. In 2017,
Lucassen et al. showcased the extraction of conceptual models from User Stories by utilising
the Visual Narrator tool, a component of the Grimm method. The Grimm method is used for
requirements quality validation, elicitation and analysis. They separate each User Story into
three parts: “role, means and ends” and use natural language processing heuristics to extract
the conceptual models from the requirement texts [21].

In 2018, a process of automatically transforming User Stories into UML Use Case Diagrams
using NLP Techniques was proposed by Elallaoui et al. For this purpose, TreeTagger parser
was used for applying POS tags and categorising terms. The extraction algorithm creates new
actor and use case elements which are then being transformed into a UML Use Case diagram
[22].

2.5 NLP models architecture

As the aforementioned research projects rely on NLP heuristic rules to address the problem of
transforming natural language requirements into UML models, we experimented with a
different approach, namely using supervised learning to perform Named Entity Recognition
and Relation Extraction on an annotated data set. By training models to recognise Actors,
Systems, Use Cases and their relationships, we managed to create a pipeline that extracts this
information from a requirements text and transform it into UML Use Case metadata.

To evaluate the performance of the trained models we compared the scores of three metrics:
Precision, which calculates how many of the predictions the model categorised as positive
were actually positive, Recall, which shows how many positives the model predicted
compared to the actual positives and F1, which shows the harmonic mean between Precision
and Recall.

The models that were used for training are part of spaCy’s library and their architecture is
presented in the next subsection.

2.5.1 Transition-based Named Entity Recogniser
SpaCy’s overall framework for named entity recognition is rooted on a transition-based
approach inspired by shift-reduce parsers, which was presented in the paper “Neural
Architectures for Named Entity Recognition” by Lample et al. [23]. Instead of having each
word as the object of interest and attach a tag to this word, the algorithm starts with having all
the words on buffer and two empty stacks, the output stack and the stack that will contain
each word in question. It then defines some actions that match the following transitions: a
SHIFT transition where a word is moved from the buffer to the stuck, an OUT transition that
moves a word from the buffer directly to the output stuck and a REDUCE(y) transition that
pops all the items from the stack, labels them with the label y and moves this chunk of labeled
words to the output stack [23]. An example of this approach is presented in Figure 4 that is
included in the referenced paper.

Figure 4 Transition sequence for Mark Watney visited Mars with the Stack-LSTM model [23]

SpaCy’s approach has an action that corresponds to the beginning move and fixes the label at
the start of the entity and also their transition system matched the BILUO tagging scheme,
because it discriminates better between different classes. The letters in BILUO stand for
Beginning, Inside, Last, Unit and Outside respectively. SpaCy’s transition-based algorithm
also assumes that the most important information regarding the identification of entities is
close to the initial tokens, making it a bad fit for a task where the entities are long and the
decisive tokens are in the middle of the span [24].
The statistical model that is used to predict the transitions is a combination of different neural
network techniques that build the “Embed, Encode, Attend, Predict” framework [24].

The embedding task of the framework, shown in Figure 5, is to map long, sparse, binary
vectors into shorter, dense, continuous vectors in an embedding table using “one hot”
encoding. Word embeddings are used because it makes it easier to perform similarity
operations and feed them forward in a neural network. The vectors are relatively short,
ranging from 64 to 300 units long. Word embeddings are used because it makes it easier to
perform similarity operations and feed them forward in a neural network.

 Figure 5 Embedding step [25]

The first step in word embedding is the “doc2array” procedure, where four attributes are
extracted from each token in a document: an ID for the normalised form of the string, the
prefix, the suffix and a word shape feature that replaces all the digits with the letter “d”, the
lowercase characters with “w” and the uppercase characters with “W”.
After the feature extraction stage, a matrix with four numerical columns is created where each
row is a word in the document. To embed each of these columns into a table a “hashing trick”
is used that is called “Bloom embeddings”. Instead of having a fixed inventory for all the
known words in the embedding table and only one out-of-vocabulary vector, each word is
represented by the sum of four different hashes, so the vast majority of the words will end up
with unique representations.
The result is the embedding table that consists of a separate embedding for each of these
features that are then concatenated together using four functions. The concatenated input is
fed forward to a multi-layer perceptron that consists of one hidden layer and a maxout
activation function. The result is a 128-dimension vector per word that takes into account sub-
word features and is able to learn an arbitrarily-sized vocabulary.
The encoding task of the framework (Figure 6) deals with the sequence of vectors, as the
linear order of words is very important. To make the word representations context-specific a
sentence matrix is being used which consists of the dependent vectors. Each row of the matrix
represents the meaning of each word in the context of the rest of the sentence [24].

 Figure 6 Encoding step [25]

 Instead of using the traditional long-short memory recurrent neural network (BiLSTM),
spaCy uses a convolutional neural network (CNN) to perform this operation based on the
work of Collobert et al. in their publication “Natural language processing (almost) from
scratch” [26]. The fundamental building block is a trigram CNN layer which takes a window
on either side of the word and concatenates them together. As mentioned above, each word is
represented by a 128-dimension vector, so after taking into account the neighboring words, a
vector with 384 is created. Then, a multi-layer perceptron is used to map that representation
into 128 dimensions. The result is an output vector that includes information about the target
word and two words, one from each side of the target word, that has the same dimensionality,
in order to relearn the meaning of the target word based on its neighbors. By continuing
stacking this process, at the fourth layer, information is drawn by potentially four words on
either side, thus draw information about the word’s vector based on its surrounding context,
without taking into account the whole document. Lastly, residual connections are used to the
output of each of these convolutional layers, so that the output space of each of the
convolutions is similar to the output of the input, in order to roughly preserve the original
input representation [24].

 Figure 7 Attention step [25]

The third model is an attention layer, shown in Figure 7, that takes as an input the matrix
representation previously produced in the encoding step, and reduces it into single vector,
creating a state that will be passed onto a standard feed-forward network for the prediction
task. The attention model works manually extracts features with a translation layer into the
hidden layer. It takes an input query vector for each word in the sentence and learns a
weighted summary of the word in the buffer, the word before it, the first and last words of the
previous entity and the last word of the entity before that. The features considering the
previous entities can be arbitrarily far back in the document, in comparison to a CRF model
which is bounded in the number of previous decisions that is conditioned on.

Finally, after calculating the features for the state, a multi-layer perceptron is used to get the
action probabilities (Figure 8). Then, a procedure checks which actions are valid given the
state and decides with is the best valid action to perform.

 Figure 8 Prediction step [25]

A cost, which represents the number of new errors that will occur if this action is taken, is
assigned to each action. If the predicted action is not zero-cost, the weights are updated, so
that in the future this particular action will cost more and the best zero-cost action will score
higher. By making the predictions this way, the algorithm will always choose the action that
scores higher when dealing with a particular state. The scores are not scaled, so they cannot
reflect the wider parse quality and cannot be used to obtain confidence scores and set
thresholds. [24].

After making a prediction, the algorithm then moves to the next state, proceeding forward in
the loop, until there are no states left in the buffer. Figure 9 shows the pseudocode of the loop.

 Figure 9 Pseudocode of the overall parsing loop [27]

Besides the previously described models, a listener is used as a sublayer to pass the
predictions from the Tok2Vec components into the ner component and to communicate the
gradients back upstream. The listener works by caching the Tok2Vec output for a given batch
of Doc s [28].

2.5.2 Named Entity Recogniser with RoBERTa-base transformer
This pipeline uses a transformer model combined with the transition-based Named Entity
Recogniser with the use of a TransformerListener layer instead of using the Tok2Vec
component and Tok2VecListener sublayer. The advantage of transformers compared to
alternatives like CNN or LSTM is that they scale up better when it comes to adding more
parameters.

The transformer model was first introduced in the paper “Attention is All You Need” by
Vaswani et al [29]. The model consists of the same number of encoders and decoders and all
encoders are identical in structure.

As shown in Figure 10, each decoder contains two sublayers, a self-attention layer and a feed
forward neural network. Each input sequence flows first through the self-attention layer,
which is responsible for looking at other words in the sentence, facilitating a better
representation of the word. Then, the output of the self-attention layer is fed to the feed-
forward neural network. At the bottom encoder the embedding of the input sequence occurs
and each embedded word is fed in the layers of the encoder through its own path. To preserve
the order of embedded words, the transformer has a vector to each input embedding that
follows a pattern the model learns. Additionally, each sub-layer of the encoders has a residual
connection and a layer normalisation operation [30].

Figure 10 Transformer with two stacked encoders and decoders [30]

The decoder consists of these two sublayers but in addition, between them there is an extra
attention layer that assists the decoder to recognise the important information of the input
sentence. The output of the top encoder is transformed into attention vectors and is initially
fed to the encoder-decoder attention sublayer and then flows to the other sublayers. Finally, a

linear layer which is a fully connected neural network, creates a much larger vector, called
logits vector, by projecting the vector produced by the decoders. At the logits vector each cell
corresponds to the score of each unique word. Then, the SoftMax function turns the scores
into probabilities and the cell with the highest probability is chosen [30].

SpaCy’s transformer-based pipelines use the Hugging face Transformers library and PyTorch.
For the English transformer pipeline, the default model used is the RoBERTa-base model
published by researchers at Facebook [31]. The model is based on Google’s BERT model
[32] and modifies key hyperparameters by removing the next-sentence pretraining objective.
It is trained with much larger mini-batches and learning rates and is pretrained using self-
supervised learning on a large corpus of English data [33]. The model is intended to be fine-
tuned on downstream tasks like NER and it works best on tasks that use the whole sentence to
make predictions. Before adding the transformer model in the pipeline, spaCy uses their
machine learning library Thinc which works as interface layer between spaCy and other
machine learning libraries. For example, when using the HuggingFace transformers library,
Thinc wraps up their PyTorch models so that they can be plugged into a spaCy component
and behave the same as models developed by spaCy.

In general, although transformer-based pipelines have more dependencies and run on GPU
which is more expensive and less reliable, they greatly improve the results of various natural
language processing tasks.

2.5.3 Span categoriser
The span categoriser is an experimental spaCy component, that was developed to provide
better predictions in cases the entities are phrase sentence fragments and not token-based tags
or there is a label overlap. Moreover, the named entity recogniser assumes that the most
informative words are close to their starting tokens, while the span categoriser uses the full
context of a span to learn its task [34].

The span categoriser can be divided into two parts: the suggester and the classifier, as shown
in Figure 11. The suggester is a function that extracts span candidates from the input text, that
may or not overlap, and feeds them to the classifier. Suggester functions can be written
manually and can be completely rule-based depending on annotations from other components
or the default built-in n-gram suggester functions can be used, in which the n-gram sizes to
get suggested for every extracted span can be defined. By manually writing suggester
functions, the model can be biased towards precision or recall, depending on the use case
[34].

The classifier takes as an input the suggested spans and predicts the probability for each label.
It consists of three layers: The embedding layer, where the tok2vec representation of the
respective span is obtained, the pooling layer, where the sequences are reduced to make the
model robust and the context is encoded using a window encoder, the Scoring layer, where
multilabel classification is performed on the pooled spans and model predictions and label
probabilities are returned [34].

Unlike the named entity recogniser, the span categorisation model predicts label probabilities
over the whole span, allowing access to confidence scores to threshold against.

2.5.4 Relation extractor
The relation extractor is based on a binary relation extraction method that examines two
entities in a document and determines if these entities are related and if they are related, the
type of relation that links them [35]. The model is built using the machine learning Thinc
library and takes a document as input and outputs a two-dimensional matrix of the predicted
relations. This model is then used to power a pipeline is implemented that translates the
predicted scores into annotations. The architecture of the relation extractor is shown in Figure
12.

The first layer of the model transforms each document into a list of tokens and includes an
embedding layer that can either be a Tok2Vec component or a Transformer. A pooling layer
summarises the token vectors into entity vectors, as entities can consist of multiple tokens. A
method then generates pairs of entities that will be classified as being related or not. The two
entities have to be within a predefined maximum distance of each other, in order to be
considered for relation classification.

Figure 11 The Spancat architecture and Spancat’s classifier [34]

By reducing the maximum distance of two entities the model considers for pairing, fewer
instances will be classified, resulting in an increased precision rates and decreased recall rates.
As the binary relations between the two entities are directed, two instances are created, one
where the first entity is the subject and the second is the object and a second where the first
entity is the object and the second is the subject. For each instance, the vectors of the two
corresponding entities are concatenated into one larger tensor that will be the input of the
classification layer [35].

The Tok2Vec layer can be replaced by a Transformer layer, that will include a pretrained
model from the HuggingFace library. The replacement and utilisation of a transformer in the
relation extraction, is similar to the process of the named entity recognition task.

The classification layer transforms the instance data to the matrix holding the final predictions
for each instance and each relation label. It is a linear layer that is followed by a logistic
output activation to ensure that the predictions are within the [0,1] interval [35]. During
training the created predictions will be compared to the gold-standard data to calculate the
loss and the gradient of loss that will be used to update the weights of the model through
backpropagation. Once the model is trained, its performance can be calculated on a set of left-
out examples, using the precision, recall and F1 metrics.

Figure 12 Model architecture of the Relation Extractor

3 Data

Chapter 3 is dedicated to presenting the data set that was used to train the models. In the first
part, we describe the sources that we used to compile the data set. In the second part, we
describe the annotation procedure and provide statistics regarding the annotated samples.

 The first step in developing a reliable UML Use Case modeller using supervised learning is
to ensure that the input data are representative of the various formats in which user
requirements are written. When developing a new system, the process of requirements
analysis and elicitation occurs in the early stages of the Software Development Life Cycle.
During the requirements analysis phase, business experts and senior stakeholders participate
in workshops in order provide information regarding the expected functionalities of the
developed software [2]. This information is provided in natural language, in a textual or vocal
form. Next, in the requirements definition phase, the collected information is documented,
usually in the form of a Software Requirement Specification document (SRS) or a Business
Requirement Document (BRD). As many companies nowadays use agile methodology when
developing a new system, documented user requirements are transformed into User Stories to
fit in multiple short sprints.

As Software Requirement Specification documents, Business Requirement Documents and
User Stories are part of a company’s strategic planning, they are rarely disclosed publicly,
thus obtaining software requirements is a challenging task. For the purposes of this research
project, multiple sources of requirements have been utilised: existing requirements data sets,
user stories data sets, and real-life samples presented in Software Engineering and UML
modelling books. The focus, when gathering the data, was on finding user requirements that
describe interactions between users and systems and can be modelled as UML Use Cases.

3.1 Data Collection

In this section the composition of the UML Use Case data set is described, along with
information regarding existing requirements repositories.

3.1.1 Public Requirements Data Set (PURE)
That first data set utilised was PURE. PURE (Public Requirements dataset) is a popular
dataset, used in requirements engineering for natural language processing tasks [36]. The
original dataset consists of 79 publicly available requirements documents, of which 15
requirements documents were included in the UML Use Case dataset. These 15 documents
were split in 80 smaller samples to facilitate the annotation procedure. Each of these 80
examples consists of multiple sentences which include use case elements such as use cases,
actors, systems and their respective relationships that were annotated and used as input for the
named entity recognition (NER) and relation extraction (RE) tasks. Furthermore, many of
these 80 samples contain phrases, indicative of triggers, post-conditions and preconditions,
which were considered when creating the heuristic rules for these specific use case elements.

3.1.2 User Stories Data Set
The UML Use Case dataset is also composed of 1,618 user stories derived from a
requirements dataset compilation published by Dr. Fabian Dalpiaz. The original dataset is
comprised of 22 requirements documents and each document contains more than 50 user
stories. These requirements documents were either published online or retrieved by software
companies [37]. User stories in the dataset are presented in their typical agile structure: “As a
[persona], I [want to], [so that].” The elements relevant to use cases that were annotated in
these user stories are actors, systems and use cases, as well as interact and include
relationships. Also, the goal of the user story, which is expressed in the second part of the
sentence can be modeled as a post-condition according to the UML Use Case standards.

By semi-automatically modifying the original user stories, 1,600 user requirements were
added in the UML Use Case data set. More specifically, we deleted the phrases “As” and “I
want to” and we converted the pronouns from first person to third person with the
implementation of a python script. We then checked the modified sentences using
Grammarly, to identify and correct the verbs. Below is an example of how the changes were
implemented:

Original User Story: “As a dataset developer, I want to have an archetype that helps me
package my dataset type properly.”
Edited user requirement: “A dataset developer has an archetype that helps him or her
package his or her dataset type properly.”

3.1.3 Tera-PROMISE
OpenScience’s Tera-PROMISE is another popular software engineering research data
repository that includes data sets regarding functional and non-functional requirements,
source code analysis and metrics, refactoring, and effort estimation [38]. UML Use Case data
set includes 131 examples from the Tera-PROMISE repository. Each example is 1 to 3
sentences long and consists mostly of actor, system and use case entities suitable for the NER
and RE tasks.

To further enrich the UML Use Case data set, we added 75 requirements documents that were
retrieved from various Software Engineering books and online sources. Table 1 lists these
sources.

Author Title

Alistair Cockburn Writing Effective Use Cases [39]

Ghinwa Jalloul UML by Example [40]

Kurt Bittner & Ian
Spence

Use Case Modeling [41]

Petraq J.
Papagiorgji, Panos
M. Pardalos

Software Engineering Techniques Applied to Agricultural Systems - An Object-
Oriented and UML Approach [42]

Timoth Lethbridge
& Robert Laganiere

Object-Oriented Software Engineering - Practical Software Development using
UML and Java [43]

Bernd Bruegge &
Allen H. Dutoit

Object-Oriented Software Engineering using UML, Patterns and Java [44]

Frank Armour &
Granville Miller

Advanced Use Case Modeling, Volume One - Software Systems [45]

INSPIRE
Knowledge Base

Use case “INSPIRE Harmonisation of Energy Performance Certificates (EPC)
datasets [46]

Zahra Abdulkarim
Hamza & Mustafa
Hammad

Generating UML Use Case Models from Software Requirements Using Natural
Language Processing [47]

Title of the original document:

Mental Health Care Patient Management System

Table 1 Software Requirements Documents

The collected data were added in a JSONL file, with each line representing a document and
the end of a line in a certain document being indicated with the character “\n”.

3.2 Data Annotation

3.2.1 Annotation tools
For the purposes of the research project, the annotation tool to be used should provide the
following functionalities:

 Named Entity Annotation
 Relationship Annotation

 Export IOB/BILUO Labels

 Allow nested and overlapping labeling

Doccano [48] is a user friendly, open-source annotation tool, mostly used for Named Entity
Annotation. Although overlapping annotation is possible with Doccano, Relation annotation
is work in progress and installation of Doccano transformer is needed for exporting IOB
labels. Label Studio [49] is another free-to-use annotation tool with many functionalities,
which although allowed annotating relationship between entities, the relations were not
visible in the exported files. Other annotation tools, like Universal Data Tool [50], Brat [51],
TagTog [52] were also tested but failed to meet some the forementioned prerequisites. Table
2 shows information regarding the annotation tools.

Doccano Label Studio Universal Data Tool Prodigy
Requires installation Requires installation Online –> requires setup

every time or can be installed
Requires installation

Very user friendly, no
data or programming
skills needed

Easy to use, no data or
programming skills
needed

Not so easy to use, some
programming skills needed

Scriptable,
programming skills
required

Prodigy [53] is a scriptable annotation tool that offers functionality for annotating Named
Entities, Relations, Text Classification and Image labels. Overlaps are not allowed in Named
Entity annotation, but are feasible in Span Categorisation. Moreover, as Prodigy is developed
by the same team that created spaCy [24], a free open-source library for Natural Language
Processing, it provides various functions that help with the model training. For example,
prodigy has a build-in function that shuffles and splits the data into training and validation
sets, while at the same time transform the data into the binary spaCy format, required for
training. Annotated datasets are being stored in the database using SQLite and can be directly
imported for training, or they can be exported as JSONL files, in case further processing is
needed. Each annotation example, is a dictionary that contains information about the samples
like the text, the entity spans and the labels.

3.2.2 Annotation guidelines
Detailed and case specific guidelines were carefully drafted with the guidance of a UML and
an NLP expert, to ensure the credibility of the annotation procedure. In addition, the
annotation of complex or ambiguous documents was examined separately together with the
UML expert to increase reliability. Table 3 lists the labels used for NER and RE tasks, as
well as their definitions.

 Label Definition

Named Entity
Recognition

ACTOR Type of role played by an entity that interacts with the
system, described with a noun or noun phrase. It can be a
person, an organisation or another system that exists out of
the system boundary.

SYSTEM Name of the system the actors interact with. In many cases
the annotated word is the word “system”.

USECASE A verb phrase that specifies how the Actors interact with the
system.

Open Source-Free to
use

Open Source-Free to use Free to use Need to purchase
lifetime license

Overlapping annotation
possible

Overlapping annotation
not possible

Overlapping annotation
possible

Overlapping
annotation possible
with span
categorisation

Relation annotation not
available yet

Relation annotation is
possible, but does not
appear in the exported
files

Relation annotation possible Relation annotation
possible
Co-Reference
annotation possible

Exports only in JSONL,
needs doccano
transformer for IOB
scheme

Exports in multiple
formats, including Conll

Exports in its own UDT
format – requires
transformation

Imports and Exports
in JSONL format
IOB can be retrieved

Table 2 Review of four annotation tools

Relation
Extraction

INTERACT Association between the Actor and the Use Case. The
relationship arrow begins from the Actor and points to the
Use Case. In case, there is a System and a Use Case, the
arrow has the opposite direction.

INCLUDE Relationship among Use Cases, when a base Use Case is not
complete in itself but dependent on the included use case to
be meaningful and complete. The arrow starts from the base
use case and points to the including use case.

EXTEND Relationship among Use Cases, when there is some
additional behavior that should be added, possibly
conditionally, to the behavior defined in one or more base
Use Cases. The arrow starts from the extending use case and
points to the extended use case.

 Table 3 Labels and Definitions for NER and RE

We built the general annotation guidelines based on the following rules:

 Read the document as a whole before labeling in order to comprehend the category of
each entity, because the same phrase/word could be interpreted differently based on
the context. For example, “Bank System” can be an external Actor that interacts with
the System or the System itself.

 The annotator will not proceed in any spelling/grammar error corrections, because the
annotated documents must resemble the actual data that are bound to have errors.

Furthermore, we specified a series of Named Entities Annotation, Span Categorisation and
Relation Extraction Rules to ensure consistency while labeling. A detailed list of the
annotation guidelines can be found in the Appendix A.

3.2.3 Annotation process
The annotation task was performed by one person and the collected data were labeled with the
use of three prodigy recipes: ner for the Actors and the Systems, spancat for the Use Cases
and rel for the Interact, Include and Extend Relationships.

To start with NER annotation, we needed to indicate the prodigy recipe, load a spaCy pipeline
for tokenisation, create a new name for the dataset, write the path to the file that has the input
text and provide the labels [53]. After typing the command, prodigy creates the two labels,
and the new dataset to database SQLite and starts the web server at the local host. The
interface of the app is presented in the Figure 13.

 Figure 13 prodigy interface

As Use Cases have less consistent boundaries and mixed lengths, prodigy suggested using the
span categoriser component for annotating and training, instead of named entity recognition.
Moreover, span categorisation allows overlapping, a useful feature, as in many cases an Actor
or a System are also included in the Use Case. Figure 14 summarises the differences between
the Named Entity Recognition and the Span Categorisation components.

 Figure 14 NER vs Span Categorisation [53]

In this annotation scheme Actors and Systems which were imported from the NER data set
are represented as spans as shown in Figure 15.

 Figure 15 Span Categorisation annotation

Finally, for the Relation Extraction task, the rel.manual recipe was called and three new labels
were created. For this task we used the span data set that includes Actor, System and Use
Cases labels. By clicking on the first entity, the head is indicated and by clicking on the
second entity the child is indicated. Head and child are recognised based on the direction of
the arrow.

 Figure 16 Relation extraction annotation

The annotated dataset can be exported in a JSONL file. Each document is written in a new
line that includes the following information:

First, the original text is presented.
{"text":"As a Zooniverse admin, I want to perform automatic worm motion analysis to reduce
video duration in Worm Watch
Lab.","_input_hash":1088849660,"_task_hash":955379237,"_is_binary":false,

Then, each token and their position in the text.
For example, the phrase “As a Zooniverse admin” receives the following annotations:
“tokens”:
[{"text":"As","start":0,"end":2,"id":0,"ws":true,"disabled":false},{"text":"a","start":3,"end":4,
"id":1,"ws":true,"disabled":false},{"text":"Zooniverse","start":5,"end":15,"id":2,"ws":true,"di
sabled":false},{"text":"admin","start":16,"end":21,"id":3,"ws":false,"disabled":false}

After that, only the tokens that were labeled and, their token position in the text and the
position of the first and last character of the spans are shown.
"spans":[{"text":"Zooniverse
admin","start":5,"token_start":2,"token_end":3,"end":21,"type":"span","label":"ACTOR"},{"t
ext":"I","start":23,"token_start":5,"token_end":5,"end":24,"type":"span","label":"ACTOR"},{
"text":"perform automatic worm motion

analysis","start":33,"token_start":8,"token_end":12,"end":71,"type":"span","label":"USECAS
E"},{"text":"reduce video duration in Worm Watch
Lab","start":75,"token_start":14,"token_end":20,"end":114,"type":"span","label":"USECASE
"}],"answer":"accept","_timestamp":1652366354,

Last, the relations between the entities, with the span and character positions of the head
and the child are indicated.
"relations":[{"head":3,"child":20,"head_span":{"start":5,"end":21,"token_start":2,"token_end
":3,"label":"ACTOR"},"child_span":{"start":75,"end":114,"token_start":14,"token_end":20,"l
abel":"USECASE"},"color":"#c5bdf4","label":"INTERACT"},{"head":20,"child":12,"head_s
pan":{"start":75,"end":114,"token_start":14,"token_end":20,"label":"USECASE"},"child_spa
n":{"start":33,"end":71,"token_start":8,"token_end":12,"label":"USECASE"},"color":"#ffd88
2","label":"INCLUDE"}]}

3.2.4 Annotation statistics
The tables in the next page present information regarding the data set and its annotations. As
the word count was calculated using the JSONL files, the word “text” has been subtracted
from the word count. Also, in the character count we excluded white spaces and the
characters {“text”}.

Each row of the first table shows the number of documents, sentences, words and characters
for each source. Although the PURE data set consists only of 80 documents, it has more
sentences and more words that the user stories data sets. The reason is that each document of
the PURE set provides a complete user specification regarding a system, while each document
in the user stories data sets is just one user requirement, hence one sentence. Also, as it can be
observed in the second table, PURE data set offers more valuable information regarding UML
Use Cases and includes more complex relations between the UML Use Case elements.
Finally, by observing the data in Table 4, it can be safely assumed based on the size of
EXTEND labels that the model will not be able to learn this label.

 Textual Information

Source Documents Sentences Words Characters

PURE 80 3,006 44,161 228,841

Original User
Stories

1,618 1,618 39,199 181,044

Transformed
User Stories

1,638 1,638 36,179 174,288

Tera-
PROMISE

131 167 2,971 15,877

Miscellaneous 75 660 11,084 55,778

Total 3,542 7,027 133,594 655,828

 Table 4 Textual Information and Annotation Statistics

 Annotation Statistics

Source ACTOR SYSTEM USECASE INTERACT INCLUDE EXTEND

PURE 1,994 1,074 1,948 1,816 85 5

Original User
Stories

4,680 229 1,784 1,850 29 1

Transformed
User Stories

3,106 242 1,820 1,940 37 2

Tera-
PROMISE

227 92 196 272 4 0

Miscellaneous 772 376 712 793 5 1

Total 10,779 2,013 6,460 6,671 160 9

4 Methods

The main objective of this research project was to develop a UML Use Case transformer that
receives a requirements text as input and extracts information that can be used to create a
UML Use Case model. In this chapter various natural language processing methods and the
libraries used for developing the UML Use Case transformer are presented. In the first section
we describe the implementation of information extraction techniques regarding Use Case
elements and their relationships, by training models using supervised learning. In the second
section we present the methodology of extracting information relevant to the starting and
ending conditions of a Use Case based on heuristic rules. Figure 17 shows the various
components and methods that were used to build the UML Use Case Transformer.

 Figure 17 Overall scheme of the methods used to build a UML Use Case Transformer

4.1 NLP Supervised Learning techniques

As most of the work related to developing UML models using NLP techniques is focused on
extracting information with heuristic rules, we focused our efforts on extracting the Use Case
elements Actor, System and Use Case and their relationships using supervised learning based
on the annotated data sets we created. Models that yielded the best evaluation scores with this
data set were used to assemble a pipeline that produces UML Use Case metadata from
requirements texts. To test the overall performance of this pipeline we performed an extra
evaluation using out-of-sample data, namely requirement example documents randomly
selected from various sources.

 For the extraction of the Use Case elements, we trained several transition-based named entity
recognisers with different sets of data and compared their performance. More specifically, we
trained models to predict Actor/System and Use Case labels separately and together, to check
the impact in the performance of words that should be identified as Actors but were included
in the UseCase labels. We also performed two different splits of the data set, 70% and 80%

for training data and compared the results. Finally, we trained models using only specific
documents of the annotated set to check if there is an increase in performance. The
architecture of the transition-based named entity recognisers is described in Chapter 2.

To improve the extraction of the Use Case element, as the Use Case elements tend to consist
of more than three tokens, we also trained a span categoriser that can handle longer phrases in
comparison to a named entity recogniser.

Additionally, we experimented with a pretrained transformer, which replaces the traditional
embedding layer for transforming the words into vectors, and is used in conjunction with the
NER and Span Categorisation components. While training these models, we used the same
methods as the ones when training the transition-based named entity recognisers: train with
Actor/System and Use Case labels separately and together and use specific chunks of the data
set.

For the extraction of the relationships between the Use Case elements, we trained a relation
extractor with supervised learning using the annotated relations of the Use Case data set. To
train the relation extractor, the named entities must be known to the model, as it only predicts
relations between these named entities. The named entity recogniser included a transformer
component, to maximise the prediction accuracy of the named entities. As the relation
extractor we utilised assigns a head and tail label to the entities, suggesting direction, we
included specific rules when creating the annotation guidelines to ensure that the relation
labels are representative of the Use Case elements relations.

To evaluate the performance of the trained models, we calculated precision, recall and F1
scores overall and individually for each label. We conducted a separate evaluation of partially
successful predictions, in order to take into consideration cases where the prediction was
partially correct. The reason for performing this evaluation, particularly for the Use Case
label, was that the starting or the ending tokens were likely to not be predicted correctly by
the model, leading the algorithm to treat the whole entity as a missed label, while in reality
the important information that characterises a Use Case was correctly predicted.

4.1.1 Implementation and Libraries
The Use Case information extraction pipeline was implemented with the spaCy library.
SpaCy is a free open-source library, that provides many natural language processing tools and
build-in models like a Tokeniser, a Named Entity Recogniser and a Text Classifier [24]. This
library was chosen because it is considered to be faster than other libraries and more efficient
in handling large amounts of text data as it is written in Cython. It is also compatible with the
annotation tool used to label the Use Case dataset, as it is developed by the same team.

For training and evaluating the models, the documents of the Use Case data set were shuffled
and split in training and test sets using prodigy’s functionality, which additionally
transformed the JSONL data files into spaCy’s binary format. This format serialises a
DocBin, which contains a collection of Doc objects. Each Doc object is a sequence of Token
objects and their annotations. By transforming the input data into their binary format, spaCy
pipelines are trained using the same format they output. Moreover, DocBins produce small
data sizes, which can be more efficiently stored and decrease training time [54].

At the beginning of each training process, a configuration file was created, the single source
of truth for training. The config unifies several workflows and it includes all settings and
hyperparameters needed to train a pipeline. spaCy provides a widget that generates an initial
configuration with the recommended settings based on the components and the hardware that
will be used, as well as an optimisation option for efficiency or accuracy, as shown in Figure
18. For our experiments, we optimised for accuracy, to ensure a better performance with the
trade-off a larger and slower model. Regarding the hardware, we used CPU when training the
transition-based recognisers and GPU when training the transformers and the relation
extractor.

 Figure 18 QuickStart widget for generating a starter config

The initial config file can then be edited to tune the parameters and fit the specific
requirements of a training session. The config system supports registered functions, which are
retrieved from an extensible table, called the registry. In Appendix B we present an example
of the configuration file.

We performed the training sessions in various environments, more specifically, we used
Jupyter Notebook, Google Colab and the desktop’s terminal, depending on each model’s
prerequisites. For each model we saved the best and the last performer and compared their
predictions.

4.2 Rule-based matching

To extract information relevant to Preconditions, Post-Conditions and Triggers, we used rule-
based matching. Key words that indicate the existence of these conditions were identified and
were used to define token-based patterns, to match these words in a requirements text and
extract the relevant phrases. These rules have been created with the use of spaCy’s rule-
matching engine called the Matcher. This tool matches sequences of tokens in a document,
based on pattern rules. Each pattern that is created and added to the Matcher, consists of a list
of dictionaries and each dictionary describes one token and its attributes [55].

When the algorithm runs, it searches to match a specific phrase in the document with the key
phrase. If it finds a match, it returns the key phrase and the part of the sentence that exists
after this phrase.

For the purposes of this project, we created three distinct Matcher objects. The first one is the
Precondition Matcher, that matches key phrases related to phrases that indicate that specific
conditions exist for a Use Case to begin. Examples of such key phrases are: “criteria must”,
“before”, “conditions needed”, “precondition” and “if”. The second is the Trigger Matcher,
which matches phrases that imply an action exists that triggers the start of the Use Case.
Example trigger phrases are: use case begins”, “triggered”, “scenario starts”, and “when”.

The last rule is the Post-Condition Matcher, that matches phrases indicating the end of a Use
Case, like for example: “resulting”, “use cases terminates”, “process is completed”, and
“scenario concludes”.

In Figure 19, a rule created to identify a triggering action is presented. The “TEXT” attribute
indicates that the token is a string. The regular expression that is used twice in the rule
matches any of the words in the parentheses that could either start with a lowercase or an
uppercase letter. It starts with the “i” ignorecase option that allows for case-insensitive
matching. The “^” symbol indicates the start of the string and the key words are separated by
an “OR” operator. The regular expression ends with the symbol “$” that signals the end of the
string with an optional “\n”. Between these two strings the “*” operator indicates that zero or
more words can exist between these words. Following the last word that was part of the
second regular expression, is a part of speech attribute matching and adverb followed by zero
or more words. The last part of speech attribute matches a verb phrase, that can be followed
by zero or more words.

 Figure 19 Rule for matching a trigger condition in a document

The final pipeline used to build the Use Case Transformer is constructed with the models that
yielded the best results in their respective tasks in combination with the rules defined with the
Matcher.

5 Experiments and Results

This chapter is dedicated to describing the various experiments conducted while training the
described machine learning models and their respective results. In the first section we present
the training of a named entity recognition model with a Tok2Vec layer, a named entity
recognition model with a Transformer layer and a span categorisation model. In the second
section the training of relation extraction models with a Tok2Vec layer and a Transformer
layer is presented.

5.1 Actor, System and Use Case extraction

The specifications of the machine used for the training were: an AMD Ryzen 5 2600 Six-Core
Processor, 16GB RAM, NVIDIA GeForce RTX 2060 GPU and Windows 10 Home OS. The
code was written in Python 3.9.1 using the command line or Jupyter Notebook, while the
Transformer models were trained using the GPU provided by Google Colab Pro. The library
used for training was spaCy and its various functions which will be listed in the next sessions.

5.1.1 NER with Tok2Vec component and Span Categorisation

In this section the training of NER and Span Categorisation models is presented. Before
starting the training, the train-curve functionality by prodigy was used to determine the
quality of the annotations, as well as if more training examples were necessary to improve the
accuracy. The model is trained four times with different portions of the training examples,
25%, 50%, 75% and 100% of the data, and prints the accuracy scores with more data [56]. As
shown in Table 5, the accuracy does not improve within the last training, indicating that the
number of samples provided for training a NER component is sufficient.

% of training examples Score

0% 0.00

25% 0.89

50% 0.90

75% 0.91

10% 0.91

 Table 5 Train curve for NER

The NER model with a Tok2Vec component for predicting Actors and Systems was trained
twice with two data split variations: 70% train data, 30% validation data and 80% train data,
20% validation data. The data were fist shuffled on the document level, then split and
transformed into spacy format. In parallel, the configuration file that includes all the
necessary information for training the model was created.

The 70/30 split produced 2473 training samples and 1,055 validation samples, while the 80/20
split produced 2,824 training samples and 704 validation samples.

The initial learning rate was set at 0.001 and an Adam optimiser was used to adapt the
learning rate of the weights after the first estimations. To handle overfitting and improve the
model’s generalisation, the dropout rate, namely the rate of zeroing out a random fraction of
neurons at each training step, was set to 0.1, which was the default value in the configuration
file. The number of epochs for each training was automatically decided based on the status of
the evaluation score: The evaluation frequency, namely the rate of evaluating the model after
certain steps, was set to 200. Patience was set to 1,600 steps, meaning that the training would
stop if the evaluation score did not improve after 8 evaluations.

In Table 6, the overall and per label scores of the best model are shown for the two splits,
after training the models for 21 epochs.

 70/30 split 80/20 split

 Precision Recall F1 Precision Recall F1

Actor 0.908 0.922 0.915 0.929 0.930 0.930

System 0.864 0.825 0.844 0.873 0.818 0.845

Overall 0.901 0.906 0.903 0.918 0.922 0.913

 Table 6 Evaluation of the NER models for Actor and System

As expected, in most cases the best model that was trained with 80% of the data has achieved
better scores than the model trained with 70% of the data, although the results are not directly
comparable because the test sets are different. Also, the Actor label scores better than the
System label. This can be attributed to the fact that in many documents a system was labeled
as an Actor because it was a system external to the Use Case.

A span categorisation model was trained to predict only the UseCase labels as spans instead
of named entities. In addition to the parameters that were set at the same values as in the
previous experiments, the n-gram suggester was set to suggest spans with size 1 to 46, an
interval automatically inferred from the labeled data.

In Table 7 the overall and per label scores of the best model are shown for the two splits, after
training the models for 23 epochs. The 70/30 split resulted in 2,453 train data and 1,049
validation data, while the 80/20 produced 2,802 train data and 700 validation data.

 70/30 split 80/20 split

 Precision Recall F1 Precision Recall F1

Use Case
(spancat)

0.736 0.634 0.681 0.780 0.679 0.726

Use Case
(NER)

0.679 0.655 0.667 0.730 0.648 0.687

 Table 7 Evaluation of NER and Span models only for the UseCase label

Compared to the models predicting Actors and Systems, models that predict UseCases
performed worse and this is reasonable as UseCase entities consist of many tokens and have

more complex syntax and less clear boundaries. The span categoriser performed better than
the named entity recogniser, although both models score low on recall, meaning that the
models cannot recognise well which phrases should be classified as UseCases.

Table 8 presents the scores of the NER and span categorisation models trained with all three
labels (ACTOR, SYSTEM, USECASE). The reason for training the models separately is that
in many cases Actor and System tokens were in between a UseCase entity, so for the named
entity recognition task, where overlapping was not allowed during labeling, these tokens were
labeled as part of the UseCase, while for the span categorisation task, these tokens were
labeled both as part of the UseCase and as Actor/System.

To train the NER model we used 80% of the data set, a total of 2,828 training samples while
the rest 20%, namely 707 samples, were used for validation. For the span categorisation
model, we used 2,802 training samples and 700 validation samples.

 NER Span Categorisation

 Precision Recall F1 Precision Recall F1

Actor 0.936 0.934 0.935 - - -

System 0.793 0.807 0.800 - - -

UseCase 0.762 0.686 0.722 - - -

Overall 0.869 0.838 0.853 0.882

0.825

0.853

Table 8 Evaluation of NER and Span Categorisation models for all labels

The span categorisation component provides evaluation scores only for the model’s overall
performance and not per entity type, but as the results of the two models are almost the same,
it can be assumed that the models had similar performance also per entity.

 NER (one model:
Actor/System/UseCase)

NER (two models: 1. Actor/System –
2. UseCase)

 Precision Recall F1 Precision Recall F1

Actor 0.936 0.934 0.935 0.929 0.930 0.930

System 0.793 0.807 0.800 0.873 0.818 0.845

UseCase 0.762 0.686 0.722 0.730 0.648 0.687

Table 9 Comparison between NER model trained with all 3 labels, NER model trained with Actor/System
and NER model trained with UseCase

At Table 9 we compare the NER model that was trained with all three labels simultaneously
with the two NER models that were trained separately: the first one was trained with Actor
and System labels and the second one was trained with UseCase labels. Although the two
methods cannot be directly comparable because the models were trained and evaluated on
different datasets, we can infer that the overlapping labels do not impact the model’s
performance greatly.

5.1.2 NER with Transformer component
In this section the experiments of using a Transformer model in the NER pipeline instead of a
Tok2Vec component and their results are presented. The transformer that was used was
RoBERTa-base from HuggingFace library. To work with transformer models, the use of a
NVIDIA GPU with at least 10GB of memory was strongly recommended, as well as the
installation of CUDA v9+ and PyTorch libraries was required [57].

On a Google Colab notebook we set up the English transformer pipeline, that includes the
following components: transformer (RoBERTa-base), tagger, parser, ner, attribute ruler and
lemmatiser.
For training and evaluating the NER model to predict Actors and Systems, we used 80% of
the data set in training, a total of 2,818 documents and 20% of the data, which translates into
703 documents were used for validation. With the same split 2,821 training examples and 707
validation examples were used for the NER model trained on UseCases, and 2,825 training
data and 706 validation data were used to train and evaluate the ner pipeline for Actors,
Systems and Use Cases.

Table 10 shows the scores of two models: the first model was trained to predict Actors and
Systems, while the second was trained to predict only UseCases. Table 11 presents the
evaluation scores of the best model that was trained with all three categories. The results
between the two training methods are similar, the model trained with all three labels scores
slightly better, probably because of how the documents were shuffled and split.

 Precision Recall F1

Overall (Actor/System) 0.912 0.943 0.927

Actor 0.941 0.927 0.934

System 0.840 0.875 0.858

UseCase 0.732 0.749 0.740

Table 10 Performance of two separate models: the first for predicting Actors/Systems
and the second for predicting UseCases

Compared to the NER models that had the traditional Tok2Vec component and the Span
Categorisation model, the Transformer model yielded the best F1 scores. The most notable

 Precision Recall F1

Overall 0.868 0.875 0.871

Actor 0.927 0.942 0.935

System 0.836 0.864 0.850

UseCase 0.785 0.777 0.781

Table 11 Performance of a model trained on all three labels

improvement was recall, especially in predicting UseCases: the recall score of UseCases for
the traditional NER model was 0.686 and the overall recall score was 0.838, while in the
Transformer NER model the recall score of UseCases was 0.780 and the overall recall score
0.875 respectively.

 Precision Recall F1

Transition-based NER 0.869 0.838 0.853

Span Categorisation 0.882 0.825 0.853

Transformer NER 0.868 0.875 0.871

 Table 12 Performance comparison between the different models

By taking into consideration that the UML Use Case Transformer is implemented with a
human-in-the-loop approach, which favors recall over precision regarding performance, the
Transformer-NER models outperformed the rest of the trained models and will be part of the
UML Use Case Transformer pipeline for recognising Actors, Systems and Use Cases in a
requirements text.

5.1.3 Token-Level evaluation of the Transformer – NER model
As spaCy’s NER objective is to “predict the correct sequence of BILUO tags over a sequence
of tokens” [58], evaluation metrics don’t consider partial results. But, especially regarding the
UseCase elements, the entity boundaries are not always clear, a UML expert can decide that a
predicted UseCase is correct, even if the first or the last token was missed. A large number of
correct token-level predictions could also mean that imposing stricter guidelines during the
annotation process, can improve the model’s overall performance.

To score the model considering token-level prediction, the following process was
implemented. Initially, the BILUO labels and the entity labels were extracted from the
validation set along with their predicted counterparts. The validation set consists of 703
documents and 28,598 tokens. Based on the BILUO labels, precision, recall and F1 scores
were calculated for all three labels.

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐵𝑠 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐼𝑠 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐿𝑠 +

 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑈𝑠
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑂𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 = |(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝑠 + 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐼𝑠 + 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑠

+ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑈𝑠) – (𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐵𝑠 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐼𝑠

+ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐿𝑠 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑈𝑠)|

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 = |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑂𝑠 – 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑂𝑠|

 Bs Is Ls Us Os

Actual BILUO tag 1,909 8,239 1,909 1,505 15,036

Predicted BILUO tag 1,848 8,334 1,848 1,526 15,042
Correctly identified 1,741 7,460 1,728 1,406 13,836

Table 13 Count of BILUO labels in the validation set for all entities

 Calculation of Precision, Recall and F1:

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

1,741 + 7,460 + 1,728 + 1,406

(12,335) + [|(13,556) − (12,335)|]
=

12,335

13,556
=

= 0.910

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

12,335

12,335 + |15,042 − 13,836|
=

12,335

13,541
= 0.911

𝑭𝟏 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
= 2 ∗

0.910 ∗ 0.911

0.910 + 0.911
= 0.910

This score includes both the fully correctly predicted, as well as the partially predicted labels,
with some margin of error in case an Actor or a System were misclassified. Alternatively,
token-level predictions could receive a 0.5 weight when summed with the actual predictions,
to normalise the results and reflect the model’s performance better. Nonetheless, the results
show that with adjustments in the labeled data the model can learn to predict all three labels
better.

5.2 Relation Extraction

To predict the relationships between Actors, Systems and UseCases, spaCy’s relation
extraction component was trained using the NER and relations data sets. The data set was
split in three parts: 70% of the samples, namely 2,420 documents were used for training, 15%
of the samples, 518 documents were used for validation and another 15% was used for
testing. The whole data set contained 6,376 Interact labels, 157 Include labels and 9 Extend
labels. As the Include and Extend label size is too small, it was expected for the modeller to
learn only the Interact relation.

The model also has a NER component, because it predicts relationships between two named
entities. For the NER component the transformer-based approach was used, as it performed
better.

Apart from the parameters mentioned in the previous experiments, for this training, the
default parameter max length, which indicates the maximum distance two entities can have to
be considered for relation prediction, was changed from 100 to 40.

Table 14 shows the evaluation scores of the relation extraction model with the threshold set at
50%. The component only calculates the overall performance of the model, but in this case as
the include and extend labels contribution in the learning process was very limited, the overall
scores could be considered to be the scores for predicting an Interact relationship.

 Precision Recall F1 Score

Overall 0.839 0.694 0.759

Table 14 Evaluation scores for the Relation Extractor

To further examine the confidence of the model of predicting a relationship, the test set was
used to evaluate the predictions at certain thresholds. The default threshold was set at 50%,
but when used in the UML Use Case transformer pipeline, the threshold is set at 10%, as the
objective is to receive more predictions and manually apply corrections. Figure 20 is a graph
that shows the evaluation scores based on the threshold value.

 Figure 20 Graph showing the model's evaluation at various thresholds

5.3 Rule-based Matcher

To create rules that match of the three conditions, we reviewed the Use Case dataset to
identify the key phrases in requirements documents that imply the existence of these
conditions in the text. These key phrases were used as a core around which we created the
patterns, using spaCy’s Matcher library, as shown in the previous chapter.

 Table 15 Words used to create rules for each of the conditions

0
10
20
30
40
50
60
70
80
90

100

0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 1

E
va

lu
at

io
n

Sc
or

e

Threshold

Model evaluation at various thresholds

Precision Recall F1

Preconditions Triggers Postconditions

preconditions|precondition trigger|triggers|triggered|
triggering

postconditions|postcondition|post

must + have|be When|Once +, |when|before so + that

criteria|conditions|
condition
+
must|need|have|has|needs

scenario|process|flow|action
+
starts|begins|initiates|start|begin|
initiate|began|initiated|started

scenario|process|flow|action
+
ends|finishes|terminates|
concludes|completes|
completed|finished|terminated|
concluded|ended|over

have|has
+
to

use + case
+
starts|begins|initiates|start|begin|
initiate|began|initiated|started

use + case
+
ends|finishes|terminates|concludes|
completes|completed|finished|
terminated|concluded|ended|over

if|first|firstly + , end + of

 resulting

Each of these patterns was added to its respective matcher instance. For example, the pattern
that matches the phrase “so that” and identifies a post-condition is added to the matcher by
typing:

 PostConditionMatcher.add('so_that', [SoThatpattern])

To extract the matched condition from a document, the input text is split into sentences. Each
sentence runs through the matcher and if one of the patterns is recognised, the span that
consists of the pattern is returned.

As shown in Figure 21 the output of the example sentence “As an Investor, I need to see a
summary of my investment accounts, so that I can decide where to focus my attention.” when
using a pipeline that consists of the NER and relation extraction models and the Matcher
would be:

 Figure 21 Example output of the UML UseCase pipeline

The first two outputs indicate the Actors, Systems and UseCases, the third output shows the
predicted relationship, while the last output prints the matched condition.

5.4 Evaluation with out-of-sample data
In this section we will use out-of-sample data to test the performance of the pipeline. We
present the requirement text that was used as an input the pipeline, we show the returned
results and we comment on the model’s performance. Some requirements texts, use cases and
user stories were selected from online sources and the rest were provided by Mark Kramer
and Önder Babur from Information Technology Group, WUR.

Input Output

The user browses restaurant options. Once the
preferred restaurant is selected, they place an order
through the application. The user pays online or
verifies they will pay in person. The order is sent from
the app to the restaurant's internal system. The
restaurant worker receives and processes the
electronic order. [62]

'actors': ['User', 'Restaurant', 'Restaurant worker']

'usecases': ['browses restaurant options', 'place an
order', 'pays online', 'verifies they will pay in person',
'order is sent', 'receives and processes the electronic
order']

'system': ['Application'],

'relationships': {'User' 'browses restaurant
options', 'User' 'pays online', 'User' 'verifies they
will pay in person', 'Restaurant worker' 'receives
and processes the electronic order'],
'RelationshipType': ['INTERACT']}

'triggers': {'Trigger': ['the preferred restaurant is
selected', 'UseCase': ['place an order'],]}

Evaluation: The pipeline identifies correctly the 'User' and the 'Restaurant worker' as Actors, but it also
classifies as Actor the 'Restaurant'. The correct Actor in this case would be the 'Restaurant’s internal system'.
All Use Cases were identified. The model correctly identified the two Use Cases divided by the “or”. The last
sentence contains two Use Cases: “receives the electronic order” and “processes the electronic order”, but the
model could only classify them as one. The System is correctly identified. Out of six interactions, four were
identified. The Trigger condition for placing an order was successfully matched.

UpCloud Airways software engineers design a
branded and refreshed fare booking page, complete
with tiered fare selection, add-on options like lounge
access, free flight change or cancel abilities and
complimentary checked bags. It also allows account
holders to pay in credit, debit, online payment
platforms or by UpCloud loyalty program miles. The
software engineers conduct several use cases to
establish how the booking flow works and identify
potential concerns. They run cases that include: A
customer browsing flight schedules and prices, A
customer selecting a flight date and time, A customer
adding on lounge access and free checked bags, A
customer paying with a personal credit card, A
customer paying with UpCloud loyalty miles, Through
the various use cases, the engineering team identifies
a malfunction with the optional add-ons prompting
unless the user has a previously established account.
The team rectifies the issue before launching the
refreshed booking system. [63]

{'actors': ['Upcloud airways software engineers',
'Account holders', 'Software engineers', 'Customer',
'User', 'Team'],

'usecases': ['design a branded and refreshed fare
booking page', 'pay in credit, debit, online payment
platforms or by UpCloud loyalty program miles',
'conduct several use cases', 'establish how the booking
flow works', 'identify potential concerns', 'browsing
flight schedules and prices', 'selecting a flight date and
time', 'adding on lounge access and free checked
bags', 'paying with a personal credit card', 'paying
with UpCloud loyalty miles', 'identifies a malfunction
with the optional add-ons prompting unless', 'rectifies
the issue'],

'system': ['System'],

'relationships': {'Upcloud airways software engineers'
 'design a branded and refreshed fare booking page',
'Account holders' 'pay in credit, debit, online
payment platforms or by UpCloud loyalty program
miles', 'Software engineers' 'establish how the
booking flow works', 'Software engineers', 'identify
potential concerns', 'Software engineers' 'conduct
several use cases', 'establish how the booking flow
works' 'conduct several use cases', 'identify
potential concerns' 'conduct several use cases',
'Customer' 'selecting a flight date and time',
Customer' 'paying with a personal credit card',
'Team' 'rectifies the issue', 'RelationshipType':
['INTERACT']}

'triggers': {'Trigger': ['launching the refreshed booking
system', 'UseCase': ['rectifies the issue']}

Evaluation: In this text, the author has used five different ways to refer to the same Actor: “UpCloud Airways
software engineers, software engineers, They, engineering team, team”. While the pipeline, impressively,
extracted a four-word Actor, it classified each reference as a different Actor. The System was not identified, so
the pipeline returned the default word “System”. The sentence “The software engineers conduct several use
cases to establish how the booking flow works and identify potential concerns.” contains three relationships: An
“interact” relationship between the Actor “software engineers” and the Use Case “conduct several use cases”
and two “inclusion” relationships from the including Use Case “conduct several use cases”, to the included
Use Cases “identify potential concerns” and “establish how the booking flow works”. The pipeline identifies
five relationships: it relates each Use Case with the Actor and identifies the relationship between the two use
cases but as interaction instead of inclusion. In this part of the text: “…unless the user has a previously
established account. The team rectifies the issue before launching the refreshed booking system.”, the condition
described with the word “unless”, is a precondition of the use case “rectifies the issue” and the phrase “before
launching the refreshed booking system” is its trigger. The pipeline only extracts the trigger because the
precondition is mentioned in the previous sentence.

… Envisage an environmental scientist in Cambodia,
researching the impact of deforestation in Vietnam as
part of investigating the regional impacts of climate
change. She submits her search keywords, in
Cambodian, and receives responses indicating there
is some data from the 1950s, printed in a 1960
pamphlet, in the Bibliothèque Nationale, a library in
Paris, France, in French. She receives an abstract of
some form that enables her to decide that the data are
worth accessing, and initiates a request for a digital
copy to be sent. She receives the pamphlet as a
scanned image of each page, and she decides that the
quantitative information in the paper is useful, so she
arranges transcription of the tabular numerical data
and their summary values into a digital form and
publishes the dataset, with a persistent identifier, and
links it to a detailed coverage extent, the original
paper source, the scanned pages and her paper when
it is published. She also incorporates scanned charts
and graphs from the original pamphlet into her paper.
Her organization creates a catalog record for her
research paper dataset and publishes it in the WIS
global catalog, which makes it also visible to the GEO
System of Systems broker portal. [64]

{'actors': ['Environmental scientist', 'Organization',
'User'],

'usecases': ['submits her search keywords, in
Cambodian,', 'receives responses indicating', 'receives
an abstract of some form', 'decide that the data are
worth accessing', 'initiates a request for a digital copy
to be sent', 'receives the pamphlet as a scanned image
of each page', 'decides that the quantitative
information in the paper is useful', 'arranges
transcription of the tabular numerical data and their
summary values into a digital form', 'publishes the
dataset', 'links it to a detailed coverage extent, the
original paper source', 'incorporates scanned charts
and graphs from the original pamphlet into her paper',
'creates a catalog record for her research paper
dataset', 'publishes it in the WIS global catalog'],

'system': ['Geo system'],

'relationships': {'User' 'submits her search
keywords, in Cambodian,', 'User' 'receives an
abstract of some form', 'User' 'decide that the data
are worth accessing', 'User' 'initiates a request for a
digital copy to be sent', 'User’ decides that the
quantitative information in the paper is useful',
'Organization' creates a catalog record for her
research paper dataset'}, 'RelationshipType':
['INTERACT']}

'postconditions': {'Postcondition': ['she arranges
transcription of tabular numerical data and their
summary values into a digital form and publishes
dataset with a persistent identifier and links it to a
detailed coverage extent original paper source
scanned pages and her paper when it is published',

'UseCase': ['receives the pamphlet as a scanned image
of each page', 'decides that the quantitative
information in the paper is useful', 'arranges
transcription of the tabular numerical data and their
summary values into a digital form', 'publishes the
dataset', 'links it to a detailed coverage extent, the
original paper source'],

Evaluation: 'Geo system' is an Actor in this use case and the System is ‘WIS’. There is a missed use case
“makes it also visible”. There are several missed interactions, even though their syntax was similar to those
correctly identified. The word “She” has been replaced in the interaction with the default word “User”. The
sentence “She receives the pamphlet as a scanned image of each page, and she decides that the quantitative
information in the paper is useful, so she arranges transcription of the tabular numerical data and their
summary values into a digital form and publishes the dataset, with a persistent identifier, and links it to a
detailed coverage extent, the original paper source, the scanned pages and her paper when it is published.”
contains a sequence of use cases and there are no conditions, but because the word “so” is used to match a post-
condition, the pipeline returns this phrase as a post-condition to all the identified Use Cases.

Triggers: The user indicates that she wants to
purchase items that she has selected.

{'actors': ['User', 'Billing system'],

Preconditions: User has selected the items to be
purchased.
Post-conditions: The order will be placed in the
system. The user will have a tracking ID for the order.
The user will know the estimated delivery date for the
order.
Normal Flow: The user will indicate that she wants to
order the items that have already been selected. The
system will present the billing and shipping
information that the user previously stored. The user
will confirm that the existing billing and shipping
information should be used for this order. The system
will present the amount that the order will cost,
including applicable taxes and shipping charges. The
user will confirm that the order information is
accurate. The system will provide the user with a
tracking ID for the order. The system will submit the
order to the fulfillment system for evaluation. The
fulfillment system will provide the system with an
estimated delivery date. The system will present the
estimated delivery date to the user. The user will
indicate that the order should be placed. The system
will request that the billing system should charge the
user for the order. The billing system will confirm that
the charge has been placed for the order. The system
will submit the order to the fulfillment system for
processing. The fulfillment system will confirm that
the order is being processed. The system will indicate
to the user that the user has been charged for the
order. The system will indicate to the user that the
order has been placed. The user will exit the system.
[65]

'usecases': ['indicates that she wants to purchase items
that she has selected', 'have a tracking ID for the
order', 'know the estimated delivery date for the order',
'indicate that she wants to order the items that have
already been selected', 'present the billing and
shipping information that the user previously stored',
'confirm that the existing billing and shipping
information should be used for this order', 'present the
amount that the order will cost, including applicable
taxes and shipping charges', 'confirm that the order
information is accurate', 'provide the user with a
tracking ID for the order', 'submit the order to the
fulfillment system for evaluation', 'provide the system
with an estimated delivery date', 'present the estimated
delivery date', 'indicate that the order should be
placed', 'request that the billing system should charge
the user for the order', 'confirm that the charge has
been placed for the order', 'submit the order to the
fulfillment system for processing', 'confirm that the
order is being processed', 'indicate to the user that the
user has been charged for the order', 'indicate to the
user that the order has been placed', 'exit', 'unknown
usecase'],

'system': ['System'],

'relationships': {['User' 'indicates that she wants to
purchase items that she has selected', 'User' 'know
the estimated delivery date for the order', 'User'
'confirm that the existing billing and shipping
information should be used for this order', 'User'
'confirm that the order information is accurate', 'User'
'present the estimated delivery date', 'User'
'indicate that the order should be placed', 'User'
'exit'], 'RelationshipType': ['INTERACT']},

'postconditions': {'Postcondition': ['conditions order
will be placed in system', 'UseCase': ['unknown
usecase']},

'preconditions': {'Precondition': [' User selected the
items to be purchased'], 'UseCase': ['unknown
usecase']},

'triggers': {'Trigger': [' The user indicates that she
wants to purchase items that she has selected'],
'UseCase': ['indicates that she wants to purchase items
that she has selected']}}

Evaluation: The pipeline correctly identified “Billing system” as Actor, but failed to extract “Fulfillment
system”. Some conditions were wrongly identified as Use Cases, but they were also correctly identified as
conditions. In this example, the conditions are mentioned in the beginning of the text, they are not mapped to
any of the listed use cases. So, the pipeline has created an “unknown usecase” and linked the conditions to this
use case. Many of the interactions with the system were missed due to the fact that the subject in many cases
was the system instead of the user. The fact that the trigger phrase 'indicates that she wants to purchase items
that she has selected' was wrongly identified as use case, led to be also extracted as interaction and as Use Case
in its own trigger condition.

As a user, I want to look at the event schedule, so that
the system will show an organised calendar with
upcoming events.

{'actors': ['User'],

'usecases': ['look at the event schedule'],

 'system': ['System'],

'relationships': {['User'] ['look at the event
schedule'], 'RelationshipType': ['INTERACT']},

'postconditions': {'Postcondition': ['system will show
an organised calendar with upcoming events'],
'UseCase': ['look at the event schedule']}

Evaluation: The pipeline successfully recognised the elements, the relationship and the post-condition.

As a member, I want to view the message board when
I log in to the application, so that I can see the
messages posted by other members.

{'actors': ['Member'],

'usecases': ['view the message board'],

'system': ['System'],

'relationships': {['Member'] ['view the message
board'], 'RelationshipType': ['INTERACT']},

'postconditions': {'Postcondition': ['see messages
posted by other members'], 'UseCase': ['view the
message board']},

'triggers': {'Trigger': ['log in to the application'],
'UseCase': ['view the message board']}}

Evaluation: The pipeline successfully recognised the elements, the relationship, the trigger and the post-
condition.

I walk through the game and I meet an NPC who can
give me a quest.

If I complete the quest I will be rewarded with money
and/or items and with XP.

A quest can be finding an item, or defeating a certain
monster.

{'actors': ['Npc'],

'usecases': ['walk through the game', 'meet', 'give me a
quest', 'be rewarded with money and/or items and with
XP'],

'system': ['System'],

'relationships': {['Npc' 'walk through the game',
'Npc' ‘meet’, ‘Npc’ 'give me a quest'],
'RelationshipType': ['INTERACT']}}

'preconditions': {'UseCase': ['be rewarded with
money and/or items and with XP'], 'Precondition': ['I
complete the quest']},

Evaluation: As this user story is written in the first person, the main actor is not recognised. Instead, only the
“NPC” is identified but the acronym incorrectly changes to 'Npc'. Also, the pipeline considers that “I” refers to
the “NPC” in the text and relates the “NPC” with the Use Case 'walk through the game'.

As a customer, I want shopping cart feature so that I
can easily purchase items online.

As a user, I want to back up my entire hard drive.

{'actors': ['Customer', 'User'],

'usecases': ['want shopping cart feature', 'back up my
entire hard drive'],

'system': ['System'],

'relationships': {['Customer'] ['want shopping cart
feature', ['User'] ['backup my entire hard drive'],
'RelationshipType': ['INTERACT']},

'postconditions': {'Postcondition': ['easily purchase
items online'], 'UseCase': ['want shopping cart
feature']}

Evaluation: When the action in the user story starts with “I want to...”, the pipeline correctly dismisses this
phrase and only extracts the action, like in the second example. In the first example, the only verb in the action
is the verb “want”, so the pipeline extracts the whole phrase. So, for these two user stories all the elements,
relationships and conditions were correctly identified.

 Table 16 Input, Output and Evaluation of the pipeline

6 Integration into Prose to Prototype

In this chapter we discuss the construction of a pipeline that consists of the best performing
trained models, the rule-based matcher and various post-processing methods that builds into a
UML Use Case transformer. The pipeline was integrated into the Prose to Prototype project,
as a part of a system that aspires to handle the requirement lifecycle, from elicitation to
acceptance.

6.1 System Design

The P2P system is currently run in Docker to work independently from the user’s machine
specifications. As it is mainly built to run in GNU/Linux systems, it requires using a Linux
subsystem, like Lima or WSL2, to run in Windows. The P2P project follows the structure of
the Python-based Django framework with multiple applications and a model-template-view
architecture [59] .

P2P is divided into two main subsystems: the ngUML backend and the ngUML editor. The
ngUML backend consists of the Model-application, that contains the ORM-related object to
store UML metadata and provides endpoints to the ngUML editor to post and edit UML
diagrams. The database used to store the data is PostgreSQL and Redis is used to handle
inserts and improve performance. It also contains the Extraction-application that adds the
NLP-tasks with metadata to the queue and converts the output from the NLP pipeline to
ORM-objects. Besides the UML Use Case modeller, the ngUML backend also hosts a UML
Class modeller that was built by Tiantian Tang [60] and a UML Activity modeller, built by
Pepijn Griffoen [61] . In the future, other UML models, like the Component model, will be
added in the P2P system. Finally, the Runtime-application contains the logic to generate
applications from the objects stored in Model.

The ngUML editor, functions as the Presentation tier and is tasked with gathering the
requirements as well as presenting visualisations of the respective UML models. These two
systems communicate with each other through REST API.

6.2 Use Case model specification

The Use Case model consists of the use case model generation pipeline, a use case metamodel
that facilitates storage and retrieval of the use case models and API endpoints that allow the
creation, update, delete and retrieval of the use case models.

6.2.1 UML Use Case metadata generation pipeline
The pipeline consists of the trained transformer-based named entity recogniser and relation
extractor in conjunction with post-processing functions and the rule-based matcher.

We first load the named entity recogniser to extract the Actors, the Use Cases and the Systems
from the given text. Before adding the extracted objects to a list, we first perform some
postprocessing tasks, to ensure that each object will be unique in the database and will have
the appropriate use case format. For example, as seen in Figure 22, we use Wordnet’s
lemmatiser for each Actor, to retrieve its lemma, because we want to store the singular form

of the word. We then change the first letter of each actor to uppercase, to adhere with the
UML Use Case standards and then we check if the specific Actor already exists in the list.
Finally, we remove personal pronouns from the list.

Figure 22 UML generation of Actors using NLP

We follow the almost same process for the System, with the difference that we only return one
System, as we assume that the requirement is about the functionality of a single system and
any other systems found in the text are references to the same system. As in some texts the
system is not explicitly mentioned in the text, in case we were not able to extract this
information, we return a default “System”, because this information is needed for the creation
of the system boundary.

As for the Use Cases, we change the first letter of the first word to lowercase and we check if
a Use Case with the same name already exists in the list before adding it.

The next component in the pipeline is the relation extractor. We use a dictionary to store the
results, as we need to store the relationship type and the two endpoints.

Figure 23 UML generation of Relations using NLP

As presented in Figure 23 we break the text into sentences, assuming that the relation between
two elements exists in the same sentence and we process the identified “Actors” and “Use
Cases” to match the extracted objects from the previous task. To handle personal pronouns,
we replace such actor objects with the default word “User”. The threshold for classifying
relationships is set at 0.1, resulting in decreased precision but increased recall. The reason we
prefer recall over precision is because of our human-in-the-loop approach, we want to extract
all the possible relationships and then manually delete or edit the false positives. In the

pipeline we have also included the “EXTEND” and “INCLUDE” options, as in the future we
might be able to find enough data to train the relation extractor on these labels.

To extract post-conditions, preconditions and triggers from the text we use the rule-based
matcher. Figure 24 shows the code for preconditions and the same concept is applied to the
rest of the conditions. For each of the conditions, we split the text into sentences and we first
search for a phrase that matches one of the respective patterns. Then, we remove the keyword
or key phrase from the matched phrase. For example, if we have extracted the phrase “so that
the user can access the server.” as a post-condition, we remove the key phrase “so that” and
the punctuation.

We then need to pair each of the extracted conditions with a use case. We check whether the
use case list contains a use case that appears in the same sentence as the condition. If yes, we
add the use case and the condition in the dictionary. If not, we check if there is a use case in
the use case list with the name “unknown_usecase” and add it to the dictionary. Else, we
create a new use case with the name “unknown_usecase” and add it to the dictionary.

 Figure 24 UML generation of conditions using NLP

6.2.2 Use Case metamodel
The extracted use case elements, relationships and conditions are used to map and create
objects to the database, based on their respective class, as shown in Figure 25.

 Figure 25 Mapping and Creation of "Interaction" objects in the database

For the generation of the Use Case model, we created only selected classes as shown in
Figure 26, as we focused on the elements that we retrieve from the pipeline and other
information like “Scenario” that can be easily added by the user in the ngUML editor.
UseCaseClassifier and its subtypes are used to create UseCase, Actor and UseCaseSystem
objects. Relationship and its subtypes are used to create Interaction, Inclusion and Extension
objects. Postcondition, Precondition, Trigger and Scenario are used to create their respective
object.

Figure 26 Class diagram of the Use Case model

6.2.3 Use Case model methods
To create, update, get and delete Use Case models we use internal APIs that work with
specific methods. These methods help us find elements by their name or id, populate
classifiers and relationships and make model changes in the frontend. The basic operations
that apply to all the objects are creation and deletion. Besides these actions, Actor, UseCase
and UseCaseSystem objects, can be repositioned in the Use Case diagram. The name of
Postconditions, Preconditions, Triggers and Scenarios can be retyped. For example, a phrase
might have been stored as a Precondition, but it can be retyped as Trigger. Finally, the
endpoints of a relationship can change. For example, there might be an “interact” relationship
between a certain actor and a use case and we can choose to relate the use case with another
actor. There is a condition that does not allow “interact” relationships between two use cases
and “extend” or “include” relationships between an actor and a use case.

To communicate all the metadata in the ngUML editor and create a UML Use Case diagram,
we use external APIs and we define a specific project and system to place the model.

7 Discussion

We started working on this research project with the ambition to build an application that
facilitates communication between business and IT stakeholders. We focused on the user
requirements and the development of a UML Use Case model that receives requirements
texts, use cases and user stories as input and produces UML Use Case metadata, that can be
used to create Use Case diagrams.

By studying the related work, we concluded that the existing UML Use Case models (e.g.,
UMGAR, RAPID) have been built on rule-based NLP techniques, like syntactic parsing. So,
we decided to experiment with supervised learning in combination with rule-based matches.
To train the models we needed an annotated data set, but as it was not available. We compiled
a new requirements data set we gathered requirements texts and user stories from various data
sets and independent sources. We then experimented with various annotation tools, as most of
them did not support relation extraction and in the end, we decided to use “prodigy”. To
annotate the data set, we carefully studied our samples and managed to create guidelines that
cover the ambiguities of natural language that occurred.

We used the annotated data set to train transition-based and transformer-based named entity
recognisers and a transformer-based relation extractor, to extract “Use Case”, “Actor” and
“System” elements. For the extraction of “Preconditions”, “Triggers” and “Post-conditions”,
we used a rule-based matcher.

Finally, we created a pipeline, comprised of the trained models, the matcher and various post-
processing NLP tasks and integrated it into the Prose to Prototype project. We tested the
performance of the pipeline using out-of-sample data and we reached the following
conclusions:

Actors: The pipeline manages to identify the majority of actor elements in a text. In some
cases, it fails to identify internal systems or misclassifies external systems.

Use Cases: The pipeline manages to identify the majority of use case elements in a text. In
some cases, it misclassifies conditions as use cases.

Systems: The pipeline manages to identify the majority of system elements in a text. If a
system was not identified, the pipeline returns the word “System”. It sometimes misclassifies
internal systems as systems.

Interact relationship: The pipeline identifies all relationships in User Stories. It performs
moderately in larger unstructured texts, for reasons that are not always clear.

Conditions: The pipeline performs very well in identifying conditions in a text. In some cases,
it falsely considers a word as a key word and classifies a phrase as a certain condition.

In comparison with the UMGAR tool [15], the RAPID tool [17] and the UML Generator [18],
which identify Actors, Use Cases and the relationships between them, our pipeline can
additionally identify Systems, Preconditions, Post-conditions and Triggers.

In their research, Lucassen et al. [21] and Elallaoui et al. [22] focus on extracting conceptual
models from User Stories. Their models perform very well, when the input User Story follows

the structure: “As …, I want to …, so that …”. In comparison, our model performs equally
well and can additionally handle User Stories with different structures.

7.1 Limitations

The first limitation we encountered in this project was the lack of requirements documents,
especially documents that describe the requirements of the system in detail. The reason is that
companies are not willing to publish online the specifications of their software systems due to
security risks and competition. As we explained in Chapter 3, the most valuable documents
for training were from the PURE dataset, because they provide wholesome requirements and
use cases in a semi-structured or unstructured way and include most of the use case elements.
The request for more examples of such documents would basically further improve the
models’ performance, as the existing data set with the addition of User Stories was already
sufficient for the training task.

Another consequence of the limited access to requirements documents, is the lack of data that
indicate an include or an extend relationship between two use cases. Our data set consists of
only 160 include and 9 extend relationship samples, insufficient to properly train the relation
extraction model.

The second limitation was the nature of the project itself, as this was a master’s research
project with limited resources. In terms of human resources, if a second annotator was
available, it would increase data integrity. To compensate for the lack of the second annotator,
we dedicated a large amount of time, to carefully study the data set, create annotation
guidelines and discuss with experts how to handle different cases. The evaluation scores show
that the annotation process was successful, as it yielded high quality labeled samples. Time
constraints led to experimentation with specific models instead of training, evaluation and
comparison of various models. Instead, we focused on studying these specific models and run
multiple experiments to ensure that the final pipeline can handle diverse requirements
documents and successfully extract all the necessary information.

7.2 Future work

The creation of a UML Use Case modeller using supervised learning proved to be a
successful research experiment. As this was the first time that this method was used to build
such a modeller and due to the limitations mentioned in the previous section, it is natural that
there is a lot of space for improvements.

For researchers, who are interested expanding the model’s capabilities, the first suggestion
would be to annotate preconditions, triggers and post-conditions and replace rule-based
matching with supervised learning. The existing data set provides sufficient examples for
these labels and it could be further expanded for better representation.

Relation extraction is a challenging task, as it is heavily dependent on precise tagging the
relations before training [66]. It also depends on the correct tagging of the named entities that
are related and on the distance between the related named entities. For this research project
we trained spaCy’s experimental relation extractor with satisfying results. In the future, more
robust models can be trained to improve the modeller’s performance.

The relation extractor was trained to only identify “interact” relationships from the text, due
to the lack of samples that show “include” and “extend” relationships. In the future, it would
be a useful addition to the project to find such sufficient examples and train the relation
extractor. In case this is not possible, the future researchers could create rules to match
phrases from the text that indicate these relationships between use cases and add them to the
pipeline.

A natural language processing task that could improve relation extraction and the modeller’s
overall performance is coreference resolution. Coreference resolution facilitates information
extraction by indicating “expressions that refer to the same entity in a text” [67]. As many
structures of requirements texts, follow specific syntactic rules, like for example User Stories
and Use Cases, it is suggested to train a coreference resolution modeller with data labeled
specifically for UML Use Case information extraction. The optimal position of the
coreference resolution task in the pipeline would be as a post-processing step for the
relationship extractions. The model should parse the relationship dictionary, the actor list and
the text and match the extracted personal pronouns with the “Actors” extracted by the named
entity recogniser.

 For this research project we focused on extracting the most important elements that compose
a UML Use Case model. Other characteristics like Actor and Use Case Generalisation,
Scenarios, Alternative Flows and Exceptions that capture important information were not
included, due to time constraints. In the future, these elements can be added, to build a fully-
featured modeller.

The system under development is one of the entities that we extract from a requirements text
and we use it to indicate the system boundary of the respective use case. We assume that each
requirements document refers to only one system, so we include all the use cases extracted
from the text into one system boundary. It is possible though, that two or more systems and
their interactions with the users are referenced in a text. As future work, identifying different
systems and build separate use case models for each system, could be a useful functionality.

8 Conclusion

Our research presents a novel approach to extracting UML Use Case metadata from user
requirements texts, with satisfying results. Instead of using traditional NLP techniques like
POS tagging and syntactic parsing, we using supervised learning to train transformer-based
named entity recognition and relation extraction models. These models were used to extract
“Actors”, “Use Cases”, “Systems” and their relationships from various forms of user
requirements texts. Additionally, we created heuristic rules, using spaCy’s Matcher, to extract
“Preconditions”, “Triggers” and “Post-conditions”. We synthesised a pipeline with these
models in combination with NLP post-processing tasks, to improve the output.

To train the models we compiled a data set, consisting of 3,542 samples documents from
various sources: we used 80 documents from the PURE data set [36] and 75 documents from
UML themed books. We enriched the data set with 1,618 User Stories [37] and 1,638
transformed User Stories. We also included 131 textual requirements from the Tera-
PROMISE database [38]. We annotated the data set for named entity recognition, span
categorisation and relation extraction, using prodigy. We conducted the annotation based on
specific guidelines, reviewed by a UML expert and an NLP expert. The annotation process
yielded 10,779 “Actor” labels, 2013 “System” labels, 6,460 “Use Case” labels, 6,671
“Interact” labels, 160 “Include” labels and 9 “Extend” labels.

For the extraction task, we experimented with spaCy’s transition-based named entity
recogniser, experimental transformer-based span categorizer, transformer-based named entity
recogniser and experimental transformer-based relation extractor. The best performing model
was the transformer-based named entity recogniser with 0.871 F1, 0.875 Recall and 0.868
Precision scores, on average, for all labels. The relation extractor was not able to learn the
“Include” and “Extend” labels, because of the limited number of samples. The model was able
to predict the “Interact” label, with the confidence threshold set at 50%, with 0.839 precision,
0.694 recall and 0.759 F1.

We built a pipeline using the best performing models and rule-based matcher. We integrated
the pipeline into the P2P project, a system that transforms user requirements into UML
models and runnable prototypes. We tested the pipeline using out-of-sample data and we
received very good results. We have commented on the limitations and proposed solutions for
future improvements, as well as ideas for future enhancements.

In conclusion, the UML Use Case pipeline in combination with a human-in-a-loop approach,
is a solution that can develop quality Use Case models, with decreased effort, compared to
manual development or other proposed solutions.

References

[1] G. Elliott, Global Business Information Technology: An Integrated systems approach,
Addison-Wesley, 2004.

[2] N. B. Ruparelia, "Software development lifecycle models," ACM SIGSOFT Software
Engineering Notes, Vol. 35, No. 3, pp. 8-13, 2010.

[3] C. Osman and P. Zalhan, "From natural language text to visual models: A survey of
issues and approaches," Informatica Economica, vol.20, no.4, pp. 44-61, 2016.

[4] G. Ramackers, P. Griffioen, M. Schouten and M. Chaudron, "From Prose to Prototype:
Synthesising Executable UML Models from Natural Language," 2021.

[5] K. Peffers, T. Tuunanen, C. Gengler, M. Rossi, W. Hui, V. Virtanen and J. Bragge,
"The Design Science Research Process: A Model for Producing and Presenting
Information Systems Research," in 1st International Conference, DERIST 2006
Proceedings, 2006.

[6] R. Back, P. L. and I. Paltor, Analysing UML Use Cases as Contracts. In: France R.,
Rumpe B. (eds) «UML»’99-The Unified Modeling Language, Berlin, Heidelberg:
Springer, 1999.

[7] OMG, OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.4.1
Object Management Group (Technical report, Object Management Group), 2011.

[8] Y. Wautelet, S. Heng, K. M and I. Mirbel, "Unifying and extending user story models,"
in Proceedings of the international conference on advanced information systems
engineering (CAiSE), LNCS, vol 8484, Berlin, 2014.

[9] M. Cohn, User Stories Applied: For Agile Software Development, Addison-Wesley,
2004.

[10] C. Sims, "New User Story Format Emphasizes Business Value," 2008. [Online].
Available: https://www.infoq.com/news/2008/06/new-user-story-format/.

[11] t2Informatik, "User Story Definition," [Online]. Available:
https://t2informatik.de/en/smartpedia/user-story/.

[12] D. Klein and C. Manning, "Stanford Parser 1.6," 2007. [Online]. Available:
https://nlp.stanford.edu/software/lex-parser.shtml.

[13] G. Miller, "WordNet 2.1," 2006. [Online]. Available: https://wordnet.princeton.edu/.

[14] L. Qiu, "JavaRAP," 2007. [Online]. Available:
https://www.comp.nus.edu.sg/~qiul/NLPTools/JavaRAP.html.

[15] K. D. Deeptimahanti and M. A. Babar Lero, "An Automated Tool for Generating UML
Models from Natural Language Requirements," in 2009 IEEE/ACM International
Conference on Automated Software Engineering, Auckland, New Zealand, 2009.

[16] OpenNLP, "OpenNLP," [Online]. Available: https://opennlp.apache.org/.

[17] P. More and R. Phalnikar, "Generating UML Diagrams from Natural Language
Specifications," International Journal of Applied Information Systems, 2012.

[18] C. Narawita and K. Vidanage, "UML generator – use case and class diagram generation
from text requirements," International Journal on Advances in ICT for Emerging
Regions (ICTer), 10(1), pp. 1-10 , 2017.

[19] T. Yue, L. Briand and Y. Labiche, "A systematic review of transformation approaches
between user requirements and analysis models," Requirements Engineering, 16, pp.
75-99, 2010.

[20] T. Tang, "From Natural Language to UML Class Models: An Automated Solution
Using NLP to Assist Requirements Analysis," Leiden University, Leiden, 2020.

[21] G. Lucassen, M. Robeer, F. Dalpiaz and J. M. B. S. van der Werf, "Extracting
conceptual models from user stories with Visual Narrator," Requirements Engineering
22, no. 3, pp. 339-358, 2017.

[22] M. Elallaoui, K. Nafil and R. Touahni, "Automatic Transformation of User Stories into
UML Use Case Diagrams using NLP Techniques," in 8th International Conference on
Ambient Systems, Networks and Technologies, Procedia Computer Science 130, 2018.

[23] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami and C. Dyer, Neural
Architectures for Named Entity Recognition, arXiv, 2016.

[24] M. Honnibal, I. Montani, S. Van Landeghem and A. Boyd, "spaCy: Industrial-strength
Natural Language Processing in Python," doi: 10.5281/zenodo.1212303, 2020.

[25] M. Honnibal, "Embed, encode, attend, predict: The new deep learning formula for state-
of-the-art NLP models," November 2016. [Online]. Available:
https://explosion.ai/blog/deep-learning-formula-nlp.

[26] R. Collbobert, J. Weston, L. Bottou, M. Karlen, K. Kvukcuoglu and P. Kuksa, Natural
Language Processing (almost) from Scratch, arXiv, 2011.

[27] M. Honnibal, "SPACY'S ENTITY RECOGNITION MODEL: incremental parsing with
Bloom embeddings & residual CNNs," November 2017. [Online]. Available:
https://www.youtube.com/watch?v=sqDHBH9IjRU&t=2781s.

[28] M. Honnibal, "Model Architectures," [Online]. Available:
https://spacy.io/api/architectures#tok2vec-arch.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez and L. Kaiser,
"Attention is All You Need," CoRR, 2017.

[30] J. Alammar, "The Illustrated Transformer," 2018. [Online]. Available:
http://jalammar.github.io/illustrated-transformer/.

[31] Y. Liu, M. Ott, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer and V.
Stoyanov, "RoBERTa: A Robustly Optimized {BERT} Pretraining Approach," CoRR,
2019.

[32] J. a. C. M.-W. a. L. K. a. T. K. Devlin, BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, arXiv, 2018.

[33] Hugging Face Team, "RoBERTa base model," [Online]. Available:
https://huggingface.co/roberta-base.

[34] E. Schmuhl, L. Miranda, A. Kadar, S. Van Landeghem and A. Boyd, "Spancat: a new
approach for span labeling," June 2022. [Online]. Available:
https://explosion.ai/blog/spancat.

[35] S. Van Landeghem, "SPACY v3: Custome trainable relation extraction component,"
2021. [Online]. Available: https://spacy.io/usage/layers-architectures.

[36] A. Ferrari, G. O. Spagnolo and S. Gnesi, "PURE: A dataset of public requirements
documents.," in 2017 IEEE 25th International Requirements Engineering Conference
(RE), Lisbon, Portugal, 2017.

[37] F. Dalpiaz, Requirements data sets (user stories), doi: 10.17632/7zbk8zsd8y.1, 2018.

[38] OpenScience, "tera-PROMISE," [Online]. Available: http://openscience.us/repo/ .

[39] A. Cockburn, Writing Effective Use Cases, Pearson Education Limited, 2000.

[40] G. Jalloul, UML by Example, Cambridge University Press, 2004.

[41] K. Bittner and I. Spence, Use Case Modeling, Addison Wesley Professional, 2002.

[42] P. J. Papagiorgji and P. M. Pardalos, Software Engineering Techniques Applied to
Agricultural Systems - An Object-Oriented and UML Approach, Springer, 2005.

[43] T. Lethbridge and R. Laganiere, Object-Oriented Software Engineering - Practical
Software Development using UML and Java, McGraw-Hill Publishing Company, 2004.

[44] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering using UML,
Patterns and Java, Pearson, 2009.

[45] F. Armour and G. Miller, Advanced Use Case Modeling, Volume One - Software
Systems, Addison-Wesley Professional, 2001.

[46] INSPIRE, "Infrastructure for spatial information in Europe," [Online]. Available:
https://inspire.ec.europa.eu/cases-studies/pilot-projects/inspire-energy-pilot/440/bu-
data-discoverable-inspire-geoportal/60732.

[47] Z. A. Hamza and M. Hammad, "Generating UML Use Case Models from Software
Requirements Using Natural Language Processing," in 2019 8th International
Conference on Modeling Simulation and Applied Optimization (ICMSAO), 2019.

[48] H. Nakayama, T. Kubo, J. Kamura, Y. Taniguchi and X. Lian, "Doccano: Text
Annotation Tool for Human," 2018. [Online]. Available:
https://github.com/doccano/doccano.

[49] M. Tkachenko, M. Mikhail, A. Holmanyuk and N. Liubimov, "Label Studio," 2020-
2022. [Online]. Available: https://github.com/heartexlabs/label-studio.

[50] O. Collective, "Universal Data Tool," [Online]. Available:
https://universaldatatool.com/app/.

[51] P. Stenetorp, S. Pyysalo, G. Topic, T. Ohta, S. Ananiadou and J. Tsujii, "brat: a Web-
based Tool for NLP-Assisted Text Annotation," 2012. [Online]. Available:
https://brat.nlplab.org.

[52] tagtog, "tagtog," [Online]. Available: https://www.tagtog.net/.

[53] I. Montani and M. Honnibal, "Prodigy: A new annotation tool for radically efficient
machine teaching," Artificial Intelligence, 2018.

[54] M. Honnibal and I. Montani, February 2021. [Online]. Available:
https://www.youtube.com/watch?v=9k_EfV7Cns0.

[55] SpaCy, "Matcher," [Online]. Available: https://spacy.io/api/matcher.

[56] I. Montani, "Built-in Recipes," [Online]. Available: https://prodi.gy/docs/recipes.

[57] I. Montani and M. Honnibal, "Embeddings, Transformers and Transfer Learning,"
[Online]. Available: https://spacy.io/usage/embeddings-transformers.

[58] I. Montani, "Evaluate NER wrong results," 2019. [Online]. Available:
https://github.com/explosion/spaCy/issues/3909.

[59] Django Software Foundation, "django Documentation," [Online]. Available:
https://docs.djangoproject.com/en/3.2/ref/applications/.

[60] T. Tang, From Natural Language to UML Class Models: An Automated Solution Using
NLP to Assist Requirements Analysis, Leiden University, 2020.

[61] P. Griffioen, Generating process models from textual requirements using transformer
based natural language processing, Leiden University, 2022.

[62] N. Daly, "What Is a Use Case?," April 2022. [Online]. Available:
https://www.wrike.com/blog/what-is-a-use-case/.

[63] Indeed Editorial Team, "Use Cases: What They Are and a List of Examples," 2021.
[Online]. Available: https://www.indeed.com/career-advice/career-development/list-of-
use-cases-examples.

[64] C. Little, "Spatial Data on the Web Use Cases & Requirements," 2016. [Online].
Available: https://www.w3.org/TR/sdw-ucr/#MeteorologicalDataRescue.

[65] S. Sehlhorst, "Sample Use Case Example," 2007. [Online]. Available:
https://tynerblain.com/blog/2007/04/09/sample-use-case-example/.

[66] S. B. T. &. V. R. de Abreu, "A review on Relation Extraction with an eye on
Portuguese," Braz Comput Soc 19, p. 553–571, 2013.

[67] K. Clark, D. Jurafsky, C. Manning and C. Potts, "The Stanford Natural Language
Processing Group," [Online]. Available: https://nlp.stanford.edu/projects/coref.shtml.

Appendix

Appendix A

Named Entities Recognition and Span Categorisation Rules:
a. “The clerk selects and views a claim from the list.”

In this sentence there are two different use cases: (a) selects a claim from the list, (b)
views a claim from the list. The phrase “from the list” is only mentioned once but it
refers to both verbs. The rule for similar situations is to use only one label
“USECASE” for both use cases.

b. “The system displays a list of possible duplicate claims from within loss database.”
Although there are no Actors mentioned in this example, the “clerk” is implied based
on context. In such cases, the verb phrase will still be labeled as “USECASE”.

c. “The application provides the user a list of claims.”
The entity “provides a list of claims” is discontinued because the word “user” that
represents an Actor split the Use Case. As it not possible to split a label in two parts,
the “USECASE” label will include the Actor. While in prodigy’s NER manual, one
word cannot have two labels, Span Categorisation allows overlapping, so “user” will
also be individually labeled as “ACTOR”.

d. “If the customer has had fewer than 3 attempts at entering the PIN, the system
informs the customer that he or she should have another attempt.”
In cases where a sentence starts with “If”, the verb phrase of the second part of the
sentence will be labeled as “USECASE”. The verb phrase in the first part of the
sentence can be indicating a pre-condition, an alternative flow or an exception.

e. “The system asks the Bank System to approve the withdrawal. The Bank System
responds with a withdrawal acceptance to approve the withdrawal.”
In this example the “Bank System” is an external system, so although it is a system, it
will be labeled as “ACTOR”.

f. “… the new Service Provider will send a request to the NPAC SMS to change the
Subscription Version status to pending.”
Verb phrase “will send a request” is the indicator of an interaction between the Actor
and the System so it will not be labeled as “USECASE”. The main Use Case in this
example is the phrase “change the Subscription...”.

g. “The loan agreement is presented to the customer for acceptance and signature.”
The two Use Cases in this example: “accepts the loan agreement” and “signs the
loan agreement” are expressed as part a verb phrase as nouns, because of the use of
passive voice. In such samples, the whole verb phrase will be annotated: “is
presented…signature”.

h. “The general user has no ability to modify system settings.”
In this sentence the Use Case expresses the inability of the actor to interact with the
system. For consistency purposes, negations will also be labeled as “USECASE”.

i. “The New and Old Service Providers use internal and inter-company processes to
resolve the conflict.”
In the scenario above, if the Actors were modeled in a UML Use Case diagram,
three different Actor elements would be distinguished: The New Service Provider,

the Old Service Provider and their generalisation, Service Provider. In such cases,
only the ancestor will be labeled as “ACTOR”.

j. “A collection curator wants to have items be made available under the permissions
they were configured once the embargo date has been reached.”
The verb phrase “items be made available…” is labeled as “USECASE” indicating an
action done by the System as interaction with the Actor.

k. “An IT manager wants to know about IT resource requirements early in the
project lifecycle, …”
The verb phrase “know about IT resource requirements...” will be labeled as

“USECASE”, indicating a request the user has from the system.
l. “As a user, I want to store behavior videos … written by Christopher James.”

 In cases where the name of a specific person is used, the name will not be labeled as
an “ACTOR”.

m. “Based on the loan officer’s experience…”
Although in this example the interaction between an Actor and the System is
irrelevant, the phrase “loan officer” will be labeled as an Actor for consistency
purposes.

n. “An archivist restricts access to certain files by user, so that he or she can allow
donor representatives to see certain files.”
The word “user” in this sentence is an indicator of how files are sorted and not an
Actor, so it will not be labeled.

o. “A developer has an easy way to define questions the user can ask and perform.”
In the scenario above, if the Use Cases were modeled in a UML Use Case diagram,
three different Use Cases elements would be distinguished: (a)define questions
(developer), (b) ask questions (user), (c)perform questions (user). In such cases the
whole phrase “define questions … perform” will be labeled as “USECASE”.

Relation Extraction Rules:
a. “A repository manager wants to compose collections, limiting the collection to the

items sharing the same provenance, limiting the collection to represent a part of a
collection have a singular provenance, or assembly a collection from other
collections and objects.”
In this sentence “compose collections” is the main Use Case, while “limiting the
collection...” and “assembly a collection…” are extending Use Cases and their
relationship with the main Use Case will be labeled as “EXTEND”.

b. “The Receiving Agent validates the box id with the TC registered ids and maybe
signs the paper form for the delivery person.”
The Use Case “signs the paper form” is extending the “validates the box id” Use Case
because of the word “maybe” and their relationship will be labeled as “EXTEND”.

c. “As a repository manager, I want to elect to either replicate remotely or not and
possibly to replicate beyond the primary remote site.”
Similar to the previous example, the use of the word “possibly” indicates that the verb
phrase “replicate beyond the primary remote site” is an extending Use Case to the
base Use Case “elect to either replicate remotely or not” and their relationship will be
labeled as “EXTEND”.

d. “The Bank System responds with a withdrawal acceptance to approve the
withdrawal.”

The main Use Case in the above sentence is “approve the withdrawal” and the
included Use Case is “responds with a withdrawal acceptance”. The relationship
between verb phrases that are connected with the word “to” will be labeled with the
label “INCLUDE”. The second verb phrase is the base Use Case that is related to the
Actor and the relationship between them will be labeled as “INTERACT”.

e. “The loan officer determines the appropriate terms of the loans, using suggested
loan terms ...”
The base Use Case in the example is “determines the appropriate terms of the loans”,
while the verb phrase “using suggested loan terms” is the included Use case and their
relationship will be labeled as “INCLUDE”.

f. “As a recruiter, I want to be able to extend an ad for another 30 days by visiting the
site and updating the posting, so that …”
Base Use Case “extend an ad for another 30 days” that includes the Use Cases
“visiting the site” and “updating the posting” and their relationship will be labeled as
“INCLUDE”. The indicator of the Include relationship in similar examples is the
word “by”.

Appendix B

In Figure 27, the registry looks in its “optimisers” table for a function named “Adam v1”. The
function will be called and the other elements of the block will pass in as arguments, in this
case, the learning rate.

 Figure 27 Example configuration file [54]

The configuration is resolved bottom-up, so the result of that function is computed, and the
resulting object passed into Adam. With this approach each object only receives the
configuration it needs itself [54].
When saving a model to disk, the config file is saved too and is used to reconstruct the model
for later re-use.

