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Abstract

Under the worst-case attack assumption, profiling side-channel analysis is recognized
as one of the most potent attack methods for cryptographic implementations. The success
of such attacks relies on the effectiveness of the profiling model in retrieving the leakage
information. Previous research indicates that a proper selection of the input features
could significantly increase the attack performance. However, due to the countermeasures
and technology nodes’ advances, such features become more difficult to extract with the
conventional approaches. In extreme cases, manual inspection has to be performed,
where extensive device knowledge is needed. To this day, an optimal feature selection
method has not yet been found. This thesis proposes an automatic framework based on
Proximal Policy Optimization to find, select and scale down features. The input features
are first grouped in small regions. The best candidates selected by the framework are
further scaled down with an online-optimized Dimensionality Reduction Neural Network.
Finally, the framework rewards the performance of these features with the results of a
Template Attack. Based on the experimental results, the proposed framework is able to
extract features that lead to near state-of-the-art performance on several commonly used
datasets.
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1 Introduction

Since the introduction of circuitry in plastic in 1960 by two German engineers, more smart
cards have been in use. From authorization cards and debit cards to the OV-chipkaart,
embedded circuitry in plastic has become very common. Since these smart cards can con-
tain sensitive information, they often carry cryptoprocessors to ensure the security of this
sensitive information. However, where there is sensitive information, there are bad actors
and criminals after it.
Since the introduction of the Advanced Encryption Standard (AES) [12], brute-force hacking,
the act of trying every possible combination of password or secret key, is not possible in any
feasible time [53]. To stay ahead of the curve, researchers tried other methods and found that
devices unintendedly leak information about the processing of the data. These unintended
leakages can consist of the power consumed by the device, the electromagnetic emission from
the device, or the timing it takes to execute operations.
These so-called side-channels gave rise to Side-Channel Analysis (SCA) [23]. In the beginning
SCA was based on visual analysis like Simple Power Analysis (SPA) [23], later more statistical
approaches were introduced, such as Differential Power Analysis (DPA) [23] and the Template
Attack (TA) [9]. Especially the Template Attack proved to be a very well-performing attack
strategy.
The Template Attack contains two phases: a profiling phase and an attack phase. In the
profiling phase, the attacker creates profiles or templates of the leakage information based on
a similar or identical device under the attacker’s control. These templates are characterized
by a multivariate normal distribution built by a mean vector and a covariance matrix, which
is the optimal way to describe the templates [32]. The Template Attack (TA) [9] gave way to
more advanced techniques for profiling attacks. Machine Learning (ML) and Deep Learning
(DL) have been used for SCA since its introduction [37][6][17][18][31].
These techniques proved very strong, and the field of SCA shifted its attention to these
techniques. As a result, TA became more of a baseline to compare to than the preferred
method of attack, even though they are the optimal method from an information-theoretic
point of view [9]. The main drawback of TA is their reliance on proper preprocessing of the
measurements because they often contain redundant or uninformative features [37].
This preprocessing is done with a method called Points Of Interest (POI) selection. POI
selection tries to capture the most relevant features from within the measurements and uses
these to mount an attack. Because of the shift from TA to ML and DL methods, research in
POI selection has diminished. Although the research has diminished, a few researchers have
proved that with proper POI selection, TA can still outperform ML and DL methods [26][56].
The main issue with proper POI selection is the need for device knowledge and, in extreme
cases, the manual selection of POIs. To this day, an optimal strategy for POI selection
is not known [32]. Finding an optimal strategy to reach a goal is one of the strengths
of Reinforcement Learning (RL). RL has already been employed in the field of SCA and
produced comparable state-of-the-art performance when optimizing network architectures
for Deep Learning attacks [41].
Knowing that RL can be employed to search for optimal network architectures, it may also
be employed to find an optimal strategy for identifying optimal Points Of Interest. With
this in mind, two research questions will be answered in this work.

Research Questions

1. What are the current Points Of Interest selection techniques, and which one performs
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the best, according to the Guessing Entropy?

1.a What are the current state-of-the-art techniques used to select Points Of Interest?
1.b What are the most prominent pros and cons of each method?

2. Using Reinforcement Learning is it possible to create a Points Of Interest selection
method?

2.a With the help of Reinforcement Learning techniques, is it possible to identify
possible points of interest from within a trace?

2.b Is it possible to create a Dimensionality Reduction Neural Network with the help
of Reinforcement Learning?

3. Can Reinforcement Learning improve Points Of Interest selection in comparison to the
current state-of-the-art, measured in the Guessing Entropy?

Sub-question 1.a is answered in Section 4, where an introduction to five state-of-the-art meth-
ods is given. Sub-question 1.b is answered in Section 8.6, where each method is benchmarked
on several commonly used datasets.
Research question 2.a and 2.b are answered in Section 5, where a proposed framework is
introduced which automatically finds, selects, and scales down Points Of Interest.
Finally, research question 3 is answered in Section 8, where the proposed framework is
benchmarked on several commonly used datasets.
This work has several sections, it begins with some background information about the Ad-
vanced Encryption Standard, Side-Channel Analysis, Machine Learning, Deep Learning and
Reinforcement Learning in Section 2. Then Section 3 outlines related work in SCA with a
focus on Points Of Interest selection. The current methods used are outlined in Section 4
and the proposed RL-driven framework is introduced in Section 5. Experiments are run to
benchmark the proposed framework and are outlined in Section 7. The results and discus-
sion of these experiments can be found in Section 8 and finally a conclusion and a discussion
about future work is made in Section 9.

2 Background

This section outlines the background information research in this document. It starts with
the basics of Cryptography and an introduction to the Advanced Encryption Standard. Then
an introduction to Side-Channel Analysis, with an emphasis on Template Attacks and Points
Of Interest selection. Eventually, this section ends with information about various techniques
of Machine Learning, Deep Learning and Reinforcement Learning.

2.1 Cryptography

Cryptography has its roots in the Greek words kryptos, secret, and graphein, to write, and the
act of writing secrets can be traced back to ancient Roman and Greek times. Modern cryp-
tography can be distinguished between two methods to encrypt and decrypt data, symmetric
and asymmetric cryptography. The data that has to be encrypted is called the plaintext and
the data that is already encrypted is called the ciphertext. Symmetric cryptography uses one
secret, or private, key shared by two entities exchanging secret data. The key acts as both
the encryption and decryption key for the data. An example of a symmetric cryptographic
algorithm is the Advanced Encryption Standard (AES) [12]. Asymmetric cryptography uses
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two keys, a private key and a public key. The public key, as the name suggests, is publicly
available. The public key encrypts the data, while the private key decrypts it. An example of
an asymmetric cryptographic algorithm is the Rivest-Shamir-Adleman (RSA) algorithm [44].

2.1.1 Advanced Encryption Standard

The Advanced Encryption Standard (AES) was dubbed as such by the National Institute of
Standards and Technology (NIST) in 2001, its official name is the Rijndael Block Cipher [12].
The AES algorithm comes in three variants describing the key length used, AES-128, AES-
192, and AES-256. The cipher encrypts or decrypts blocks of 16 bytes every round and does
so for 10, 12, or 14 rounds, depending on the variant. The 16 bytes are represented in a 4×4
matrix. AES is defined by four round operations shown in Table 1.

Operation Description

SubBytes Each byte of the state is substituted with

another byte using a non-linear lookup table called the S-Box.

ShiftRows Rows 2,3 and 4 in the state are shifted to the left by 1, 2 and 3 bytes respectively.

MixColumns The columns of the matrix are mixed using a linear transformation

AddRoundKey The 16-byte state is XOR’ed with the current 16-byte round key,

each round a different round key is computed according to the keyschedule.

Table 1: The four round operations of AES with their respective descriptions.

2.2 Side-Channel Analysis

With the implementation of cryptographic algorithms on devices, a new security risk was
introduced. Often these devices are embedded systems, such as smart cards [10]. Since
these devices do not have access to enough computing power to hold the most advanced
cryptographic algorithms, the implementation of the device itself is tested as well. Breaking
such a device is akin to extracting the secret key the device is using. Over the years, several
attacks were devised to assist with recovering the secret key from cryptographic devices.
Two attack categories can be distinguished, active and passive attacks. In active attacks,
an attacker tampers with the device, its inputs, or its environment. In passive attacks the
attacker analyzes the physical properties of the device and exploits any faults within those
systems. One of the most common passive attacks is Side-Channel Analysis (SCA).
SCA is the act of exploiting leakages of information from unintended channels. The most an-
alyzed side-channels are power consumption, electromagnetic emission, and operation execu-
tion time. The attacks are, respectively, called Power Analysis Attacks [23], Electromagnetic
Attacks [39] and Timing Attacks [13].

2.2.1 Non-profiled Attacks

Non-profiled attacks are the most rudimentary form of Side-Channel Analysis. The most
common non-profiled attack is the Simple Power Analysis (SPA) [23]. In this attack, the
attacker measures the power consumption, often called traces, of a device under attack while
the encryption process is running. SPA then exploits key-dependent operational differences
seen within traces and extracts the secret key. An example of SPA on the RSA cipher is
shown in Figure 1.
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Figure 1: An example of SPA on the RSA cipher. Since the secret key dictates the operations
used in the algorithm, it is easy to exploit by measuring the power consumption [27].

Another popular non-profiled attack is Differential Power Analysis (DPA) [23]. DPA is
the technique of interpreting the dependency of data encrypted or decrypted on the power
consumption. Since the secret key is used during encryption or decryption, the data used
can influence in conjunction with the key can influence the power consumption. Where SPA
mainly focuses on the dependency of the operations of a cryptographic algorithm on power
consumption, DPA focuses on the data being fed into a cryptographic algorithm. In contrast
with SPA, DPA requires a larger amount of measurements
DPA constitutes five steps [32]. The first step consists of selecting a point in the algorithm to
attack. This point is an intermediate result of encryption or decryption and can be modeled
as the function f(di, ki). Here di denotes i-th byte of the plain- or ciphertext and ki the i-th
byte of the secret key, often called a subkey.
The second step is to measure the power consumption while the device encrypts or decrypts
D different known data blocks. For each di, from d, a power trace t′

i = (ti,1, ..., ti,T ) is
recorded, where T denotes the length of each trace. Traces will be collected in T for further
use.
Step three consists of creating hypothetical intermediate values from the selected data blocks
d and every possible key guess in k. The result will be matrix V consisting of vi,j = f(di, kj).
Since k consists of every possible key guess, it also contains k∗, the key used by the device.
Step four is creating a mapping from these hypothetical intermediate values V to a set of
hypothetical power consumptions H. This mapping is done with a Hypothetical Leakage
Model, hi,j = LM(vi,j). The leakage models used in this thesis are explained in a later
section.
The fifth and final step of DPA is to compare the hypothetical power consumptions H with
the actual power consumptions T. This will result in matrix R with

ri,j =
∑D

d=1((hd,i − h̄i) ∗ (td,j − t̄j))√∑D
d=1(hd,i − h̄i)2 ∗

∑D
d=1(td,j − t̄j)2

(1)

Here ri,j denotes the correlation coefficient between column h̄i and column t̄j . Since it is
known which values are used to create h̄i, namely hi,j = LM(vi,j) and vi,j = f(di, kj), key
kj must be the key k∗ used by the device.

2.2.2 Profiled Attacks

Profiled attacks introduce an extra phase in the attack, the profiling phase. In this phase,
traces are measured from a copy of the device under attack and, based on these traces,
profiles are made. These profiles can then be applied to the device under attack for the
attacking phase.
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Template attacks (TA), as proposed in [9], are the most potent profiling attack from an
information-theoretic point of view. These attacks take into account that traces can be fully
defined according to a multivariate normal distribution with a mean vector and a covariance
matrix (m̄, C) [32], henceforth referred to as a template. Since a device is available to
create the templates, an attacker is in control of the parameters used for the template,
namely the plain- or ciphertext di and the key ki. These templates are created for a specific
combination and can be grouped. This way the attacker obtains a template for each group
hdi,ki

= (m̄, C)di,ki
.

Given a key kj and a trace t̄i the conditional probability p(kj |t̄i) can be calculated using
Bayes Theorem, which is shown in Equation 2, and the Law of Total Probability, as shown
in Equation 3.

P (A|B) = P (B|A)P (A)
P (B) (2)

P (A) = P (A|B)P (B) + P (A|1−B)P (1−B) (3)

Using the prior probability p(kl) and the probability p(t̄i|kl) for every key guess k1, ..., kK

in the search space, Equation 2 transforms into its TA equivalent shown in Equation 4. An
extension to multiple traces is shown Equation 5.

p(kj |t̄i) = p(t̄i|kj)p(kj)∑K
l=1(p(t̄i|kl)p(kl))

(4)

p(kj |T) = (∏T
i=1 p(t̄i|kj))p(kj)∑K

l=1((∏T
i=1 p(t̄i|kl))p(kl))

(5)

The probability p(t̄i|kl) can be transformed to p(t̄i|hdl,kl
) since the attacker has access to the

device. Using the template hdl,kl
= (m̄, C)dl,kl

the probability can be calculated Equation 6.

p(t̄|(m̄, C)di,ki
) =

exp(−1
2(t̄− m̄)T C−1(t̄− m̄))√

(2π)T det(C)
(6)

This is done for each template over multiple traces. Essentially, the key guess kl with the
highest probability must be k∗.

2.2.3 Point Of Interest Selection

Under the worst-case attack assumption, profiling Side-Channel Analysis is recognized as one
of the most potent attack methods for cryptographic implementations. The success of such
attacks relies on the effectiveness of the profiling stage and its ability to properly retrieve
leakage information from the traces. Therefore the profiling stage commonly undergoes a
preprocessing step called Points Of Interest Selection.
Points Of Interest (POI) selection is the method of distinguishing between relevant, irrelevant
or redundant features within the traces [37]. Three approaches to POI Selection can be made

• Feature Selection methods,

• Dimensionality Reduction methods, and

5 of 67



• Deep Learning based methods.

Feature Selection methods create a subset of the input features and uses these as the attack
features. Dimensionality Reduction methods transform the original features to a new sub-
space of features and uses the subspace for the attack. Deep Learning methods uses Artificial
Neural Networks to transform the features into a new set of features.

2.2.4 Hypothetical Leakage Models

Inferring the correct key or correct partial key is done by approximating the leakage. This
is done by modeling a hypothetical leakage model. The idea behind this is that while the
cryptographic algorithm is executed on the chip, there will be a correlation between the
intermediate values and the power consumption or electromagnetic emission.
Commonly three leakage models are defined, the Hamming Weight (HW) model, the Ham-
ming Distance (HD) model and the Identity (ID) model.
The HW model, models the assumption that a 1-bit in the intermediate value correlates with
the leaking side-channel. The HD model models the assumption that the bit-flips between
an intermediate value before a certain operation and after, correlates with the leaking side-
channel. For the ID model, the assumption that the intermediate values directly correlates
with the leaking side-channel is modelled.
The HW is defined as the sum of the bits in a binary number that equal 1. In the case of
AES, each key byte is a number between 0 and 28, e.g. HW(84) = HW(01010100) = 3.
The HD is defined as the amount of bits that flipped between two binary numbers. For
example, a=10100100 and b=01110110, then the HD(a,b)=10100100

01110110 = 4
The ID model does nothing else than use the intermediate values themselves, e.g. ID(128)
= 128.

2.3 Side-Channel Analysis Metrics

Two metrics are defined to compare different SCA attacks on their performance, the Guessing
Entropy (GE) and the Succes Rate (SR) [50]. Both of these metrics are predicated on a guess
vector g = [g1, ..., g|K|]. Here |K| denotes the search space of the key, in the case of AES
|K| = 256. The guess vector g is an ordering of how likely the attack guesses key values.
Only the Guessing Entropy is used in this thesis.

2.3.1 Guessing Entropy

The Guessing Entropy or Guess Entropy is the average ranking of the correct key k∗ among
the other key guesses, where the averaging is done over multiple attacks. The length of the
ranking vector denotes the amount of traces used for the attack. An attack is said to break
the target if it achieves a GE of 0. If the target of the attack is not the full key but only
one byte, it is commonly referred to as Partial Guessing Entropy. Often these terms are
interchangeable, and this will be done in this work as well.

2.4 Machine Learning

Machine Learning (ML) is one of the many applications of Artificial Intelligence. Its emer-
gence can be traced back to the year 1943 in the paper by McCoullough and Pitts [34]. In
this paper, the authors mathematically map out how the human cognitive works.
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Figure 2: A neuron with three inputs and one output [38].

A few years later in 1950, Alan Turing devised a test to measure the amount of intelligence
a system has. Using questions and answers, if the machine is able to convince a human
examiner that it is a human, the test is successful, and the machine is deemed intelligent.
Generally, Machine Learning is be divided into categories: Supervised Learning, Unsuper-
vised Learning, and Reinforcement Learning.
In Supervised Learning, the data has pre-assigned labels. These labels often denote a class to
which the data belong to. For example, an image of a dog having the class dog. Supervised
Learning is the task of distinguishing features from the data that makes them fall into a
particular class or label.
Unsupervised Learning is used on data that does not have assigned labels. The general idea
is that techniques learn from patterns within the data itself.
Reinforcement Learning will be discussed in Section 2.6.

2.5 Deep Learning

Deep Learning (DL) refers to the extension of the work by McCoullough and Pitts and their
mathematical approach to map the human cognitive. It is a form of ML that creates a
so-called Artificial Neural Network (ANN). ANNs are built by consecutive layers of neurons
and activation functions. Neurons consist of n input connections x̄ = [x1, ..., xn], weights
w̄ = [w1, ..., wn], a bias b and an activation function f(z). The neuron calculates its outputs
by summing up the element-wise multiplication of x and w and the bias. The result runs
through the activation function and is output to further layers of neurons. This can be
defined with the following equations:

z =
n∑
i

wixi + b (7)

a = f(z) (8)

A graphical representation of a neuron with n = 3 inputs can be found in Figure 2.
Activation functions are used to introduce non-linearity into the neural networks. The most
common activation functions are the Sigmoid function (Equation 9), the Rectified Linear
Unit (RELU) (Equation 10), the Scaled Exponential Linear Unit (SELU) (Equation 11) and
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the Softmax function (Equation 12).

f(z) = 1
1 + e−z

(9)

f(z) = max(0, x) (10)

f(α, z) = λ

{
α(ez − 1) if z ≤ 0
z if z > 0

(11)

f(zi) = exp(zi)∑n
j (exp(zj)) (12)

Graphical representations of each activation functions are found in Figure 3.

(a) The Sigmoid Function (b) The ReLU function

(c) The SeLU function (d) The Softmax Function

Figure 3: Graphical representations of each activation function [4].

2.5.1 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is an ANN built up by multiple layers of multiple neu-
rons. Each MLP begins with one input layer followed by several hidden layers and finishes
with one output layer. For example, a simple MLP consisting of four layers can be seen in
Figure 4.
Since every neuron is connected to every neuron in the next layer, they are known as Fully
Connected Layers. MLPs are mostly used for classification problems, for example breast can-
cer risk estimation [3], automatic weld defect classification [28] and identifying and classifying
of sonar targets [22].

2.5.2 Convolutional Neural Networks

A CNN is a type of ANN specialized for image analysis. Its main feature is the Convolutional
Layer. This layer also multiplies weights by its inputs but instead only takes a small area
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Figure 4: A Multi-Layer Perceptron consisting of an input layer with eight neurons, two
hidden layers of 12 neurons and a four neuron output layer.

into account instead of the entire input vector. The kernel size defines this area. Next to
the kernel size, a Convolutional Layer has two more important parameters that can be set,
the stride and the padding. The stride defines the step the layer takes before applying the
kernel again to an area. The padding is used to pad areas if the kernel is larger than the
current input and is mainly used to retain the original size.
Figure 5a gives an example of a 3x3 kernel and a stride of 1. Figure 5b gives an idea of how
the stride can influence the outcome of the output dimension.

(a) A 3x3 kernel with a stride of 1 moves over a
4x4 image.

(b) A 3x3 kernel with a stride of 2 moves over a
5x5 image.

Figure 5: A example how Convolutional layers work [14].

Next to Convolutional Layers, Pooling layers are an important part of CNN. The two most
used Pooling layers are Average Pooling and Max Pooling. As the name suggests, Average
Pooling takes the average of the designated area, while Max Pooling takes the maximum of
a designated area.
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2.6 Reinforcement Learning

Reinforcement Learning (RL) [51] is the act of learning through taking actions from observa-
tions made within an environment while being given an increasing reward for correct actions
taken. It is a class of learning algorithms that learns unsupervised but is not actively seeking
patterns in the data presented.
In Reinforcement Learning, an Agent-Environment interaction is built around the problem
to be solved, and a graphical representation can be found in Figure 6.

Figure 6: A graphical representation of a generic RL environment [51].

The Actor or Agent makes observations from the Environment called states. On time step
t, the Agent receives state St from the Environment and acts by following a certain Policy
π or transition probability T , by taking action At. The Environment takes the taken action
into account and according to a reward function f(St, At) gives a reward Rt and returns a
new state St+1. When the Agent reaches a predetermined terminal state, the Environment
sends a done signal to the Agent. From there on out a new sequence of states, actions and
rewards begins.
These sequential problems can be formalized as a Markov Decision Process (MDP) [30] and
form the basis for a mathematical approach to RL. The definition of an MDP for RL is done
by forming the 5-tuple (S, A, Ta, Ra, γ). Where S defines a finite set of legal states of the
Environment where s0 denotes the initial state. A defines the set of all actions that can be
taken in a state. Important to note is that this can change based on the state. If this is the
case, A becomes As. The transition probability is modelled as Ta(s, s‘) = Pr(s′ = st+1|st =
s, at = a) and is the probability that, given a state s and taking action a, the next state is s′.
Ra(s, s′) is the reward after transitioning from state s to s′ after taking action a. Finally, γ
represents the discount factor, a value that dictates the difference in the present and future
rewards.
As mentioned before, the Agent takes actions according to some transition probability T
and is the main focus of the learning process. This function is a conditional probability
distribution. An example is given in Table 2, which dictates the mapping from a state S to
a probability distribution over all actions in S:

T = S → p(A) (13)

Reinforcement learning algorithms have several defining attributes. They can be model-based
or model-free, meaning they either know or do not know the exact transition probability from
one state to another. They can be on-policy or off-policy, meaning that they either calculate
the discounted future rewards based on the state-action pairs following the current policy or
the greedy approach, where all actions are taken into account. The final defining attribute is
if the algorithm is value-based, where the algorithm approximates an optimal value function
that maps state-action pairs to reward values, or policy-based, where the algorithm directly
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s π(a = up|s) π(a = down|s) π(a = left|s) π(a = right|s)

1 0.1 0.1 0.0 0.8

2 0.5 0.3 0.2 0.0

3 0.0 1.0 0.0 0.0

4 0.7 0.1 0.2 0.0

Table 2: An example of a policy on a discrete state and action space, which can be stored
as a table.

optimizes the policy and approximates the optimal policy that way.

2.6.1 Q-Learning

One of the first Value-based Reinforcement Learning algorithms is Q-learning [54]. It is a
model-free, off-policy, value-based RL algorithm. It instantiates a lookup table, the Q-table,
filled with values for each state-action pair. The Agent does not know the exact transition
probability T and therefore cannot take actions based on T . To reflect this, T is often
interchanged with a policy π and the Agent takes actions based on this policy π. At each
time step, the algorithm looks up the state inside the Q-table and takes the action with the
highest value.
In Q-learning the policy π is defined as taking the action corresponding with the maximum
Q-value. To ensure proper exploration of the environment, an action sampling method is
used called ϵ-greedy sampling, as depicted in Equation 14. The method defines ϵ as the
probability of taking a random action from the action space. Where ϵ = 1.0 is akin to pure
random action sampling and ϵ = 0.0 is akin to deterministically taking the action with the
highest Q-value.

as =

argmax
a∈A

Q(s, a) 1− ϵ

random a ϵ
(14)

After taking an action and receiving rewards, the Q-table is updated via the Bellman Equa-
tion [5]

Q(st, at) = Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a)−Q(st, at)]. (15)

In essence, the Q-value associated with a state-action pair (st, at) is updated with future
discounted rewards when taking the next state st+1 into account. Here γ, with 0 ≤ γ ≤ 1,
denotes the discount factor and α, with 0 ≤ α ≤ 1, denotes the learning rate.
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2.7 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is the class of RL algorithms that make use of Artificial
Neural Networks.

2.7.1 Q-Networks

The work by Mnih et al. [35] describes the development of the Deep Q-Network (DQN)
algorithm in their efforts to create a single algorithm capable of solving a wide range of
challenging tasks. Instead of a Q-table that stores the values that map states to actions,
each state runs through a neural network and outputs a value for each action. Then according
to the same ϵ-greedy strategy, samples an action.
To stabilize the network’s learning and emulate the learning of past experiences in humans,
the authors employ Experience Replay [29]. The algorithm initializes a data set D of past
experiences and at each time step adds et = (st, at, rt, st+1) to D. Then during the application
of the Q-learning updates, a batch of experience is sampled at random from D and used for
the updates.
Each timestep t the network is trained by minimizing the loss function Lt of the network
with respect to the weights θ, with the following equation

Lt(θt) = Es,a∼p(·)[(yt −Q(s, a; θt))2] (16)
with

yt =
{

rt for terminal st+1

rt + γ maxa′ Q(st+1, a′; θt−1) for non-terminal st+1
(17)

Here the expectation to be minimized is the squared difference in future discounted re-
wards yt, which are calculated with the previous parameters θt−1, and the current rewards
Q(s, a; θt). Note that the expectation is calculated given a known state s and action a
according to a probability over all actions a ∼ p(·).

2.7.2 Policy Gradient Theorem

In contrast with value-based RL algorithms, such as the previously mentioned Q-Learning
and DQN algorithms, policy-based methods directly approximate the optimal policy π∗.
Recall that the policy dictates the action a taken in a state s: π(at = a|st = s). In
policy-based algorithms, the policy is modelled as a parameterized function with respect to
parameters θ: πθ(at = a|st = s). To maximize the policy is akin to maximizing θ and results
in an objective function J(θ) to be maximized and is defined as [51]

J(θ) = E[
T −1∑
t=0

rt+1|πθ]. (18)

Since this is a maximization problem, gradient ascent is used to find the optimal parameters.
Starting from Equation 18, expanding the expectation gives the following equation
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J(θ) = E[
T −1∑
t=0

rt+1|πθ], (19)

=
T −1∑
t=i

P (st, at|τ)rt+1. (20)

Here i dictates a starting point in a sequence of state-action pairs, P (st, at|τ) is the proba-
bility of the state-action pair in state-action sequence τ .
Equation 20 is the starting point in finding the gradient to maximize J(θ). Differentiating
with respect to θ

using d

dx
logf(x) = f ′(x)

f(x) , (21)

(22)

∇θJ(θ) =
T −1∑
t=i

∇θP (st, at|τ)rt+1, (23)

=
T −1∑
t=i

P (st, at|τ)∇θP (st, at|τ)
P (st, at|τ) rt+1, (24)

=
T −1∑
t=i

P (st, at|τ)∇θlogP (st, at|τ)rt+1, (25)

= E[
T −1∑
t=i

∇θlogP (st, at|τ)rt+1]. (26)

During learning the algorithm uses random batches of episodes, therefore instead of comput-
ing an expectation of the gradient it can be replaced which results in

∇θJ(θ) ∼
T −1∑
t=i

∇θlogP (st, at|τ)rt+1. (27)

Dissecting ∇θlogP (st, at|τ) by laying out the sequence τ by definition results in

P (st, at|τ) = P (s0, a0, ..., st, at|πθ) (28)
= P (s0)πθ(a0|s0)P (s1|s0, a0)πθ(a1|s1)...P (st|st−1, atπθ(at|st−1). (29)

Taking the log on both sides gives

logP (st, at|τ) =logP (s0)logπθ(a0|s0)logP (s1|s0, a0) (30)
logπθ(a1|s1)...logP (st|st−1, at)logπθ(at|st−1).

Differentiating with respect to θ, note that P (st|st−1, at−1) is not dependent on θ and thus
equals 0, yields:
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∇θlogP (st, at|τ) =0 +∇θlogπθ(a0|s0) + 0 +∇θlogπθ(a1|s1) + ...+ (31)
∇θlogπθ(at−1|st−1) + 0 +∇θlogπθ(at|st),

=
t∑

t′=0
∇θlogπθ(at′ |st′). (32)

Plugging this in the original equation, Equation 27, and expanding results in

∇θJ(θ) =
T −1∑
t=0

rt+1(
t∑

t′=0
∇θlogπθ(at′ |st′)), (33)

=r1(
0∑

t′=0
∇θlogπθ(at′ |st′)) + r2(

1∑
t′=0
∇θlogπθ(at′ |st′)) + ...+

rT −1(
T −1∑
t′=0
∇θlogπθ(at′ |st′), (34)

=r1∇θlogπθ(a0|s0) + r2(∇θlogπθ(a0|s0) +∇θlogπθ(a1|s1)) + ...+
rT (∇θlogπθ(a0|s0) + ... +∇θlogπθ(aT −1|sT −1)), (35)

=∇θlogπθ(a0|s0)(r1 + ... + rT ) +∇θlogπθ(a1|s1)(r2 + ... + rT ) + ...+
∇θlogπθ(aT −1|sT −1)(rT ), (36)

=
T −1∑
t=0
∇θlogπθ(at|st)(

T∑
t′=t+1

rt′). (37)

Adding the discount factor γ and expanding the same way as Equations 33-37 yields:

∇θJ(θ) =
T −1∑
t=0
∇θlogπθ(at|st)(

T∑
t′=t+1

γt′−t−1rt′). (38)

Simplifying the equation, by replacing ∑T
t′=t+1 γt′−t−1rt′ with Gt, gives the final equation

∇θJ(θ) =
T −1∑
t=0
∇θlogπθ(at|st)Gt. (39)

2.7.3 Actor-Critic Architecture

Two issues arise when using policy gradients, noisy gradients and high variance [52]. This is
because the trajectories τ can deviate from each other to great degrees during training. For
example, let there be three trajectories (τ1, τ2, τ3) for each ∇θlogπθ(τ) was calculated and
equals (0.4, 0.7, 0.1). Each of the respective Gt’s were calculated and returned (200, 201, 202).
Calculating the variance V ar(0.4 ∗ 200, 0.7 ∗ 201, 0.1 ∗ 202) yields 3642.16, this high variance
can lead to unstable learning.
A counter to this was introduced by Williams in 1992 [55]. This work introduces a baseline
bt(st) to be subtracted from the policy gradient
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∇θJ(θ) =
T −1∑
t=0
∇θlogπθ(at|st)(Gt − bt(st)). (40)

One common method is choosing the estimate of the value function V (st) as the baseline.
Since the baseline only depends on the state, it will not impact the gradient of the policy.
The idea behind this is that the algorithm constantly checks if a specific action at is better
or worse than the average action, given the state st. This is more commonly known as the
advantage function

A(at, st) = Q(at, st)− V (st). (41)

This approach forms the basis of the actor-critic architecture, where the policy π is seen as
the actor and the baseline bt is seen as the critic [51].
Adding the advantage function as the baseline, the new gradient becomes

∇θJ(θ) ∼
T −1∑
t=0
∇θlogπθ(at|st)A(st, at). (42)

2.7.4 Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) by Schulman et al. [47] introduces an algorithm
for smoother policy learning. It does so by applying a Kullback-Leibler (KL) Divergence [24]
on parameter updates in the policy.
The KL Divergence of a function q(x) from function p(x) is denoted as DKL(p(x), q(x)) and
is a measurement of information loss when q(x) is used to approximate p(x). It is calculated
with the following equation

DKL(p(x), q(x)) =
∫ ∞

−∞
p(x)lnp(x)

q(x)dx. (43)

Instead of directly applying the policy gradient, as depicted in Equation 39, to update the
parameters, TRPO uses a surrogate loss function to update its parameters. The surrogate
loss has its roots in Importance Sampling[49].
The idea behind Importance Sampling is to estimate the expected value of a function f(x),
where x follows a distribution p(x). Then, instead of sampling x from p, it is sampled from
q

Ep[f(x)] = Eq[f(x)p(x)
q(x) ]. (44)

If q(x) is sufficiently close to p(x) then the estimation is sufficiently accurate.
The application for Importance Sampling in RL, is that it is very inefficient to recalculate
the expected rewards for a trajectory τ for each update done to the parameters θ from the
old parameters θold. Therefore, instead of recalculating the expected rewards, the expected
rewards from the trajectory τ under θold are used.
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Figure 7: An intuitive depiction of TRPO; on the left normal gradient ascent, where a large
step in the direction of the yellow arrow is taken. On the right an applciation of TRPO
where the trust region is depicted as the yellow circle and a small update step as the blue
dot [21].

The surrogate loss used by TRPO is constraint by a KL Divergence constraint such that it
the new policy does not drift to far apart from the old policy

max
π

L(π) = Eπold
[ π(a|s)
πold(a|s)Aπold(s, a)], subject to (45)

E[KL(π, πold) ≤ ϵ]. (46)

Note that Aπold(s, a) is the advantage function as depicted in Equation 41.
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2.7.5 Proximal Policy Optimization

In 2017, Schulman et al. introduced Proximal Policy Optimization (PPO) [48], which builds
upon their earlier work in TRPO and resulted in an algorithm that is simpler to implement,
more general, and has better computational complexity.
Instead of using a constraint on the KL Divergence between the new and old policy, a clipping
of the ratio was proposed

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]. (47)

Figure 8: A graphical representation of the clipping of the gradient. The red dot represent
the starting point [48].

Figure 8 gives an overview of one optimization step, starting from the red dot where r(θ) =
1.0. In the left image, the advantage was returned positive, meaning that the action taken
yielded better rewards than the expected average rewards. In the right image, the advan-
tage was returned negative, meaning that the action taken yielded worse rewards than the
expected average rewards.
Notice that in the left image, the loss function flattens out when rt(θ) gets too high. This
happens when the action taken is a lot more likely in the current policy π than it was in the
old policy πold. The algorithm clips the loss function to not overdo the gradient step and
limit the effect of the update.
In the right image, the loss function flattens on the left side. This corresponds to an action
taken that is much less likely to happen in the current policy than in the old policy. The
same principle applies, clipping the loss function not to overdo the gradient step and thereby
limiting the influence of the gradient update.
In the left image, the unflattened area corresponds to actions that returned better rewards
but were less likely to be chosen under the current policy than the old policy. Therefore a
much lower loss would be given since the policy moved in the wrong direction. The same
idea applies to the right image; an action that returned worse rewards was more likely to be
chosen under the current policy than the old one. Again the gradient moved in the wrong
direction, and a larger negative loss was returned.
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3 Related Work

After the introduction to Side-Channel Analysis by Kocher et al. [23], the important work by
Chari et al. [9] introduced Template Attack (TA)s, which would drive the research in the SCA
community for many years. Although being the most potent attack from an information-
theory standpoint, its assumptions can be somewhat daunting and sometimes impossible
(unlimited traces). Years later, more advanced methods were devised, such as the Stochastic
Models presented in the work of Schindler et al. [46], which aims to reduce the amount of
traces needed for profiling significantly. Further work was done by Choudhary and Kuhn [11],
where the authors introduced pooling the covariance matrices used in the profiling phase
and attaining a significant speed-up of the attack. These methods represented the state-of-
the-art for several years, mainly due to the strength of performance and the fact that no
hyperparameter tuning was needed.

3.1 Machine Learning and Deep Learning in SCA

A few years later, Machine Learning was introduced in the SCA community. Lerman et
al. [25] aimed to find the limits of machine learning when conducting attacks. In their work,
five classification models were tested: Support Vector Machines, Random Forests, Template
Attacks, Stochastic Attacks, and Multivariate Regression Analysis. They found that the
combination of a Support Vector Machine with a Correlation Power Analysis performed the
best. The work by Martinasek et al. [33] proposed the first Neural Network (NN) for key
recovery. The method is divided into three phases, a pattern preparation for each secret key,
a training phase of the network, and a classification phase of the key estimates. The authors
use a standard Multi-Layer Perceptron with three layers. It achieved promising, being able
to achieve a 90% accuracy of the first byte with only one trace. Gilmore et al. [17], building
upon the work of Lerman et al. [25], proposed the use of a Neural Network instead of a
Support Vector Machine. The NN was able to provide a decrease in traces needed to identify
the mask used and was able to achieve a 91.75% accuracy in the key recovery phase.
Maghrebi et al. [31] continued this line of research by introducing several Deep Learning
techniques to the field of Side-Channel Analysis. They experimented with four DL-based
attacks, an AutoEncoder (AE), a Convolutional Neural Network (CNN), a Long Short-Term
Memory (LSTM) network, and the Multi-Layer Perceptron (MLP). The authors concluded
that these methods are able to target different aspects of SCA, such as implicit feature
extraction through AEs and CNNs and exploiting time dependencies in traces with LSTMs.
Although the performance of these techniques is strong, one downside of these techniques
is their reliance on finely tuned hyperparameters. Maghrebi et al. [31] mentioned that the
performance fluctuates by tuning the network with Genetic Algorithms. In 2020, Benadjilla
et al. [6] made an exhaustive search for the best-performing CNN on their ASCAD data set.
Recently Rijsdijk et al. [41] introduced Reinforcement Learning to automatically search for
the best performing CNN architecture for several databases. The authors specifically search
for architectures that are relatively small yet retain state-of-the-art performance.

3.2 Point Of Interest selection

Over the years and with the emergence of these strong techniques, Template Attacks became
more of a baseline to compare techniques with than the preferred method of attacking devices.
However, they stay the most optimal from an information-theoretic point of view. In 2015
Lerman et al. [26] even concluded that, with proper Points Of Interest selection, Template
Attacks outperform Machine Learning attacks.
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Over the years, several techniques have been researched to reduce the complexity of Template
Attacks. One of the first works was in 2006, where Archambeau et al. [2] introduced Principal
Component Analysis to create a principal subspace. The principal subspace reduced the
dimension of the traces by 99.99% and resulted in being able to correctly classify 93.3% of
the traces.
Picek et al. [37] explored many different Points Of Interest selection methods used frequently
in Side-Channel Analysis. The authors made a distinction between Points Of Interest selec-
tion techniques and divided them into three categories: feature selection, where a subset of
all points/features is selected, dimensionality reduction, where a technique transforms the
original features into new features, and deep learning techniques, where feature extraction
is done implicitly due to the nature of deep learning attacks. The authors concluded that
feature selection is a very important step in attacks where the data is noisy and contains
various countermeasures
In Perin et al.’s work [36], the authors explore different setups of Points Of Interest for the
preprocessing of DL attacks. Three different approaches are mentioned: Refined Points Of
Interest, taking only the points with the highest Signal-to-Noise Ratio (SNR) peaks into
account, Optmized Points Of Interest, a predefined interval or concatenation of multiple
intervals that include the main SNR peaks, and Non-Optimized Points Of Interest, where
points with high and low SNR peaks are selected.
More recently, Wu et al. [56] used a Machine Learning technique called Similarity Learning
to show that with proper feature engineering, Template Attacks remain feasible and are even
able to outperform current state-of-the-art Deep Learning techniques.
Rioja et al. [42] introduced an automated DL tuner based on Estimation of Distribution
Algorithms (EDAs). EDAs are evolutionary methods based on an implicit distribution model
instead of the more common mutation and crossover operators. The authors concluded that
this implementation could automatically choose good-performing POIs and therefore reduce
the need for human intervention.
The first instance of Reinforcement Learning applied in Side-Channel Analysis concerning
Points Of Interest selection, to the best of the writer’s knowledge, is Side-Channel Analysis
with Reinforcement Learning (SCARL). In this paper Ramezanpour et al. [40] introduce
an algorithm that preprocesses the data with an AutoEncoder and, with the help of a self-
supervised Actor-Critic model, is able to cluster features based on the inter-cluster difference
on the mean.
As stated in [37], the proper Points Of Interest selection research has seen very few attempts.
This is mainly due to the fact that simple techniques were considered sufficient enough. It is
evident to see that this step has become less important since most research is benchmarked
on predefined POI intervals.
This thesis attempts to reintroduce POI selection as an important topic to research. This is
done by introducing a novel Reinforcement Learning driven framework for Points Of Interest
selection. The framework is benchmarked on commonly used datasets to see if it is able to
find Points Of Interest. A comparison of the performance is made with several currently
used POI methods to see if the framework can improve POI selection.
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4 Current Methods for Point Of Interest selection

Profiling Side-Channel Attacks are still regarded as one of the most potent forms of attacks
on cryptographic algorithms. But the success of these attacks relies on the effectiveness of the
profiling stage, as explained in Section 2.2.3. As mentioned before, traces contain important,
redundant, or irrelevant features. It is important to distinguish and separate these features,
since using features that do not contain leakage information, is bound to lead to the wrong
results.
The attack of choice in this thesis is the Template Attack, as explained in Section 2.2.2. It
is shown in various works that with proper Points Of Interest selection, this attack performs
better than without [26][9][37][56].
Three categories of POI selection methods are explored in this thesis [37]:

• Feature Selection: A method that extracts the most important raw features within
a trace by returning a subset of the whole trace.

• Dimensionality Reduction: A method of transforming the original n features in a
set of k new features.

• Deep Learning Techniques: A method of using a Deep Learning model to extract
features. Based on a loss function these methods are able to distinguish good features
from bad.

This section introduces each of the methods explored in this thesis. Each of their results is
discussed in Section 8.

4.1 Feature Selection Methods

The selection methods outlined in this section are able to select a subset S of interesting
points directly from the data set D. Two methods will be analyzed, Sum of Squared T-
Differences and Signal-to-Noise Ratio.

4.1.1 Sum Of Squared T-Differences

Chari et al. [9], in their work on Template Attacks, offered a solution to feature extraction.
The Sum of Differences (SOD), as depicted in Equation 48, is the sum of the difference
between the mean of point i and point j. The mean of each point is calculated over a set.
In the case of SCA these sets are the groupings based on the intermediate values.
Later Gierlichs et al. [16] made an adaption of Chari et al.’s work. The authors proposed
the Sum Of Squared Differences (SOSD), as seen in Equation 49. In the same work they
proposed the normalized version of SOSD, the Sum Of Squared T-Differences (SOST). The
authors adapted their own work by applying the T-test to distinguish noisy signals, which
can be found in Equation 50.
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c̄ =
K∑

i,j=1
µi − µj (48)

c̄ =
K∑

i,j=1
(µi − µj)2 (49)

c̄ =
K∑

i,j=1
( µi − µj√

σ2
i

ni
+ σ2

j

nj

)2 (50)

The difference between SOSD and SOST is striking and an example can be found in Figure 9.

Figure 9: On the left is an image of SOSD, on the right of SOST. It is clear to see that SOST
is able to remove the noise and accentuate the peaks [16].

Using SOST for Points Of Interest selection means using the top-n features corresponding
to to highest SOST coefficients from c̄.

4.1.2 Signal-to-Noise Ratio

Signal-to-Noise Ratio (SNR) [45][32] is a measurement to compare the amount of the desired
signal against the unwanted amount of noise. SNR is calculated as Signal

Noise , an alternative is
to calculate the ratio of mean to standard deviation of the measurements, µ

σ .
To use this technique in Side-Channel Analysis, each trace is first grouped based on the
leakage model. The mean and variance is calculated for each group. Then, the mean of
the group variances and the variance of the group means is calculated. Finally the SNR is
calculated as V ar(µgroups)

Mean(σgroups) .
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The SNR is projected on each feature from the trace. Using SNR for POI selection is done
by taking the top-n highest peaks from the trace and using the corresponding features for
an attack.

4.2 Dimensionality Reduction Methods

The methods outlined in this section are able to create a mapping from a set of n features
to a set of k features. It is important to note that these k features are not equal to the n
original features.

4.2.1 Principal Component Analysis

Principal Component Analysis (PCA) [19] is a dimensionality reduction method that de-
composes the data into linear combinations. It tries to find the set of linear combinations
that separates the data the most. In essence, it finds the linear combinations with the most
significant variance in decreasing order, often a top-n approach is used with n being the
number of principal components to find.
Given a dataset X with dimension n× p, the goal of PCA is to find a n× k representation
Z of X, while k << p. It does so by finding a projection matrix W such that

Z = WT X (51)

For the sake of simplicity, consider a one dimensional projection with k = 1. Then the
projection matrix W becomes vector w̄ and the representation matrix Z becomes vector z̄.
Equation 51 the becomes

z̄n = w̄T x̄n. (52)

This essentially describes a projection of X on a line z̄ where zn is the position of xn on
that line. Since the goal is to retain the maximum variance of X through z̄, it is equivalent
to find the maximum variance of z̄. This is done by calculating the sum of squares of the
projection and dividing by the number of samples

V = 1
N

N∑
n=1

z̄2
n, (53)

= 1
N

N∑
n=1

(w̄T x̄n)2. (54)
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Using the fact that AT B = BT A, Equation 54 becomes

V = 1
N

N∑
n=1

(w̄T x̄n)2, (55)

= 1
N

N∑
n=1

w̄T x̄nw̄T x̄n, (56)

= 1
N

N∑
n=1

w̄T x̄nx̄T
n w̄, (57)

= w̄T ( 1
N

N∑
n=1

x̄nx̄T
n )w̄. (58)

To simplify further, the inner term can be replaced with the covariance matrix C,

C = 1
N

N∑
i=1

x̄nx̄T
n , (59)

Equation 58 becomes

V = w̄T Cw̄. (60)

Since C is static, maximizing the variance is akin to maximizing the weight vector w and
this can be approached as an optimization problem. To ensure that the variance does not
explode, a constraint is applied that the norm of the weight vector cannot exceed unit length

w̄T w̄ = ∥w̄∥2 = 1. (61)

Since this has become a constrained optimization problem it can be solved by applying
theLagrange Multiplier Method (LMM). LMM is setup using the function

L(x, λ) = f(x) + λg(x). (62)

Where f(x) denotes the function to be maximized or minimized and g(x) denotes the equality
constraint.
Using LMM the optimization problem is set up as

L(w̄, λ) = w̄T Cw̄ + λ(w̄T w̄ − 1). (63)

Since the eigenvectors of the covariance matrix point into the direction of the largest variance
within the data, finding the largest eigenvalue corresponds to finding the largest variance.
As can be seen from Equation 63, the weight vector corresponds to the eigenvector and λ to
the eigenvalue.
To solve Equation 63 for the eigenvector w̄ it is differentiated with respect to w̄ and set to 0
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∂L

∂w̄
= 2w̄T C− 2λw̄T = 0, (64)

=> w̄T C = λw̄T . (65)

To solve Equation 63 for the eigenvalue λ it is differentiated with respect to λ and set to 0

∂L

∂λ
= w̄T w̄ − 1 = 0, (66)

=> w̄T w̄ = 1 (67)

Plugging these in Equation 60 it becomes

V = w̄T Cw̄, (68)
= λw̄T w, (69)
= λ (70)

So to reiterate, the variance is equivalent to the eigenvalue associated with the eigenvector
that spans Z. Thus finding the largest eigenvalue is equivalent to finding the largest variance.
So PCA essentially makes an eigenvalue decomposition to find the largest eigenvalue that
corresponds to the eigenvector that spans the projection.
It is possible to extrapolate this to a k-dimensional subspace Z which constructs k eigenvalues
for each Vi for i ∈ [1...k].
For POI selection, the top-n largest eigenvalues are selected, and with their corresponding
eigenvectors a transformation matrix is constructed. The transformation matrix is then used
to transform each trace from the attack set and these are subsequently used for an attack.

4.2.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), also known as Fisher’s Linear Discriminant named
after founder R.A. Fisher [15], is a classification and dimensionality reduction method. LDA
is closely related to PCA in that it also looks for a linear combination of variables to explain
the differences in the data. The difference is that LDA takes class differences into account,
whereas PCA ignores these.
LDA is calculated with two variance matrices, often called scatter matrices. The intra- or
within-class scatter matrix Sw, which denotes the total variance within a class, and the inter-
or between-class matrix Sb, which denotes the total variance between the classes.
In the first step to calculate the scatter matrices, several means are calculated. The data is
grouped according to their class and for each class c a mean µ̄c is calculated. The last mean
needed is an overall mean µ̄o that is calculated over the whole dataset.
The within-class scatter matrix is calculated by summing over the individual class variance
matrices with

Sw =
c∑

i=1
Si. (71)
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Each individual variance matrix Si is calculated with

Si =
N∑

j=1
(x̄j − µ̄i)(x̄j − µ̄i)T (72)

Since the summation is done over each variable x̄, if there exist a significant class imbalance
the summation is skewed towards overrepresented classes. To counter this, each individual
scatter matrix Si is normalized according to the amount of samples in the class

1
Ni

Si. (73)

The between-class scatter matrix is calculated by summing the difference between the class
means µ̄c and the aforementioned overall mean µ̄o

Sb =
c∑

i=1
Ni(µ̄i − µ̄o)(µ̄i − µ̄o)T (74)

As with PCA, as explained in Section 4.2.1, the largest variance corresponds to the largest
eigenvector. Instead of using a eigenvalue decomposition of the covariance matrix, LDA solves
the generalized eigenvalue problem of the matrix S−1

w Sb. This results in the c eigenvalues
with their corresponding eigenvectors.
At last, LDA performs a projection on a k-dimensional plane by multiplying the data with
weight matrix W. The weight matrix W is constructed by the eigenvectors corresponding
to the top-k eigenvalues.
For LDA the same holds as was done with PCA. The top-n eigenvalues are selected and their
eigenvectors are used for the transformation matrix. This matrix is used to transform each
attack trace and subsequently the attack traces are used for an attack.

4.3 Deep Learning Method

Deep Learning Methods use an Artificial Neural Network to transform the original features
in a new set of features. All Deep Learning methods use a loss function to learn how well
the network performs.

4.3.1 Triplet Network

With the recent shift from statistical analysis for POI selection to Machine Learning tech-
niques, Wu et al. [56] introduced the Triplet Network, as depicted in Figure 10, for feature
extraction.
The network name comes from the way the input is set up. A triplet consists of an anchor a,
a positive p, and a negative n. The anchor and the positive share the same label, while the
negative has another label. All three are run through the network, and the loss is calculated
as shown in Equation 75.

loss = max(dist(a, p)− dist(a, n) + margin, 0) (75)
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Figure 10: Triplet Network; three identical ANNs using different inputs to produce three
embeddings [56].

In the loss function dist denotes the Euclidean distance between two points in a space. Based
on the loss function three types of triplets can be distinguished

• Easy triplets, where dist(a, p) + margin < dist(a, n),

• Hard triplets, where dist(a, n) < dist(a, p),

• Semi-hard triplets, where dist(a, p) < dist(a, n) < dist(a, p) + margin.

the margin describes the boundary between the three types of triplets Training on easy
triplets can lead to low loss values since p and n are easily separable. But, this could also
lead to a local optimum. Training on hard triplets could lead to a collapsing model, since
the distance from a to n is less than from a to p. Training on semi-hard triplets introduces
learning difficulties set by the boundary value margin, this results in the model extracting
more representative features [56].
The network is used for POI selection in a very simple way. Once the network is trained
on the profiling set, it is used on the attack set. The output of the network is then used to
perform an attack.
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5 Proposed framework

This section explains the proposed framework and the algorithms working within. In general,
the framework provides a fire-and-forget method, devised as an alternative to manually
selecting points of interest. Furthermore, the framework automatically scales down the
dimensions further by providing an optimized dimensionality reduction network tailored to
the selected points, based on the Triplet Network as explained in Section 4.3.1. Since this
framework combines the conventional POI selection method and DL-based method in an
automatic manner, it essentially reduces the amount of work and domain knowledge that is
needed for proper Points Of Interest selection.

Figure 11: Graphical overview of proposed framework

An overview of the framework is shown in Figure 11. Each episode, the framework executes
two inner loops that run until terminal conditions are met. The first inner loop is the region
selection phase, depicted with 1 in Figure 11, the second inner loop is the dimensionality
reduction phase, depicted with 2 in Figure 11. The output of the dimensionality reduction
network produces embeddings, depicted with 3 in Figure 11. These are then used for a
Template Attack, which determines the performance of the chosen regions and network. An
algorithmic overview is shown in Algorithm 1.

Algorithm 1 Proposed framework Framework
region ppo← build PPO net()
dim red ppo← build PPO net()
for ep ∈ episodes do

selected regions← select regions(region ppo) ▷ Displayed in Algorithm 2
dim red network ← create network(dim red ppo) ▷ Displayed in Algorithm 3
processed traces← process(traces, selected regions)
batches← generate batches(processed traces, batch size)
train network(dim red network, batches)
ranks← perform attack(dim red network)
reward← calculate reward(ranks)
train network(region ppo, dim red ppo)
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5.1 The Environment

The framework operates within an environment that has access to the dataset. This includes
the profiling traces, attack traces, plain- and ciphertexts, and profiling keys.
The environment aggregates the features in regions of length n. This value n is determined
by the trace length and the amount of regions available as n = length/regions. The amount
of regions available is a hyperparameter that needs to be set beforehand.
Aggregations of the features is done to ensure that leakages spanning multiple points are
selected in one go, thereby spanning a greater range of possible leakage points. An example
of leakages spanning multiple points close together is shown in Figure 12.

Figure 12: The SNR of the unmasked ASCAD dataset showing the leakage spanning multiple
points in a trace [6].

At each episode, multiple regions are selected. To narrow down the selection of the regions to
only the well-performing regions, a current maximum amount of regions rcur is established.
At each episode, the environment reduces rcur with Exponential Decay. This is done to
explicitly induce an exploration-vs-exploitation dichotomy. Furthermore, since the search
space of features can be rather large, reducing the amount of the to-be-selected regions
provides a speed up of the framework.
To kick-start the learning process of distinguishing between well-performing regions and bad-
performing regions, a percentage of the total amount of regions is considered as the initial
maximum amount of regions to-be-selected rmax. For example, if the total amount of regions
is 1000 and the environment is setup with 50% initial regions, rmax = 500.
Since Exponential Decay reduces to 0 given enough time, a minimum amount of to-be-
selected regions rmin is defined. This again is a percentage of the total amount of regions
available. Equation 76 gives the Exponential Decay function.

rcur = max(⌊r0e−λep⌋, rmin) (76)

Here λ denotes the decay factor and ep denotes the current episode of the framework. An
example of the decay function with λ = 0.002, rmax = 1000 and rmin = 100 is shown in
Figure 13.
Finally, the environment consists of the total amount of episodes the framework will run for
and the batch size of traces that are analyzed when selecting regions.

5.2 Reward Function

The framework follows the general Reinforcement Learning loop as is depicted in Figure 6.
For the framework to learn, a reward function is needed. This reward function is an adapta-
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Figure 13: An example of the Exponential Decay function in Equation 76. Here λ = 0.002,
rmax = 1000 and rmin = 100.

tion of the reward function found in [41]. Two adaptions were made, the first was to remove
the notion of the accuracy metric. In [41], the goal was to correctly classify key guesses with
a CNN, in this thesis that is not the case. Since there are no labels associated with Points
Of Interest, any form of classification metric are not available. The second adaption was
to remove the reward for the size of the networks created by the proposed method in [41].
In this thesis there exists no goal to produce as less as possible Points Of Interest, just the
best performing, therefore this part was removed. The reward function used in this work is
shown in Equation 77.

r = t′ + GE′
10 + 0.5GE′

50
2.5 (77)

t′ = tmax −min(tmax, GEk∗)
tmax

(78)

GE′
10 = 128−min(GE10, 128)

128 (79)

GE′
50 = 128−min(GE50, 128)

128 (80)

To calculate the reward, the framework performs a Template Attack with the selected and
reduced points of interest. The template attack returns the Guess Entropy vector and is used
as GEk∗ . Here tmax denotes the amount of attack traces used for the attack. Furthermore,
GE10 resembles the Guess Entropy when 10% of the maximum amount of traces are used,
GE50 resembles the Guess Entropy when 50% of the traces are used.
These metrics were chosen to incentivize the learning to focus on reducing the amount of
traces needed to converge to the correct key guess. The last two metrics are added to
make sure that, although complete convergence was not achieved, the actions taken are not
disregarded as completely wrong.
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5.3 Phase 1: Feature Selection

This phase of the framework is responsible for the selection of multiple regions from the traces.
It is based on the Proximal Policy Optimization algorithm, explained in Section 2.7.5. The
architecture of the PPO network is a neural network with five layers. The architecture of
the network is found in Table 3. The average pooling layer is added to reduce the number
of inputs the network has to take into account, thereby speeding up the process. Very early
in the experimentation, it became apparent that a Multi-Layer Perceptron performed better
than a Convolutional Neural Network. Therefore it was decided to do all experiments with
MLPs, CNNs were not further experimented with.

Region PPO Network

Avg Pool layer: Kernel=3, Stride=2

FC layer: Neurons=256

Activation Layer ReLU

FC layer: Neurons=256

Activation Layer ReLU

FC layer: Neurons=128

Activation Layer ReLU

FC layer: Neurons=64

Activation Layer ReLU

FC layer: Neurons=action space size

Table 3: Network Architecture for the Region Selection PPO network.

At each iteration, the environment provides the network with a subset of the profiling traces.
The subset size is dictated by the batch size provided in the environment. This is done to
diversify the input and ensure that the algorithm is not taking actions based on only a single
trace. In each iteration, one region of all possible regions is selected until it has reached the
amount of regions to select.
Each trace in the network is run through the network and outputs raw network outputs,
often called logits. Since the network is set up to take only one action for multiple inputs,
the logits are summed.
After summation the new logits are used to create a categorical distribution,according to
Equation 12. From the categorical distribution one action is sampled. This action represents
the selected region for that iteration.
The PPO algorithm has the Actor-Critic architecture, as explained in Section 2.7.3. This
means that a critic-value is calculated with the same network, but outputs only one value.
This value can be interpreted as a score for how well the network is performing. Since the
network takes in a batch of traces, there is also a batch of critic values. In this phase, the
critic value is averaged instead of summed, as this is interpreted as the average state of the
network. The algorithm’s general layout is shown in Algorithm 2.
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Invalid Action Masking To ensure that regions are not duplicated, Invalid Action Mask-
ing (IAM) [20] is applied. IAM is the method of replacing certain logits with a large negative
number, such that it defaults to a probability of practically 0 when creating a categorical
distribution. For example, assume an environment is defined by two states [s0, s1] and four
actions, [a0, a1, a2, a3], are available in s0. Assume that s1 is the terminal state and that the
default reward is 1. Furthermore, a policy πθ is defined with θ = [1.0, 1.0, 1.0, 1.0], assume
that it directly returns θ as the output logits. Then in s0, the policy produces

πθ(·|s0) = [πθ(a0|s0), πθ(a1|s0), πθ(a2|s0), πθ(a3|s0)], (81)
=> softmax([l0, l1, l2, l3]), (82)
= [0.25, 0.25, 0.25, 0.25]. (83)

Now IAM is applied by replacing the invalid action’s logit by a large negative number M ,
e.g. M = −108, assume action a2 is invalid then

π′
θ(·|s0) = mask([πθ(a0|s0), πθ(a1|s0), πθ(a2|s0), πθ(a3|s0)]), (84)

=> softmax([l0, l1, M, l3]), (85)
= softmax([1.0, 1.0,−108, 1.0]), (86)
= [0.33, 0.33, 0.0, 0.33]. (87)

Since the mask is only dependent on the state and has no bearing on the parameters of the
policy, it produces a valid policy gradient. For the complete proof see [20].

Algorithm 2 Region Selection Algorithm
Require: env, region model

phase← region
obs← reset(env, phase)
while not done do

logits, val← region model(obs)
logits←

∑
logits

val← mean(val)
mask ← 0̄ ▷ Length of mask is determined by logits
regions← get selected regions(env)
for each r ∈ regions do

mask[r]← 1
logits← apply mask(logits, mask)
dist← create categorical ditribution(logits)
action← sample(dist)
log prob← get log probability(dist, action)
next obs, done← step(env, action)
train data← setup train data(obs, action, val, log prob, mask)
obs← next obs
if done then

break while
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5.4 Phase 2: Dimensionality Reduction

In the second phase of the framework, the algorithm iteratively builds up a Neural Network
similar to the Triplet Network, as explained in Section 4.3.1. As with the previous phase, this
phase uses a Proximal Policy Optimization algorithm to find the best network for selected
regions. The architecture of the PPO network can be found in Table 4.

Dimensionality Reduction PPO Network

FC layer Neurons=32

Activation layer ReLU

FC layer Neurons=32

Activation layer ReLU

FC layer Neurons=32

Activation layer ReLU

FC layer Neurons=action space size

Table 4: Network Architecture for the Dimensionality Reduction PPO network.

The architecture of the PPO network is chosen to reflect the significant difference in state
size from the Region Network shown in Table 3. The choice to omit any convolutional layer
is made because the input consists of variables that are strongly independent of each other.
The states built by the environment constitute of the current amount of layers present in
the network, the type of layer selected in the previous step, the output shape of the layer
selected in the previous step, and if the algorithm has achieved a terminal state. A general
layout of the algorithm is shown in Algorithm 3.
The action space of Algorithm 3 has been masked with IAM as well. In addition, several
restrictions have been put up to guide the algorithm in building valid networks. An overview
of these restrictions is found in Table 5 and a graphical overview of the state transitions is
shown in Figure 14.

State Restrictions

Null State Can only transition to Pooling, Convolutional or Terminal layers

Pooling layer Cannot transition to other Pooling layers

Convolutional layer No restrictions

Activation layer Cannot transition to other Activation layers

Fully Connected layer No restrictions

Terminal layer Can only transition to optimizers

Table 5: On overview of each state and the transition restrictions

It is important to note that not only are state transitions restricted, but the hyperparameters
belonging to those states as well. Since the network’s purpose is to reduce the dimensions,
the outputs of the following state cannot exceed the inputs to that state, e.g. if the output
of the current state is of dimension 64, every action that leads to a new layer with an output
dimension larger than 64 is determined invalid and is masked as such.
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Figure 14: Graphical overview of the state transitions, note that for ease of viewing, activa-
tion layers are removed.

Algorithm 3 Dimensionality Reduction Algorithm
Require: env, network model

phase← network
obs← reset(env, phase)
while not done do

logits, val← network model(obs)
mask ← determine mask(obs)
logits← apply mask(logits, mask)
dist← create categorical ditribution(logits)
action← sample(dist)
log prob← get log probability(dist, action)
next obs, done← step(env, action)
train data← setup train data(obs, action, val, log prob, mask)
obs← next obs
if done then

break while

Several hyperparameters are made available to be chosen by the algorithm. An overview of
each layer and the respective hyperparameters are shown in Table 6.

Layer Hyperparameters

Fully Connected layer Neurons : [256, 128, 64, 32, 16, 8]

Convolutional layer Kernel : [256, 128, 64, 32, 16, 8] Stride : [16, 8, 4, 2, 1]

Pooling Layer Kernel : [256, 128, 64, 32, 16, 8] Stride : [16, 8, 4, 2, 1]

Activation Layer Type : ReLU, Tanh, SeLU

Embeddings Layer Neurons : [64, 32, 16, 8]

Optimizer Type : Adam, AdaGrad, RMSProp, SGD LR: [1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2]

Table 6: Hyperparameter overview of the possible combinations of layers.

After the selection of the optimizer the network is build witht he selected layers and hy-
perparameters and trained using the loss explained in Equation 75. Training is done for 25
episodes with a batchsize of 32 and a margin of 0.4.
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6 Datasets

Four datasets will be used to benchmark the current methods and the proposed framework,
the ASCAD dataset containing the fixed key and variable key dataset, the CHES CTF
dataset, and the AES HD dataset.

6.1 ASCAD Fixed and Variable

The ASCAD Dataset [6] is created by acquiring EM traces from an AES implementation
on the WB Electronics 64 kbit ATMega chipcard. The chip card contains an ATMega8515
controller running an AES implementation. The chip card itself has no hardware security
implementation. Therefore two countermeasures are implemented in the AES implementa-
tion, affine masking [8] and operation shuffling [43]. The dataset has the following leakage
model:

y(k∗, pt) = SBox(k∗ ⊕ pt)

The complete ASCAD dataset consists of two actual datasets, ASCAD F and ASCAD R.
With ASCAD F, the traces are acquired with a fixed key. With ASCAD R, for only 33%
of the traces the keys are fixed and for the other 66%, the keys are random. Both dataset
consist of 45000 profiling traces and 5000 attack traces. Originally the datasets contains raw
traces of 100000 features. The authors made a predefined window of 700 features for the
fixed key dataset and 1400 features for the variable key dataset.
To determine the effectiveness of the current state-of-the-art methods and the proposed
framework on higher dimensional data, the dimensions are increased to 5000 points. This
is done by accessing the raw 10000 feature dataset and running ASCAD generate.py with a
window of 5000 around the center point of each window. The code and raw traces publicly
available.

6.2 AES HD Dataset

The AES HD dataset [7] is a dataset created by measuring EM emission from an unprotected
Xilinx Virtex-5 FPGA. The leakage model is defined as follows:

y(tb1 , tb2 , k∗) = SBox−1(tb1 ⊕ k∗)⊕ tb2

The dataset consists of 45000 profiling traces and 5000 attack traces with each 1250 features.

6.3 CHES CTF Dataset

The CHES CTF data set is a data set created for the annual Capture-The-Flag event or-
ganized by the Conference on Cryptographic Hardware and Embedded Systems (CHES).
The traces are taken from a 32-bit STM Controller running a masked AES-128 encryption
algorithm. This data set originates from the year 2018 and is publicly available [1].
From the data set, 45000 profiling and 5000 attack traces are retrieved. All traces have a
dimension of 2200 features.

7 Experiments and Experimental Setup

All methods explained in Section 4 are run on the datasets mentioned in Section 6. Each
of these methods has a minimum and a maximum amount of Points of Interest that will be
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experimented with, an overview is given in Table 7.

Method Number of POIs

SOST [2, 4, 8, 16, 32, 64]

SNR [2, 4, 8, 16, 32, 64]

PCA [2, 4, 8, 16, 32, 64]

LDA [2, 3, 4, 5, 6, 7, 8]

Triplet [2, 4, 8, 16, 32, 64]

Table 7: Points of Interest for each method.

For Wu et al.’s Triplet Network, the hyperparameters chosen are according to the authors’
choice as explained in their paper [56].
The proposed framework is benchmarked on the same four datasets. The method runs for
a total of 2000 episodes for each dataset to give the algorithm sufficient time to understand
the data. The batch size of the traces in the Region Selection phase is set to 32. This is done
to reduce the network’s computational requirements when increasing the traces’ dimensions.
At the end of the learning process, the best-performing regions and networks are used to
test their performance. This is done by mounting 100 Template Attacks and recording the
Guess Entropy.
The framework automatically selects the best performing regions while the amount of regions
to be selected exponentially decays over time. Two settings are run to see the impact of
starting and ending with a higher number of regions. The first setting selects 50% of the
total amount of regions and reduces the amount to 1%. The second setting begins with 75%
of the total amount of regions and reduces the amount to 10%.
An ablation study will be conducted to gain insight into the strength of the framework. In
this ablation study, the dimensionality reduction network will be omitted during the attack
phase to see the impact of using only the best-performing regions.
The traces of each dataset are divided into regions of length 5, this corresponds to the
following amount of regions per dataset

• AES HD: 250,

• CHES CTF: 440,

• ASCAD F: 1000,

• ASCAD R: 1000.
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8 Results and Discussion

This section displays and discusses the results of the application of the various methods
explained in Sections 4 and 5 on each dataset. The results of the current methods are shown
and discussed first. Afterward, the strengths and weaknesses of these methods are discussed.
Finally, this section ends with the results of the proposed framework.

8.1 SOST

As explained in Section 4.1.1, SOST calculates the squared difference of each point in the
whole trace. To give an impression of how SOST selects points of interest, the projection is
shown in Figure 15. From the projection on the AES HD dataset in Figure 15a, a large peak
around dimension 950 can be observed. This means that SOST was able to find significant
coefficients around dimension 950, which can be interpreted as a significant leakage from
the AES HD dataset. This probably is because the AES HD dataset is unprotected, as
mentioned in Section 6.2. In the Figures 15b-15d no peaks are observed. Meaning that there
were no significant coefficients found and thus that SOST cannot detect leakage within these
datasets. These results probably stem from the fact that these datasets are masked.

(a) SOST on AES HD. (b) SOST on CHES CTF.

(c) SOST on ASCAD F. (d) SOST on ASCAD R.

Figure 15: The projection of the SOST on the features of each dataset.

From this projection, the top-n maximum points are used as features for the attack. The
amount of points for the attacks is depicted in Table 7. The GE is calculated for each of the
datasets over 100 attacks and is displayed in Figure 16.
Although the projection in Figure 15a showed the detection of a significant leakage by SOST,
the results from the attack, as depicted in Figure 16a, shows very conflicting results. It seems
that SOST cannot break the AES HD dataset within the allotted amount of attack traces.
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(a) GE of SOST on AES HD. (b) GE of SOST on CHES CTF.

(c) GE of SOST on ASCAD F. (d) GE of SOST on ASCAD R.

Figure 16: Performance of SOST on all data sets averaged over 100 attacks.

Although, it is observed that with more attack traces, SOST with 64 POIs would be able to
break the target.
The results in Figure 16b and Figure 16c show that both the CHES CTF and ASCAD F
dataset can be broken when using SOST. This again is conflicting with the results shown in
their projections in Figure 15b and Figure 15c.
It is observed from Figure 16a that the best performing amount of POIs for the AES HD
dataset is 64. The results indicate a GE0 of more than the allotted amount of attack traces.
For the CHES CTF the best performing POIs was 16 and resulted in a GE0 of 4510, as
observed in Figure 16b. For ASCAD F and ASCAD R, the best performing POIs is 32.
It seems that for both datasets, more POIs perform better than lower amounts of POIs.
For ASCAD F this resulted in a GE0 of 4522, as observed in Figure 16c. For ASCAD R,
as observed in Figure 16d, the results indicate a GE0 of more than the allotted amount of
attack traces. An overview of the best performing amount of POIs is found in Table 8.
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Dataset Best Performing amount of POIs GE0

AES HD 64 > 5000

CHES CTF 16 4510

ASCAD F 32 4522

ASCAD R 32 > 5000

Table 8: The GE of the best performing number of POIs on each dataset for SOST.

8.2 SNR

The SNR is the ratio between the relevant signal and the irrelevant noise inside the data.
As with SOST, the SNR can also be projected on each feature. The SNR for each dataset is
shown in Figure 17.

(a) SNR of the AES HD dataset. (b) SNR of the CHES CTF dataset.

(c) SNR of the ASCAD F dataset. (d) SNR of the ASCAD R dataset.

Figure 17: The projection of the SNR on the features of each dataset.

From Figure 17a, a small peak can be observed around feature 950. This means that SNR
can detect a leakage from the AES HD dataset. The same reasoning mentioned in Section 8.1
can be applied here. This detection is probably because the AES HD dataset is unprotected.
The SNR from the Figures 17b-17d show no significant peaks. Again, as mentioned in
Section 8.1, this is probably because these datasets are protected with masking. The GE is
calculated for each of the datasets over 100 attacks and is displayed in Figure 18.
It is observed, in Figure 18a, that SNR is able to break the target of the AES HD dataset,
which is in line with the fact that SNR was able to detect leakage information, as was
shown in Figure 17a. From Figure 18b, it is observed that SNR is not able to to break
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(a) GE of SNR on AES HD. (b) GE of SNR on CHES CTF.

(c) GE of SNR on ASCAD F. (d) GE of SNR on ASCAD R.

Figure 18: Performance of SNR on all data sets averaged over 100 attacks.

the target for the CHES CTF dataset. Although, the results indicate that with more traces,
CHES CTF would have been broken as well. The results on the ASCAD F dataset, displayed
in Figure 18c, show that SNR is able to break the target. This result is not entirely in line
with what was observed in Figure 17c since no leakage could be detected by SNR. Since
there was no leakage detected by SNR and the results show that with more POIs it is still
able to break the target, it could be that by chance, the correct features were selected. The
ASCAD R dataset, which can be seen in Figure 18d, is not able to be broken with SNR.
Although, the results indicate that with more attack traces, the ASCAD R dataset would
have been broken as well. Again the results indicate that, on average, higher amounts of
POIs give better results.
The best performing amount of POIs, according to the results in Figure 18a, for the AES HD
dataset is 2 with a GE0 of 1094. It is interesting to see that the results indicate that more
POIs is detrimental to the performance. For the CHES CTF dataset, the best performing
amount of POIs is 4 with a GE0 of more than the allotted amount of attack traces, as can be
observed from Figure 18b. As mentioned before, the results indicate that with more attack
traces, all amounts of POIs would be able to break the target. As with the AES HD dataset,
it seems that for CHES CTF, lower amounts of POIs perform better. For the ASCAD F
dataset, the best performing amount of POIs is 32 with a GE0 of 1184. As mentioned before,
this result may be due to chance. An increase in selected POIs could lead to selecting the
correct combination of features. The results in Figure 18d show that the best performing
amount of POIs for the ASCAD R dataset is 16 with a GE0 of more than the allotted amount
of attack traces. Again, on average, an increase of POIs shows an increase in performance.
An overview of the best performing amount of POIs is found in Table 9.
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Dataset Best Performing amount of POIs GE0

AES HD 2 1094

CHES CTF 4 > 5000

ASCAD F 32 1184

ASCAD R 16 > 5000

Table 9: The GE0 of the best performing number of POIs on each dataset for SNR

8.3 PCA

As explained in Section 4.2.1, PCA constructs Principal Components that contain a certain
percentage of the variance in the data. This variance can be plotted for each Principal
Component, these plots are called scree plots. A scree plot for each dataset is displayed in
Figure 19

(a) Scree plot of PCA on AES HD (b) Scree plot of PCA on CHES CTF

(c) Scree plot of PCA on ASCAD F (d) Scree plot of PCA on ASCAD R

Figure 19: Scree plot of PCA on all datasets.

From the scree plot in Figure 19a, it is observed that PCA has issues decomposing the dataset,
where the first 10 Principal Components only hold 34% of the explained variance. The same is
observed in Figure 19b for the CHES CTF dataset, where the first 10 Principal Components
hold even less of the explained variance, only 22%. PCA has fewer issues decomposing the
ASCAD dataset. From the scree plot for ASCAD R in Figure 19c, it is observed that already
72% of the explained variance resides in the first 10 Principal Components. The scree plot
for ASCAD R in Figure 19d shows an explained variance of 62% for the first 10 Principal
Components.
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(a) GE of PCA on AES HD (b) GE of PCA on CHES CTF

(c) GE of PCA on ASCAD F (d) GE of PCA on ASCAD R

Figure 20: Performance of PCA on all data sets averaged over 100 attacks.

Figure 20a displays that PCA is able to break the AES HD dataset. In contrast, the
CHES CTF could not be broken with PCA. These results correlate with what was depicted
in their respective scree plots in Figure 19a and Figure 19b. Both datasets have a hard
time being decomposed. The results for the ASCAD R dataset, shown in Figure 20c, show
that PCA can break it relatively easily. This is in line with the scree plot in Figure 19c,
where it was observed that the ASCAD F dataset could be decomposed fairly well. The
same holds for the ASCAD R dataset, as observed in Figure 20d, where PCA can break the
dataset relatively easily. It is strange to see that that PCA completely breaks when using
64 POIs. This is likely due to selecting such low variance Principal Components that the
transformation matrix is muddled and cannot transform the features concisely.
For the AES HD dataset the best performing amount of POIs, as observed from Figure 20a,
is 32 with a GE0 of 2178. These 32 Principal Components correspond to 58% of the total
explained variance. As observed from Figure 20b, the best performing amount of POIs is
32 with a GE0 of more than the allotted amount of traces. These 32 Principal Compo-
nents correspond to 69% of the total explained variance. Figure 20c shows that the best
performing amount of POIs for the ACSCAD F dataset is 16 with a GE0 of 203. The 16
Principal Components together hold 76% of the total variance. ASCAD R, as is depicted
in Figure 20d, also indicate that the best performing amount of POIs is 16 with a GE0 of
447. For ASCAD R, these 16 Principal Components hold 72% of the total variance. The
best performing number of Principal Components can be seen in Table 10.
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Dataset Best Performing amount of POIs GE0

AES HD 32 2178

CHES CTF 32 > 5000

ASCAD F 16 203

ASCAD R 16 447

Table 10: The GE0 of the best performing number of POIs on each dataset for PCA

8.4 LDA

As with PCA, LDA creates a decomposition into eigenvalues as well, as explained in Sec-
tion 4.2.2. Since this is a supervised method, the maximum number of components equals
the number of classes minus one. In the case of the Hamming Weight, the number of classes
is nine; thus, only eight components can be created. As with PCA, each component can be
depicted in a scree plot. Each of the scree plots for each dataset is shown in Figure 21.

(a) Scree plot of LDA on AES HD (b) Scree plot of LDA on CHES CTF

(c) Scree plot of LDA on ASCAD F (d) Scree plot of LDA on ASCAD R

Figure 21: Scree plot of LDA on all datasets.

It can be seen from Figure 21a that the AES HD dataset is the only dataset that has a higher
starting explained variance than the other datasets. This might be due to the fact that the
AES HD dataset is unprotected. For the other datasets, as depicted in Figures 21b-21d, the
explained variance is equally distributed over all components.
In Figure 22a it is observed that LDA is able to break the AES HD dataset. This is likely
due to the observed results from the scree plot in Figure 21a. A higher explained variance
in the first component seems to affect the performance positively. Especially considering the
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(a) GE of LDA on AES HD (b) GE of LDA on CHES CTF

(c) GE of LDA on ASCAD F (d) GE of LDA on ASCAD R

Figure 22: Performance of LDA on all data sets averaged over 100 attacks.

results observed for the other datasets in Figure 22b-22d. It is apparent that none of the
datasets are broken with LDA. Although, it seems that the CHES CTF dataset would be
able to be broken when given more attack traces, as observed in Figure 22b.
From Figure 22a it can be seen that the best performing amount of POIs for the AES HD
dataset is 2 with a GE0 of 1104. It is also observed that all amounts of POIs can break the
target. For the CHES CTF, the best performing POIs is 7, as is observed in Figure 22b, with
a GE0 of more than the allotted amount of attack traces. For ASCAD R and ASCAD F it
is apparent, form their respective Figures 22c and 22d, that no amount of extra traces would
break the target. Their best performing amount of POIs are 3 and 8 with a GE0 of more
than the allotted amount of attack traces. An overview of the best performing amount of
POIs is found in Table 11.

Dataset Best Performing amount of POIs GE0

AES HD 2 1104

CHES CTF 7 > 5000

ASCAD F 3 > 5000

ASCAD R 8 > 5000

Table 11: The GE0 of the best performing number of POIs on each dataset for LDA
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8.5 Wu et al. Triplet Network

The Triplet Network is a Deep Learning method, meaning that it uses a ANN to transform
the features. The triplet network learns to differentiate between good and bad features by
minimizing a loss function. The loss function uses the distance between traces with the same
label and the distance between traces with differing labels. The Triplet Network represents
the current state-of-the-art in Points Of Interest selection and this can be clearly seen in the
results in Figure 23.

(a) Triplet on AES HD. (b) Triplet on CHES CTF.

(c) Triplet on ASCAD F. (d) Triplet on ASCAD R.

Figure 23: Performance of the Triplet Network on all data sets averaged over 100 attacks.

From the results in Figure 23a, it is observed that the Triplet Network can break the AES HD
dataset. From Figure 23b, it can be seen that the Triplet Network can not break the
CHES CTF dataset within the allotted amount of attack traces. It does seem that given
more traces, the CHES CTF dataset would also be broken. This is likely due to the network
not being fine-tuned for this dataset. Both the ACAD F and ASCAD R dataset are easily
broken by the Triplet Network as depicted in Figure 23c and Figure 23d.
In Figure 23a it is shown that the best performing amount of POIs for the AES HD dataset is
8 with a GE0 1668. The results also indicate that every amount of POIs can be used to break
the target. For the CHES CTF, according to Figure 23b, the best performing amount of
POIs is 64 with a GE0 of more than the allotted amount of attack traces. For the ASCAD F
and ASCAD R datasets, the best performing amount of POIs is 32 and 16 with a GE0 of
194 and 165, respectively. It is interesting to see that the amount of POIs has almost no
bearing on the performance, as depicted in Figure 23c and Figure 23d. An overview of the
best performing amount of POIs is shown in Table 12.
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Dataset Best Performing amount of POIs GE0

AES HD 8 1668

CHES CTF 64 > 5000

ASCAD F 32 194

ASCAD R 16 165

Table 12: The GE0 of the best performing number of POIs on each dataset for the Triplet
Network

8.6 Discussion of the Current Methods

Each method was benchmarked on the four datasets, and the result varied wildly. Of the
five methods, none were able to break each target consistently. However, this does not mean
that all these methods should be disregarded.
From the results discussed in Section 8.1, it was observed that SOST was able to detect
leakages on the AES HD dataset but was inconstant in being able to break the target.
While no leakages were detected for the ASCAD F and CHES CTF datasets, SOST was
able to break the target. It seems that SOST suffers from being a very inconsistent method
to perform POI selection.
SNR suffers less from this inconsistency, as discussed in Section 8.2. The leakage detected on
the AES HD dataset resulted in breaking the target well within the allotted amount of attack
traces. However, the ACSCAD F dataset was again broken, despite no leakage detected by
SNR. Both Feature Selection methods seem inconsistent when dealing with the dataset.
PCA performs well on all datasets except the CHES CTF dataset, as discussed in Section 8.3.
This was especially apparent from the scree plots made for each dataset. From the scree plots,
it was observed that PCA had difficulties decomposing the CHES CTF dataset the most,
resulting in the worst performance of the four datasets. The other datasets were fairly easily
broken, indicating the strength of PCA.
In contrast with PCA, LDA performed very poorly. As discussed in Section 8.4, LDA
was only able to break one dataset, the AES HD dataset. It seems that datasets that are
protected by masking are not able to be decomposed very well by LDA. Although, when
used on unprotected datasets, such as the AES HD dataset, it outperforms PCA. It seems
that LDA suffers the most from the fact that the transformation of the original traces results
in information loss.
The Triplet Network represents the current state-of-the-art when used for POI selection.
This was indeed observed from the results discussed in Section 8.5. The only dataset not
broken by the Triplet Network was the CHES CTF dataset. All other datasets were broken
well within the allotted amount of attack traces. It even outperformed PCA on all three
datasets. As mentioned before, this is the main weakness of the Triplet Network. If the
network is not adequately fine-tuned for the dataset, it cannot break the target. However, it
is to be expected that if tuned correctly, it would be able to break the CHES CTF dataset.
An overview of the performance of each method on each dataset is shown in Table 13. The
best performing POI selection method for that dataset is depicted in bold.
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Dataset SOST SNR PCA LDA Triplet

AES HD - 1094 2513 1104 1664

CHES CTF 4510 - - - -

ASCAD F 4522 1184 203 - 194

ASCAD R - - 452 - 164

Table 13: A summary of the results of each method on each of the four datasets.

8.7 Proposed framework

The proposed framework was run on each dataset for a total of 2000 episodes, in which,
during training, the network found, selected, and scaled-down various amounts of Points Of
Interest. During training, one set of regions and one neural network performed the best out
of all others for each dataset. The best-found set of regions and networks for each dataset is
found in Appendix A.

Performance of best-found regions and networks on each dataset After training,
the best-found regions and networks were benchmarked for 100 Template Attacks on their
respective dataset. The results of the attacks are found in Figure 24.

(a) GE of best found regions and model
on AES HD.

(b) GE of Best found regions and model
on CHES CTF.

(c) GE of Best found regions and model
on ASCAD F.

(d) GE of Best found regions and model
on ASCAD R.

Figure 24: Performance of the Proposed framework on all data sets averaged over 100 attacks.

As seen from Figure 24a, the proposed framework can break the target of the AES HD
dataset, which means that an unprotected dataset can be broken with the proposed frame-
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work. The proposed framework can break the CHES CTF dataset, as is observed in Fig-
ure 24b. Both ASCAD F and ASCAD R can be broken well within the allotted amount of
attack traces, as can be seen in Figure 24c and Figure 24d. This means that the proposed
framework can break even a protected dataset. Table 13 extends Table 14 by adding the
exact GE0 of the proposed framework for each dataset.

Dataset SOST SNR PCA LDA Triplet Proposed Framework

AES HD - 1094 2513 1104 1664 1430

CHES CTF 4510 - - - - 3962

ASCAD F 4522 1184 203 - 194 193

ASCAD R - - 452 - 164 1499

Table 14: A summary of the results of each method on each of the four datasets.

As seen from Table 14, the proposed framework is the only method that can break all
four datasets consistently—even achieving state-of-the-art results on the CHES CTF and
ASCAD F datasets.

Impact of varying regions sizes Two settings were tested to see the impact of having
access to more initial regions and more minimum regions, as mentioned in Section 7. Both
settings were trained for 2000 episodes, and the best-performing regions and networks were
selected to benchmark their respective datasets. A comparison between both settings is
shown in Figure 25.
The results from Figure 25a indicate that having access to more initial regions and more
minimum regions is detrimental to the performance on the AES HD dataset. The same
results are observed for the CHES CTF dataset, in Figure 25b, and the ASCAD F dataset,
as shown in Figure 25c. Only the ASCAD R dataset, as observed in Figure 25d, performs
better with more initial and minimum regions.

Insight in the learning process To gain insight into the proposed framework’s learning
process, the rewards of the training over the course of 2000 episodes are depicted in Figure 26
for the AES HD and CHES CTF, and in Figure 27 for ASCAD F and ASCAD R. The
rewards are aggregated per 10 episodes to make them less cluttered. The original figures are
shown in Appendix B.
The proposed framework seems to have difficulty propagating what was learned throughout
the various episodes. This phenomenon can be clearly seen for the AES HD dataset in
Figure 26a and Figure 26b, the highest rewards are found at the beginning of the learning
process. This indicates that the proposed framework might not be able to learn where the
most important POIs are. Although, the performance of the found regions and network, as
observed from Figure 24a, tells that the proposed network can break the target.
For the CHES CTF dataset, this is less obvious, as seen in Figure 26c and Figure 26d. Here
the framework can hold the average reward fairly steady throughout the learning process.
However, this seems to indicate that the framework struggles to learn the correct combination
of regions and network.
For the ASCAD F dataset, this phenomenon was observed less, which is most apparent in
Figure 27b. It is observed that here the average rewards returned are greater at the end of
the episodes than in the beginning. This might be due to the peak in average reward at the
beginning of the learning process. This indicates that if the framework explores a very good
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(a) Impact of regions on AES HD. (b) Impact of regions on CHES CTF.

(c) Impact of regions on ASCAD F. (d) Impact of regions on ASCAD R.

Figure 25: Comparison of performance when increasing the initial regions and the minimum
regions.

set of regions and networks at the beginning of the learning process, the framework can gain
significant momentum.
The ASCAD R dataset also suffered less from this phenomenon, which is apparent in the
results in Figure 27c. Here the results indicate that the higher average rewards tend to be
at the end of the training instead of the beginning.
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(a) Rewards averaged over 10 episodes
for all 2000 episodes on AES HD 50.0%
to 1.0%.

(b) Rewards averaged over 10 episodes
for all 2000 episodes on AES HD 75.0%
to 10.0%.

(c) Rewards averaged over 10 episodes
for all 2000 episodes on CHESC CTF
50.0% to 1.0%.

(d) Rewards averaged over 10 episodes
for all 2000 episodes on CHESC CTF
5.0% to 10.0%.

Figure 26: Rewards throughout the episodes on each dataset.

Average reward of the regions selected Each region can be selected multiple times
throughout the learning process. To display the overlap of the selected regions with the
SNR, both have been displayed in Figure 28 for the AES HD and CHES CTF datasets and
in Figure 29 for the ASCAD F and ASCAD R datasets. To see the impact of increasing
the available regions, a distinction is made between the settings when displaying the figures.
The region with the highest average reward is indicated in red.
For the AES HD dataset, it is observed from Figure 28a that the framework is able to detect
the leakage when compared to the SNR. Access to more regions indicates, as is displayed in
Figure 28b, a detrimental effect on the average reward. For the CHES CTF it is apparent
that the SNR does not overlap with the best performing region, as indicated in Figure 28c
and Figure 28d. This is likely because the dataset is protected, and thus the SNR cannot
detect a leakage, as was already discussed in Section 8.2. Since the results in Figure 24b
indicate that the framework can break the target, it might be that the leakage lies around
the highest point. Again it is observed in Figure 28d that having access to more regions is
detrimental to the overall performance of the framework.
For the ASCAD F dataset, the impact of having access to more regions is striking. It is
observed in Figure 29a that the average reward of all regions is around 0.4 while the average
reward in Figure 29b is around 0.1. It is also interesting to see that the best performing
regions lie very far apart.
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(a) Rewards averaged over 10 episodes
for all 2000 episodes on ASCAD F 50.0%
to 1.0%.

(b) Rewards averaged over 10 episodes
for all 2000 episodes on ASCAD F 75.0%
to 10.0%.

(c) Rewards averaged over 10 episodes
for all 2000 episodes on ASCAD R 50.0%
to 1.0%.

(d) Rewards averaged over 10 episodes
for all 2000 episodes on ASCAD R 75.0%
to 10.0%.

Figure 27: Rewards throughout the episodes on for ASCAD F and ASCAD R.

The average reward per regions for the ASCAD R dataset seems to be roughly the same,
as observed in Figure 29c and Figure 29d. Here the best performing regions seem to over-
lap, seemingly indicating that having access to more regions does not impose a significant
detrimental effect. Although, the best performing region in Figure 29c has a higher average
reward compared to the best performing region in Figure 29d.

Ablation study An ablation study was conducted to see the effect of scaling down the
selected regions with the neural network. Each selected region was isolated and used as the
features for 100 TAs. The GE for the performance of the regions is displayed in Figure 30.
The difference in results is striking when compared to the results of the full usage of the
framework, as displayed in Figure 24. Especially for the AES HD dataset, as observed in
Figure 30a, where the regions alone cannot break the target, let alone provide any meaningful
key guess. The results for the CHES CTF dataset indicate that the regions selected with
access to more regions alone cannot provide any meaningful key guess, as seen in Figure 30b.
The results indicate that the regions selected, when having access to fewer regions, would be
able to break the target when given more attack traces.
For the ASCAD F dataset, both settings provide meaningful key guesses, but, as the results
indicate in Figure 30c, the regions alone cannot break the target. There is also no indication
that they would if given more traces. In Figure 30d, it is observed that, again, the regions
alone cannot break the target. Even resulting in no meaningful key guess when having access
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(a) Average reward per selected region
on AES HD, using 50% initial regions
and 1% minimum regions

(b) Average reward per selected region
on AES HD, using 75% initial regions
and 10% minimum regions

(c) Average reward per selected region
on CHES CTF, using 50% initial regions
and 1% minimum regions

(d) Average reward per selected region
on CHES CTF, using 75% initial regions
and 10% minimum regions

Figure 28: Average reward of each selected region versus the SNR per setting for AES HD
and CHES CTF. The red dot indicates the highest rewarding region.

to more regions.
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(a) Average reward per selected region
on ASCAD F, using 50% initial regions
and 1% minimum regions

(b) Average reward per selected region
on ASCAD F, using 75% initial regions
and 10% minimum regions

(c) Average reward per selected region
on ASCAD R, using 50% initial regions
and 1% minimum regions

(d) Average reward per selected region
on ASCAD R, using 75% initial regions
and 10% minimum regions

Figure 29: Average reward of each selected region versus the SNR per setting for ASCAD F
and ASCAD R. The red dot indicates the highest rewarding region.
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(a) GE of only selected regions on
AES HD.

(b) GE of only selected regions on
CHES CTF.

(c) GE of only selected regions on AS-
CAD F.

(d) GE of only selected regions on AS-
CAD R.

Figure 30: Performance of only the selected regions on all data sets averaged over 100 attacks.
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9 Conclusion

This thesis explored various current state-of-the-art methods of Points Of Interest selec-
tion. Each method was introduced in Section 4. Furthermore, this thesis proposed a novel
framework based on Proximal Policy Optimization, introduced in Section 5. The current
methods and framework were benchmarked on four commonly used datasets, the AES HD
dataset, the CHES CTF dataset, the ASCAD F, and the ASCAD R dataset. The dataset
were introduced in Section 6. To see the performance of the methods and framework, several
experiments were conducted. The experiments and experimental setup were outlined in Sec-
tion 7. Each of the results of the methods and framework was discussed in Section 8. Next to
an overview of the current methods, this thesis introduces a novel Points Of Interest selection
method based on Proximal Policy Optimization. The framework was also benchmarked on
the four datasets, and the results are discussed in Section 8.7.
Three main research questions were created at the beginning of this thesis. Research ques-
tions 1 and 2 are divided into sub-question, which will be answered first before answering
the main research questions.

1.a What are the current state-of-the-art techniques used to select Points Of
Interest? In Section 4, an introduction was given to five methods commonly used
within Points Of Interest selection. Three categories of POI selection were explored in
this thesis:

– Feature Selection methods
– Dimensionality Reduction methods
– Deep Learning methods

Feature Selection methods select a subset of the original features as Points Of Interest.
These Points Of Interest are then used to mount an attack. For Dimensionality Reduc-
tion methods, the original traces are transformed in a new set of features. These new
features are used as Points Of Interest to mount an attack. Deep Learning methods
use an Artificial Neural Network to transform the features in a new set of features.
The new features represent the Points Of Interest and are used to mount an attack.
The Feature Selection methods explored in this thesis were Sum Of Squared T-Differences
and Signal-to-Noise Ratio. Sum Of Squared T-Differences calculates coefficients for
each feature from the mean of the traces and the variance within the traces. The top-n
features are then selected as Points Of Interest. Signal-to-Noise Ratio calculates the
ratio of the relevant signal and the unwanted noise for each feature within a trace. The
top-n features with the highest Signal-to-Noise Ratio are used as Points Of Interest.
For the Dimensionality Reduction methods Principal Component Analysis and Lin-
ear Discriminant Analysis were explored. Principal Component Analysis performs
an eigenvalue decomposition to create a transformation matrix. The transformation
matrix consists of eigenvectors corresponding to the top-n largest eigenvalues. The
features from the traces are then transformed with the transformation matrix, and
the new set of features is used as Points Of Interest. Linear Discriminant Analysis
performs a supervised decomposition of the data into an optimized linear combination
of variables. This linear combination is based on two matrices that consist of the vari-
ance within the classes and between the classes. Since Linear Discriminant Analysis
is supervised, it can only have as many linear components as there are classes minus
one. Linear Discriminant Analysis construct a transformation matrix from the linear
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components. The transformation matrix is then used to transform the features within
the traces into a new set of traces, which are subsequently used as Points Of Interest.
For the Deep Learning method, the current state-of-the-art method the Triplet Network
was explored. The Triplet Network consists of a Convolutional Neural Network, which
is used to extract relevant features. In addition, the Triplet Network uses a loss function
to minimize the distance between traces that share labels while, at the same time,
maximizing the distance between traces that have differing labels. Once the network is
trained, the traces are run through the network, which produces new features. These
new features are then used as Points Of Interest.

1.b What are the most prominent pros and cons of each method? In Sec-
tion 8, each of the five methods was benchmarked on four commonly used datasets, the
AES HD dataset, the CHES CTF dataset, the ASCAD F dataset, and the ASCAD R
dataset. The results show that most methods have trouble breaking the CHES CTF
dataset, while the AES HD dataset and ASCAD F dataset seems to be broken easily.
Out of all methods, the worst performing method was LDA. This method was only able
to break the AES HD dataset. The amount of POIs was 2 and achieved a GE0 of 1104.
Since the CHES CTF, ASCAD F, and ASCAD R datasets are protected and cannot be
broken by LDA, it can be concluded that LDA is not able to successfully decompose
the data in protected datasets, which represents the main con of this method. Its
strength, however lies with breaking unprotected datasets, although it was not the
best performing method on the AES HD dataset in contrast with SNR which achieved
a GE0 of 1094 with 2 POIs as well.
PCA was able to break the AES HD dataset with 32 POIs with a GE0 of 2178. PCA
was also able to break the ASCAD F and ASCAD R datasets with 16 POIs, achieving
a GE0 of 203 and 447, respectively. Although PCA was not able to attain the best
performance on any datasets, it was one of two to break three datasets next to the
Triplet Network. This represents the strength of PCA, a well-rounded method that
performs well on protected and unprotected datasets. The main weakness is that it is
outclassed on all fronts by other methods.
Both SOST and SNR behaved erratically and inconsistent. Both methods broke the
ASCAD F dataset while showing no detection of leakage. Even worse, SOST was able
to detect the leakage on the AES HD dataset but was subsequently unable to break
the target. From the results, it can be concluded that SOST is too inconsistent to be
used for POI selection. SNR can perform the best on the AES HD dataset, with only
2 POIs, it achieved a GE0 of 1094. Therefore, it can be concluded that SNR is a strong
method when used on unprotected datasets.
Representing the current state-of-the-art, the Triplet Network can break the AES HD,
ASCAD F, and ASCAD R datasets. It provides the best performance on both the
ASCAD F and ASCAD R datasets, with 32 and 16 POIs, it achieved a GE0 of 194 and
165, respectively. It was unable to break the CHES CTF dataset. However, it should be
noted that the Triplet Network was not fine-tuned for this dataset. This phenomenon
does represent the main con of the Triplet Network, if the Triplet Network is not fine-
tuned to a dataset, it seems to be unable to break it within the allotted amount of
traces in this thesis. Although when fine-tuned, it provides first-in-class performance
on almost all datasets. An interesting observation was that the Triplet Network is not
able to be harmonized for all datasets since the best performing amount of POIs for
each dataset is different.
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1. What are the current Points Of Interest selection techniques, and which one
performs the best, according to the Guessing Entropy? In Section 8, each method
was benchmarked on the four datasets, the AES HD dataset, the CHES CTF dataset, the
ASCAD F dataset, and the ASCAD F dataset. For the AES HD dataset, the best per-
forming method was SNR, which was able to break the target with only 2 POIs within 1094
traces. The CHES CTF was the hardest dataset to be broken. Only SOST was able to break
the target and needed 16 POIs, achieving a GE0 of 4510. The ASCAD F dataset was easily
broken, and the best performing method was the Triplet network. It was able to break the
target within 194 traces and needed 16 POIs. ASCAD R was harder to be broken, but the
Triplet network was able to break the target with 16 POIs, achieving a GE0 of 164. From the
results, it is apparent that not one method is able to score the performance on all datasets
consistently. Therefore it can be concluded that not one method is the best, alluding to the
often stated No Free Lunch Theorem.

2.a With the help of RL techniques, is it possible to identify possible points
of interest from within a trace? From the results in Section 8.7, it was observed
that the proposed framework, as a whole, is the only method to break every dataset
within the allotted amount of attack traces. However, an ablation was conducted
where the second part of the framework, the scaling down of the selected regions by
a dimensionality reduction network, was omitted. In this ablation study, the results
indicate that without this network, the regions cannot break any dataset on their own.
This represents a double-edged sword. Since the framework can break the target as a
whole, it indicates that the selected regions do represent valid POIs. Therefore it can
be concluded that the framework can indeed select possible POIs from within a trace.

2.b Is it possible to create a Dimensionality Reduction Neural Network with
the help of Reinforcement Learning? In Section 8.7, the results show that the
framework can break all datasets. With the conducted ablation study, where the
dimensionality reduction network was removed, it was shown that the results achieved
by the proposed framework come from the combination of selected regions and the
dimensionality reduction network. Therefore it can be concluded that it is possible to
create a Dimensionality Reduction Neural Network with the help of RL.

2. Using Reinforcement Learning is it possible to create a Points Of Interest
selection method?
The proposed framework was introduced in Section 5. The framework consists of two al-
gorithms based on Proximal Policy Optimization. Together the algorithms are set up to
find, select, and scale down POIs. The framework analyzes the traces and designates regions
of features. Based on the regions, the framework constructs a neural network to provide
a scaled-down version of the selected regions. With these scaled-down features Template
Attacks are mounted, and based on the performance, rewards are given. The framework
automatically adapts to the rewards given, thereby finding the best-performing regions and
networks tailored to each dataset. The results in Section 8.7 show that the POIs found,
selected, and scaled down by the framework perform very well when used in combination
with Template Attacks. Since previous research indicates that Template Attacks perform
better with proper POI selection and subsequently observing the results from the proposed
framework, it can be concluded that, yes, it is possible to create a Points Of Interest selection
method with Reinforcement Learning.
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3. Can Reinforcement Learning improve Points Of Interest selection in com-
parison to the current state-of-the-art, measured in the Guessing Entropy? The
framework is able to find, select, and scale down Points Of Interest. With these scaled-down
features, multiple Template Attacks were mounted on the AES HD dataset, the CHES CTF
dataset, the ASCAD F dataset, and the ASCAD R dataset. For each dataset the Guessing
Entropy (GE) was shown in Section 8.7. The results show that the framework can break
all datasets where the current state-of-the-art methods did not. The proposed framework
achieved a GE0 of 1430 for the AES HD dataset. Compared with SOST, which was not able
to break the target, SNR, which achieved a GE0 of 1094, PCA, which achieved a GE0 of
2513, LDA, which achieved a GE0 of 1104, and the Triplet network, which achieved a GE0
of 1664, the proposed framework was the third best method out of all five.
For the CHES CTF dataset, the proposed framework was, together with SOST, one of two
methods to break the target, achieving a GE0 of 3962. Compared with SOST, which achieved
a GE0 of 4510, SNR, which was not able to break the target, PCA, which was not able to
break the target, LDA, which was not able to break the target, and the Triplet network,
which was not able to break the target, the proposed framework achieved state-of-the-art
performance.
On the ASCAD F dataset, the proposed network achieved a GE0 of 193. Compared with
SOST, which achieved a GE0 of 4522, SNR, which achieved a GE0 of 1184, PCA, which
achieved a GE0 of 203, LDA, which was not able to break the target, and the Triplet network,
which achieved a GE0 of 194, the proposed framework achieved state-of-the-art performance.
For the ASCAD R, the proposed framework achieved a GE0 of 1499, Compared with SOST,
which was not able to break the target, SNR, which was not able to break the target, PCA,
which achieved a GE0 of 451, LDA, which was not able to break the target, and the Triplet
network, which achieved a GE0 of 164, the proposed framework was the third best method
out of all five.
Not only was the proposed framework able to break all targets, but it was also able to achieve
state-of-the-art performance for the CHES CTF and ASCAD F datasets. From the results,
it can be concluded that, yes, Reinforcement Learning is able to improve Points Of Interest
selection compared to the current state-of-the-art.

9.1 Future work

Due to the stochastic nature of the framework, it is reliant on probabilities. These proba-
bilities can be unfavorable during the training of the framework and therefore hamper the
learning process. For example, if the number of actions equals 1000 and assuming a uniform
distribution over these actions, each action has a probability of being selected of 1

1000 . This
is very low, and the main limitation is that the probabilities stay low even after training.
For future work, this is one of the first improvements that have to be made. A proposal is to
extend the masking to consider the previous performance of the selected actions. If previous
rewards indicate that certain regions do not perform above a threshold, these regions are
removed from the action space. This could lead to an improvement of the learning process
and an increase in rewards over time.
Also, it would be interesting to benchmark different leakage models to diversify the results
and see if the proposed framework can work on multiple leakage models.
Moreover, various countermeasures are known to be employed to induce hurdles for Points
Of Interest selection. Methods such as desyncing and introducing extra noise would be
interesting to look at.
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A Best performing regions and networks

A.1 Region and network for AES HD

(a) The selected regions for AES HD with 50%
initial regions and 1% minimum regions.

(b) The selected regions for AES HD with 75%
initial regions and 10% minimum regions.

Figure 31: The selected regions for the AES HD dataset.

Dimensionality Reduction Network

Avg Pool layer: Kernel=32, Stride=8

FC layer: Neurons=32

Table 15: Network Architecture of the best performing network for AES HD 50% initial
regions and 1% minimum regions.

Dimensionality Reduction Network

Avg Pool layer: Kernel=4, Stride=4

Convolutional layer: Kernel=8, Stride=2

FC layer: Neurons=32

Table 16: Network Architecture of the best performing network for AES HD 75% initial
regions and 10% minimum regions.
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A.2 Region and network for CHES CTF

(a) The selected regions for CHES CTF with
50% initial regions and 1% minimum regions.

(b) The selected regions for CHES CTF with
75% initial regions and 10% minimum regions.

Figure 32: The selected regions for the CHES CTF dataset.

Dimensionality Reduction Network

Convolutional layer: Kernel=8, Stride=16

Activation layer: Type=ReLU

FC layer: Neurons=32

Table 17: Network Architecture of the best performing network for CHES CTF 50% initial
regions and 1% minimum regions.

Dimensionality Reduction Network

Convolutional layer: Kernel=8, Stride=4

FC layer: Neurons=32

Table 18: Network Architecture of the best performing network for CHES CTF 75% initial
regions and 10% minimum regions.
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A.3 Region and network for ASCAD F

(a) The selected regions for ASCAD F with 50%
initial regions and 1% minimum regions.

(b) The selected regions for ASCAD F with 75%
initial regions and 10% minimum regions.

Figure 33: The selected regions for the ACAD F dataset.

Dimensionality Reduction Network

Convolutional layer: Kernel=8, Stride=8

FC layer: Neurons=16

Table 19: Network Architecture of the best performing network for ASCAD F 50% initial
regions and 1% minimum regions.

Dimensionality Reduction Network

Convolutional layer: Kernel=32, Stride=4

FC layer: Neurons=64

Table 20: Network Architecture of the best performing network for ASCAD F 75% initial
regions and 10% minimum regions.
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A.4 Region and network for ASCAD R

(a) The selected regions for ASCAD R with 50%
initial regions and 1% minimum regions.

(b) The selected regions for ACSCAD R with
75% initial regions and 10% minimum regions.

Figure 34: The selected regions for the ASCAD R dataset.

Dimensionality Reduction Network

Convolutional layer: Kernel=8, Stride=2

Convolutional layer: Kernel=16, Stride=2

Activation layer: Type=Tanh

FC layer: Neurons=64

Table 21: Network Architecture of the best performing network for ASCAD R 50% initial
regions and 1% minimum regions.

61 of 67



Dimensionality Reduction Network

Convolutional layer: Kernel=16, Stride=1

Convolutional layer: Kernel=16, Stride=1

Convolutional layer: Kernel=16, Stride=1

Convolutional layer: Kernel=16, Stride=1

Convolutional layer: Kernel=16, Stride=1

Convolutional layer: Kernel=16, Stride=1

Convolutional layer: Kernel=16, Stride=1

Convolutional layer: Kernel=16, Stride=1

Convolutional layer: Kernel=16, Stride=1

FC layer: Neurons=32

Table 22: Network Architecture of the best performing network for ASCAD R 75% initial
regions and 10% minimum regions.

B Reward fluctuations

(a) Rewards for all 2000 episodes on
AES HD 50.0% to 1.0%.

(b) Rewards for all 2000 episodes on
AES HD 75.0% to 10.0%.

(c) Rewards for all 2000 episodes on
CHESC CTF 50.0% to 1.0%.

(d) Rewards for all 2000 episodes on
CHESC CTF 5.0% to 10.0%..

Figure 35: Rewards throughout the episodes on each dataset.
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(a) Rewards for all 2000 episodes on AS-
CAD F 50.0% to 1.0%.

(b) Rewards for all 2000 episodes on AS-
CAD F 75.0% to 10.0%.

(c) Rewards for all 2000 episodes on AS-
CAD R 50.0% to 1.0%.

(d) Rewards for all 2000 episodes on AS-
CAD R 75.0% to 10.0%.

Figure 36: Rewards throughout the episodes on for ASCAD F and ASCAD R.
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