
Opleiding Informatica

Using simulated training data

in deep learning networks

Bart Remmelzwaal

Supervisors:
Prof. dr. Michael S. Lew & Dr. Erwin M. Bakker

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 20/06/2023

www.liacs.leidenuniv.nl

Abstract

Convolutional neural networks (CNN) have been at the forefront of artificial image classification
for over two decades. To this end, these networks must be trained on large data sets of manually
taken and labeled pictures, a process that requires upwards of hundreds of hours of human
work to complete. Moreover, manual labeling can be expensive and is not always perfect. We
hypothesize that this process can be automated by substituting this real-world data with
simulated training data generated from video game engines. This research aims to establish
the performance of simulated data by comparing it to well-known networks such as CIFAR-10,
Caltech256 and ImageNet, as well as measuring the performance of real-world data on models
trained on simulated data. The simulated data is generated using assets in the Unreal Engine
5, and we will manually create and label this data to establish its effectiveness. We show
promising results for model trained on simulated data when evaluated on real-world data.

Acknowledgements

I would like to sincerely thank Prof. dr. Michael S. Lew for supervising this thesis and helping guide
me towards its completion. I would also like to thank Nan Pu for assisting me with the methods of
the experiments and supplying me with the ImageNet dataset. Lastly, I would like to thank my
friend and family for their support during this research, especially my brother Dirk Remmelzwaal
who has helped with the experimental setup.

2

Contents

1 Introduction 1
1.1 History of image classification . 1
1.2 Research objective . 1
1.3 Overview . 2

2 Definitions 3
2.1 Convolutional neural networks . 3
2.2 ResNet v2 . 6
2.3 Inception V3 . 7
2.4 Implementation . 8
2.5 Unreal Engine 5 . 8

3 Related Work 10

4 Acquiring Simulated Data 11
4.1 Creating screenshots . 11
4.2 Classes . 14

5 Experiments 15
5.1 Experimental setup . 15
5.2 Evaluation metrics . 16
5.3 Subsets . 16

5.3.1 Results . 17
5.4 Real-world validation on simulated models . 19

5.4.1 Results . 20
5.5 Summary of results . 22

6 Conclusions and Further Research 23

References 26

1 Introduction

This section is dedicated to discussing the history of image classification, the description of the
research and an overview of this paper.

1.1 History of image classification

In everyday life we humans recognize many objects with relative ease and without any mental
effort [DZR12]. For instance, when given an image of a car, a person can identify it as such. This is
even the case when we use a different car model, color or even orientation. Without this intuition it
would be difficult to function at all. The same cannot be said for computers however, as they need
to be told specific instructions on what to recognize as they have no further mental model of what
a car is since they have not had any experience with them in the physical world.

Writing code to recognize a car is a meticulous and difficult task. It has been done previously by
Khembavi et al. [KHD11] using a partial least squares method in the form of computer vision (CV)
which has been shown effective for detecting cars in a low quality aerial view, but this method
is limited by its birds-eye view perspective. However, it is possible to detect planar, convex and
concave surfaces of three-dimensional objects, as has been shown by Hoffman et al. [HJ87]. This
would still make it very difficult to explicitly craft a rule set for detecting cars. Would such a
method be proposed, it would most likely still fail to consistently and accurately classify cars with
the aforementioned object and spacial alterations, which is further amplified when introducing more
objects to classify or different conditions within the image (e.g. low light levels, weather conditions).
This is not to say that CV methods are entirely obsolete compared to modern methods, but they
do require field specific knowledge as opposed to automatic deep learning methods [AK20].

Up until two decades ago image classification research was less prominent because of its narrow
applicability, but the introduction of neural networks accelerated development significantly. Initial
research by Hubel et al. [HW59] measured the perception of cats by monitoring their brain signals
when observing lines on a screen, sparking the idea of using neural networks to perform edge
detection. This same year R. Kirsch [Kir98] developed the first digital image scanner which allowed
images to be digitally represented, vitally important to creating image datasets for classification.
A year later LeCun et al. [LHBB99] published breakthrough paper using a convolutional neural
network (CNN) to detect and classify handwritten digits. Since this publication CNN’s have become
commonplace for image classification problems.

Image classification is useful in many applications. For instance, CNN models can be used on
X-ray images to detect diseases [Kha18], and has even recently been used to detect COVID-19 and
pneumonia in X-ray images [GMTL22]. Deep learning networks have also been used in the field of
autonomous driving [FHY19]. Manufacturers have also implemented these networks to perform
quality control in production lines to detect defects in produced materials [CZA+19].

1.2 Research objective

CNN’s have proven to be very effective at image classification as demonstrated by competitions
such as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [RDS+15], where the
top performers are all deep neural nets. While these results are impressive, they require training
on the manually created and labeled datasets supplied. Creating such a dataset requires upwards

1

of hundreds of human work hours. Not only is this labour costly, but there is no guarantee that
the final labeling is fully accurate, as persons can disagree on which label to assign to certain
images [SS22]. We aim to substitute this for a different approach, namely generating training data
using simulated graphics.

Over the past decade video games have become more and more realistic, to the point where it
becomes difficult to distinguish between an image from a video game and an image from the real
world. For this reason, video games have become an excellent candidate to generate training data
from. If we can hardly distinguish the two, the same could apply to the CNN’s.

The goal of this research is to measure if this could indeed be the case. If the performance is
comparable enough, simulated data could prove to be effective for efficiently creating large datasets.
Not only can the process of generating these images be automated, they can also be automatically
labeled based on the information the game engine provides, including the objects, bounding boxes,
orientation and other variables present in the scene, such as time of day. Furthermore, the scenarios
of these images can be modified to encompass more diverse environments or conditions of the
objects in question, such as adding rain to a scene, changing the light angle and intensity, but
also camera settings such as the focal length or view angle. This data augmentation is much more
advanced than is possible with real-world datasets, where alterations to the images are limited to
image transformations.

Simulated data could also be useful in cases where real-world data is scarce. For instance, in
the medical field data can be hard to come by due to either the rarity of a condition, recency of a
condition (an example would be COVID-19, mentioned in Chapter 1.1), or privacy of patients not
allowing the use of the data. Augmenting these datasets with close approximations of real-world
data could prove to be beneficial to better diagnoses. More examples where real-world data is scarce
are discussed in Chapter 3.

1.3 Overview

The remaining part of this paper is organized as follows: Section 2 covers the definitions of
this research, namely what CNN’s entail, the workings of the networks used in this paper, the
implementation used and details on the Unreal Engine 5, Section 3 discusses related works in the
field of using simulated training data, Section 4 explains the methods and assets used to gather the
simulated training data, Section 5 describes the experiments performed on the models and datasets,
Section 6 concludes the paper and discusses future works which we propose.

This bachelor thesis was written as part of the bachelor Computer Science at Leiden Institute
of Advanced Computer Science (LIACS) and was supervised by Dr. Erwin M. Bakker and Prof. dr.
Michael S. Lew.

2

2 Definitions

This section is dedicated to defining the models we will be working with. Assumed background
knowledge on neural networks is expected. We will explain first what a convolutional neural network
is, a form of a deep neural network. Though there is no agreed upon value, deep neural networks
are neural networks with two or more hidden layers. In our use case the networks use a vast amount
more hidden layers.

2.1 Convolutional neural networks

Convolutional neural networks or CNN’s are neural networks mostly used for image recognition. One
of the earliest examples of these types of networks was proposed in 1998 by LeCun et al. [LBBH98],
namely LeNet-5, which had been in development since 1988. The term convolution comes from the
mathematical idea of a discrete convolution. Formally, this is denoted as:

(f ∗ g)[n] =
∞∑

m=−∞

f [m]g[n−m]

A convolution produces from f and g a third function (f ∗ g) which shows how the functions modify
each other. In the discrete case, this is done by taking the dot product of f and g for different
offsets of each other. This can be thought of as sliding g across f and taking the dot product where
the two overlap. This is not exactly the same definition as the mathematical concept, where the
order of g is flipped, and this should be called cross-correlation. However, it is convention to call it
a convolution as one can imagine g having already been inverted. For CNN’s, g is always much
smaller than f , and is called a kernel. Moreover, most CNN’s only calculate the convolutions when
f and g fully overlap, resulting in (f ∗ g) being smaller than f . This occurs when no padding is
added to the input, so dot products cannot be applied outside of this range. The working of a
convolution is best shown with an example such as the one in Fig 1.

Figure 1: Example of a convolution between two lists of numbers. No padding is used and the stride
is one.

A discrete convolution is not limited to a one-dimensional function, and can be applied to two-
dimensional functions as well, such as images. Given an n× n image and m×m kernel with no
padding, the resulting convolution will be the size (m− n + 1) × (m− n + 1). With added padding,
for example adding a set of zero’s around the edges, the output size can be increased. The stride also

3

influences the output, as it dictates the number of steps the kernel moves after each dot product,
essentially dividing the output dimensions by that stride.

Kernels allow image operations to manipulate input data to detect specific features. For instance,
a kernel can be used to sharpen an image to make edges between objects more clear. A kernel can
also detect edges in an image in a specific direction. Figure 2 shows different kernels applied to an
image and their results, along with a crop to better show the effect of applying the kernel.

0 0

0 0

-1

-1

-1

-1

5

-1

8-1

-1 -1

-1

-1-1-1

0

0

-1

2

-1

0-2

1

1

No kernel Blurring kernel Sharpening kernel Outline kernel Left edges kernel

Figure 2: Black and white Leiden University logo manipulated using multiple different kernels.

A CNN is conventionally structured in three parts: a convolution layer, a pooling layer and a fully
connected layer.

The convolution layers performs one or more convolutions on the image to extract features such
as edges and shapes. These can use kernels, the aforementioned two-dimensional matrices, or filters,
which are three-dimensional kernels. Filters are useful when dealing with three-dimensional data,
such as the red, green and blue components of an image. The feature maps which result from this
convolution are then used in an activation layer, where the most common activation function is the
ReLU (rectified linear unit), defined as R(z) = max(0, z). The graph of the ReLU function is y = 0
for x < 0 and y = x for x ≥ 0.

The pooling layer’s purpose is to decrease the dimensionality of the feature map. This is done
to reduce the number of computations required and thus speeding up the network. Pooling is
done using a kernel of size n× n and stride of n which scales the image down n times. The most
common types of pooling are max pooling and avg pooling, which are demonstrated in Figure 3.
The resultant image is a pooled feature map.

The last part of a CNN is the fully connected layer, which is the same as a conventional neural

4

5

04

1 2 2

3 7

0 5

16

4 2

3 1

5 7

6 4

2.5 3.5

3 2.52x2 avg pooling
stride 2

2x2 max pooling
stride 2

max(5, 1, 4, 0) = 5

avg(0, 5, 6, 1) = 3

Figure 3: 2x2 max and avg pooling with stride 2 on a 4x4 matrix. Max pooling takes the maximum
value at each step, and avg pooling the average of all values.

network. This part consists of multiple, fully connected layers with weights and biases. All the
parts leading up to this stage have allowed the network to extract features from the image to pass
on to the neural network to classify the combinations of features. To connect the pooled feature
map to the fully connected layers, the map must be flattened to a vector, which is done row-wise.

LeNet-5 used two convolutional and pooling layers with the sigmoid activation function S(x) =
1

1+e−x and a neural network with three hidden layers to successfully classify handwritten digits
postal codes [LBBH98]. Modern CNN’s have over twenty-fold more such layers and have become
increasingly more complex. An example of one such networks is Inception V3, with its architecture
shown in Figure 4.

Figure 4: Inception V3 architecture. Figure published in [CPN+19]

5

2.2 ResNet v2

ResNet or residual neural network is a type of network proposed by He et al. [HZRS16] to address
a problem occurring on deep neural networks with many hidden layers. Deep neural networks have
led to many breakthroughs in image classification tasks, where more hidden layers allowed for
more feature extractions. Issues did occur for very deep networks where vanishing and exploding
gradients, which hindered convergence of the model from the beginning of training. This issue was
alleviated by using input and batch normalization, which allowed the models to converge again. A
new problem did arise for even deeper networks, where a degradation problem was exposed once
the networks started converging. This led to saturation of accuracy and then degrading rapidly.
This should not be the case however, as one can construct a deeper network from a pre-trained
one by adding extra identity mapping layers, showing that the error should be no higher than its
smaller brother.

He et al. proposed a solution to this, namely deep residual learning. The idea was to not train a
set of layers to the underlying mapping, but rather a residual mapping. Given the desired underlying
mapping H(x), let the stack of hidden layers fit the mapping F(x) := H(x) − x. Then the original
mapping H(x) becomes F(x) + x, which is done by adding a shortcut from the input of the block
x and adding it to the output of the block F(x). An example of such a block is shown in Figure 5.

Figure 5: The building block of ResNet: a block of hidden layers fitting onto the residual mapping
F(x). Figure published in [HZRS15]

He et al. hypothesized that this residual mapping is easier to optimize than the original mapping.
Even taken to the extreme, if an identity mapping for a residual block would be optimal, it would
be much easier to have the residual mapping F(x) be pushed to zero leaving H(x) = x. This would
be a valid solution to the degradation problem, as the performance of a deeper network would at
worst be that of the smaller network with identity mappings.

He et al. experimentally showed that the hypothesis was in fact true, and optimization problems
no longer occurred. For extremely deep networks with over 1,000 hidden layers, training error did
rise. The paper argued this could be due to overfitting on the dataset, namely CIFAR-10, and not
degradation of the network. This may have been a cause of no dropout being implemented.

Nevertheless, this breakthrough in deep neural networks allowed He et al. to win first place in
the 2015 ImageNet detection and localization tasks, as well as the COCO [LMB+14] (Common
Objects in COntext) detection and segmentation tasks using various depths of ResNet.

ResNet v2 by He et al. [HZRS16] is a slight modification of ResNet, with two main differences:
firstly, ResNet v2 adds the second non-linearity of each block before the addition as opposed to
ResNet having it before it, and secondly, ResNet V2 performs batch normalization and a ReLU
before the inputs are weighted, which is opposite of ResNet. The general structure is seen in Figure 6

6

Figure 6: Diagram showing the architectural difference of residual blocks between ResNet v1 (a)
and ResNet v2 (b). Figure published in [HZRS16]

2.3 Inception V3

Since 2014, very deep neural nets became more popular as their performance was groundbreaking.
Most of the time, increasing the size and computing time of a network yields better results. Szegedy
et al. [SVI+15] proposes a different approach by increasing computational efficiency and lowering
parameter count for use in mobile vision and big-data scenarios. To this end, they aim to scale up
networks as computationally efficiently as possible by using factorized convolutions and aggressive
regularization.

The original Inception networks by Szegedy et al. aimed to improve both the computational
and economical efficiency of networks by reducing the number of parameters and limiting the
amount of resources used such as memory. For instance, the acclaimed VGGNet with its at the
time state-of-the-art performance with relative network simplicity, at the cost of computational
efficiency. Evaluating the network was very expensive as it required calculating many layers of large
convolutions and ReLU layers, as shown in Figure 7.

The design of Inception v1 followed four main design principles to keep the network performant
and computationally efficient. With these principles in mind, they devised more efficient building
blocks which modify existing CNN blocks, such as factorizing convolutions into kernels of different
dimensions (including rectangular 1×n and n×1 convolutions) to reduce the number of calculations
required whilst keeping the expressiveness of the representations equal, using auxiliary classifiers as
a regularizer, and using more efficient methods of applying filters in combination with pooling.

Inception v2 and v3 build upon this first model, by introducing regularization using label
smoothing which estimates the effect of label-dropout during training and making precise adjust-
ments to the architecture of the model. The reason these changes are so meticulate is because of
the careful design of the architecture, shown in Figure 4. Simply doubling the number of blocks in,
for instance, ResNet, can immediately yield higher performance at the cost of computation time.
However, doing this the näıve way for Inception networks may cause a degradation in performance.
Upscaling of the network must be done by keeping the design principles in mind, otherwise it can
be detrimental for the network’s performance.

7

Figure 7: Architecture of the VGGNet. Figure published in [SZ15]

2.4 Implementation

TensorFlow by Abadi et al. [ABC+16] is a free, open-source library developed to train neural
networks, with implementations in both Python and C++. This library allows for abstraction from
the details of neural networks, allows them to perform calculations on a GPU, and contains many
extra features to speed up training. For our research, we will be utilizing the Python implementation
of TensorFlow.

The implementation of networks, dataset processing, training, cropping and flipping of samples
and evaluations were supplied by TensorFlow’s Model Garden by Hongkun et al. [Yu,20], an envi-
ronment for researches that provides a plethora of tools to allow for reproducibility of performance
achieved on deep learning networks. To use these functionalities for our purposes, some alterations
were made to parts of the suite to allow for more versatility. These mainly include creating custom
datasets to train on, since conversion to the native tfrecord format is limited by default to a
select set of supported datasets, training and evaluating on those datasets, and calculating extra
metrics when evaluating. Furthermore, several Bash scripts were written to help automate dataset
generation, training and evaluation.

2.5 Unreal Engine 5

Unreal Engine is a 3D game engine developed by Epic Games in 1998 and was used in their title
Unreal. Over the years, to keep up with the technological advancements, newer versions of the
engine were released. On April 5th 2022, Unreal Egine 5 was officially released, two years after its
original reveal on the 13th of May 2020. The main goal of this release of the Unreal Engine was
to allow game developers to easily create highly detailed models and worlds without having to
laboriously create these by hand. Their solutions were as follows:

8

• Nanite: a powerful tool that makes use of the technology from the Epic Games’ acquired
company Quixel, which allows for importing of high-detail objects and textures with automatic
level-of-detail, which ensures objects far away from the camera are lower quality to improve
performance;

• Lumen: a technology which allows for automatic calculations of light intensity, reflections and
shadows generated from a light source.

There were also vast improvements over Unreal Engine 4 when it came to graphics:

• Virtual Shadow Maps: allow for very high resolution maps of shadows with high consistency,
even on highly detailed objects;

• Niagara: a high quality fluid and particle simulator;

• Chaos: a high-performance, real-time, cinematic quality physics engine.

These technologies allow for photo-realism in real-time by making use of advanced technologies to
improve performance where ever possible without degrading the visual quality. Examples of the
quality of what is possible in real-time using the engine is seen in Figure 8 9.

Figure 8: ”Lumen in the Land of Nanite” demon-
stration.

Figure 9: Foliage demonstration.

9

3 Related Work

In this section we discuss various previous works on the topic of simulated training data. Simulated
training data has been extensively researched in the past with plethora of papers published on
it. The papers below are a selection of the works more closely related to the topic of this paper.
More precisely, these papers all have in common that deep neural networks have been trained on
simulated training data as opposed to real-world data to aid both accelerating the data generation
process as well as improving network accuracy.

A paper by Yokoya et al. [YYH+22] proposed a method that estimates the inundation depth
(maximum water level) and debris-flow-induced topographic deformation by integrating deep
learning methods. This method allows for calculations not possible by using remote sensing image
analysis and simulation alone. They showed that regression models based on the Attention U-
Net [OSLF+18] and LinkNet [CC17] on the simulated data can predict both the maximum water
level and topographic deformation.

A paper by Goodin et al. [GSD+19] proposed a method to accelerate autonomous vehicle training
by utilizing a physics-based simulation of sensors with automatic labeling. They hypothesize this
would improve the accuracy and speed of training data gathering, as the collection of real-world
data was slow, expensive and error-prone. To this end they used the MSU Autonomous Vehicle
Simulator (MAVS), a virtual environment that allows for physics-based robotics simulations using
LIDAR, camera’s and other types of sensors.

A paper by Ødegaard et al. [ØKCL16] aimed to measure the performance of CNN’s on synthetic-
aperture radar (SAR) images to classify different types of ships, as their hypothesis was that CNN’s
are able to find regularities in the SAR data that the network can pick up on. However, when
introducing confusers to the test set, false positives from the network increased. This was partly
due to the low amount of real-world data available, which they alleviated with simulated data using
3D models of ships to augment the dataset. This was shown to be an improvement over the limited
dataset.

A paper by Baldewijns et al. [BDM+16] aimed to improve fall detection systems for elderly
persons to reduce consequences of a fall by detecting these early so aid can be given timely. This
can be done in the form of a body sensor with an accelerometer, but recently camera-based systems
have become more popular, as an elderly person can forget to wear the sensor. Real-world data is
very useful for evaluating the performance of such systems, however this data is not abundant. To
alleviate this, most researches in this field use simulated data to increase the number of test cases
they can measure the performance on. These simulated datasets fall short in some cases, where
different illumination levels or occlusions can disrupt the detection system when employed, but
which aren’t available in the training sets. Moreover, elderly persons can fall in many different ways.
This research aims to fill that gap between the real-world data and the available simulated data, by
re-enacting more realistic scenarios pertaining to the fall, the lighting, the interior of the room and
camera occlusions.

10

4 Acquiring Simulated Data

This section consists of two parts, namely Section 4.1 which covers the way the data was acquired
and Section 4.2 where we discuss the chosen classes based on the availability of Unreal Engine 5
assets.

4.1 Creating screenshots

To acquire the simulated training data we make use of the Unreal Engine 5 editor. When using the
play mode in most maps, collision and gravity limit the movement options for the camera which
makes some angles for gathering data impossible. In the editor, one has the ability to move the
camera around freely as well as modify all properties pertaining to the assets present in our scene.
However, the default settings within the editor do not produce presentable images, see Figure 10.
We see gizmo’s of details in the road texture (in this example these are pothole decals), as well as an
outline for the selected vehicle. Furthermore, the image quality is low due to the automatic engine
scalability settings and a depth-of-field effect which makes distant objects appear more blurred.

Figure 10: Screenshot of the editor from a map containing a bridge and a car at default settings.
Gizmo’s and object outlines are present and the image quality is low due to the engine scalability
settings and a depth-of-field effect.

We can alleviate these issues by configuring the editor to display the same level of quality as one
would see during game mode. First, we enable the Game View option in the hamburger menu seen
in Figure 11. This mode displays the current scene as it would display in game mode. This hides
all editor elements such as the gizmo’s and selection lines we saw in Figure 10. Secondly, we set the
engine scalability to Cinematic as shown in Figure 14. As seen in this figure, this maximizes all
graphical features to their highest quality. Lastly, we disable the depth-of-field effect under the
Show menu, shown in Figure 12. After these settings are applied, we get an editor view similar
to Figure 16 with the same quality as would be achieved in the game mode, but with additional
camera movement.

11

Figure 11: Menu option to enable Game
View. This view hides editor elements
such as gizmo’s and selection lines.

Figure 12: Menu option to disable depth-
of-field. Disabling this ensures objects
do not go out of focus, simulating a
greater aperture size for camera.

Figure 13: Menu option for ed-
itor viewport field-of-view.

Figure 14: Menu option for engine scalability set to Cine-
matic. This option maximizes all graphical features to their
highest quality.

To account for lens distortion we will also adjust the field-of-view. By default the angle is set to
90°, which can distort objects from close perspectives, as seen in Figure 15. Decreasing this to
45°gives us a more narrow angle of vision and requires us to move further away from the object,
but alleviates the distortion from the previous setting. This angle is also seen in Figure 16.
With these settings configured we are ready to gather training data. We collect screenshots using
Unreal Engine 5’s High Resolution Screenshot functionality, which can be seen in Figure 17. This
brings up the tool shown in Figure 18. When the Capture button is clicked, a high resolution
screenshot of the current scene without the UI elements is taken and saved to the project folder.

12

Figure 15: Screenshot of the editor with a 90° field-
of-view. The van in the image is distorted due to the
wide angle of the camera.

Figure 16: Screenshot of the editor with custom set-
tings. Gizmo’s and object outlines are no longer
present, the image quality is cinematic and the van
is no longer distorted.

For our collection, we have kept the Screenshot Size Multiplier at 1.0, as this resolution is detailed
enough for training and is far more detailed than the other datasets used in our research. Namely,
with the default editor window configuration we create images of resolution 1,526 by 877 pixels.

Figure 17: Menu option to
open the High Resolution
Screenshot tool.

Figure 18: High Resolution Screenshot tool. This tool
allows screenshots to be taken of the current viewport
without UI elements.

Since our networks train on square images, we must crop our simulated training data accordingly.
For this, we have used a free online tool called BIRME to crop our training data in bulk to our
desired dimensions.

13

4.2 Classes

The classes are, as a result of the dataset being simulated, limited to the content available for the
Unreal Engine 5. As the engine has officially been released only four months prior to this paper
being written, not many assets have been created or ported over from the Unreal Engine 4, nor
have any AAA games been fully developed. As the process of developing such high quality games
can take up to years to complete, we also do not expect such games to be available in the near
future. This leaves us only with the assets available on the Unreal Engine 5 Marketplace. We have
selected an array of assets which we believe are of high quality and are distinct enough to formulate
our eight classes. We devised the following classes:

1. Bread (125 images)

2. Buildling (125 images)

3. Car (125 images)

4. Chair (125 images)

5. Couch (125 images)

6. Plane (125 images)

7. Produce (125 images)

8. Tree (125 images)

These classes are distinct but also broad – there is a lot of variation in the class building for instance,
as the buildings in the dataset range from cottages and shops to skyscrapers. Furthermore, some
classes have slight overlap. For instance, a tree and a piece of broccoli share a resemblance of each
other. In total, the dataset spans over 1,000 images. The sources of these assets, including props
and maps, are listed in the appendix.

Car

Couch

14

Produce

Figure 19: Sample of the simulated dataset

5 Experiments

We have devised a set of experiments to establish the performance of simulated training data on
the CNN’s. Section 5.1 covers the methods of training used, such as the dataset splits, training
steps and evaluation. Section 5.3 covers the methods used and the performance of models trained
and validated on the simulated dataset and subsets of the real-world datasets. These subsets are
randomly selected classes with corresponding training and validation images which equal the same
amount as the simulated dataset, to which the performance of our devised dataset can be fairly
compared. Section 5.4 covers the methods used and the performance of models trained on the
simulated dataset by evaluating these models on filtered validation sets from the real-word datasets.

5.1 Experimental setup

To train the networks on the datasets, we make use of TensorFlow Model Garden’s included training
method. We create a 90-10 random split on the datasets for training and validation. To combat
overfitting on this small dataset, we make use of random cropping, random flipping and random
brightness and color distortions. These functionalities are part of the TensorFlow library. We train
until the average loss per training step converges to a fixed value, where fluctuations do still occur
because of the random augmentations applied to the images. We have found that 250 epochs was
sufficient for purposes.

Our hyperparameters for all networks and datasets are the default value present in the training
script. We use an exponential learning rate decay with a decay factor of 0.94 per 2 epochs with the
learning rate α = 0.01, and a momentum of 0.9. We make use of the RMSProp (root mean square
propagation) optimizer, as it is considered a good choice as a default optimizer [VTP21]. We have
had to settle for a batch size of 1, as training was done on a single laptop with a GTX 1050 4GB
graphics card, and increasing the batch size would result in the GPU running out of memory.

We quantify the effectiveness of simulated training data by training multiple depth ResNet v2
networks (50, 101, 152 and 200 hidden layers) as well as Inception v3 on the subsets of CIFAR-10,
Caltech256, ImageNet and the full simulated training dataset.

15

5.2 Evaluation metrics

To establish the performance of the trained models on the different validation sets we use the
TensorFlow Model Garden’s included evaluation method to evaluate the trained networks on
the validation set, modified to include the top-1, top-5, precision and recall values. Since we are
evaluating a single-label image classifier, we get the top-1 and top-5 accuracy by using recall@1
and recall@5 metrics, as they measure the same statistic.

Each table is clustered by the validation dataset, shown vertically in the first column, and
horizontally contain the performance of each network trained. The tables are spread over two pages,
grouped by the statistics they measure.

The first page of tables contain the true positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN), together with the top-1 accuracy, precision and recall measures calculated
from these values. TP’s are correct classification instances, and TN’s are correct non-classifications.
FP’s are wrong classifications and FN’s are wrong misclassifications. For example, given an instance
of a class X, if the model predicts X and not Y , X would be a TP and Y a TN. However, this
same prediction for the class Y would make X a FP and Y a FN. Top-1 accuracy is the number of
correct classifications out of the number of classifications made, defined as TP

TP+TN+FP+FN
. Precision

is the measure of correctly classified instances over all positively classified instances, which is the
fraction of correct classifications out of all performed classification. Precision is defined as TP

TP+FP
.

Recall is the measure of correctly classified instances over all correct classifications, which is the
fraction of correct classifications out of all classifications which would have been correct. Recall is
defined as TP

TP+FN
.

The second page of tables contains the number of training steps a network used to train, which
is the number of gradient updates or the number of batches processed, as after each batch the
parameters for a network are updated. As mentioned in Chapter 5.1, the batch size is always one
for our experiments. The number of epochs indicates the number of cycles through the full dataset
the network has trained. Since our networks are trained on 1.000 images with one image/step,
this equates to 1.000 steps being one epoch. The top-1 and top-5 accuracy are the percentage
of time the network had the correct classification for a validation image in the top-1 and top-5
guesses, respectively. A good top-1 accuracy indicates the network correctly classifies a large portion
of the validation set, and a good top-5 score indicates that a model is tending towards correct
classification, with the correct label being close to its most probable prediction. The F1-score is the
harmonic means of precision and recall, calculated using 2 ∗ precision×recall

precision+recall
. This score is a symmetric

representation of both precision and recall, weighting both equally to give a balanced metric of the
two.

5.3 Subsets

For this experiment we train each of our networks on the full simulated set and subsets of the
real-world dataset. These subsets are created by selecting eight classes at random from the dataset,
and then selecting a random sample of 125 training samples. An issue does arise for the Caltech256
dataset, which has 39 classes with less than 125 samples. To account for this, these classes were
excluded so any selected random class had at least 125 samples to randomly choose.

In Tables 1 2 3 4 and Tables 5 6 7 8 we show the performance of the networks after 250 epochs
of training and a comparison of these tables is shown in Figure 20.

16

5.3.1 Results

Network TP TN FP FN Top-1 Acc. Precision Recall

ResNet v2 50 22 67 10 1 0.220 0.968 0.678

ResNet v2 101 28 61 10 1 0.280 0.971 0.733

ResNet v2 152 25 72 0 3 0.250 0.900 1.000

ResNet v2 200 13 27 60 0 0.130 1.000 0.178S
im

u
la

te
d

Inception v3 32 51 16 1 0.320 0.984 0.667

Table 1: Accuracy of models on the simulated dataset after training.

Network TP TN FP FN Top-1 Acc. Precision Recall

ResNet v2 50 21 72 5 2 0.210 0.913 0.811

ResNet v2 101 13 84 1 1 0.130 0.901 0.911

ResNet v2 152 22 69 7 2 0.220 0.908 0.767

ResNet v2 200 15 79 4 2 0.150 0.888 0.789C
IF

A
R

-1
0

Inception v3 29 68 1 2 0.290 0.946 0.967

Table 2: Accuracy of models on the CIFAR-10 subset after training.

Network TP TN FP FN Top-1 Acc. Precision Recall

ResNet v2 50 62 32 3 3 0.620 0.956 0.956

ResNet v2 101 58 38 1 3 0.580 0.957 0.978

ResNet v2 152 59 31 7 4 0.590 0.942 0.900

ResNet v2 200 59 38 1 2 0.590 0.967 0.989

C
al

te
ch

25
6

Inception v3 56 39 3 2 0.560 0.966 0.956

Table 3: Accuracy of models on the Caltech256 subset after training.

Network TP TN FP FN Top-1 Acc. Precision Recall

ResNet v2 50 23 71 3 3 0.230 0.885 0.875

ResNet v2 101 43 37 14 5 0.430 0.892 0.750

ResNet v2 152 42 31 25 2 0.420 0.965 0.625

ResNet v2 200 34 60 2 4 0.340 0.901 0.932Im
ag

eN
et

Inception v3 44 39 13 4 0.440 0.919 0.773

Table 4: Accuracy of models on the ImageNet subset after training.

17

Network Steps Epochs Top-1 Acc. Top-5 Acc. Precision Recall F1-score

ResNet v2 50 250,000 250 22.00% 70.00% 96.83% 67.78% 79.74%

ResNet v2 101 250,000 250 28.00% 82.00% 97.06% 73.33% 83.54%

ResNet v2 152 250,000 250 25.00% 74.00% 90.00% 100.00% 94.74%

ResNet v2 200 250,000 250 13.00% 68.00% 100.00% 17.78% 30.19%S
im

u
la

te
d

Inception v3 250,000 250 32.00% 89.00% 98.36% 66.67% 79.47%

Table 5: Accuracy of models on the simulated dataset after training.

Network Steps Epochs Top-1 Acc. Top-5 Acc. Precision Recall F1-score

ResNet v2 50 250,000 250 21.00% 75.00% 91.25% 81.11% 85.88%

ResNet v2 101 250,000 250 13.00% 67.00% 90.11% 91.11% 90.61%

ResNet v2 152 250,000 250 22.00% 80.00% 90.79% 76.67% 83.13%

ResNet v2 200 250,000 250 15.00% 72.00% 88.75% 78.89% 83.53%C
IF

A
R

-1
0

Inception v3 250,000 250 29.00% 93.00% 94.57% 96.67% 95.60%

Table 6: Accuracy of models on the CIFAR-10 subset after training.

Network Steps Epochs Top-1 Acc. Top-5 Acc. Precision Recall F1-score

ResNet v2 50 250,000 250 62.00% 94.00% 95.56% 95.56% 95.56%

ResNet v2 101 250,000 250 58.00% 85.00% 95.65% 97.78% 96.70%

ResNet v2 152 250,000 250 59.00% 93.00% 94.19% 90.00% 92.05%

ResNet v2 200 250,000 250 59.00% 91.00% 96.74% 98.89% 97.80%

C
al

te
ch

25
6

Inception v3 250,000 250 56.00% 92.00% 96.63% 95.56% 96.09%

Table 7: Accuracy of models on the Caltech256 subset after training.

Network Steps Epochs Top-1 Acc. Top-5 Acc. Precision Recall F1-score

ResNet v2 50 250,000 250 23.00% 79.00% 88.51% 87.50% 88.00%

ResNet v2 101 250,000 250 43.00% 93.00% 89.19% 75.00% 81.48%

ResNet v2 152 250,000 250 42.00% 91.00% 96.49% 62.50% 75.86%

ResNet v2 200 250,000 250 34.00% 84.00% 90.11% 93.18% 91.62%Im
ag

eN
et

Inception v3 250,000 250 44.00% 95.00% 91.89% 77.27% 83.95%

Table 8: Accuracy of models on the ImageNet subset after training.

18

Figure 20: Bar graph showing the top-1 accuracy, top-5 accuracy, precision, recall and F1-score on
the subsets of simulated (baseline), CIFAR-10, Caltech256 and ImageNet datasets.

We see that Inception v3 is the top performer for all but the Caltech256 subset. This could be due
to the fact that we use the RMSProp optimizer which could potentially be unoptimal for ResNet
architectures [KCP20]. Furthermore, the very low batch size may also contribute to a noisy gradient
for such deep architectures.

We also see that the Caltech256 subset is an exceptional outlier in terms of performance across
all models. We hypothesize that this is due to the nature of the dataset itself: it is the only
dataset with a high number of classes with around 100-200 samples per class. This may cause the
random samples taken from these classes to be much better training samples to perform well on the
validation set, as most classes have all their samples covered. Compare that to ImageNet, where
each class has upwards of 1,000 samples, or CIFAR-10 with 6,000 samples per class. That still does
not explain why the performance of the simulated is average at best and sometimes even the worst
performer of all the subsets.

5.4 Real-world validation on simulated models

For this experiment, we aim to measure the performance of models trained on the full simulated
dataset when validated on real-world data. With this we try to find how well simulated data can
substitute real-world data for training.

There is a caveat with this method, however. Since the simulated model has been trained to
classify its eight classes, we cannot validate directly over the real-world dataset. Because of this,
we have filtered and merged classes from the real-world dataset to the classes that match in the
simulated data. This resulted in unbalanced validation sets for CIFAR-10 and Caltech256 especially,
with ImageNet being more balanced. The filtered classes can be found in the appendix.

In Tables 9 10 11 12 and Tables 13 14 15 16 we show the performance of the filtered dataset on
the simulated network (the same network as used in Table 5) and a comparison of these tables is
shown in Figure 21.

19

5.4.1 Results

Network TP TN FP FN Top-1 Acc. Precision Recall

ResNet v2 50 22 67 10 1 0.220 0.968 0.678

ResNet v2 101 28 61 10 1 0.280 0.971 0.733

ResNet v2 152 25 72 0 3 0.250 0.900 1.000

ResNet v2 200 13 27 60 0 0.130 1.000 0.178S
im

u
la

te
d

Inception v3 32 51 16 1 0.320 0.984 0.667

Table 9: Accuracy of models on the simulated dataset after training. This forms the baseline to
which the other datasets are compared.

Network TP TN FP FN Top-1 Acc. Precision Recall

ResNet v2 50 820 1,636 544 0 0.273 1.000 0.601

ResNet v2 101 519 2,342 139 0 0.173 1.000 0.789

ResNet v2 152 966 2,030 4 0 0.322 1.000 0.996

ResNet v2 200 191 2,400 409 0 0.064 1.000 0.318C
IF

A
R

-1
0

Inception v3 956 1,814 230 0 0.319 1.000 0.806

Table 10: Accuracy of models on the filtered CIFAR-10 validation set after training.

Network TP TN FP FN Top-1 Acc. Precision Recall

ResNet v2 50 147 1,874 197 0 0.066 1.000 0.428

ResNet v2 101 182 1,930 106 0 0.082 1.000 0.633

ResNet v2 152 542 1,675 1 0 0.244 1.000 0.999

ResNet v2 200 60 1,983 175 0 0.027 1.000 0.256

C
al

te
ch

25
6

Inception v3 439 1,659 120 0 0.198 1.000 0.786

Table 11: Accuracy of models on the filtered Caltech256 validation set after training.

Network TP TN FP FN Top-1 Acc. Precision Recall

ResNet v2 50 1,389 4,572 1,980 59 0.174 0.959 0.412

ResNet v2 101 1,424 5,191 1,325 60 0.178 0.960 0.518

ResNet v2 152 1,733 6,017 2 248 0.216 0.875 0.999

ResNet v2 200 1,187 1,843 4,923 47 0.148 0.962 0.194Im
ag

eN
et

Inception v3 1,993 5,082 806 120 0.249 0.943 0.712

Table 12: Accuracy of models on the filtered ImageNet validation set after training.

20

Network Steps Epochs Top-1 Acc. Top-5 Acc. Precision Recall F1-score

ResNet v2 50 250,000 250 22.00% 70.00% 96.83% 67.78% 79.74%

ResNet v2 101 250,000 250 28.00% 82.00% 97.06% 73.33% 83.54%

ResNet v2 152 250,000 250 25.00% 74.00% 90.00% 100.00% 94.47%

ResNet v2 200 250,000 250 13.00% 68.00% 100.00% 17.78% 30.19%S
im

u
la

te
d

Inception v3 250,000 250 32.00% 89.00% 98.36% 66.67% 79.47%

Table 13: Accuracy of models on the simulated dataset after training. This forms the baseline to
which the other datasets are compared.

Network Steps Epochs Top-1 Acc. Top-5 Acc. Precision Recall F1-score

ResNet v2 50 250,000 250 27.33% 78.30% 100.00% 60.13% 75.10%

ResNet v2 101 250,000 250 17.30% 74.80% 100.00% 78.90% 88.21%

ResNet v2 152 250,000 250 32.20% 92.63% 100.00% 99.57% 99.78%

ResNet v2 200 250,000 250 6.37% 67.07% 100.00% 31.83% 48.29%C
IF

A
R

-1
0

Inception v3 250,000 250 31.87% 73.30% 100.00% 80.63% 89.28%

Table 14: Accuracy of models on the filtered CIFAR-10 validation set after training.

Network Steps Epochs Top-1 Acc. Top-5 Acc. Precision Recall F1-score

ResNet v2 50 250,000 250 6.63% 56.18% 100.00% 42.79% 59.93%

ResNet v2 101 250,000 250 8.21% 49.10% 100.00% 63.26% 77.49%

ResNet v2 152 250,000 250 24.44% 82.15% 100.00% 99.86% 99.93%

ResNet v2 200 250,000 250 2.71% 55.28% 100.00% 25.56% 40.72%

C
al

te
ch

25
6

Inception v3 250,000 250 19.79% 75.61% 100.00% 78.58% 88.01%

Table 15: Accuracy of models on the filtered Caltech256 validation set after training.

Network Steps Epochs Top-1 Acc. Top-5 Acc. Precision Recall F1-score

ResNet v2 50 250,000 250 17.36% 64.25% 95.91% 41.23% 57.67%

ResNet v2 101 250,000 250 17.80% 63.51% 95.95% 51.80% 67.28%

ResNet v2 152 250,000 250 21.66% 72.41% 87.49% 99.90% 93.28%

ResNet v2 200 250,000 250 14.84% 65.05% 96.18% 19.43% 32.33%Im
ag

eN
et

Inception v3 250,000 250 24.91% 80.10% 94.34% 71.21% 81.16%

Table 16: Accuracy of models on the filtered ImageNet validation set after training.

21

Figure 21: Bar graph showing the top-1 accuracy, top-5 accuracy, precision, recall and F1-score on
the validation sets of the simulated (baseline), CIFAR-10, Caltech256 and ImageNet datasets of
models trained on the simulated dataset.

We see that simulated models perform as well or even better on real-world datasets than its own
simulated validation set. These results are very promising steps towards replacing real-world data
with simulated data, as combined classes from real-world datasets which contain many more types
of samples can be classified more accurately than by chance. It is important to be reminded that
the more accurate evaluations are those of the filtered ImageNet dataset, as this set covers all ten
classes as opposed to only two for CIFAR-10 and five for Caltech256. Of these models, ResNet v2
152 has the most consistently high performance.

5.5 Summary of results

Table/Figure Train src. & samples Test src. & samples Classes Augmentation Comments

Table 5 13 Simulated, 900 Simulated, 100 8 Rand. crop flip Full dataset

Table 6 CIFAR-10, 900 CIFAR-10, 100 8 Rand. crop flip Random in all classes

Table 7 Caltech256, 900 Caltech256, 100 8 Rand. crop flip Random in select classes

Table 8 ImageNet, 900 ImageNet, 100 8 Rand. crop flip Random in all classes

Figure 20 Table 5 6 7 8 Table 5 6 7 8 8 Rand. crop flip Comparison of tables

Table 14 Simulated, 900 CIFAR-10, 3,000 2 Rand. crop flip Classes in appendix

Table 15 Simulated, 900 Caltech256, 2,218 5 Rand. crop flip Classes in appendix

Table 16 Simulated, 900 ImageNet, 8,000 8 Rand. crop flip Classes in appendix

Figure 21 Table 13 14 15 16 Table 13 14 15 16 8, 2, 5, 8 Rand. crop flip Comparison of tables

Table 17: Summary of results presented in this section.

22

6 Conclusions and Further Research

In this paper we proposed that creating a dataset of simulated images from a top-of-the-line game
engine could perform as well or better than real-world datasets on well-known neural networks such
as ResNet v2 and Inception v3.

From our experiments, we found that models trained on simulated data give promising perfor-
mance on real-world data in the classes we have devised. Even for these limited cases, our models
can classify images fairly well even on notoriously difficult datasets such as ImageNet.

Future works could expand on our research. Firstly, our generated dataset was created and
labeled by hand, a task that was to be omitted by the proposal of artificial media. Future works
could formulate a method of automatically generating and labeling said media, decreasing the time
required to gather the data and possibly expanding the number of classes. Automatic generation
was not applied on the dataset for this paper as it is outside the scope of our research, as it requires
a comprehensive understanding of the Unreal Engine 5 in regards to placing and modifying assets
in different scenario’s to create the images of objects in context. As games are developed for the
engine, this process could be wholly different as these preexisting worlds could serve as the scenario
in which the objects are present. At this time however, the Unreal Engine 5 has not been available
for long enough to allow for the creation of such games, as it was officially released four months
prior to this paper. AAA games have a development process which takes far longer than this.

Secondly, the number of classes could be extended in future works. We have created a total of
eight distinct classes on which we evaluated the performance of, to test the effectiveness of simulated
training data. This almost equal to the number of classes seen in CIFAR-10, a widely popular
image dataset for image classification [Kri09]. We have kept it at eight to reduce the amount of
manual labour required to create the dataset without having the risk of overfitting on our data.
This does not mean that the classes should not be expanded upon, and it would be interesting to
see deployment of the models on a larger variety of objects.

Lastly, the number of images per class could be increased to try and increase the accuracy of
the models. We strove for at least 120 images per class for a total of 1,200 images in the dataset.
However even CIFAR-10, one of the smaller image datasets, has 60,000 images in total [Kri09]. We
have made use of image augmentation to increase the usefulness of each sample, but that can not
compare to larger datasets.

23

References

[ABC+16] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zhang.
TensorFlow: A system for large-scale machine learning. CoRR, abs/1605.08695, 2016.

[AK20] Kohei Arai and Supriya Kapoor, editors. Advances in Computer Vision. Springer
International Publishing, 2020.

[BDM+16] Greet Baldewijns, Glen Debard, Gert Mertes, Bart Vanrumste, and Tom Croonenborghs.
Bridging the gap between real-life data and simulated data by providing a highly realistic
fall dataset for evaluating camera-based fall detection algorithms. Healthcare technology
letters, 3(1):6–11, 2016.

[CC17] Abhishek Chaurasia and Eugenio Culurciello. LinkNet: Exploiting Encoder Represen-
tations for Efficient Semantic Segmentation. CoRR, abs/1707.03718, 2017.

[CPN+19] Francis Chulu, Jackson Phiri, Phillip Nkunika, Mayumbo Nyirenda, Monica Kabemba,
and Philemon Sohati. A Convolutional Neural Network for Automatic Identification and
Classification of Fall Army Worm Moth. International Journal of Advanced Computer
Science and Applications, 10:112, 08 2019.

[CZA+19] Alessandra Caggiano, Jianjing Zhang, Vittorio Alfieri, Fabrizia Caiazzo, Robert Gao,
and Roberto Teti. Machine learning-based image processing for on-line defect recognition
in additive manufacturing. CIRP Annals, 68(1):451–454, 2019.

[DZR12] James DiCarlo, Davide Zoccolan, and Nicole Rust. How does the brain solve visual
object recognition? Neuron, 73:415–434, 2012.

[FHY19] Hironobu Fujiyoshi, Tsubasa Hirakawa, and Takayoshi Yamashita. Deep learning-based
image recognition for autonomous driving. IATSS Research, 43(4):244–252, 2019.

[GMTL22] Agata Gie lczyk, Anna Marciniak, Martyna Tarczewska, and Zbigniew Lutowski. Pre-
processing methods in chest X-ray image classification. PLOS ONE, 17(4):1–11, 04
2022.

[GSD+19] Christopher Goodin, Suvash Sharma, Matthew Doude, Daniel Carruth, Lalitha Dabbiru,
and Christopher Hudson. Training of Neural Networks with Automated Labeling of
Simulated Sensor Data. In Proceedings of WCX SAE World Congress Experience, 04
2019.

[HJ87] Richard Hoffman and Anil Jain. Segmentation and Classification of Range Images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(5):608–620,
1987.

[HW59] David Hubel and Torsten Wiesel. Receptive fields of single neurones in the cat’s striate
cortex. J Physiol, 148:574–591, 1959.

24

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. CoRR, abs/1512.03385, 2015.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity Mappings in Deep
Residual Networks. CoRR, abs/1603.05027, 2016.

[KCP20] Ibrahem Kandel, Mauro Castelli, and Aleš Popovič. Comparative Study of First
Order Optimizers for Image Classification Using Convolutional Neural Networks on
Histopathology Images. Journal of Imaging, 6(9), 2020.

[Kha18] Md Rakib Hossain Khan. Deep learning based medical X-ray image recognition and
classification. PhD thesis, BRAC University, 2018.

[KHD11] Aniruddha Kembhavi, David Harwood, and Larry Davis. Vehicle Detection Using
Partial Least Squares. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(6):1250–1265, 2011.

[Kir98] Russell Kirsch. SEAC and the Start of Image Processing at the National Bureau of
Standards. IEEE Annals of the History of Computing, 20:7–13, 1998.

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, Canadian Institute For Advanced Research, 2009.

[LBBH98] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[LHBB99] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object Recognition
with Gradient-Based Learning, pages 319–345. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1999.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James
Hays, Pietro Perona, Deva Ramanan, Piotr Doll’a r, and Lawrence Zitnick. Microsoft
COCO: Common Objects in Context. CoRR, abs/1405.0312, 2014.

[ØKCL16] Nina Ødegaard, Atle Onar Knapskog, Christian Cochin, and Jean-Christophe Louvigne.
Classification of ships using real and simulated data in a convolutional neural network.
In 2016 IEEE Radar Conference (RadarConf), pages 1–6, 2016.

[OSLF+18] Ozan Oktay, Jo Schlemper, Löıc Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari
Misawa, Kensaku Mori, Steven McDonagh, Nils Hammerla, Bernhard Kainz, Ben
Glocker, and Daniel Rueckert. Attention U-Net: Learning Where to Look for the
Pancreas. CoRR, abs/1804.03999, 2018.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

25

[SS22] Yisi Sang and Jeffrey Stanton. The Origin and Value of Disagreement Among Data
Labelers: A Case Study of Individual Differences in Hate Speech Annotation. In
Malte Smits, editor, Information for a Better World: Shaping the Global Future, pages
425–444, Cham, 2022. Springer International Publishing.

[SVI+15] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wo-
jna. Rethinking the Inception Architecture for Computer Vision. CoRR, abs/1512.00567,
2015.

[SZ15] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. In International Conference on Learning Representations,
2015.

[VTP21] Poonam Verma, Vikas Tripathi, and Bhaskar Pant. Comparison of different optimizers
implemented on the deep learning architectures for COVID-19 classification. Materials
Today: Proceedings, 46:11098–11102, 2021. International Conference on Technological
Advancements in Materials Science and Manufacturing.

[Yu,20] Yu, Hongkun and Chen, Chen and Du, Xianzhi and Li, Yeqing and Rashwan, Abdullah
and Hou, Le and Jin, Pengchong and Yang, Fan and Liu, Frederick and Kim, Jaeyoun
and Li, Jing. TensorFlow Model Garden. https://github.com/tensorflow/models,
2020.

[YYH+22] Naoto Yokoya, Kazuki Yamanoi, Wei He, Gerald Baier, Bruno Adriano, Hiroyuki
Miura, and Satoru Oishi. Breaking Limits of Remote Sensing by Deep Learning From
Simulated Data for Flood and Debris-Flow Mapping. IEEE Transactions on Geoscience
and Remote Sensing, 60:1–15, 2022.

26

https://github.com/tensorflow/models

Appendix

Assets used to generate simulated training data and which classes used them. Bold indicates the
asset contains at least one of the objects used in the samples from the class, italic signifies that the
asset belongs to the background of one of the samples from that class:

• City Sample Building, Car, Plane

• Open World Demo Collection Tree

• Automotive Bridge Scene Car, Plane

• Automotive Winter Scene Plane

• Vehicle Variety Pack Volume 2 Car

• Commercial Long-Range Aircraft Plane

• Assetville Town Building, Car, Chair, Couch, Plane, Produce

• temperate Vegetation: Spruce Forest Tree

• Free Furniture Pack Chair, Couch

• Megascans - Definitive Bread Bread

• Megascans - Vegetables Produce

• Big Office Chair, Couch, Produce

• Downtown West Modular Pack Bread, Building, Chair, Couch, Plane, Produce

• Edie Finch: Edie Room Bread, Chair, Couch, Produce

• Edie Finch: House and Common Areas Bread, Chair, Couch, Produce

• Food Pack 01 Produce

• Realtime Archviz AssetPack - Bistro Restaurant Scene Chair

• Twinmotion Chairs & Tables Pack 1 Chair

27

Table containing the creator, sources and publish date for each asset:

Author Asset URL suffix Date created

Epic Games City Sample city-sample 2022-04-05

Epic Games Automotive Bridge Scene automotive-bridge-scene 2020-10-19

Epic Games Automotive Winter Scene automotive-winter-scene 2021-01-15

Epic Games Open World Demo Collection
open-world-demo-

collection
2015-04-02

Switchboard
Studios

Vehicle Variety Pack
Volume 2

9a705589d1994c6e

8757fdbedaf698af
2022-06-26

Minh Le
Commercial Long-Range
Aircaft

commercial-long-range-

aircraft
2022-04-15

Assetville Assetville Town assetsville-town 2022-02-01

Project Nature
temperate Vegetation: Spruce
Forest

interactive-spruce-

forest
2019-04-29

Next Level 3D Free Furniture Pack
a4907129f69c44a8

92f76782489736ab
2019-04-17

Quixel
Megascans

Megascans - Definitive Breads
0cf429aadbf74a98

a6b7dfcbe4f74002
2019-11-01

Quixel
Megascans

Megascans - Vegetables
8ef1598076964207bd

38e14cf950f706
2019-12-04

1D.STUDIO Big Office big-office 2020-05-20

PurePolygons
Downtown West Modular
Pack

6bb93c7515e148a1a

0a0ec263db67d5b
2020-12-28

Epic Games Edie Finch: Edie Room ef-edie 2020-11-12

Epic Games
Edie Finch: House and Com-
mon Areas

ef-house 2020-11-11

Patchs Food Pack 01 food-pack 2016-04-13

Dominique
Buttiens

Realtime Archviz AssetPack -
Bistro Restaurant Scene

bistro-restaurant-

scene-asset-pack-

realtime-archviz

2022-03-22

Epic Games
Twinmotion Chairs & Tables
Pack 1

twinmotion-chairs-

tables-pack-1
2022-05-16

Table 18: Sources of assets used in generating simulated training data.

URL suffixes append to https://www.unrealengine.com/marketplace/en-US/product/.

28

Filtered real-world datasets into classes from the simulated dataset:

CIFAR-10

• Car: automobile, truck

• Plane: airplane

Caltech256

• Building: light-house, skyscraper, tower-pisa, menorah-101

• Car: car-side-101, fire-truck, school-bus

• Plane: airplanes-101

• Produce: grapes, tomato, watermelon

• Tree: bonsai-101, palm-tree

ImageNet

• Bread: bagel, bakery, French loaf

• Building: barn, beacon, bell cote, boathouse, castle, dome, mobile home,

monastery, mosque, palace, stupa, thatch, triumphal arch

• Car: ambulance, cab, car wheel, convertible, fire engine,

garbage truck, grille, jeep, limousine, minibus, minivan, Model T,

moving van, pickup, police van, racer, recreational vehicle,

school bus, sports car, trailer truck

• Chair: barber chair, folding chair, rocking chair

• Couch: studio couch

• Plane: airliner, warplane

• Produce: artichoke, banana, bell pepper, broccoli, cauliflower, corn,

cucumber, custard apple, fig, Granny smith, head cabbage, jackfruit,

lemon, orange, pomegranate, spaghetti squash, strawberry, zucchini

• Tree: pot

Simulated classes not present in this list indicate no matching class existed in the real-world dataset.

29

Auxiliary online sources:

Figure 8 provided by Epic Games, “A first look at Unreal Engine 5”. Published 2020-06-15,
URL: https://www.unrealengine.com/en-US/blog/a-first-look-at-unreal-engine-5

Figure 9 provided by Zach Lo, “Optimize Your Ray Tracing Graphics with the New NVIDIA RTX
Branch of Unreal Engine 5”. Published 2022-05-11, URL: https://developer.nvidia.com/blog/
optimize-your-ray-tracing-graphics-with-the-new-nvidia-rtx-branch-of-unreal-engine-

5/

Bulk image cropping was done using BIRME, a free online tool to crop and rename images in
bulk. URL: https://www.birme.net/

30

https://www.unrealengine.com/en-US/blog/a-first-look-at-unreal-engine-5
https://developer.nvidia.com/blog/optimize-your-ray-tracing-graphics-with-the-new-nvidia-rtx-branch-of-unreal-engine-5/
https://developer.nvidia.com/blog/optimize-your-ray-tracing-graphics-with-the-new-nvidia-rtx-branch-of-unreal-engine-5/
https://developer.nvidia.com/blog/optimize-your-ray-tracing-graphics-with-the-new-nvidia-rtx-branch-of-unreal-engine-5/
https://www.birme.net/

	Introduction
	History of image classification
	Research objective
	Overview

	Definitions
	Convolutional neural networks
	ResNet v2
	Inception V3
	Implementation
	Unreal Engine 5

	Related Work
	Acquiring Simulated Data
	Creating screenshots
	Classes

	Experiments
	Experimental setup
	Evaluation metrics
	Subsets
	Results

	Real-world validation on simulated models
	Results

	Summary of results

	Conclusions and Further Research
	References

