
Master Computer Science

Dungeons & Firearms:

AI-Directing Action Intensity of Procedural Levels

Name: Vincent Lucas Prins
Student ID: s1935763

Date: 16/08/2023

Specialisation: Artificial Intelligence

1st supervisor: Mike Preuss
2nd supervisor: Walter Kosters
3rd supervisor: Matthias Müller-Brockhausen

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

ACKNOWLEDGEMENTS

First off, I would like to thank my first supervisor Mike for our brainstorm and feedback sessions

surrounding the design of the game and research. Although I am not usually one for regular(ish)

check-ins, it helped me keep the work focussed and concrete.

I would also like to thank Matthias and Walter for their valuable feedback while writing my thesis

draft, helping to refine it. Additionally, both Mike and Matthias have helped me gain valuable academic

experience during the last year of my Master’s degree while we were working on the paper on procedural

Minecraft settlements. That experience and the feedback received were great drivers to work on my

thesis with the same vigour.

Jelmer and Laura have been really helpful with play-testing the game. Laura especially with her

never-ending and meticulous feedback on precisely which shade of red the game should use.

Lastly, I am grateful to all participants who bravely ventured deeper into the dungeon.

Dungeons & Firearms: AI-Directing Action

Intensity of Procedural Levels

Vincent L. Prins,

LIACS, Universiteit Leiden, The Netherlands

v.l.prins@umail.leidenuniv.nl

Abstract—Experience-Driven Procedural Content Generation
is an extension to Procedural Content Generation, meant to
personalise generative content to optimise user experience. In
this paper, we present GONDVAAN, a procedural dungeon crawler
and shooter game, where dungeons and firearms are procedurally
generated. Our aim was to create an AI-director that could
predict how action-intense procedural dungeons will be. We con-
ducted two experiments with 11 and 16 participants respectively.
The first one focussed on collecting play data for training an
AI-director; 289 levels were played. The second one focussed
on how certain game metrics are affected by levels of different
AI-directed action intensities, as well as a gradual difficulty
increase; 347 levels were played. We found that the AI-director
could successfully present levels of the desired intensity, and that
intensity and difficulty influenced certain game metrics.

Index Terms—Procedural Content Generation, Player Expe-
rience Modelling, Dungeon Generation, Weapon Generation,
Rogue-like

I. INTRODUCTION

Gaming has reached a wide player base far beyond the

classical stereotypical gamer. This change in audience comes

with a great variety in their skills and preferences as well.

Stark contrasts can be seen in the scene, from hard-as-nails

Dark Souls to cheerful Animal Crossing. Game designers

can already respond to this by providing adjustable difficulty

settings or developing for a more niche audience, in the hopes

that every player finds what suits them. This design process is,

however, also time-consuming. Procedural Content Generation

(PCG) may offer a partial solution in the form of large amounts

of generative game content, but it is not instantly evident

how this content relates to player-experienced aspects like

difficulty, and particularly enjoyment: for instance, how gaps

in a Mario level relate to how “fun” the player rates the

experience [1].

Experience-Driven Procedural Content Generation

(EDPCG), then, is a sub-field of Game AI that focuses

on personalising the content of a generator for the sake

of the user. Common uses are personalisation towards user

preference or user skill level. The latter has been extensively

researched in the platformer game genre [1]–[4], although

racing games also has presence in research [5], [6].

This work presents GONDVAAN (Figure 1), meaning battle

flag, derived from Old Dutch. It is a procedural dungeon

crawler and shooter singleplayer game that can be placed in

the rogue-like genre. One unusual feature of the game is that

it presents the player with a choice between three procedurally

Fig. 1: Screengrab of GONDVAAN, a procedural dungeon

crawler and shooter game.

generated dungeons and three procedurally generated firearms

before the start of each level. We use this prototyped game as

a test-bed for gameplay-based Player Experience Modelling

(PEM). In particular, we focus on modelling action intensity,

an ordinal value (low, medium or high) representative of the

number of keyboard/mouse actions a player performs.

Our research goals are to:

1) Setup a Machine Learning (ML) model trained on play

data that predicts the action intensity of procedurally

generated levels. This will be used as an AI-director.

2) Investigate the effects that presenting levels of different

AI-directed action intensities to players has on various

game metrics.

3) Investigate what effect increasing game difficulty has on

various game metrics.

4) Investigate what kind of procedural weapons players

prefer, and whether there is interplay between the chosen

level and the chosen gun.

We will now proceed with an overview of related work in

the domain of PCG and EDPCG (Section II). Thereafter, the

design of the game GONDVAAN will be presented (Section III).

We conducted two experiments with the game, linked to the

research goals (Section IV). We then discuss the experimental

results (Section V). Lastly, we will mention some weaknesses

and potential future work (Section VI) and conclude this paper

(Section VII).

II. RELATED WORK

In this section we will provide an overview of related work

in the domain of Experience-Driven Procedural Content Gen-

eration (EDPCG) and the procedural generation of weapons

and dungeons.

A. EDPCG

Yannakakis and Togelius present a framework for ED-

PCG [7] including three types of Player Experience Modelling

(PEM) depending on the data collection method used. These

are subjective (e.g. a questionnaire), objective (e.g. heart-

rate monitoring) and gameplay-based (e.g. game score) data

collection. The latter is used in our work (Section IV-A).

In [8], Stammer et al. look at difficulty adaptation for the

2D platformer Spelunky. Specifically, game content in levels

is adapted based on play style and player performance. In one

experiment, players were assigned one of three play styles

(explorer, speed runner or enemy killer) based on how an

introductory level is completed. Next, the difficulty dynam-

ically transitions between easy, medium and hard based on

the performance of the player. This difficulty affects the prob-

abilities of certain game content (e.g. items, enemies, traps)

being generated. This is, however, also profile dependent. For

example, hard mode for the enemy killer profile results in

more enemies than hard mode for the speed runner profile.

Conversely, in our work, difficulty will merely affect the

strength of existing enemies, not the quantity (Section IV-C).

The AI-director will however be able to steer the number of

enemies, as well as the quantities of other game content.

Bicho and Martinho [9] propose that player performance

can be measured as a pairing of the type of challenge and the

method used to overcome that challenge. In their platformer

game, players are presented with six different challenges that

each can be tackled with more than one method (e.g. an

obstacle that can be jumped over, or slid under). Thus, when

the success rate of a challenge-method pair is taken into

account in PEM, challenge difficulty can be adjusted on a per

method basis: a player great at jumping but poor at sliding will

be presented hard jump challenges, but easy slide challenges.

The PEM calculates this based on the success rate of the 10

most recent attempts (i.e. gameplay-based), with more recent

attempts weighted more heavily.

B. Procedural Weapon Generation

Weapons are a good example of game content that can

be procedurally generated. Some commercial games already

include this, such as the Borderlands series [10] and Star-

bound [11].

In research, it also has prevalence. Brown [12] describes an

evolutionary algorithm to generate new weapons, specifically

one that can be integrated into a game story-wise as a form of

interactive evolution. Similar to Borderlands, here too weapons

can be made up of component parts that combine to form

the final weapon. Crossover could then swap components

between instances of the population, and mutation can alter a

single component. Brown, however, notes that balancing such

evolutionary weapons can be tricky, as ideally, players should

not be able to create an all-powerful weapon early on.

Pace and Thompson [13] came across the same problem

in their EvoTanks game environment. They too used an

evolutionary algorithm to generate parameterised weapons, but

also shields at the same time. Tanks fight against each other

to test their fitness, and therefore the fitness of the weapon

and shield used. At times, they found the evolved weapons

to be “overpowering” shields, and at other times vice versa.

Possible presented solutions include balancing the damage

output per second, or working with a system of “points”

allotment: set a maximum number of available points that can

be spent on properties like damage and fire rate. To combine

this with Brown’s work: we suggest slowly increasing the

maximum number of points that can be spend, as it allows

for more powerful weapons to only come available later in

the game. For the weapons generator in our work, however,

we balanced firearms based on the damage output per second

(Section III-C).

Galactic Arms Race is an online multiplayer game presented

by Hastings et al. [14] in which the generative space of pro-

jectile weapons for spaceships is explored by players through

an evolutionary algorithm. The motion of the projectiles is

determined by a compositional pattern-producing network.

These networks are evolved via a form of NeuroEvolution of

Augmenting Topologies (NEAT) that takes into account the

fitness of weapons as measured from player usage. Using a

weapon increases its fitness, while decreasing the fitness of

other weapons in the player’s inventory. Players, however, only

have three inventory slots to collect weapons. Thus, they must

carefully choose which weapons to carry, and in doing so steer

the evolution and exploration of the generative content.

C. Procedural Dungeon Generation

In their survey on procedural dungeon generation [15],

Viana and dos Santos identify some of issues that current

dungeon generators suffer from. These include a lack of

difficulty adaptive generators and mixed-initiative approaches.

Moreover, few works consider barriers in a level or try

differentiate certain areas of the dungeon for a certain purpose

(e.g. boss rooms, treasure rooms, etc.).

In our work, we present a method of adapting a dungeon

generator to action intensity (Section IV-A). Additionally,

some obstacles may be present in the levels, blocking access

of parts of the level on occassion until they are attacked and

destroyed by the player. This is, however, merely an artifact

of the random placement of obstacles (Section III-B).

The approach of Sorenson et al. [16] focuses on rhythm

groups: a chronological series of game content that alternates

high and low levels of challenge. They first apply this to

constructing 1D Super Mario platformer levels by means of

a genetic algorithm. The same approach was then applied to

2D Zelda dungeons to showcase its generality. Here, rhythm

groups are expressed as a sequence of dungeon rooms.

In our work, we will use an AI-director to insert rhythm

groups in the gameplay on a level-to-level basis, but not within

a level (Section IV-A).

III. GAME DESCRIPTION

GONDVAAN is a procedural dungeon crawler and shooter

game. At the beginning of each level, the player is presented

a choice between three procedurally generated weapons and

three procedurally generated levels and must choose one of

each (see Figure 2). The player then enters the chosen dungeon

and has to reach the exit (shown in-game as a ladder) to

complete the level. In the meantime, they will be attacked by

enemies. When killed, enemies drop gems used as a currency

to open upgrade chests. These provide upgrades to player

movement speed, gun reloading speed, and more. Akin to

other rogue-like games, the player only has one life and the

game can be played infinitely (if the player survives) due to

its procedural levels.

Fig. 2: The selection screen shown before each level. Players

must choose a gun and a dungeon to play.

The game design was mainly inspired from Enter the

Gungeon [17]. Also of note is the game Rift Wizard [18],

which happens to have a comparable level preview system. In

this game, each level contains “rifts” that lead to other levels.

Players are shown a preview of the level that waits in each

rift before they actually enter and can thus make an informed

decision on where to go next.

We will now discuss the various aspects of GONDVAAN.

A. Dungeons

Dungeons are defined as a 30 × 30 matrix of tiles. There

are three tile types: empty, wall, and floor tiles. Dungeons

are procedurally generated according to construction steps. A

construction step defines how many rectangles of what tile type

and size should be placed in the tile matrix. This placement

overrides whatever was there before. The possible parameters

of a construction step are given in Table I. Note how horizontal

and vertical size are separate, allowing for rectangles.

TABLE I: Parameters of a construction step.

Parameter Value Range

Number of rectangles 1–25
Tile type Floor or Empty
Minimum horizontal size 1–5
Minimum vertical size 1–5
Maximum horizontal size [minimum] + 0–5
Maximum vertical size [minimum] + 0–5

To construct a dungeon, between two and five construction

steps are randomly generated and executed. Executing a con-

struction step means generating N rooms of the size and tile

type as described by the parameters, and placing it at a random

location within the matrix. For the horizontal and vertical size

of the room, we generate a number between the minimum and

the maximum size. This means a single construction step can

already generate rectangles of different sizes.

After executing all construction steps, we try to place doors

and walls to create rooms. This was, however, very much

an afterthought in the design process, unlike for example the

dungeon rooms in [16], so our method might seem unusual.

First, 100 attempts are made to choose random 2D points

in the dungeon. An attempt succeeds if it selects a floor tile

that is between 2 and 12 tiles away from a wall, and if it

is sufficiently far away from another attempt’s 2D point. The

latter can be adjusted by the parameter door distance and is

designed to space out doors and thus increase or decrease

room sizes. Next, a door is placed at every selected point and

adjacent floor tiles on either the x or y axis are recursively

converted to wall tiles. In this way, rooms are created.

Lastly, we floodfill the floor (passing through doors) starting

from the centre of the matrix and remove any floor tiles not

covered in the floodfill (i.e. convert them to empty tiles). We

then place walls around the floor tiles so the player cannot

escape the dungeon. Lastly, we add dungeon objects (see

Section III-B) and determine an entrance and exit location

sufficiently spaced apart, so the player must explore the

dungeon to exit it.

The algorithm described thus far can, however, generate

invalid dungeons. For example, two construction steps with

tile type empty will not create any floor. Alternatively, if a

first construction step places floor tiles, the second step could

replace all of it with empty tiles. To solve this, we apply

a (very basic) form of constrained search-based PCG [19].

We use the number of floor tiles as a constraint: we require

a minimum of 20% floor tiles and a maximum of 90%. A

maximum is not a requirement for validity, but it avoids

visually uninteresting levels (e.g. just a square of 30×30 floor

tiles). We simply keep searching random parameters until the

resulting dungeon meets our constraints.

Figure 3 showcases the variety that the dungeon generator is

capable of creating. Each sub-figure uses different construction

steps. In Figure 4, however, several dungeons constructed

using the same construction steps are shown, illustrating how

different random seeds following the same construction steps

still lead to variety.

Fig. 3: Examples of dungeons with different construction steps

and door distances.

Fig. 4: Examples of dungeons with the same construction steps

and door distance.

B. Dungeon Objects

Once we have the general shape of the dungeon, we can

populate it with game objects. Because the size of the dungeon

can greatly differ, we work with object densities, as they

are applicable regardless of dungeon size. Table II lists the

dungeon objects and the possible densities in which they

can occur (e.g. 1 chest per 75 tiles at its most dense). For

each object, we choose a random value in its density range,

calculate how many objects are needed to reach that density

given the dungeon size, and then place those objects randomly.

The objects are as follows: obstacles can be used to hide

behind but can also be destroyed by the player; chests can be

opened at the expense of currency and provide upgrades to the

player; nests spawn more enemies on a 60 second interval;

health and ammo packs can be picked up to replenish the

player; lastly, enemies are described in Section III-D. Figure 5

shows a finished dungeon, including its dungeon objects.

Fig. 5: A complete dungeon level with dungeons objects and

enemies in place.

TABLE II: Density ranges of dungeon objects. To aid the

reader, instance ranges are given, calculated to be the the-

oretical minimum and maximum number of instances of each

object type.

Parameter Density Range Instance Range

Obstacles 15–35 5–54
Chests 75–300 0–10
Enemies 50–150 1–16
Buffs (Health & Ammo) 50–300 0–16
Nests 75–300 0–10

TABLE III: Parameters of a firearm.

Parameter Value Range

Bullet speed 4–10
Fire delay (s) 0.2–0.7
Reload delay (s) 1–3
Bullets per shot [1, 2, 3, 4]
Bullet spread (◦) 2–7
Bullet colour 0.5–1 per RGB channel
Recoil 0.1–3

Burst gun [True, False]
Burst shots [2, 3]
Burst delay (s) 0.08–0.15

Star gun [True, False]
Star separation speed 0.1–3
Rotating star [True, False]
Rotation (◦/s) 90–720

C. Firearms

Firearms in GONDVAAN are also parameterised. The param-

eters and their respective value ranges are shown in Table III.

The generator samples uniformly randomly from this parame-

ter space. All guns have a magazine that supports 10 shots. A

single shot can have more than one bullet, as defined by the

parameters. Bullets do not travel in a perfect line, but deviate

with a certain spreading. There is a minimum delay between

firing shots, and once empty the gun must be reloaded. If

the “burst gun” parameter is true, the gun shoots out multiple

bursts of shots with just one mouse click, but for the price of

a single shot. If the “star gun” parameter is true, the N bullets

in a shot are arranged in a circle 360

N

◦

apart, with a diameter

that increases by “separation speed” per second, resembling

a growing star shape. A boolean controls whether that star

rotates. Lastly, bullets have a random colour for decorative

purposes only. Figure 6 showcases some of the resulting guns.

Similar to Galactic Arms Race [14] and EvoTanks [13],

we seek to balance the power of all generated weapons. In

GONDVAAN, all weapons produce the same amount of damage

per second (given a long enough time measurement). We

determine how long it takes to empty the magazine of a

loaded gun and how many bullets are shot in that process.

From here, we calculate the number of bullets per second

and subsequently adjust the damage of a single bullet. In

the end, the bullets of a fast firing “machine gun” do less

damage individually than those of a slow “shot gun” (i.e.

firearm parameters that resemble those gun types, as we do

Fig. 6: Examples of procedurally generated firearms. The

bottom row shows weapons with the “star gun” property.

not define these explicitly).

D. Enemies

For the enemies in GONDVAAN, we defined a generic AI

controller that can be parameterised to display a range of

behaviours. Table IV summarises these parameters. Enemies

have a vision range and will remember where they last saw

the player and health packs. When enemies are low on health,

they will flee when approached and try to collect health packs,

meaning they heal up and will no longer flee. If the player

is spotted, enemies will approach the player up to a certain

distance, and start shooting from a certain distance. Enemies

are equipped with a random gun generated from the same

firearms generator used by the player.

Similar to Pereira et al. [20], the enemy AI agents make

use of behaviour cycles: each N seconds, an enemy chooses

what to do until the next interval. When no player is in sight,

enemies enter their idle cycle, otherwise they enter their attack

cycle. In the idle cycle, enemies either stand still or move in a

random direction until the next interval. However, if the enemy

also has a preference for actively seeking out the player, it may

move to the position where the enemy last saw them instead

of a random direction. In the attack cycle, enemies choose

whether to strafe (move left or right) for each interval. If no

strafing occurs, enemies will simply maintain their approach

distance.

Within this parameter space, we defined four enemy

“species”, somewhat similar to “player personas”, but not

focussed on adaptive PCG like in [21]. Instead, species define

a value range for each parameter, from which we sample uni-

formly randomly. In this way, individual enemies of the same

species can still somewhat differ in their specific behaviour,

but overall, their personality traits will clearly represent the

species. Further consolidating this, all enemies of the same

species have the same in-game appearance. The four enemy

species are:

The dive-bomber has little health and never flees. It moves

very quickly and rarely stand still. It tries to get up-close

to the player and only start shooting once close-by.

TABLE IV: Parameters of an enemy.

Parameter Description

Health The amount of health.

Flee Health
At what percentage of health to start fleeing and
collecting health packs.

Reward How many gems enemies drop upon death.

Accuracy How accurate enemies aim their gun.

Vision
At what distance enemies can perceive players
and objects.

Attack Distance At what distance enemies start firing their guns.

Approach Distance
The closest distance an enemy will approach.
When players try to get closer, the enemy backs
off.

Move speed The speed at which enemies move.

Idle Cycle Duration in seconds of each idle cycle.

Stand Still Preference
At each new idle cycle, the probability an enemy
will stand still that cycle.

Find Player Preference
At each new idle cycle, if not chosen to stand
still, the probability an enemy will actively seek
out the player’s last know position.

Attack Cycle Duration in seconds of each attack cycle.

Strafe Preference
At each new attack cycle, the probability an
enemy will strafe. A random direction (left or
right) is chosen for that cycle.

Strafe Strength

Interpolation value between the strafe direction
vector and the vector pointing at the player. At
0, no strafing occurs; at 1, the enemy will only
strafe and thus will not come any closer, instead
just circling around the player.

The dodger stays at a medium distance from the player when

attacking, and circles the player in an attempt to dodge

incoming fire (using the strafing mechanic).

The shy inquisitor attacks from a long distance and may

quickly flee even when it has received little damage. It is

also rather inquisitive and may try to seek out the player

once they are out of the vision range. It tends to stand

still when idling.

The hitman has the most health of all species. Once the

player has left its vision range, it will almost always try to

actively seek out the player once more. It also somewhat

tries to dodge in combat, but not as much as the dodger.

IV. EXPERIMENTAL SETUP

In this section, we will discuss our approach for each re-

search goal and how they relate to the conducted experiments.

Thereafter, the conducted experiments are detailed.

A. AI-Director Setup

The first research goal is to setup a Machine Learning

(ML) classification model trained on play data that predicts

ordinal categories of action intensity of procedurally generated

dungeons. We will obtain play data from the first experiment.

The dungeon generator makes use of 13 parameters: those

listed in Tables I & II, as well as the number of construction

steps and the door distance. However, as described in Sec-

tion III-A, the translation from construction steps to dungeon

shape is not always evident: future construction steps may

erase any effect previous steps had. Thus, we gather spatial

information about the dungeon after it has been constructed.

This information is detailed in Table V and includes properties

like the percentage of floor, wall and empty tiles; the largest

square floor area of size N ×N ; and more.

TABLE V: Spatial properties of the dungeon shape.

Property Description

Percentage Floor Percentage of floor tiles in the level

Percentage Wall Percentage of wall tiles in the level

Percentage Empty Percentage of empty tiles in the level

Horizontal Floor
Largest number of horizontally adjacent floor
tiles.

Horizontal Wall
Largest number of horizontally adjacent wall
tiles.

Vertical Floor Largest number of vertically adjacent floor tiles.

Vertical Wall Largest number of vertically adjacent wall tiles.

Square Floor
Largest square area of floor tiles (e.g. 5× 5, so
5).

The action intensity of a level is determined as follows:

first we count the numerical number of actions taken in a

level. We take into consideration every action that requires a

key press or mouse click. However, not all actions have the

same subjective intensity: opening a chest is more exciting

than walking to the left. Therefore, we employed action scalars

(Table VI). Pressing a key to walk left adds 1 to the action

total; opening a chest adds 200 “actions” to the total. The

values were, however, chosen on a purely subjective basis of

how meaningful we as designers might consider the action.

TABLE VI: Intensity of each game action.

Action Intensity scalar

Walking 1
Shooting 5
Opening doors 20
Collecting ammo packs 20
Reloading 50
Collecting gems 50
Collecting health packs 75
Opening chests 200

Next, we convert it to an ordinal variable. Collected data

will be split into tertiles (quantiles of 1

3
of the data) based on

the number of actions performed in each level, representing

low, medium and high action intensity. The tertiles are calcu-

lated on a per player basis, in order to account for different

play styles. For example, when playing the same dungeon with

the same skill, someone who mashes keys will generate more

actions than someone who carefully presses keys during play.

If the tertiles would be calculated over all data, the key masher

might appear to always play high intensity levels.

In summary, the ML classification model has 14 inputs:

the spatial properties of a dungeon (Table V), the densities of

dungeon objects (Table II) and the door distance. Its output is

an ordinal value (low, medium, high) that represents the action

intensity of that dungeon.

B. Influence of Action Intensity

The second research goal is to investigate the effects that

presenting levels of different action intensities to players has

on other game metrics. This will be investigated in the second

experiment.

For the game metrics, we chose number of enemies killed,

time spent in level, and time spent engaged in combat. For the

latter, we note that being engaged in combat with one enemy

is a different experience than being attacked by four at once.

Hence, we sum up the duration that all enemies individually

are engaged in combat. This could therefore be a larger value

than time spent in level.

Before the second experiment, we trained a ML model on

data from the first experiment in order to be able to “AI-direct”

the intensity of a dungeon based on its spatial properties. We

modified the game so that players would progress through

different levels of action intensity in a cycle of three levels (i.e.

low, medium, high, low, medium, high, etc.). For this we took

inspiration from the rhythm groups of Sorenson et al. [16].

In order to achieve this, for each level we first generate a

pool of 25 dungeons. Next, the ML model predicts the action

intensities, and we choose the level predicted to be of the

desired intensity with the highest prediction certainty.

C. Influence of Difficulty

The third research goal is to investigate the effect of diffi-

culty on the aforementioned game metrics. To achieve this, in

the second experiment, after every third level we increase the

difficulty: a scalar applied globally to enemy parameters (e.g.

an increase in health or movement speed) and the currency cost

to purchase upgrades from chests. In this way, within a cycle

of three levels, only the intensity changes, but throughout the

game the difficulty goes up as well. Difficulty starts at 1 and

increases in steps of 1

9
per cycle: an arbitrarily chosen value.

D. Weapon Preference

The fourth research goal is to investigate what kind of

weapons players prefer, and whether there is interplay between

the chosen level and the chosen gun. For this, we will

combine the play data on firearms of the first and the second

experiment. This consists of the parameters of all generated

weapons, whether they were chosen by the player or not, and

what corresponding dungeon was chosen at that time.

E. Experiments

In summary, in the first experiment, 11 participants played

289 procedurally generated dungeons from random points in

the generative space. In the second experiment, 16 participants

played 347 levels that were AI-directed to be of certain action

intensity. Additionally, the game difficulty slowly increased in

the second experiment (but it would reset on player death). In

total over two experiments, this means that 1908 instances of

both dungeons and firearms were presented to players, three

at a time, and 636 of these were chosen to play with.

Participants were provided a download link of the game

and were asked to complete the in-game tutorial and to play

as many levels as they liked. The game was modified to keep

track of play data and save it. Play data was then sent to the

researchers. Only completed levels were recorded. If the player

died, a new session could be started as often as one liked.

V. RESULTS

The results will be divided once more per research goal.

A. AI-Director

In the first experiment, 11 participants played 289 levels in

total. With the number of actions split in tertiles per player,

this resulted in 97 levels of low, 92 of medium and 100 of

high intensity.

A decision tree from the SHARPLEARNING C# library [22]

was trained on the spatial dungeon properties and respective

action intensity. The trained model had a test error of 44.29%.

Its confusion matrix can be seen in Figure 7, showing all

289 levels. In a small test of 9 pools of 25 dungeons (3

per intensity category), its maximum prediction certainty av-

eraged at 92.4%. Moreover, the generated levels of different

intensities look visually distinct as shown in Figure 9. Thus,

we determined that the model could be used for the second

experiment. The relative feature importance of the trained

model is shown in Table VII.

In the second experiment, 16 participants played 347 levels

in total. Of those, the AI-director meant for there to be 131

low intensity levels, 118 medium, and 98 high intensity. To

determine whether that intensity was actually met, we once

more split the data in tertiles based on the number of actions,

like in the first experiment. In order to rule out influence

of difficulty on the action intensity, tertiles are calculated

separately for each difficulty value. The resulting confusion

matrix can be seen in Figure 8. Here, we see that 218 levels

(62.8%) were at the correct intensity, 111 (32.0%) were off

by one, and 18 (5.2%) were off by two.

TABLE VII: Relative feature importance of the trained deci-

sion tree. Here, the feature importance is the relative number

of samples that reach a decision node of said feature.

Feature Importance (%)

Percentage Floor 100.0
Enemy Density 63.7
Buff Density 37.4
Nest Density 24.5
Chest Density 22.9
Percentage Wall 21.5
Obstacle Density 16.6
Door Distance 9.4
Square Floor 9.1
Horizontal Wall 6.2
Vertical Wall 5.2
Percentage Empty 2.9

Low Medium High

Predictions

Low

Medium

High

Ac
tu

al
s

79 9 9

4 84 4

3 6 91

Action Intensity Confusion Matrix
(Trained Model)

Fig. 7: Confusion matrix of the trained model on all 289 levels

(both train and test sets) of the first experiment. We include

all levels here for sake of comparison with Figure 8.

Low Medium High

Predictions

Low

Medium

High

Ac
tu

al
s

85 24 7

35 58 16

11 36 75

Action Intensity Confusion Matrix
(AI-Directed Levels)

Fig. 8: Confusion matrix between the predicted action intensity

of AI-directed levels in the second experiment and their actual

intensity as determined from play data.

Fig. 9: Examples of dungeons at different predicted action

intensities. Top row shows low, middle row shows medium,

and bottom row shows high intensity.

Lowpre Mediumpre Highpre Lowpost Mediumpost Highpost
Tertile (pre) or predicted action intensity (post)

0

500

1000

1500

2000

2500

Nu
m

be
r o

f a
ct

io
ns

Number of actions per action intensity

Lowpre Mediumpre Highpre Lowpost Mediumpost Highpost
Tertile (pre) or predicted action intensity (post)

0

2

4

6

8

Nu
m

be
r o

f e
ne

m
ie

s k
ille

d

Number of enemies killed per action intensity

Lowpre Mediumpre Highpre Lowpost Mediumpost Highpost
Tertile (pre) or predicted action intensity (post)

0

20

40

60

80

100

120

Ti
m

e
sp

en
t i

n
le

ve
l (

s)

Time spent in level per action intensity

Lowpre Mediumpre Highpre Lowpost Mediumpost Highpost
Tertile (pre) or predicted action intensity (post)

0

5

10

15

20

25

30

Ti
m

e
en

ga
ge

d
in

 c
om

ba
t (

s)

Time engaged in combat per action intensity

Fig. 10: Various player statistics plotted against the intensity of that level. Boxplots drawn with interquartile range 1.5 and

outliers discarded. The triangle shows the mean, the line shows the median.

B. Influence of Action Intensity

For the second research goal, we look at the influence of

action intensity on game metrics. The correlations between

action intensity and game metrics are shown in Table VIII. The

results are split up in pre and post AI-director. The results of

the first experiment (pre-director) are split in ordinal categories

based on the low, medium and high tertiles of the number of

actions. For the second experiment (post), the results are split

based on the AI-director’s prediction of the level intensity,

regardless of whether it was correct or not.

In Figure 10, the game metrics are shown as boxplots per

action intensity category. Our first observation is that the

AI-directed results (post) resemble the results from the first

experiment. We also observe that when players are presented

a level of higher predicted intensity by the AI-director, they

on average spend more time in the level, in combat, and kill

more enemies.

TABLE VIII: Pearson correlation between action intensity and

game metrics.

Action

Intensity (pre)

Action

Intensity (post)

Number of actions 0.72 0.53
Time in level 0.52 0.42
Time in combat 0.48 0.37
Enemies killed 0.61 0.63

C. Influence of Difficulty on Metrics

For the third research goal, we look at the influence of

difficulty on game metrics. Game difficulty determines how

strong enemies (e.g. their maximum health) are and how

expensive upgrades are to purchase. In the first experiment, the

difficulty of the game was fixed at 1. In the second experiment,

it increased every 3 levels. Table IX shows how many levels

were played per difficulty in the second experiment. In total,

1.00 1.11 1.22 1.33 1.44 1.56 1.67 1.78
Difficulty

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f a
ct

io
ns

Number of actions per difficulty level

1.00 1.11 1.22 1.33 1.44 1.56 1.67 1.78
Difficulty

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f e
ne

m
ie

s k
ille

d

Number of enemies killed per difficulty level

1.00 1.11 1.22 1.33 1.44 1.56 1.67 1.78
Difficulty

0

20

40

60

80

100

Ti
m

e
sp

en
t i

n
le

ve
l (

s)

Time spent in level per difficulty level

1.00 1.11 1.22 1.33 1.44 1.56 1.67 1.78
Difficulty

0

10

20

30

40

50

Ti
m

e
en

ga
ge

d
in

 c
om

ba
t (

s)

Time engaged in combat per difficulty level

Fig. 11: Various player statistics plotted against the difficulty of that level. Boxplots drawn with interquartile range 1.5 and

outliers discarded. The triangle shows the mean, the line shows the median.

117 levels were played at difficulty 1, and fewer for each

difficulty above. Furthermore, 30 levels were played above

difficulty 1
7

9
, up to 2

4

9
. In Table X, the correlations between

difficulty and game metrics are shown.

TABLE IX: Number of levels played per difficulty.

Difficulty 1 1
1

9
1
2

9
1
3

9
1
4

9
1
5

9
1
6

9
1
7

9
> 1

7

9

Levels

Played
117 81 48 30 14 9 9 9

< 9

per difficulty

TABLE X: Pearson correlations between difficulty and game

metrics.

Difficulty

Number of actions 0.44
Time in level 0.11
Time in combat 0.38
Enemies killed 0.16

Figure 11 shows the relation between difficulty and game

metrics in detail as boxplots. Here, we have left out difficulty

levels with fewer than 9 samples. Firstly, we observe a rise

in the number of actions when the difficulty increases. We

presume that more difficult enemies warrant more player

actions to be defeated. Secondly, there is a small increase in the

number of enemies killed as difficulty increases. Interestingly,

note that difficulty has no influence on the number of enemies

spawned, merely the power of those enemies. A possible

explanation could be that players who kill more enemies

are more likely to reach higher levels of difficulty. Thirdly,

no strong trend is seen in Figure 11 in the time spent per

level when difficulty increases, matching the weak correlation.

Lastly, in more difficult levels, players seem to spend more

time engaged in combat. This adds to the idea that player

have to perform more actions (and spend more time) to

defeat enemies at higher difficulty levels. Overall, these results

indicate that the game difficulty setting did have influence on

game metrics.

0 2 3
Burst shots

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Pr
ob

ab
ilit

y
de

ns
ity

Distribution of Burst shots between guns
All
Chosen

4 5 6 7 8 9 10
Bullet speed

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y
de

ns
ity

Distribution of Bullet speed between guns
All
Chosen

1 2 3 4
Bullets per shot

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
de

ns
ity

Distribution of Bullets per shot between guns
All
Chosen

Fig. 12: Comparison between the probability densities of various firearms parameters in all guns and in player chosen guns.

D. Weapon Preference

The fourth research goal is to investigate what kind of

weapons players prefer and whether there is interplay between

the chosen level and the chosen gun. For this, we combined the

data on firearms of both experiments. A total of 1908 firearms

were generated, three at a time, and shown to players. Players

chose 636 weapons to play with. The correlations between

whether a weapon was chosen and its parameters are shown

in Table XI.

TABLE XI: Pearson correlations between firearms parameters

and whether the gun was chosen or not. Only |r| > 0.1

parameters are shown.

Gun chosen by player

Bullet speed 0.13
Bullets per shot 0.15
Burst size 0.11

Overall, the correlations are weak, with only three param-

eters having |r| > 0.1. Figure 12 shows these in more detail.

Here, the distribution of all weapons is shown against the

distribution of the chosen weapons for these three parameters.

Assuming these weak correlations indicate a trend, as seen

from the skewed distributions, we could hesitantly say that

players preferred weapons that featured the “burst” option (the

more burst shots, the better), as well as guns that shoot many

bullets, which travel at high speed.

Lastly, we investigated whether there was any interplay be-

tween the chosen level and the chosen gun. For each firearms

parameter, we looked at which dungeon property it correlated

with most strongly. The properties taken into account were:

the spatial properties of the dungeon (Table V), the densities

of dungeon objects (Table II) and the door distance. In the

end, only one correlation |r| > 0.1 was found: “fire delay” and

“longest horizontal wall” correlated at −0.11. Figure 13 shows

this in further detail. Still, we found there to be little evidence

to suggest interplay between dungeon and gun choice.

VI. DISCUSSION & FUTURE WORK

One consideration of this work was to design a game

that participants would enjoy playing, generating play data in

the process. For the sake of gameplay, users could purchase

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
FireDelay

6

8

10

12

14

16

18

20

Ho
riz

on
ta

lW
al

l

Length of horizontal walls per fire delay of chosen gun

Fig. 13: The lengths of the largest horizontal walls plotted

against the fire delay of the chosen gun in that level. Boxplots

drawn with interquartile range 1.5 and outliers discarded. The

triangle shows the mean, the line shows the median.

upgrades like increased movement speed or quicker gun reload

speed. However, the longer players play, the more upgrades

they attain. We did not investigate how this could affect game

metrics, especially in extended sessions. However, as seen in

Table IX, 70.9% of all data is from level 9 or lower (where

difficulty is ≤ 1
2

9
) indicating a short session.

Furthermore, to investigate the effect of game difficulty, we

increased the difficulty by 1

9
after every third level. This may

have been too little to be noticeable, requiring extended play

sessions to generate enough data. Still, we were able to gather

some results as-is.

A. Dungeons & Firearms

The generator for firearms in GONDVAAN, having 13 dif-

ferent parameters, could have been extended upon. Hastings

et al. [14] note that ideal parameterisations should be able to

surprise their designers. We did find some firearms with the

“star gun” parameters to be quite interesting visually and me-

chanically (rotating bullets can curve around walls), but in the

end rotating bullets were still a designer-specified feature. Still,

there is an opportunity to vary bullet movement even more

without resorting to compositional pattern-producing network

as in [14]. For instance, a new parameter could influence bullet

movement with (co)sine or other cyclic functions. Lastly, we

found it hard to design parameters that keep the power of

guns in the generative space balanced and that do not defy

what it means to be a firearm; for game designers, this may

be a stylistic limitation.

In this work, we did look at player preference in weapons

but not at preference in dungeons, mainly because we already

sought to AI-direct level intensity. For player enjoyment, how-

ever, we do not know whether we should focus on directing

the flow of the game, or present players their preferred levels.

Although future work in GONDVAAN could apply Player

Experience Modelling (PEM) to firearms as well, we are scep-

tical as the evidence towards preference in certain parameter

settings was not particularly strong. Expanding the firearms

parameter space, as mentioned, could perhaps still warrant an

interest in PEM with regards to firearms, though.

B. Enemies

In GONDVAAN, there are four enemy types. They all use

the same generic enemy AI controller, but are parameterised

differently. With these different parameterisations, we sought

to create designer-specified “species”.

Previous work, however, has looked at automating the

procedural generation of parameterised enemies. For instance,

Pereira et al. [20] use an evolutionary algorithm to generate

different enemies according to their difficulty. The genotype

represents enemy parameters like their health, movement

speed and enemy weapons. The fitness, then, is some function

of the parameters meant to represent the enemy’s difficulty.

Similarly, we could search the parameter space of GOND-

VAAN enemies, but for species. A basic approach could restrict

itself to a low and a high value for each parameter and present

each combination of parameters as a species. Some species

might be able to better counter the player’s play style than

others. This presents an opportunity for PEM.

Additionally, for now we merely added multiple enemy

species in an attempt to make the game more engaging for

participants. The enemies presented in each level were chosen

at random. However, we did not investigate whether enemy

species contribute to the game metrics differently.

VII. CONCLUSION

In this paper, we presented GONDVAAN: a procedural

dungeon crawler and shooter game. In GONDVAAN, players

are shown previews of three dungeons and three guns at the

start of every new level, from which they can make their

own choice. We used this game as a test-bed for Player

Experience Modelling (PEM) and AI-directing. We focussed

on four research goals: whether a Machine Learning (ML)

model could predict the “action intensity” of levels based on

its properties; how action intensity influences certain game

metrics; how game difficulty influences those same metrics;

and lastly, what firearms players prefer and how that choice

relates to level choice.

We conducted two experiments, with 11 participants and

16 participants. In these experiments, 289 and 347 levels were

played respectively. For each level, players also chose a firearm

to play with. Since players were presented three dungeons and

firearms to choose from at a time, 1908 were presented of both

in total.

We found the ML model to successfully differentiate be-

tween three ordinal action intensities, making it suitable for

AI-directing the game to have dungeons of different intensity

levels.

Furthermore, we found action intensity to correlate with the

number of enemies killed, time spent in a level, and time spent

engaged in combat. The same can be said for game difficulty,

however, here we are more cautious, as participants did not

play as many levels over a wide range of difficulties as we

had hoped for. Thus, results are indicative at best.

Early results also indicate that there might be a preference

for certain types of guns, namely those with many bullets

shooting in bursts with high bullet velocity; this, however,

is not strongly backed-up and might merely indicate a trend.

Moreover, we found no evidence pointing towards interplay

between the choice of gun and the choice of level.

In conclusion, we deem it possible to AI-direct games with

a model solely trained to predict the number of game actions:

a highly generic metric that looks to be applicable to a wide

range of game genres. We thus hope to see further research in

other game genres that uses this method.

REFERENCES

[1] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player
experience for content creation,” IEEE Transactions on Computational

Intelligence and AI in Games, vol. 2, no. 1, pp. 54–67, 2010.

[2] K. Zhang, J. Bai, and J. Liu, “Generating game levels of diverse
behaviour engagement,” in 2022 IEEE Conference on Games (CoG),
2022, pp. 167–174.

[3] N. Shaker, G. Yannakakis, and J. Togelius, “Towards automatic person-
alized content generation for platform games,” Proceedings of the AAAI

Conference on Artificial Intelligence and Interactive Digital Entertain-

ment, vol. 6, no. 1, pp. 63–68, 2010.

[4] R. Parekh, “Staying in the flow using procedural content generation and
dynamic difficulty adjustment,” Ph.D. dissertation, Worcester Polytech-
nic Institute, 2017.

[5] A. Rietveld, S. Bakkes, and D. Roijers, “Circuit-adaptive challenge
balancing in racing games,” in 2014 IEEE Games Media Entertainment,
2014, pp. 1–8.

[6] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic person-
alised content creation for racing games,” in 2007 IEEE Symposium on

Computational Intelligence and Games, 2007, pp. 252–259.

[7] G. Yannakakis and J. Togelius, “Experience-driven procedural content
generation,” IEEE Transactions on Affective Computing, vol. 2, pp. 147–
161, 2011.

[8] D. Stammer, T. Günther, and M. Preuss, “Player-adaptive spelunky level
generation,” in 2015 IEEE Conference on Computational Intelligence

and Games (CIG), 2015, pp. 130–137.

[9] F. Bicho and C. Martinho, “Multi-dimensional player skill progression
modelling for procedural content generation,” in Proceedings of the 13th

International Conference on the Foundations of Digital Games, ser. FDG
’18. Association for Computing Machinery, 2018.

[10] Gearbox Software, “Borderlands,” 2K, 2009.

[11] Chucklefish, “Starbound,” Chucklefish, 2016.

[12] J. A. Brown, “Evolved weapons for rpg drop systems,” in 2013 IEEE

Conference on Computational Inteligence in Games (CIG), 2013, pp.
1–2.

[13] A. Pace and T. Thompson, “Procedural content generation and evolution
within the evotanks domain.” in Proceedings of the 8th International

Conference on the Foundations of Digital Games, 2013, pp. 439–440.
[14] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Automatic content

generation in the galactic arms race video game,” IEEE Transactions

on Computational Intelligence and AI in Games, vol. 1, no. 4, pp. 245–
263, 2009.

[15] B. M. F. Viana and S. R. dos Santos, “A survey of procedural dungeon
generation,” in 2019 18th Brazilian Symposium on Computer Games

and Digital Entertainment (SBGames), 2019, pp. 29–38.
[16] N. Sorenson, P. Pasquier, and S. DiPaola, “A generic approach to

challenge modeling for the procedural creation of video game levels,”
IEEE Transactions on Computational Intelligence and AI in Games,
vol. 3, no. 3, pp. 229–244, 2011.

[17] Dodge Roll, “Enter the Gungeon,” Devolver Digital, 2016.
[18] D. White, “Rift Wizard,” http://www.dylanwhitegames.com/riftwizard/,

2021.
[19] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-

based procedural content generation: A taxonomy and survey,” IEEE

Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[20] L. T. Pereira, B. M. F. Viana, and C. F. M. Toledo, “Procedural
enemy generation through parallel evolutionary algorithm,” in 2021 20th

Brazilian Symposium on Computer Games and Digital Entertainment

(SBGames), 2021, pp. 126–135.
[21] P. M. Fernandes, J. Jørgensen, and N. N. T. G. Poldervaart, “Adapting

procedural content generation to player personas through evolution,” in
2021 IEEE Symposium Series on Computational Intelligence (SSCI),
2021, pp. 1–9.

[22] M. Dabros. (2020) SharpLearning 0.31.8. [Online]. Available: https:
//github.com/mdabros/SharpLearning

http://www.dylanwhitegames.com/riftwizard/
https://github.com/mdabros/SharpLearning
https://github.com/mdabros/SharpLearning

REFLECTIONS

It was with much enjoyment, but not without hick-ups, that I worked on this thesis.

Early on, when I was programming firearms and the early beginnings of dungeons, I was worried

that my research would be too vague, and I had merely set myself the goal to apply Experience-Driven

Procedural Content Generation (EDPCG) to firearms. I was also constantly thinking of how I could

differentiate my work from that of Hastings et al., which together with Enter The Gungeon sparked my

initial research proposal. Thus, I am glad that I started out reading a wide range of EDPCG research,

as when I found that Player Experience Modelling firearms and interplay with dungeon choice might

not lead the desired results, I was able to connect the dots and add a new avenue: modelling action

intensity of dungeons instead. I am quite satisfied with how this ended up being, if may so say myself,

rather successful: I got much personal enjoyment from playing in a rhythmic manner and it felt modelled

correctly.

When designing a game for a thesis, one might be wary of focussing too much on game design,

instead of the research at hand. I certainly was; so much so that I did not necessarily want to spend

too much time on “refinements”, focussing on practicalities instead. With some much needed pointers

and encouragement from others these refinements in fact turned out to be valuable topics of research

themselves: I refined the enemies, making their AI more intelligent and sophisticated, adding a parameter

space and enemy species. Unknowingly, I now created an interesting new research paradigm in my game,

which I only realised once helpfully pointed out to me that it was indeed so.

All in all, I will certainly fondly look back on Gondvaan.

	Introduction
	Related Work
	EDPCG
	Procedural Weapon Generation
	Procedural Dungeon Generation

	Game Description
	Dungeons
	Dungeon Objects
	Firearms
	Enemies

	Experimental Setup
	AI-Director Setup
	Influence of Action Intensity
	Influence of Difficulty
	Weapon Preference
	Experiments

	Results
	AI-Director
	Influence of Action Intensity
	Influence of Difficulty on Metrics
	Weapon Preference

	Discussion & Future Work
	Dungeons & Firearms
	Enemies

	Conclusion
	References

