£Y3. Universiteit Opleiding Informatica
W) Leiden b 8
The Netherlands

Effect of initial sampling

on short-term behaviour of Differential Evolution

Petter Reijalt

Supervisors:
Dr. A.V. Kononova & D. Vermetten

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 14/06/2023

www.liacs.leidenuniv.nl

Abstract

This thesis aims to study the effects of various sampling methods on the first 10 generations of
the Differential Evolution algorithm. Existing research on the effects of sampling methods on
other evolutionary algorithms shows significant improvements when low-discrepancy sequences
are used over a default uniform sampling distribution. Our study used a modular approach to

isolate the sampling method used,

then statistical analysis was conducted on the best solutions

found in each generation. We found no significant improvements after 10 generations of the
algorithm over a default uniform sampling distribution.

Contents

Introduction

1.1 Research question
1.2 Related work
1.3 Thesis overview

Differential Evolution
Sampling methods

Methodology

4.1 Modular DE
4.1.1 Sampling methods
4.1.2 DE version

4.2 T1OHprofiler
4.2.1 TOHexperimenter .
4.2.2 1OHanalyzer
4.2.3 Test specifications .

43 Code

4.4 Data

Results
Conclusion and Future work
References

Appendix

11

23

24

26

1 Introduction

Optimisation is the mathematical study of maximising or minimizing a certain function given
certain constraints. Black box optimisation could be used to find this maximum. In this case it is
assumed that no information is known a priori about the characteristics of the function. A black box
gives a certain output depending on the input, but the inner workings are unknown. A computer
simulation is a well-known example of a black box [1].

Traditional optimisation algorithms have been used to solve optimisation problems with lim-
ited success. Successful however in exploring the neighbourhood of a certain solution, they are
not well suited for searching for global optima. Often they would get stuck in local optima [2].
Heuristics have been used to solve optimisation problems within a certain time span. They do
not guarantee an optimal solution, solutions are so-called near-optimal. Metaheuristic algorithms
expand upon these heuristic algorithms by learning from previous iterations and applying that in
the next. Unlike heuristic algorithms, which come down to a trial-and-error method. Metaheuristic
algorithms not only use stochastic elements but also deterministic elements [3].

Evolutionary algorithms form a subset of the metaheuristic algorithms, they do not require
any upfront knowledge of the problem. Evolutionary algorithms are a family of population-based
optimization algorithms inspired by Darwinian evolution. By utilizing the concepts of mutation,
crossover and selection an evolutionary pressure is created which leads to improvements in fitness
over time. It tries to iteratively improve the fitness of the population as a whole. [1].

One of these evolutionary optimisation algorithms is Differential Evolution. The algorithm starts
with an initial population of candidate solutions. In each generation, new offspring are created by
means of mutation and crossover. Using selection the new generation is created by choosing the
solution with the highest fitness. The mutation step relies on the difference between individuals, i.e.
differences in distance and direction [5].

In order to create an initial population, an initialisation method is used. Generally, a uniform
probability distribution is used to sample an initial population. Achieved by using pseudo-random
number generators. A uniform probability distribution, however, does not cover the domain equally
[6]. This can lead to clusters of nearby sampling points. Quasi-random sequences can be used for a
better spread of the initial sampling points. Designed to put as much distance between individual
points[7]. The effects of initial sampling are often still seen after several iterations for metaheuristic
optimisation algorithms and can often influence the final outcome [7]. The effects of initial sampling
become even more evident when used with bigger, multimodal problems [5].

1.1 Research question

Although there is evidence to show that quasi-random sequences could improve the performance
of other evolutionary algorithms such as genetic algorithms [7]. Such research has not been done
for Differential Evolution. This thesis aims to investigate the effects of quasi-random sequences,

probability distributions and other initialisation schemes, such as Latin Hypercube Sampling, on
the early dynamics of the Differential Evolution algorithm. This leads to the following research
question:

RQ: For a particular example of a heuristic population-based optimisation algorithm called
Differential Evolution, what are the effect of different methods of initial sampling on the early
dynamics within the population?

1.2 Related work

Li et al. researched the effect of initialisation schemes on five different optimisation algorithms,
including Differential Evolution. The only initialisation schemes used, however, were Latin Hyper-
cube Sampling and different probability distributions. It concluded that Differential Evolution is
not significantly impacted by the use of different initialisation schemes and heavily relies on the
number of iterations used and less on the population size [9]. More initialisation schemes have
been researched for other evolutionary algorithms, such as genetic algorithms. Maaranen et al.
researched different quasi-random algorithms on genetic algorithms. It concluded that initialisation
schemes are of great importance and quasi-random sequences can successfully be used together with
problems with higher dimensionalities [7]. This has also been researched for other population-based
metaheuristic algorithms by Agushaka & Ezugwu as part of a meta-study. It looked into different
sampling methods with regards to the bat algorithm, Grey Wolf Optimizer and the butterfly
optimisation algorithm. It researched Monte Carlo Methods, Quasirandom Methods and Probability
Distributions among others. It concluded that some algorithms were sensitive to the initialisation
scheme as others were not [10].

1.3 Thesis overview

The rest of the paper is structured as follows: Section 2 includes an explanation of the Differen-
tial Evolution algorithm; Section 3 outlines the sampling methods used; Section 4 describes the
methodology used; Section 5 describes the experiments and their outcome; Section 6 concludes and
the appendix can be found in section 8.

This thesis was written for The Leiden Institute of Advanced Computer Science (LIACS) at
Leiden University in the spring of 2023 as a bachelor thesis, it was supervised by Dr. A.V. Kononova
& D.L. Vermetten.

2 Differential Evolution

Differential evolution is a so-called evolutionary algorithm that tries to solve optimisation problems,
which are continuous in nature. The algorithm starts off with an initial population of NP vectors,

which covers the search space, following a certain sampling method. The algorithm runs for a
predetermined amount of generations and then halts. In every generation every vector has to
serve once as a target vector, resulting in NP competitions. There are many different versions of
Differential Evolution. The performance of the Differential Evolution on a certain problem heavily
relies on the mutation and crossover scheme used and the control parameters [11]. Beneath the
standard, most basic, Differential Evolution variant DE/rand/1/bin will be outlined [12].

Mutation
For every target, a mutant vector is generated. According to the following formula:

Vi,g41 = Try o+ F 5 (D¢ — Try)

where z represent different pre-existing vectors and F' > 0. The scale factor F determines the size
of difference vector z,, ¢ — ;.. 71, r2 and r3 represent the index of a vector from a generation G.
Also 71, r9 and r3 should be different then i. Figure 1 shows an example of the possible construction
of a mutant vector [12].

X NP Parameter vectors from generation G
© Mutated parameter vector Vi G

F(Xs, .6 - Xs.6)

Figure 1: The construction of a mutant vector [12]

Crossover
Then crossover takes place, in order to increase diversity, in which this mutated vector takes on a
certain amount of parameters from another vector, the target vector:

Vi,G+1 = (Uu,GH, V24,G+H15 +++» UDi,GJrl)

is created by:

B {UjLGH if 4(0,1) < CR or j = rnbr(i)
Vij,G+1 =
Vjiq else

i=1,2,...D.

Y

In this certain example the latter part of the formula: rnbr(i) is random chosen index € 1,2,, D.
It ensures that at least one parameter from the mutant vector is used in the trial vector. CR, the
crossover rate determines the likelihood of the trial vector taking on a parameter from the mutant

vector. Randb is a random number generator, producing a number between 0 and 1. [12]. This
process is illustrated in Figure 2.

Vi G+1 Ui G+
j=1 j=1 j=1
2 2 2
3 3 randb(3)<=CR
4 4 randb(4)<=CR 4
5 5 5
6 6 randb(6)<=CR B>
7 7 7
hVad e Vad AV od
Target vector containing Mutant vector Trial vector
the parameters Xji,G:
j=1,2,..,D=7

Figure 2: The construction of a trial vector [12]

Selection

This trial vector and target vector are then compared against each other. The best vector will be
used in the new generation, the other one will be discarded [12].

DE/x/y/z

There are a lot of different methods that can be used concerning the mutation strategy and crossover
method. In order to differentiate between the different versions of Differential Evolution the notation
DE/z/y/z is used. In which = determines which vector will be mutated, y determines the number

of difference vectors used on the vector determined by z, z determines the scheme used in the
selection step [12].

In this notation, the initialisation scheme in question is not included. The aim of this paper
is to research the effects of initial sampling on the population, with regards to early generations

of the algorithm. In order to isolate the initial sampling from the other components a modular
approach is needed.

3 Sampling methods

The following section outlines the main categories of sampling methods used in population-based
metaheuristics.

Probability distributions
Figures 3 & 4 show examples of a uniform distribution and a Gaussian distribution in a 2D space
(for n = 100), where each parameter is normalised to a real number between 0 and 1.

1. Uniform distribution

Uniform probability distributions are most normally used in regard to population-based algorithms.
Pseudo-random number generators are then used to emulate random numbers [6]. The discrepancy
in the sequence created by the uniform distribution will not optimally benefit the convergence of
algorithms, as concluded by Niederreiter and Harald [13]. The probability density function can be
described as follows where a and b describe the minimum and maximum values respectively:

0 otherwise

f(sc)z{ﬁ et

The average value is equal to @ and the variance can be described as @ [14].

2. Gaussian distribution

The density of the sampling points of the Gaussian distribution follows a bell shape. Meaning that
sampling points are more likely to be in the centre and the chance of them being near the edges
becomes increasingly smaller. It is possible, though unlikely, that the sampling point lies out of
bounds.

The probability density function can be formulated as follows:

1 1 x—p

p(x) = g eXP(—g(o

2
)7)
where 1 represents the mean, and o represents the standard deviation [14].

Latin Hypercube Sampling

Latin Hypercube Sampling is a stratified Monte Carlo sampling method. The search spaced is
divided into equal-sized stratas for every dimension. For each strata one sampling point is chosen.
Using a pseudorandom number generator a value within the bounds of the strata is generated [15].

5

1.07s . v S 1.0
® . ¢ ® °
[]
0.8 ¢ ., ° “ 0.8 Q" °
° L ° °
e ° oo ° o, ° S e d
° o ° e o 'S H)
0.6 ° 0.6 “e " 3. ¢
. o ., ° ’ o 8 | ol e,
i ° L4 ° ° = e 00 < '\c
s ° ° o oo | ° e% o ° o
0.4 . : c e . . 0.4 v “est .
[]
" ° :' e ° . . ° o o °
0.2 ° » Y ° . 0.2
[] ° °
[]
. . R ° . °
0.0 e — - ra——a® o 0.0 : : ; .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
Figure 3: Uniform sampling Figure 4: Gaussian sampling
1.0 P .
°, ° ®
[® P
[] ° °
[}
0-8' o e
® ® [J - o ©
pe o ®
I e® °
0.61° o ® o
[} ° ° °
[} ° ® o9 °
i o [J [
0.4 ° o o o
o® °
° ° ®
®) o o
0.2] *° . o ® o
. . o . °
[} PS []
L °
° ° o °
0.0 i : ® —2
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Latin Hypercube Sampling algorithm

1.0

In Figure 5 a possible sampling is shown for n = 100.

Quasi-random numbers

Quasi-random numbers are sequences that can more uniformly cover a search space. Well-known
sequences include Faure, Sobol and Halton [10]. In this paper, we include the latter two. In Figures
7 and 8, the Sobol and Halton sequences are shown for n=1000 and d=2.

1. Halton sequence

When one wants to distribute sampling points as uniformly as possible in a 1-dimensional space in
[0, 1], one might think of the following sequence:

11315371 9

© 00 J O U W N = O

-

—
Ut

Figure 6: Visualisation of the binary van der Corput sequence [10]

This is the so-called van der Corput sequence in base 2, which van der Corput made into a general
construction principle [16]. This sequence is achieved by reversing the digits for some non-negative
integer in some base [17]. Every nonnegative integer n can be represented using the binary expansion:

n = ng+m2+ ns2? + ng2> + ...
which is a finite sequence. The nth element of the van der Corput sequence is given by:

Ng N1 N2
UYp = ? + ? + ?
in base 2. The Halton sequence uses a multi-dimensional form of the van der Corput sequence using
multiple bases without duplicates. [16]. Generally, you choose s bases, where s is the amount of
dimensions so that they represent the first s prime numbers [17]. After that, you concatenate the

sequences to compute every sampling point for a s-dimensional Halton sequence such as:

7

Figure 7: Sobol sampling (n = 1000) Figure 8: Halton sampling (n = 1000)

Yn = (}/;71 (n>7 YE)z(n)v coos Yo, (n))

where by, by, ..., by represent the prime numbers used as bases [10].

2. Sobol sequence

Here we will outline the general steps that need be taken in order to generate a Sobol sequence.
Theoretical details can be found in [16]. Suppose we want to generate sampling points for a
1-dimensional space. This would result in a sequence: z!, 22, Therefore we would need to create
direction numbers (v, vg, ...), which are binary fractions. These can be represented as:

v = ?
where m; is an odd integer. These direction numbers can be obtained by choosing an arbitrary
polynomial with coefficients that can be either 0 or 1. For example:

P=al+az™ +.. + ag—1r+1

The coefficients can then be used in order to define a recurrence relation for m;, in order to get v;,
resulting in:

2 d—1 d
m; = 2a1mi_1 b2 aoMy;_o P ... P 2 ad—1Myi—d+1) 2 Mi—g D Mi_qg

The final sequence can then be generated using:

" = b1U1 D bQ’UQ + ...

where ...b3, bg, by represent the binary representation of n [15].

Grid sampling
Grid sampling is a sampling method in which all sample points are equidistant from each other
forming a grid. Shown in Figure 9

1.0
° ° ° °
0.8
0.6 ° ° ° °
0.4/ ° ° ° °
0.2
° ° ° °
0-0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 9: Visualisation of grid sampling for n=16

4 Methodology

4.1 Modular DE

The Differential Evolution algorithm was implemented using Modular DE. This modular framework
allows for the investigation of the interaction of different components. This allows for a study of
the effects of initial sampling when all else is held constant [19].

4.1.1 Sampling methods

The framework consists of the base samplers: Uniform, Gaussian, Halton and Sobol. It also allows
for the use of oppositional initialisation [19]. We expand upon this by adding another quasi-random
sequence: Hammersley and added Latin Hypercube sampling and Grid sampling.

Modular DE Added

Gaussian distribution (gaussian) Grid sampling (grid)

Uniform distribution (uniform) Latin Hypercube sampling (latin)
Sobol sequence (sobol) Hammersley sequence (hammersley)
Halton sequence (halton)

Table 1: Implemented sampling methods

4.1.2 DE version

The version of Differential Evolution that is used during this research is equal to DE/current —
to — pbest/1:

vV =T + F(prest - xz) + F(:En - xm)

where z,, and x,, represent 2 different vectors which are not zps; or x;. pbest represents a random
vector chosen out of the p best vectors. In this case, p is equal to the 20% best vectors. Other

specifications can be found in Table 2.

Operation

Module Name

Choice

Initialisation

Initialisation

Base sampler

Oppositional initialisation

variable

false

Mutation
Mutation
Mutation
Mutation

Mutation

Base vector
Reference vector
Number of differences
Use weighted F

Use archive

target
pbest
1

false

false

Crossover

Crossover method

bin

Bound correction

Bound correction

saturate

Adaptation
Adaptation
Adaptation
Adaptation

F adaptation method

CR adaptation method
Population size reduction
Use JSO caps for F and CR

none
none
false

false

Parameter
Parameter

Parameter

Population size
Scale factor

Crossover rate

10 *D
0.5
0.5

Table 2: Settings used in the Modular DE framework

4.2 I1OHprofiler

For this research, we used the benchmarking platform IOHProfiler. This could be used for comparing

different iterative optimisation heuristics |

|. In this case, we benchmarked different versions of

the Differential Evolution algorithm that were created with the Modular DE framework.

4.2.1 IOHexperimenter

[OHexperimenter is the experimental part of IOHprofiler. It allows for the systematic logging of the
behaviour of optimisation algorithms whilst solving an optimisation problem [21]. The 2 problem
suites used in this research are as follows:

10

4.2.1.1 BBOB

The BBOB test suite contains 24 single-objective, noiseless functions. All functions can be modelled
into multiple dimensions. The 24 functions try to mimic situations that one would encounter in a
real-life setting. The optimum lies somewhere in the domain: [—5, 5|7 [22].

4.2.1.2 SBOX
The SBOX test suite aims to negate some of the downsides that come with using the BBOB test

suite. For one it more uniformly distributes the optima across the domain. Some problems of the
BBOB test suite do not cover the entire search domain. Secondly, it more strictly enforces box
constraints, returning an invalid value when accessing a solution outside the search domain [23].

4.2.2 I0OHanalyzer

The data generated by IOHexperimenter was then used in IOHanalyzer. IOHanalyzer visualizes and
analyzes the data from optimisation heuristics. Offering both an analysis of the runtimes of fixed
targets and the performance of fixed budgets. The latter is interesting for our research because we
only investigate the early stages of the algorithm. The tools allow for the visualisation of different
sampling methods with regard to the average performance over multiple repetitions and instances.
It can also tell us, whether differences between sampling methods are significantly different [24].
4.2.2.1 R Programming Interface

The R programming interface, which is a part of IOHanalyzer, allowed us to extract the data and
it to be used in R. Which allows for a more thorough analysis of the data [2].

4.2.3 Test specifications

Every sampling method was run 50 times (10 repetitions x 5 instances) in each dimension for every
function. The dimensions used were d € {2,5,20}. This was done for all the functions, 1 to 24, in
both the BBOB test suite and the SBOX test suite.

4.3 Code

The code used for this project can be found here or go to the next URL: https://github.com/
Petter6/ModDE

4.4 Data

All data can be found here or go to the next URL: https://zenodo.org/record/8110708

5 Results

In order to determine the differences between the sampling methods in the early stages, we looked
at the performance of the sampling methods within the first 10 generations. We compared the

11

https://github.com/Petter6/ModDE
https://github.com/Petter6/ModDE
https://github.com/Petter6/ModDE
https://zenodo.org/record/8110708
https://zenodo.org/record/8110708

best solutions the Differential Evolution algorithm found given a certain sampling method, given a
certain number of iterations. To subject the Differential Evolution to a great variety of problems
we used different dimensions 2, 5, 20 and the BBOB test suite, which is the industry standard
for testing optimisation algorithms [25]. To see if there was any difference at all, we looked at the
average best solutions found across all functions of all sampling methods directly after initialisation.
In Figure 10, every sampling method is compared against every other sampling method. The
colour red means that across the 24 functions, the sampling method on the y-axis had a better
average solution for most of the functions, compared to the sampling method on the x-axis. Blue
means a worse average for most of the functions. This showed us that Gaussian sampling across all
dimensions on average performs the worst directly after the initialisation and is followed by Grid
sampling. In order to figure out, if this is the case for all dimensions used we computed graphs
based on individual dimensions, this is shown in Figure 11. It shows us that Gaussian Sampling
performs badly for 2-dimensional problems and 5-dimensional problems. Grid sampling performs
worse than most other sampling methods for 5-dimensional and 20-dimensional problems. This
could be the case because, in higher dimensions, it becomes increasingly harder for Grid sampling
to fill the search space. For d = 20 equal to a population size of 200 in our case, a grid needs to be
constructed containing 22° = 1048576 points (1?° does not contain enough points for our purposes).
Of which only 200 will be used, making it susceptible to clustering, leaving a lot of points in the
grid unused.

To see if Gaussian sampling and Grid sampling also perform worse in the short term, we looked at
the performance after 10 iterations of the algorithm across all dimensions, which can be seen in
Figure 12. This showed us that after 10 iterations the Grid sampling still has the worst average
best solution for most functions when compared 1 to 1 with other sampling methods. This could
be attributed to the fact that for Grid sampling it is harder to explore new areas of the search
space. Because all points are equidistant, the difference between 2 vectors could lead to a sampling
point that is on the grid and could even be already found. The Gaussian sampling actually slightly
outperformed the other sampling algorithms. This is due to the fact that the Gaussian sampling
severely outperforms the other algorithms in 20-dimensional problems, and to a lesser extent the
5-dimensional problems (Figure 13).

To know whether or not these differences were significant on a function-to-function basis, we
compared the distribution of the best solutions of every sampling algorithm to the distribution of
best solutions found by Uniform sampling. We computed the p-values for every function for every
algorithm for every generation at a significance level of 0.01. The p-values were computed using
the Kolmogorov-Smirnov test, which is used to test the goodness of fit for 2 distributions and is
believed to be more powerful than the chi-square test [20]. Because the likelihood of the occurrence
of a false positive increases as one makes more statistical inferences, we used a multiple comparison
procedure. In order to correct for the occurrence of these false positives, the p-values were corrected
using the Benjamini-Hochberg Procedure [27]. In Figure 14, a subset of problems is shown for
20-dimensional problems in which the best solution distribution of Grid sampling and Gaussian
sampling significantly differ from the Uniform distribution. Particularly for these functions, the
Gaussian sampling method performs better than Uniform sampling and Grid sampling performs
worse. This holds true for each of the 10 iterations, see Figure 15, 16 and 18. When comparing
all performance graphs and probability distributions this leads to the conclusion that Gaussian

12

sampling significantly outperforms Uniform sampling for 20-dimensional problems in 17 of the 24
problems. Uniform sampling significantly outperformed Grid sampling for 20 of the 24 problems.

This bias towards Gaussian sampling could be attributed to the fact that the domain in which the
optimum can be found is not the same as the search space for most functions in the BBOB test
suite. Although the search space is equal to [—5, 5], the optimum can actually only be found in
[—4,4]? for most functions. Meaning that for increasingly higher-dimensional problems, the part of
the search space that can actually contain the optimum becomes increasingly smaller relative to
the search space. This helps algorithms that focus on the centre, e.g. algorithms that use Gaussian
sampling as their initialisation method. To negate these effects we used the SBOX test suite. The
SBOX test suite uses the same functions as the BBOB test suite, but the optima follow a uniform
distribution across the domain [—5, 5]%, for most functions [23].

We then conducted the same experiments as we did using the BBOB test suite. The sampling
methods using probability distributions performed worse than the other sampling methods at
initialisation. When compared 1 to 1 with other sampling methods, the average best solution
was worse for more functions. The other sampling methods showed no big differences from one
another. Only slightly outperforming the other algorithm by having a better average solution in a
few functions (Figure 19). From 5-dimensional problems onwards the Grid sampling methods start
to perform worse than the other methods. Similar to the BBOB test suite the Gaussian function
also performs better than other sampling methods directly after initialisation when 20-dimensional
problems are used (Figure 20).

Where the SBOX test suite results differ from the BBOB is after 10 iterations. Where the BBOB
test suite showed that Gaussian sampling outperformed most sampling methods when d=20, this is
no longer the case using the SBOX test suite (Figure 21). We then computed the same p-values
as we did with the BBOB test suite. When comparing the p-values with the average best-found
f(x)-values, we found that Gaussian sampling is only significantly better in 6 of the 24 problems as
opposed to the 17 found by the BBOB test suite. Grid is still clearly the worst, significantly worse
in 17 of the 24 problems when comparing the p-values with the average best-found f(x)-values. A
subset of the functions found, where Grid performs significantly worse and Gaussian significantly
better can be seen in (Figure 22). We did the same comparison for the lower dimensionalities, 2
and 5. The Halton and Hammersley sampling methods are significantly better than other methods
directly after initialisation. This is also true to a lesser extent for the Sobol sampling method, for
2-dimensional problems. However, this lead is quickly lost after 1 or 2 generations. For 2-dimensional
problems, the Hammersley sequence is significantly better than Uniform sampling in 16 of the 24
problems at initialisation. Examples of this can be seen in (Figure 23). For 20-dimensional problems,
it is the other way around at initialisation, the Halton and Hammersley sampling methods perform
significantly worse than others, but this deficit is also quickly made up for (Figure 24). The worse
performance for higher-dimensional problems could be due to the higher correlation between two
points when higher dimensionalities are used [28].

13

hammersley-|

grid-|

Figure 10: Algorithms compared 1 to 1, expressed as a fraction of times the average mean is better
for all selected function-dimension-pairs ([1,24] x {2,5,20}). Results after initialisation for the
BBOB test suite.

% “ t.% “, % “ %, % ‘» “, = % x,%‘ “ ,

(a) [1,24] x {2} (b) [1,24] x {5} () [1,24] x {20}

Figure 11: Algorithms compared 1 to 1, expressed as a fraction of times the average mean is better
for all selected function-dimension-pairs. Results after initialisation for the BBOB test suite.

14

hammersley -

g
@
%,

g
%, % %, %,
% % “
2%, %, K K
B K4
<%

Figure 12: Algorithms compared 1 to 1, expressed as a fraction of times the average mean is better
for all selected function-dimension-pairs ([1,24] x {2,5,20}). Results after 10 iterations for the
BBOB test suite.

15

gaussian. gaussian

halton-

(a) [1,24] x {5} (b) [1,24] x {20}

Figure 13: Algorithms compared 1 to 1, expressed as a fraction of times the average mean is better
for all selected function-dimension-pairs. Results after 10 iterations for the BBOB test suite.

F7-D20 F8-D20 F12-D20

57

1e-01 1e-01 1e-01

1e-02 1e-02 1e-02

P-value
P-value
P-value

1e-03 1e-03 1e-03

- gaussian - gaussian gaussian

e grid e grid - grid

le-04 — halton le-04 = halton 1le-04 < halton
% hammersley < hammersley > hammersley
- latin = latin = latin

- sobol - sobol - sobol

1e-05 1e-05 1e-05
0 1 2 3 4 7 8 9 10 0 1 2 3 4 5 B 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

5 6
Generation Generation Generation

(a) Function 7, 20-dimensional (b) Function 8, 20-dimensional (c) Function 12, 20-dimensional

Figure 14: Goodness of fit test between the distribution of best solutions of every Sampling method
versus the distribution of best solutions of the Uniform sampling method. P values computed with
Kolmogorov-Smirnov test, for every generation, for every function, for every dimension, at a 0.01
significance level.

16

Best-so-far f(x)-value

1 2 5 10 2 5 100 2 5 let3 2

Function Evaluations

gaussian grid uniform

Figure 15: Average of the best-found f(x)-values over all iterations for every function evaluation.
For the sampling methods: Grid, Gaussian, Uniform. Shown for Function 7 as a 20-dimensional
problem from the BBOB test suite.

17

let6-

let5-

Best-so-far f(x)-value

letd-

1 2 5 10 2 5 100 2 5 let3

Function Evaluations

gaussian grid uniform

Figure 16: Average of the best-found f(x)-values over all iterations for every function evaluation.
For the sampling methods: Grid, Gaussian, Uniform. Shown for Function 8 as a 20-dimensional

problem from the BBOB test suite.

18

let+1l-

let+10-

let9-

Best-so-far f(x)-value

let+8-

1 2 5 10 2 5 100 2 5 let3

Function Evaluations

gaussian grid uniform

Figure 17: Function 12, 20-dimensional

Figure 18: Average of the best-found f(x)-values over all iterations for every function evaluation.
For the sampling methods: Grid, Gaussian, Uniform. Shown for Function 12 as a 20-dimensional
problem from the BBOB test suite.

19

latin

sobol

hammersley

halton

uniform

gaussian

¢
S
5
»
o
o
\\'0’%
o
&
o
>
p
&

Figure 19: Algorithms compared 1 to 1, expressed as a fraction of times the average mean is better
for all selected function-dimension-pairs ([1,24] x {2,5,20}). Results after initialisation for the

SBOX test suite.

hammersley gaussian

sobol sobol

uniform:

hammersley

(a) [1,24] x {5} (b) [1,24] x {5}

Figure 20: Algorithms compared 1 to 1, expressed as a fraction of times the average mean is better
for all selected function-dimension-pairs. Results after initialisation for the SBOX test suite.

20

uniform-;

hammersley -

latin-|

gaussian-|

sobol |

halton-|

N
&
s
¥

9,
o

%

" 9,
%, % %, b,
9,

a3

Figure 21: Algorithms compared 1 to 1, expressed as a fraction of times the average mean is better
for all selected function-dimension-pairs ([1,24] x {20}). Results after 10 iterations for the SBOX

test suite.

F19-D20 F20-D20 F24-D20

/ \/ !

1e-03

P-value
P-value
P-value

1e-03 1e-03

— gaussian — gaussian - gaussian
- grid - grid e grid

1e-04 ~«halton 1e-04 ~«halton 1e-04 ~« halton
< hammersley < hammersley — hammersley
< latin —< latin < latin
= sobol ~ sobol % sobol

1e-05 1e-05
0 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Generation Generation Generation

(a) Function 19, d = 20 (b) Function 20, d = 20 (c) Function 24, d = 20

Figure 22: Goodness of fit test between the distribution of best solutions of every Sampling method
versus the distribution of best solutions of the Uniform sampling method. P values computed with
Kolmogorov-Smirnov test, for every generation, for every function, for every dimension, at a 0.01

significance level.

21

1e-01

1e-02

P-value

1e-03

1e-04

1e-05

F6-D2 F22-D2
1le-02 \
.
=
?
i
~- gaussian - gaussian
- grid e grid
= latin = latin
~= sobol ~= sobol
0 1 2 3 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Generation

4 5 6
Generation

(a) Function 6, d = 2

(b) Function 22, d = 2

le-01

1e-02

P-value

1e-03

1le-04

1e-05

F24-D2

- latin

= sobol

0 1 2 3 4 5 6 7 8 9 10
Generation

(c¢) Function 24, d = 2

Figure 23: Goodness of fit test between the distribution of best solutions of every Sampling method
versus the distribution of best solutions of the Uniform sampling method. P values computed with
Kolmogorov-Smirnov test, for every generation, at a 0.01 significance level.

F2-D20 F3-D20 F4-D20
1e-01 1e-01 1e-01
1e-02 1e-02 \[/ 1e-02
@ @ @
2 2 2
? ? ? /
a a a
1e-03 1e-03 1e-03
—+ gaussian ~+ gaussian gaussian
- grid - grid grid
1e-04 ~ halton 1e-04 = halion 1e-04 halton
—< hammersley = hammersley hammersley
~< latin - latin latin
—+sobol —+sobol
1e-05 1e-05 1e-05
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Generation

Generation Generation

(a) Function 2, d = 20 (c) Function 4, d = 20

(b) Function 3, d = 20

Figure 24: Goodness of fit test between the distribution of best solutions of every Sampling method
versus the distribution of best solutions of the Uniform sampling method. P values computed with
Kolmogorov-Smirnov test, for every generation, at a 0.01 significance level.

22

6 Conclusion and Future work

The SBOX test suite showed us, that initial sampling matters, not every sampling method that
tries to spread out points will work for Differential Evolution. This can be seen in the performance
of the Grid sampling algorithm. A sampling algorithm that does not work well with the mechanics
of Differential Evolution. Because of the use of difference vectors, a set-up that starts off with
points equidistant from each other in a grid will have a hard time exploring new areas. The effects
of this initial bad sampling are still seen after 10 iterations of the algorithm.

Gaussian was shown by the BBOB test suite to be significantly better than the other sam-
pling methods for 5-dimensional and 20-dimensional problems. The BBOB test suite heavily favours
the Gaussian sampling method. This could be attributed to the fact that the difference between
the domain in which the optimum can be found and the domain of the search space increases as
you increase the dimensionality. The optimums will be relatively closer to the centre as the dimen-
sionality is increased, favouring the Gaussian algorithm, but not necessarily realistic pertaining to
real-life settings [23]. This makes the BBOB test suite unsuited for evaluating sampling methods
that use a centre-based approach. The SBOX suite showed that the Gaussian sampling method
was as good as the other sampling methods.

The Halton and Hammersley sequences were significantly better than Uniform sampling for
dimensionalities 2 and 5. They outperformed other sampling methods in the initialisation step, but
this lead quickly diminished in later phases. For dimensionality 20 the Halton and Hammersley
sampling methods were the worst after the initialisation step. This could be attributed to the high
correlation between a set of points between 2 dimensions when a higher dimensionality is used [25].
This deficit was on the other hand quickly made up for.

The Sobol sampling method was shown to be slightly better than Uniform sampling for 2-dimensional
problems at initialisation. There were, however, no significant differences beyond the initialisation
step found. For 5-dimensional and 20-dimensional problems no clear differences could be seen
between Sobol sampling and Uniform sampling. The same holds true for Latin Hypercube sampling.
At only 2 iterations across all used functions and dimensions, there was a significant difference found
between the distribution of solutions found by Latin Hypercube sampling and Uniform sampling.
Latin Hypercube did not show any big differences between dimensionalities and was overall very
similar to Uniform sampling.

Future work could research other metrics, other than performance metrics. For example, the
variance of initial sampling points or the covariance between dimensions could be researched, and
the results can then be linked back to the performance metrics. Are these differences in variance
still visible over time and does this impact the performance?

The mutation strategy in this research makes use of 1 difference vector, which is randomly chosen
among the current 5 best solutions found, pbest. Our version of pbest used the 20 per cent best
solutions as a possible difference vector. Our research however only focused on the best solutions
found. Part of future research could be the investigation of the effect of the other solutions that can
be possible difference vectors when using pbest. Are these solutions close together, are they well

23

spread out? What is the quality of those solutions and how do they impact the final result? Other
mutation strategies could also be researched. Mutation strategies that do not use difference vectors,
or use difference vectors that are randomly chosen or give a certain weight to these difference
vectors. In what way does this influence the impact the sampling method has on the outcome?
The population size could also be researched. When using a lower population size the initial
sampling becomes more and more important. One could look at using a fixed population size. In this
research, a population size of 10x D was used, but a fixed population size could yield different results.

Other sampling methods should also be researched. More quasi-random sequences should be
researched such as the Faure sequence. As the Faure sequence does not suffer from the same
correlation between a set of points, that the Halton sequence suffers from in higher dimensions.
To improve on the Halton sequence in higher dimensions, one could also look at the Randomized
Halton Sequence [29]. More research should be done on the Hammersley sequence, which often
significantly outperformed other sampling methods upon initialisation but could not capitalize on
this lead. Why is this the case and could the algorithm be modified to mitigate these effects? To
back up these claims more data is needed to provide for higher certainty and make more conclusions
about small nuances. This would require more iterations of the algorithm for more instances and
more repetitions.

7 References

[1] C. Audet and W. Hare, Introduction: Tools and Challenges in Derivative-Free and Blackbox
Optimization, pp. 3—14. Cham: Springer International Publishing, 2017.

[2] S. VoB, S. Martello, I. H. Osman, and C. Roucairol, “Meta-heuristics: Advances and trends in
local search paradigms for optimization,” 2012.

[3] X.-S. Yang, S. F. Chien, and T. O. Ting, “Chapter 1 - bio-inspired computation and optimiza-
tion: An overview,” in Bio-Inspired Computation in Telecommunications (X.-S. Yang, S. F.
Chien, and T. O. Ting, eds.), pp. 1-21, Boston: Morgan Kaufmann, 2015.

[4] D. Camara, “1 - evolution and evolutionary algorithms,” in Bio-inspired Networking (D. Camara,
ed.), pp. 1-30, Elsevier, 2015.

[5] L. Gui, X. Xia, F. Yu, H. Wu, R. Wu, B. Wei, Y. Zhang, X. Li, and G. He, “A multi-role
based differential evolution,” Swarm and Evolutionary Computation, vol. 50, p. 100508, 2019.

[6] M. Pant, R. Thangaraj, C. Grosan, and A. Abraham, “Improved particle swarm optimization
with low-discrepancy sequences,” pp. 3011-3018, 2008.

[7] H. Maaranen, K. Miettinen, and M. M. Mékel&, “Quasi-random initial population for genetic
algorithms,” Computers € Mathematics with Applications, vol. 47, no. 12, pp. 1885-1895, 2004.

[8] S. Elsayed, R. Sarker, and C. A. C. Coello, “Sequence-based deterministic initialization for
evolutionary algorithms,” IEEE transactions on cybernetics, vol. 47, no. 9, pp. 2911-2923,
2016.

24

[9]

[10]

[11]

[12]

[20]

[21]

[22]

[23]

Q. Li, S.-Y. Liu, and X.-S. Yang, “Influence of initialization on the performance of metaheuristic
optimizers,” Applied Soft Computing, vol. 91, p. 106193, 2020.

J. O. Agushaka and A. E. Ezugwu, “Initialisation approaches for population-based metaheuristic
algorithms: a comprehensive review,” Applied Sciences, vol. 12, no. 2, p. 896, 2022.

M. Georgioudakis and V. Plevris, “A comparative study of differential evolution variants in
constrained structural optimization,” Frontiers in Built Environment, vol. 6, 2020.

R. Storn and K. V. Price, “Differential evolution - A simple and efficient heuristic for global
optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341—

359, 1997.
H. Niederreiter, Random number generation and quasi-Monte Carlo methods. STAM, 1992.

M. R. Hassanzadeh and F. Keynia, “An overview of the concepts, classifications, and methods
of population initialization in metaheuristic algorithms,” Journal of Advances in Computer
Engineering and Technology, vol. 7, no. 1, pp. 35-54, 2021.

M. Ali, R. C. Deo, N. J. Downs, and T. Maraseni, “Chapter 3 - monthly rainfall forecasting
with markov chain monte carlo simulations integrated with statistical bivariate copulas,” in
Handbook of Probabilistic Models (P. Samui, D. Tien Bui, S. Chakraborty, and R. C. Deo, eds.),
pp- 89-105, Butterworth-Heinemann, 2020.

H. Faure, P. Kritzer, and F. Pillichshammer, “From van der corput to modern constructions of
sequences for quasi-monte carlo rules,” Indagationes Mathematicae, vol. 26, no. 5, pp. 760-822,
2015.

J. E. Gentle, Random number generation and Monte Carlo methods, vol. 381. Springer, 2003.

P. Bratley and B. L. Fox, “Algorithm 659: Implementing sobol’s quasirandom sequence
generator,” ACM Transactions on Mathematical Software (TOMS), vol. 14, no. 1, pp. 88-100,
1988.

D. Vermetten, F. Caraffini, A. V. Kononova, and T. Béck, “Modular differential evolution,”
CoRR, vol. abs/2304.09524, 2023.

C. Doerr, H. Wang, F. Ye, S. Van Rijn, and T. Béack, “Iohprofiler: A benchmarking and
profiling tool for iterative optimization heuristics,” arXiv preprint arXiw:1810.05281, 2018.

J. de Nobel, F. Ye, D. Vermetten, H. Wang, C. Doerr, and T. Béack, “lohexperimenter:
Benchmarking platform for iterative optimization heuristics,” arXiv preprint arXiv:2111.04077,
2021.

N. Hansen, S. Finck, R. Ros, and A. Auger, Real-parameter black-box optimization benchmarking
2009: Noiseless functions definitions. PhD thesis, INRIA, 2009.

D. Vermetten, M. Loépez-Ibaniez, O. Mersmann, R. Allmendinger, and A. V. Kononova,
“Analysis of modular cma-es on strict box-constrained problems in the sbox-cost benchmarking
suite,” arXw preprint arXiw:2305.15102, 2023.

25

[24]

[25]

8

H. Wang, D. Vermetten, F. Ye, C. Doerr, and T. Back, “Iohanalyzer: Detailed performance
analyses for iterative optimization heuristics,” ACM Transactions on Fvolutionary Learning
and Optimization, vol. 2, no. 1, pp. 1-29, 2022.

F. X. Long, D. Vermetten, B. van Stein, and A. V. Kononova, “Bbob instance analysis:
Landscape properties and algorithm performance across problem instances,” in International
Conference on the Applications of Evolutionary Computation (Part of EvoStar), pp. 380-395,
Springer, 2023.

H. Leon Harter, H. J. Khamis, and R. E. Lamb, “Modified kolmogorov-smirnov tests of
goodness of fit,” Communications in Statistics-Simulation and Computation, vol. 13, no. 3,
pp. 293-323, 1984.

C. Lewis, “Multiple comparisons,” in International Encyclopedia of Education (Third Edition)
(P. Peterson, E. Baker, and B. McGaw, eds.), pp. 312-318, Oxford: Elsevier, third edition ed.,
2010.

C. Schlier, “On scrambled halton sequences,” Applied Numerical Mathematics, vol. 58, no. 10,
pp. 14671478, 2008.

X. Wang and F. Hickernell, “Randomized halton sequences,” Mathematical and Computer
Modelling, vol. 32, no. 7, pp. 887-899, 2000.

Appendix

26

F1-02 F2-02 F3-02 Fa-02 Fs-02
i i i i i
~on - on - on - on - ou
o ammarsny o ammarsey o ammersey o ammersey = tarasy
- o - o - a - o - o
Generason Generason Generasan Generason Generason
F6-02 F7-02 Fe-02 Fo-D2 F10-02
Y
g g g § §
H H H K K
H i i { i
- ou - ou - o o o
% hammersiey % hammarsiey - bammersey = Jammecter = Jammecter
- sobol - sobol - sobol Bl Bl
Generaton Generation. Generaton. Generaton Generaton
F11-02 F12-02 F13-02 F14-02 F15-02
g g g i i
- on - - on - on g
pon - ot pon - ot pon - ot pon - ot pon - ot
- farmctey - farmtey - farmctey ey ——— - farmtey
- o - o - o - o - o
Ry 1 2 3 . 56 7 8 D) Ry 1 2 . 56 7 8 D) Ry 1 2 3 . 56 8 D) Ry 1 2 3 . 56 7 8 D) Ry 1 2 3 . 56 7 8 D)
Generaian Generaian Generaian Generaian Generatan
F16-02 F17-02 F18-02 F19-02 F20-02
e // e e - e e
g g g g -
- g0 - g0 - g0 - on - on
pon o ot pon o ot pon o ot pon o ot pon o ot
g = tarmesey g e = tarmesey
" " v v v
Gencraian Gencraian Gencraian Gencraian Gencraian
F21-02 F22-02 F23-02 F24-02
{ { { {
e e e e
[y ey ey -~
s wa o o
o o — o
o o o o
Generaion Generaion Generaion Generaion

Figure 25: BBOB - 2D

27

Povalue

F1-D5

F2-D5

F3-D5 Fa-DS

F5-D5

Povalue

——

Povalue

3 3 3
{ { {
- e e e
— qun ey g
o o o
) o) [) —
o o o
,,,,,,,,,,,,,,,,, it 10w E I B I B ST A e s e e

Figure 26: BBOB - 5D

28

F2-020 F3-020 F4-020 F5-020
i i i i
- v - v - v - on
= tarasy =ty = tarasy = barmeriy
- - - -
Ganeration Ganeration Ganeration
fo-020 £9-020 £10-020
s s]] /
H H H H
e e i i
oy ol v ~on
= sy g = tammertr [i
drl drl i =
S 0w O N A A oo o
F11-020 F12-020 F13-020 F14-020 £15-020

e e e e

OO I R S ST R R) S] o

CREEEErE R E R " EEENG
Generaton Generaton Generaton

Generaton

F16-020 F17-020 F18-D20 F19-020 F20-D20

H i [i H < /
e e e
aE o o
s s s
Rl Rl Rl
om0 zom om0 wom

- qusson - qusson - qusson - qusson
o] o o
- rammersty [— [p— [p—
o o o o
Generaion Generaion Generaion Generaion

Figure 27: BBOB - 20D

29

Fio2 F2-02 F3-02 Fa-02
H H H H
i i i i
pym pym pym
- - g
—h —h —h
F6-D2 F7-D2 F9-D2 F10-D2
W %—v - Z ﬁ v = ﬁ |
8 8] / 3 3
3 3 3 i i
H // H H i i
pgm pgm pgm - ~w
s hammersiey s hammersiey - hammersiey - ety - ey
- sobol - sobol - sobol Bl Bl
T Ve ow L R R B o 1o et TP . .
Fi1-02 Fi2-02 Fi3-02 Fia-02 Fis5-02
i oy — oy — Yy =
P pym P o o
L L - L - L L
g g g oy g
aan aan aan aan aan
ey 1 2 3 5 5 e 1 2 3 9 10 ey 1 2 3 5 7 5 9 10 ey 1 2 3 4 5 7 5 9 10 ey 1 2 3 5 8 D)
Geneaton * Genaon* Genaton Genaton Genaton
Fi6-02 Fi7-02 Fi8-02 Fi0-02 F20-02
o o o o =
Py Py Py Py Py
g+l - g+l - g+l g+l g+l
pray s pray s oy s iy e pray s
e e e e e
' ‘ Generation ' ‘ Generation ‘ ' ‘ ‘ Generation h
F21-02
4
-
: ‘ Generation ‘ Generation ‘ Generation ‘ Generation

Figure 28: SBOX -

30

Povalue

Prvalue.

F2-D5

F3-D5

Povalue

Povalue

Figure 29: SBOX - 5D

31

F2-D20 F3-D20 Fa-D20 F5-D20

H
z
Py
it
GGGG
F10-00
7
o =
e rammersey viaind
it -
T T T T T U T ST T R T O S o s I R
Fi1-020 Fis-020
F— J . .
P P . .
,,,,, bt - ol ool -
g g g g .
= it it it -
e 1 2 3 a 5 6 7 8 8 1
.......
Fi6-00
—
P
,,,,, ol
L
it
,,,,,,,
F21-020

Figure 30: SBOX - 20D

32

	Introduction
	Research question
	Related work
	Thesis overview

	Differential Evolution
	Sampling methods
	Methodology
	Modular DE
	Sampling methods
	DE version

	IOHprofiler
	IOHexperimenter
	IOHanalyzer
	Test specifications

	Code
	Data

	Results
	Conclusion and Future work
	References
	Appendix

