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Abstract—StarCraft 2 (SC2) is a popular testing ground for
Reinforcement Learning (RL). We introduce MicroStar, a Deep
RL model designed for unit control (micro) in SC2 games.
MicroStar is able to show strong results on all the micro
minigames introduced with the SC2LE, while being trained
solely on a consumer-grade PC. The MicroStar architecture was
inspired by AlphaStar but is much more simplified and uses
only a small fraction of the learning time. We improved on the
performance by DeepMind’s FullyConv on one of the three tested
minigames whilst only using 7.5 days of in-game time where they
used 673 years of in-game time for training.

I. INTRODUCTION

Recent years have seen a surge of achievements by Rein-
forcement Learning (RL) which were previously thought to be
too challenging such as the super-human performance in the
game of Go [1]. With Deep Reinforcement Learning (DRL)
seemingly having great potential for solving varied problems
not only in games but in many fields such as robotics [2],
finance [3], chemistry [4] and healthcare [5].

Games are often used for testing DRL network architectures
and algorithms. We have seen more and more complex games
being successfully tackled by DRL not just board games but
also video games such as Atari games [6] and Dota 2 [7]. In
2017 DeepMind worked together with Blizzard to create the
StarCraft 2 Learning Environment (SC2LE) [8] which allowed
the game of StarCraft 2 (SC2) to be used as a RL environment.
The SC2LE allows for training on the full game but also
came with 7 minigames that each test different types of skills
needed for SC2. There have been several papers published that
tackle these 7 minigames with the most successfully being
from DeepMind themselves [9].

There have been large successes in using DRL for solving
the full game of SC2. Mainly by AlphaStar, a DRL imple-
mentation by DeepMind that achieved GrandMaster level play
[10]. This however required a large team, lots of engineering
and used a large amount of compute (50,400 CPU cores and
3072 TPU cores for 44 days [10]). Which makes it hard to
replicate for smaller teams with less resources. Nevertheless
some attempts have been made, mainly by SCC [11] and
TStarBot-X [12]. But in the case of SCC it still required
a network with 49m parameters, a large dataset of human
replays and 30 years of in-game time per agent. Which is
still impressive as that is about an order of magnitude less
computational resources than AlphaStar used.

DeepMind’s work in solving the minigames that came
with the SC2LE use an exorbitant amount of computational
resources [8], [9]. This is a big problem in the field of DRL
as this need for large GPU clusters creates a high barrier
of entry for any party that might be interested in deploying
DRL for similarly complex problems. We seek to implement
a neural network capable of achieving strong results whilst
only being trained on a single consumer-grade PC. We achieve
this by designing a network that leverages many modern
network architectures and is specifically designed to control
multiple units. Unit control is a sub-problem of SC2 often
called micromanagement by SC2 players. Micromanagement
or micro for short is a players ability to utilize its units

efficiently in fights. We implemented a DRL model called Mi-
croStar inspired by the architecture of AlphaStar [10] but much
simpler and smaller. We benchmark MicroStar on some of
the same problems DeepMind did and find competitive results
at a fraction of the computational cost. The implementation
was done in PyTorch [13] and is open-sourced and publicly
accessible here: GitHub Link.

We will first give some background on RL and its applica-
tion to SC in section II. We will then give some more details
on the SC2LE and how SC2 is used as an RL environment
in section III. Then we will introduce MicroStar and go
into detail about the network architecture explaining how the
different parts of the network function and interact in section
IV. We will then discuss how MicroStar was trained in section
V and the results in section VI.

II. BACKGROUND/RELATED WORK

A. Deep Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine
learning where agents learn to interact with an environment.
A RL agent influences the environment by selecting actions
based on its (partial) observation of the environment state.
After each action, the agent receives a reward that indicates
its performance and the state transitions to a new state.
Through multiple interactions, the agent aims to learn a policy
that maximizes cumulative future rewards. This policy is a
mapping from states to actions, and the ultimate objective
of reinforcement learning is to find the optimal policy that
maximizes the cumulative reward. Games have been widely
used as a common testbed for RL techniques due to their
well-defined environments, complexity, challenge, and built-
in score systems that can serve as reward functions.

Deep Reinforcement Learning (DRL) employs deep neural
networks as policy functions. Notably, DeepMind demon-
strated the effectiveness of this approach by using Deep Q-
Networks to achieve state-of-the-art performance on various
Atari 2600 games [6]. The utilization of neural networks
offers several advantages, such as the ability to handle high-
dimensional inputs and reducing the need for manual feature
engineering [14]. Neural networks also enable generalization
to unseen states and the representation of nonlinear and
complex policies. The optimization of neural network weights
is typically accomplished through gradient descent, facilitating
the learning process.

In recent years, DRL has achieved notable advancements,
examples include AlphaGo and AlphaZero, which achieved
superhuman-level play in Chess, Go, and Shogi [1], [15].
These games were previously considered computationally
challenging due to their vast state spaces (e.g., 10170 for Go).
Beyond gaming domains, DRL has made significant contri-
butions to algorithm optimization through both AlphaTensor
and AlphaDev [16], [17]. There have also been advancement
made in robotics [2] and autonomous driving [18]. These
achievements illustrate the progress made by DRL in address-
ing complex problem-solving tasks across diverse domains.

https://github.com/Phobos97/SC2BattleML


B. StarCraft

There has been a rich history of using both StarCraft 2 (SC2)
and its predecessor StarCraft (SC) as a testing grounds for AI
[19]. The games fall in the Real-Time Strategy (RTS) genre.
Some characteristics of this genre that make it challenging
for RL is the need for long-term planning, large action and
state spaces, sparse rewards, incomplete information and the
need for time-sensitive reactions. The goal of the game is to
destroy all your opponents buildings, this is generally done by
building up an economy in the early game and then gaining
an advantage over your opponent by attacking in favorable
positions until you can fully overpower them. This is however
not as easy as it sounds as there are many complex strategies
that involve tricking your opponent or punishing certain play-
styles.

Different aspects of the game have often been separated
into different sub-problems with 2 major ones being micro-
management (micro) and macromanagement (macro). The first
sub-problem, micro, is all about unit control when fighting
enemy units. This requires mostly short-term planning and
fast response times. Macro on the other hand is the act of
building up infrastructure, which means efficiently balancing
the economy and unit production thus playing the long-term
strategy. These problems presented in SC/SC2 have been tack-
led by many different fields from ML namely Search-Based
Algorithms, Supervised Learning, Evolutionary Computations
and Reinforcement Learning and sometimes combinations of
these. What we will be focusing on in this paper is microman-
agement using Reinforcement Learning which can be seen in
purple in figure 1.

Fig. 1: Overview of Computational Intelligence in SC [19].

III. ENVIRONMENT

In this study, we utilize parts of the SC2LE as our reinforce-
ment learning environment. SC2LE is a collaborative effort
between DeepMind and Blizzard, introduced in 2017 [8]. To
interact with SC2 and effectively use it as a RL environment,
we make use of sc2client-proto [20], a SC2 API provided as
part of the SC2LE.

For the ability to give unit commands in the way we want
we employ a Python API wrapper by BurnySc2 [21] instead of
the PySC2 wrapper provided by DeepMind. This community

created API wrapper has the added benefit of more easily
being able to adapt community-created scripted bots. Although
we ultimately did not utilize the scripted bots feature, this
wrapper still facilitates the possibility of training against these
community sourced bots in the future. We also build out
some of our own functionality for the environment in order to
effectively collect all the data needed for training.

A. Minigames

There are 7 special minigame maps provided by Blizzard
which allow us to train our RL agents in a very standardized
way that makes it easy to compare to previous results. These 7
minigames cover a range of scenarios both related to micro and
macro and provide their own reward signal. We chose to focus
on three of these minigames Find And Defeat Zerglings, Defeat
Roaches and Defeat Banelings and Zerglings since these are
purely related to micro.

1) Find And Defeat Zerglings: Find And Defeat Zerglings
gives the agent control over 3 marines which are placed in the
center of a flat game map, all over the map there are spread out
zerglings placed in the fog of war. A zergling is a small melee
unit and is generally weaker than a single marine. An in-game
view of this scenario can be seen in Figure 2. A reward of 1 is
given for every destroyed zergling and a reward of -1 is given
for every lost marine, there is also a time limit of 3 minutes.
A general strategy for this would be to keep all 3 marines
together while they explore the map looking for zerglings. If
all 3 marines focus on the same zergling they can take them
out without taking (much) damage. Due to the time pressure
it is also important to explore the map in an efficient way
without back-tracking over an already explored area.

Fig. 2: In-game view of Find And Defeat Zerglings minigame.
3 Marines can be seen in the center of the screen and some
zerglings at the edge of their vision range.

2) Defeat Roaches: The Defeat Roaches minigame has the
agent fighting 4 roaches using 9 marines, and overview how
this looks in-game can be seen in Figure 3. A roach is a slightly
more advanced and stronger ranged unit compared to a marine.
A reward of 10 is given for each destroyed roach and a reward
of -1 for each lost marine. In the case that all 4 roaches are
destroyed the agent is given another 5 marines and a new
4 roaches are spawned. The only way for 9 marines to win



against 4 roaches is if they all attack together and focus fire
on a single roach at a time to quickly reduce their numbers.
This roach minigame however has no fog-of-war which makes
it simpler in some regards and really puts the emphasis on
effective focus fire.

Fig. 3: In-game view of Defeat Roaches minigame. The 9
marines can be seen on the left and the 4 roaches on the right.
It can also be seen that there is full vision of the battlefield
with no fog-of-war.

3) Defeat Banelings and Zerglings: The Defeat Banelings
and Zerglings minigame is similar to the Defeat Roaches
minigame but now the opponent has a mix of zerglings and
banelings. An in-game view of this minigame can be seen in
Figure 4. Banelings are a unit that self-destruct upon contact
with the enemy and deal a large amount of damage around
themselves, this can have catastrophic consequences for the
marines if they are standing too close together. A reward of
+5 is given for each zergling and baneling that gets destroyed.

Fig. 4: In-game view of Defeat Banelings and Zerglings
minigame. The marines are standing in a line on the right
whilst the zerglings and banelings are clustered together on
the left of the screen.

4) standard maps: We are also able to play on standard
game maps which allows us to train with and against any unit
composition we desire. This also enables play against different
types of scripted bots instead of only Blizzard created ones.
It also requires us to define our own reward functions which
can be both a blessing and a curse as it can lead to some

loss in generality and makes it harder to compare results with
previous solutions. In order to speed up training time we also
made it possible to do many RL episodes back-to-back within
a single game, so without the need to reload the map for every
episode (which has to be done for the minigame maps).

B. Observations

Instead of relying on rendered screen pixels, sc2client-proto
provides raw data from the SC2 game engine whilst still
respecting the fog-of-war. All available observations can be
found on the sc2client-proto GitHub [20]. For our implemen-
tation, we selectively utilize specific portions of the data which
we believed to be relevant for micro in order to limit the
network size.

1) Spatial Data: Spatial data is divided into screen features
and minimap features, each containing various categorical and
scalar features. Screen features provide a detailed view of the
camera’s focus area, including information about unit types
and their health points. Minimap features, on the other hand,
offer an overview of the entire map with basic data such as
the presence of friendly or enemy units and visibility range,
but without specific unit types or HP.

In our implementation, we chose to focus on the minimap
features and exclude the screen features, as utilizing the
screen features would require the network to control the
camera movement. We employed spatial observations at a
resolution of 64x64, which, according to Wang [11], achieves
similar performance as a 128x128 resolution but with lower
computational cost. The minimap feature layers we utilized are
player relative, visibility map, height map and pathable. The
player relative feature layer is presented as 5-dimensional cat-
egorical data, indicating the presence of enemy/ally/self units.
Since there are no neutral or allied players in our scenarios,
we reduced this to 2-dimensional data by distinguishing only
between own and enemy units. An example of what some of
these feature layers look like can be seen in Figure 5.

2) Scalar Data: In addition to spatial data, a significant
amount of scalar data is available, which can be further catego-
rized into score, player, and unit data. The score data includes
information about the total score accumulated throughout the
game and can be used as a reward signal. Player data provides
fundamental information such as the player’s current minerals,
gas, population, and population cap. Lastly, unit data contains
comprehensive information about every known unit, including
both units and buildings.

In our implementation we only use unit data. Player data
can be disregarded entirely, as its information is relevant only
for macro or the full game and not for micro. Score data is
only useful as a reward signal, so we do use it, but only when
playing minigames and only as a reward signal, not as part of
the observation. However, unit data is highly relevant to us,
as it encompasses all the information about each unit in our
vision. Since we do not use the screen features, this is the only
way to acquire details such as unit HP, unit type, and specific
unit locations. Our network relies on unit type, unit location,



Fig. 5: Three of the five spatial feature layers just a few seconds after the start of the Find And Defeat Zerglings minigame. We
can see our own three marines in the Own Units feature layer (three dots in the center). The enemy zerglings that have been
discovered so far are visible in the Enemy Units layer. On the Visibility layer we can see which part of the map we currently
have vision on in yellow and an area we had vision on before in blue.

health, shield, energy, and weapon cooldown information from
the unit data.

C. Actions

The action space in SC2 is massive with many of the
actions requiring multiple arguments and being depended on
what unit is currently selected. The BurnySC2 API Wrapper
however allows for unit control without the need to deal with
selecting units, it also allows multiple different action to be
taken at every time step. This allows our agents to pick a
separate action for each unit on every step. The main actions
that we need for unit control are Move, Attack Move, Hold
Position and Attack Target, see table I for descriptions of these
actions. Our agents are thus for example able to move unit 1
to location A whilst simultaneously ordering unit 2 to hold its
position and unit 3 to attack an enemy unit. Something our
units are however not able to do is use special unit-specific
active abilities. For that reason, all the units we used in our
experiments do not posses such special active abilities.

Our agent acts every 16 game loops, the game is played
at 22.5 game loops per second so this equates to an action
about every 0.7 seconds of in-game time. We choose this rate
to be at a good balance between being able to react to changes
in the game state whilst still making actions meaningful and
not making the rewards too sparse. This gives the agent a
maximum of 84 actions per minute (APM) per unit being
controlled.

IV. NETWORK ARCHITECTURE

Our neural network architecture, which we named Mi-
croStar, was inspired by AlphaStar [22] but simplified in many
ways and only keeping parts that we believed to be relevant
for unit micro, a direct comparison between the network
architectures can be seen in Appendix A. MicroStar has 2.3
million parameters where as AlphaStar has about 139 million

Action name Explanation Extra Arguments

Move Unit moves to location, ig-
nores all enemies.

Position 2D

Attack Move Unit moves towards loca-
tion, stops and attacks en-
emies if they enter attack
range.

Position 2D

Hold Position Unit stops moving and
defends position without
moving from location.

None

Attack Target Unit moves towards target
and attacks it once it is
within range, ignores all
other enemies.

Unit

No Action No orders issued to unit,
keeps working on previous
orders or idles in case of
no active previous orders.

None

TABLE I: An overview of all the possible actions a unit
can execute using our network and that are needed for basic
control.

parameters. Even with this reduced format the complex action
space of SC2 necessitates at least three different outputs in
order to simultaneously select Actions, Positions and Enemy
Units, see table I. This in combination with both spacial and
scalar observations makes our overall network architecture
quite complicated with many different parts. We will now do
our best to describe the workings and purpose of each of these
parts. Starting from the inputs and working our way up through
the network to the outputs. An overall overview can be seen in
Figure 6 and the number of parameters per part of the network
can be seen in Table III.
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Fig. 6: Overview of MicroStar Network Architecture.

A. Terminology

In order to effectively explain the full architecture we will
first explain some of the terminology we will be using. MLP
stands for Multilayer perceptron which consist of multiple
linear layers. CNN, short for Convolutional Neural Network,
is a specialized type of neural network proficient in computer
vision and other spatial tasks [23]. By employing convolution
operations, CNNs extract localized features from input data,
facilitating the detection and understanding of spatial patterns.
Moreover, CNNs possess the ability to effectively alter the
resolution of the input data through downsampling or upsam-
pling techniques. LSTM stands for long short-term memory
networks and utilizes recurrent connections to model and
process sequential data. Unlike traditional neural networks,
LSTMs are specifically designed to handle temporal depen-
dencies and learn long-term patterns [24]. The Transformer
model specializes in sequence-to-sequence tasks and rely on
self-attention mechanisms to capture contextual relationships
between items in a sequence.

B. Settings

The network was designed to use settings to easily variate
the exact sizes of different parts of the network. An overview
of these settings can be seen in Table II. The max entities
setting which dictates the maximum number of unit data that
is able to flow through the network, so any units past this

number will not be controlled by MicroStar. This setting does
not actually change any part of the architecture so it could be
changed dynamically but we chose to keep it constant during
runs to prevent jagged tensors when using batches and instead
use padding and masking where needed. Many of the settings
in Table II were chosen arbitrarily using some intuition and
limited to be smaller or equal to the AlphaStar architecture,
we are not claiming these to be optimal and much more testing
and optimization can likely be done on these.

C. Unit Encoder

1) Inputs: Every unit is encoded as 54-dimensional tensor
which contains a one-hot encoding of the unit type, a binary
encoding of the position, ratios for health, shields and energy,
weapon cooldown and an one-hot encoding of combined health
+ shields. The amount of possible unit types has been greatly
reduced to mostly just basic units but this can easily be
expanded upon if needed. The input to the unit encoder ends
up being two max unit x 54 tensors, one for enemy and one
for friendly units.

2) Internals: These two tensors are concatenated and fed
through a Transformer Encoder [25] which is made up of
a self-attention and feedforward network, we use an imple-
mentation by PyTorch [13]. The resulting tensor is then split
again into friendly and enemy units. We call these tensors
own unit embeddings and enemy unit embeddings.



Name Default Value

unit embedding size 128

unit transformer feedforward size 128

unit transformer nheads 2

unit transformer layers 2

spatial embedding size 256

map skip channels 16

core layers 1

core output size 256

autoregressive embedding channels 4

target head attention size 64

dropout 0

max units 16

location action space resolution x 62

location action space resolution y 62

TABLE II: An overview of all the MicroStar network settings
and their default values.

Name Parameters

Total 2.343.047

Unit Encoder 206.464

Spatial Encoder 844.464

Core 792.576

Action Head 305.765

Location Head 28.273

Target Head 66.688

Critic 98.817

TABLE III: An overview of the number or parameters
(weights) of each part of the MicroStar model.

3) Outputs: The Unit Encoder has 4 outputs, firstly
own unit embeddings and enemy unit embeddings both be-
ing max entities x unit embedding size tensors. And then 2
tensors called own embedded unit and enemy embedded unit
which are created by taking the mean over their re-
spective unit embeddings tensor, resulting in two 1 x
unit embedding size tensors.

D. Spatial Encoder

1) Inputs: We pull our spatial observations from SC2 at a
resolution of 64x64 pixels. We use 5 feature layers in total,
those being own units, enemy units, height, pathable, and
visibility. So our input to this part of the network ends up
being an 5x64x64 tensor.

2) Internals: The input tensor is projected to 64 channels
by a 2D convolution using a kernel of size 1. We then have
2 convolutions layers that downsample by doing 2D convolu-

tions with kernel size 4 and stride 2. These convolutions also
lower the number of channels down to map skip channels
and this tensor is called map skip. It is then flattened and
fed through a linear layer. This final tensor is called embed-
ded spatial.

3) Outputs: The outputs are map skip and embed-
ded spatial. The map skip output is meant to preserve some
spatial information and is shaped as map skip channels x
14 x 14. The embedded spatial tensor has a shape of 1 x
spatial embedding size

E. Core

1) Inputs: The input to the Core is a concatenation of
embedded unit, embedded unit enemy, embedded spatial and
scalar features. The first 3 of these come from the encoder
parts of the network and the scalar features come directly
from the observation space and consist of two integers in-
dicating the amount of friendly and the amount of enemy
units. The size of this concatenation of tensors is 1 x (2
· unit embedding size + spatial embedding size + 2). The
internal state of the LSTM is also provided when possible.

2) Internals: The Core is implemented as a LSTM with
a single layer and a hidden size of core output size. An
implementation from PyTorch was used for the LSTM. There
are also optional Dropout layers implemented before and after
the LSTM.

3) Outputs: The output is given by a single 1 x
core output size tensor. We also save the internal state of the
LSTM to re-use for the next environment step.

F. Action Head

1) Inputs: The Action Head receives both the
core output and own unit embeddings. The core output
is repeated max entities times to match the shape
of own unit embeddings and these tensors are then
concatenated into a single max entities x (core output size +
unit embedding size) tensor.

2) Internals: The Action Head is a MLP which maps from
the input size to a tensor with a length equal to the number
of available actions, which is our case is 5 as can be seen in
Table I. This tensor is then put through a softmax function to
produce action logits. The actions not belonging to any unit
are masked out.

3) Outputs: The outputs of the Action Head are ac-
tion logits and autoregressive embedding. action logits con-
tain a weighted chance for each of the units to execute each
of the 5 actions, the tensor has the shape max entities x 5.
autoregressive embedding refers to the tensor that is produced
just before the last linear layer.

G. Location Head

1) Inputs: The inputs for the Location Head are autoregres-
sive embedding and map skip. The former contains informa-
tion coming from the Core/Action Head and the latter contains
spatial information from the Spatial Encoder at a resolution of
14x14.



2) Internals: First the autoregressive embedding is re-
shaped from flat to have the same spatial shape as map skip.
Then map skip is repeated max entities times and these two
tensors are concatenated. This resulting tensor is projected to
64 channels by a 2D convolution using a kernel of size 1. We
then have 1 convolutional layer with kernel size 3 followed
by two transposed convolutional layers with kernel size 4 and
stride 2 to up-sample to 62x62. This tensor is then flattened
and has a softmax applied to it to get our location logits.

3) Outputs: The location logits contain the probability for
every location to be chosen. It is shaped as max entities x
62 x 62, which after flattening is max entities x 3844. Note
that this output is only used when the corresponding unit has
picked either the Move or the Attack Move action.

H. Target Head

1) Inputs: The inputs to the Target Head are
autoregressive embedding, own unit embeddings and
enemy unit embeddings.

2) Internals: The Target Head uses an attention mechanism
to calculate the attention from each friendly unit with respect
to every enemy unit. This is done using Scaled Dot-Product
Attention [25] without multiplying with the Values.

Attention(Q,K) = softmax(
QKT

√
dk

)

Here Q are the queries and K the keys. dk is the di-
mension of the keys and queries. The queries are calcu-
lated by first concatenating autoregressive embedding and
own unit embeddings and then applying a linear layer. The
keys are calculated from putting enemy unit embeddings
through another linear layer. Both the linear layers have
target head attention size dimensions. After transposing the
keys and doing the matrix multiplication we get a max entities
x max entities tensor that maps the attention from each
friendly unit to each enemy unit. We then apply a mask to
prevent targeting non-existent padding units and finally apply
a softmax to receive our target logits

3) Outputs: The only output is target logits which is
a max entities x max entities tensor mapping from every
friendly unit to every enemy unit. This tensor can then be
sampled to choose which enemy unit will be attacked. Note
that this output is only used when the Attack action was chosen
by the Action Head.

I. Critic

1) Inputs: The critic only uses the Core output as input.
This is a single 1 x core output size tensor.

2) Internals: The Critic is a MLP which uses 2 linear layers
to map from its input to a single scalar value. The critic
essentially tries to predict the future rewards and is used in
training.

3) Outputs: The output is a single scalar value.

V. TRAINING

A. Data collection

In order to train a neural network, data is essential. In
RL this data comes from the agent interacting with the
environment through multiple episodes. An episode refers to a
complete sequence of interactions starting from an initial state
and continuing until a terminal state. In order to efficiently
collect data we launch multiple games of SC2 at the same time.
Each of these games is controlled by a Data Collector whose
purpose it is to save the observations, network outputs and
rewards. After every completed episode the Data Collectors
send their data to the Learning Manager and retrieve the latest
version of the neural network. The Data Collectors also deal
with the logic of initializing and ending episodes and on which
game steps to run the agents.

The Learning Manager has a replay buffer which stores
the agent’s experiences, collected during interactions with the
environment. The replay buffer has a maximum size, and when
new data needs to be added the oldest data in the replay buffer
is removed.

B. Network Updates

Every few seconds the Learning Manager trains the network
for 3 epochs. It randomly samples batches from the replay
buffer to use for the network updates. Sampling random
batches is important for breaking temporal correlations. In
RL environments, consecutive experiences tend to be highly
correlated. If we train the agent directly on sequential data,
it can lead to unstable learning by constantly over-fitting to
different parts of the problem.

For updating the network we use PPO [26] which is a type
of actor critic method which means the agent is learning both
a policy π (actor) and an value function (critic). The critic
is essentially giving feedback to the actor by estimating the
expected reward. We can then calculate the advantage function,
Ât, which estimates how advantageous an action is compared
to the average action in a given state. It is calculated as the
difference between the critic value and the actual received
reward. PPO is a type of policy gradient method which utilizes
a Clipped Surrogate Objective to the actor policy in order to
constrain the policy update to a specified range, preventing
drastic policy changes that can lead to unstable training. The
clipped loss, denoted as LCLIP (θ), is defined as follows:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]

In this equation, θ represents the parameters of the policy
π, πθ(at|st) denotes the probability of selecting action at
in state st under the policy πθ, and πθold(at|st) represents
the corresponding probability under the previous policy. The
term rt(θ) is the probability ratio, which measures the ratio
of probabilities between the current and previous policies:

rt(θ) =
πθ(at|st)
πθold(at|st)



Name Default value

learning rate start 0.0001

learning rate decay 0.999

minimum learning rate 0.00005

time between optimizations 10

gamma 0.99

ϵ start 0.2

ϵ decay 0.999

ϵ min 0.05

replay buffer size 2048

batch size 256

epochs 3

TABLE IV: An overview of the training hyperparameters.

The purpose of clipping rt(θ) in the surrogate objective is
to limit the policy update to a specified range. By constraining
the policy update, PPO prevents overly large policy changes
that can destabilize the training process. The hyperparameter ϵ
determines the extent of the clipping. The above clipped loss
gives us the loss for the actor but our total loss also consists
of the critic loss, since they share a part of the network, and
an entropy loss.

LCLIP+V F+S
t (θ) = Êt[L

CLIP (θ)−c1L
V F
t (θ)+c2S[πθ](st)]

Here c1 and c2 are coefficients, S is the entropy loss
and LV F

t is the critic loss given by a squared-error loss
(Vθ(st)−V targ

t )2 where Vθ stands for the value network which
we mostly refer to as the critic. We then optimize the total
loss using ADAM [27], iteratively updating the parameters θ
to improve its performance over time.

C. Hardware

All training was done on a single consumer-grade PC with
an i5-12400 CPU and a RTX 3070 ti GPU (8GB VRAM).
During training we were mostly bottlenecked by the CPU
which is used to run SC2. We used anywhere between 4 to
8 instances of SC2 simultaneously for sampling the environ-
ment. The 8GB of VRAM also limits the maximum size of
the network and the batch size during training.

VI. RESULTS

We trained MicroStar on several different micro scenarios.
First of all we used three minigames provided by Blizzard;
Find and Defeat Zerglings, Defeat Roaches and Defeat Zer-
glings and Banelings. This provides us with 3 scenario’s that
have been used by many other research teams thus allowing
us to make good comparisons. We then also trained MicroStar
on a scenario similar to those used by Meta AI Research [28]
for SC1, namely the 5 marines vs 5 marines scenario. All
data was collected using the architecture settings from II and

learning settings from IV. For validation after training we ran
the final agent for 1000 episodes.

A. Find and Defeat Zerglings

The average rolling reward during training for the Find and
Defeat Zergling minigame can be seen in Figure 8. The total
training time was 20.000 episodes which equates to about 650
hours of in-game time and 14 hours real life time.

The general found strategy by MicroStar was to keep its
three marines close while they circle around the center of the
map in a clock-wise motion, a simplified view of this can be
seen in Figure 7. When a marine gets about half-damaged it
keeps it standing still to avoid losing it. When it loses a marine
or all marines are damaged it keeps all marines standing still
to wait out the 3 minute timer. This ends up making each
episode take the full 3 minutes with the most interesting part
happening at the first minute. This made training a bit slower
than the other minigames and inflated to total in-game time
needed for training. A video showcasing a full episode can be
viewed here and for the untrained version of MicroStar here.

Fig. 7: Simplified overview of the strategy used by MicroStar
in Find and Defeat Zergling. The marines move in a clock-
wise movement around the map until they lose too much HP
and MicroStar keeps them stationary so they don’t get killed.

B. Defeat Roaches

In the Defeat Roaches minigame the agent controls 9
marines and is tasked with defeating a group of 4 roaches.
Efficient target fire where all marines attack the same roach
is very important for this minigame. This minigame was
explained in more detail in section III-A2. The average rolling
reward during training can be seen in Figure 10. The total
training time was 15.000 episodes which equates to about 160
hours of in-game time and 6 hours real life time.

The found strategy involves immediately running up on the
roaches and target firing them down one at a time, see Figure
9 for a simple overview. This is a good basic strategy but it is
lacking some finer control like moving marines that are about
to die away from the roaches and then back in once they are
not being targeted anymore.

There is also some chance involved in how the roaches
target fire, sometimes its possible to lose less than 5 marines

https://www.youtube.com/watch?v=EbT8D3r4bow
https://www.youtube.com/watch?v=9B0HfSVOKbM
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Fig. 8: Rewards during training, rolling average with window
size of 500.

Average
Reward STD (σ)

Max
Reward

MicroStar
(Ours) 16 2.6 22

FullyConv [29] 8 2.4 14

FullyConv + 3D Conv [29] 22 3.8 40

A3C [30] ∼6 - 16

FullyConv
(DeepMind) [8] 45 - 56

FullyConv LSTM
(DeepMind) [8] 44 - 57

Atari-Net
(DeepMind) [8] 49 - 59

Relational DRL
(DeepMind) [9] 62 - -

GrandMaster Player
(human) [8] 61 - 61

TABLE V: Rewards for the Find and Defeat Zerglings
minigame achieved by us and others.

in a round of the minigame which means that when MicroStar
receive 5 more marines for the next round they have made a
net profit on marines. This can sometimes allow the agent to
snowball its advantage over the roaches and reach very high
scores like 300+. An example of the trained behavior can be
found here and for the untrained version here.

C. Defeat Zerglings and Banelings

In the Defeat Zerglings and Banelings minigame the agent
uses a group of marines to fight zerglings and banelings.

Fig. 9: Simplified overview of the strategy used by MicroStar
in Defeat Roaches. The marines all focus the same enemy
roach.
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Fig. 10: Rewards during training, rolling average with window
size of 500.

banelings explode themselves when they contact enemies
dealing area damage around them, this makes it vital to spread
out your units or target down the banelings before they reach
you. This minigame was explained in more detail in section
III-A3. The average rolling reward during training can be seen
in Figure 12 and a comparison to other work can be seen in
Table VII. The total training time was 15.000 episodes which
equates to about 185 hours of in-game time and 7 hours real
life time.

The strategy employed by MicroStar involves utilizing the
Attack Move command to spread its units. This approach al-
lows some marines to act as sacrificial units, tanking banelings
while ensuring the survival of other marines to deal with
the zerglings. Figure 11 shows a simplified overview of the
strategy. While sacrificing units may sound risky, due to the
behavior of the zerglings it almost always works out, making
it a solid and effective strategy. Keeping the marines clumped
together and target-firing down the banelings whilst moving

https://www.youtube.com/watch?v=A8O3KiRMDIg
https://www.youtube.com/watch?v=WKN6SZjqcUI


Average
Reward STD (σ)

Max
Reward

MicroStar
(Ours) 53 23 252

FullyConv [29] 23 19 121

A3C [30] ∼20 - 42

FullyConv
(DeepMind) [8] 100 - 355

FullyConv LSTM
(DeepMind) [8] 98 - 373

Atari-Net
(DeepMind) [8] 101 - 351

Relational DRL
(DeepMind) [9] 303 - -

GrandMaster Player
(human) [8] 215 - 363

TABLE VI: Rewards for the Defeat Roaches minigame
achieved by us and others.

backwards might allow for a higher max score but it is also
very risky and hard to learn.

Fig. 11: Simplified overview of the strategy used by MicroStar
in Defeat Zerglings and Banelings. The Marines all move
around spreading themselves out and fire at the enemies when
they get close.

Additionally, during training, we noticed that MicroStar
occasionally learned to keep low-health units stationary at the
rear. This strategy makes some sense since a full hp Marine
can just barely survive a baneling explosion, enabling them
to eliminate up to 2 banelings before succumbing. However,
it comes with some risks as poorly spread-out low-health
marines are vulnerable if a baneling does reach the back row.
In the final found policy, this behavior was not retained. A
video of this final behavior can be found here, towards the
end of this example video (1:01) MicroStar fails to spread out
its marines properly and it can be seen how devastating this

can be as it loses 5 marines very quickly which leads to the
complete defeat one round later. The untrained version can
be found here, at first it seems sort of similar to the trained
version as MicroStar’s natural tendency is to spread its units
but it still fails to spread out enough and quickly loses.
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Fig. 12: Rewards during training, rolling average with window
size of 500.

Average
Reward STD (σ)

Max
Reward

MicroStar
(Ours) 131 65 418

A3C PlusFC [30] ∼70 - 130

A3C Self-Attention [31] 136 - -

FullyConv
(DeepMind) [8] 62 - 251

FullyConv LSTM
(DeepMind) [8] 96 - 444

Atari-Net
(DeepMind) [8] 81 - 352

Relational DRL
(DeepMind) [9] 736 - -

GrandMaster Player
(human) [8] 727 - 848

TABLE VII: Rewards for the Defeat Zerglings and Banelings
minigame achieved by us and others.

D. 5 Marines vs 5 Marines
For this scenario we implemented ourselves we battled

5 marines against 5 other marines. The enemy marines are
controlled by a scripted bot we implemented called AMove-
Bot. AMoveBot simply Attack Moves (A-Moves) all its units

https://www.youtube.com/watch?v=rPYzmGoipQ4
https://www.youtube.com/watch?v=YlgrTxr5KBc


toward the enemy units. This is a basic but effective strategy
often used by SC2 players. This scenario gives full vision of
the map so there is no need to deal with the fog-of-war.

We created the reward function ourselves and it gives +2 for
every enemy unit killed, -2 for every unit lost, a small amount
of reward for every point of damage dealt and a bonus reward
of +2 if the episode is won by destroying all enemy units.

Something we found during testing is that the size of the
network heavily impacts the performance of the agent so we
will be comparing between four different network settings of
MicroStar (base, A, B and C), the exact changes can be seen
in Table VIII. Each agent was trained for 5000 episodes which
takes about 16 hours of in-game time and 40 minutes real life
time. The win rates during training can be found in Figure 13
an the final evaluations of the networks were done over 1000
episodes and can be seen at the bottom of Table VIII.

The strategy found by MicroStar was very similar to the
Defeat Roaches minigame, it tries to target-fire down one
enemy unit at a time. A big difference however is that this
fight happens much faster as the total health pool is smaller
thus a single wrong action can have larger consequences.

We found a large difference in performance between the
networks Base, A, B and C. Especially B and C performed
much better which seems to be due to a larger Unit Encoder
IV-C, which uses 16 headed attention instead of the 2 headed
attention used by the base MicroStar. This seems to help with
target-firing as it seemed units were more likely to pick the
same target.

VII. DISCUSSION

A. Training Time

We find our MicroStar model to place somewhere in
between FullyConv by DeepMind and some of the other
published SC2-Micro papers. Only on Defeat Zerglings and
Banelings do we find we can improve on the performance from
FullyConv. It should however be noted that DeepMind used
much more computational power for their FullyConv model;
each of their agents trained for 8x600m = 4.8b game steps
which is about 59000 hours of in-game time (2460 days).
They then did this 100 times for each agent whilst varying
hyper-parameters to find their optimal performing agent, this
equates to about 673 years of SC2 per final agent. This is
significantly more than 650 hours (27 days) of SC2 for our
longest run.

The Relational DRL [9] from DeepMind crush all other
competitors and achieve results comparable to or better than a
GrandMaster human player. DeepMind is not exactly clear on
their training times but they mention 10 billion optimization
steps per agent with a batch size of 32. If we assume a
similar action rate as FullyConv this comes out to be about
3600 years of SC2 per agent and then they trained 100 agents
per minigame. Although we can not be sure of this number
it is clear that is exceeds the computational time from their
FullyConv agents. Their mean scores for the minigames were
also only taken over 30 episodes which is about 1 hour of SC2

time which seems really quite low compared to their training
time.

This imbalance in training time does of course go both
ways as we did also use about 3x more training time than the
implementation of FullyConv from Dumitrescu [29]. Wheras
the A3C implementation from Alghanem [30] seemed to use
about equal or more computational time to us.

B. Defeat Roaches

A problem we faced on the Defeat Roaches minigame which
we did not yet discuss is that in some runs our agent would get
stuck in a local minima. This would happen when the agent
found the strategy of just standing still with all its units to
avoid the roaches and wait out the timer. This can lead to a
reward of 0 which is higher than the reward of -9 that you get
when losing all your marines without killing a single roach.
When training just starts this result of -9 is very common and
killing any roaches at this stage requires some luck. So if this
luck doesn’t happen it will simply learn to just save all its
units by keeping them away from the roaches. This would
happen for about half the runs we tried during testing but
could quickly be identified by looking at the rewards during
the first 15 minutes of a run.

C. PPO

PPO is an on-policy learning algorithm which means the
policy that interacts with the environment should be the same
policy as the policy that is optimized. In our implementation
we actually go slightly off-policy and re-use some trajectories
that were sampled with an old policy. This going slightly
off-policy did not seem to hurt performance. We speculate
this is due to the relatively small replay buffer and since
we take small steps in the policy space the old policy is
still close enough the current policy that we are almost on-
policy. We did also experiment with clearing the replay buffer
after each optimization step and going fully on-policy but this
did not improve performance. It actually increased the total
learning time needed since we have to wait longer for more
new trajectories to be sampled and we were already being
bottlenecked by the environment sampling.

D. Environment

We used the BurnySC2 API wrapper [21] in order to easily
allow us to give multiple orders on the same game loop. We
later learned there should also be a way to do this with PySC2
created by DeepMind. Since we also did not end up using any
community created bots for BurnySC2 using PySC2 would
likely have run faster, although we did not confirm this.

E. Environment

We used the BurnySC2 API wrapper [21] in order to easily
allow us to give multiple orders on the same game loop. We
later learned there should also be a way to do this with PySC2
created by DeepMind. Since we also did not end up using any
community created bots for BurnySC2 using PySC2 would
likely have run faster, although we did not confirm this.



Name Base
MicroStar MicroStar-A MicroStar-B MicroStar-C

total parameters 2.343.047 4.255.495 2.803.591 4.109.575

unit embedding
size 128 256 128 256

unit transformer
feedforward size 128 128 1024 1024

unit transformer
nheads 2 2 16 16

unit transformer
layers 2 2 2 2

spatial embedding
size 256 512 256 256

map skip channels 16 16 16 16

core layers 1 1 1 1

core output size 256 256 256 256

autoregressive
embedding channels 4 4 4 4

target head attention
size 64 64 64 64

win rate 0.29 0.33 0.75 0.86

TABLE VIII: An overview of different MicroStar architectures tested on our 5 marines vs 5 marines scenario.

VIII. FUTURE WORK

For future experiments it would be interesting to see how
much we can improve the MicroStar model by doing a
hyper-parameter search over the different network architecture
settings we mention in Table II. We already saw large swings
in performance from changing the Unit Encoder size in the 5
marines vs 5 marines experiment VI-D, it is possible similar
performance gains could be made on the minigames.

Something the AlphaStar architecture did that might also
be of interest to us is giving the Critic network access to
hidden information not visible to the Actor. This becomes
particularly relevant in scenarios involving fog-of-war, such
as the Find and Defeat Zerglings minigame. This can also
contain information about the current cumulative score which
might help the critic in predicting future scores.

Another thing we would like to experiment with, is what
DeepMind called their scattered entities layer. This was used
in AlphaStar’s Spatial Encoder as an extra feature layer
together with the minimap features. It was created by taking

their unit embeddings and placing them in their appropriate
positions on a spatial feature layer. This gives the Spatial
Encoder access to a lot of specific data about each unit which
might lead to stronger spatial reasoning which seemed to be
one of MicroStar’s weakest areas judging from the Find and
Defeat Zerglings results. This was currently not done as it will
add quite a bit of GPU memory usage but we could experiment
with first embedding the unit embeddings down to a smaller
number of dimensions.

Exploring additional experiments beyond the Blizzard-
provided minigames is also of interest. For instance, testing
with more diverse armies from all races, instead of predom-
inantly relying on marines, could provide valuable insights.
It is also possible to change the network to also allow units
to use their active abilities. We also have a scenario already
setup that allows for a capture the flag style minigame where
an agent wins by destroying an enemy flag structure. These
experiments would require the network to make more tactical
decisions, moving beyond pure micro. The training could be
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Fig. 13: Comparison in win rates between different MicroStar
architectures from Table VIII during their training. Rolling
average with window size of 100

done using a league like setup similar to AlphaStar playing
either against some pre-defined scripted bots or against other
RL agents. The problem would be benchmarking these models
as there is no standardized way to do this. It would possibly
require to be tested against human players.

It might also be interesting to train a second network for
the macro part of the game and then use that in combination
with MicroStar to play full-length games of SC2. This would
require quite a lot of adaptions in how MicroStar is trained
though as it is currently only focused on fighting but in
actual full-length games unit control is more about positioning
tactically and choosing when to fight correctly, which is also
a very interesting problem but quite different to the scenarios
discussed in this paper.

IX. CONCLUSION

In summary, the MicroStar model shows promising re-
sults for micro in SC2 while only being trained on a sin-
gle consumer-grade PC. It is able to challenge DeepMind’s
FullyConv [8] model while only using a fraction of the
computational power. MicroStar was shown to be capable of
learning a solid strategy that makes logical sense on every
scenario we tested. This might make it an interesting model
for smaller teams with less resources. Another large advantage
of MicroStar is that the full implementation is open source on
GitHub so it can be quickly adapted and improved on without
needing to re-implement everything. MicroStar might also
still have some potential that can be unlocked with a hyper-
parameter search as shown by the 5 marines vs 5 marines
experiment.

While more work is still required, we have shown that it
is possible to achieve competitive results on the sub-problem
of unit micro without the need for a large team and using
only a single consumer-grade PC. This was done by utilizing

modern neural network architectures and taking inspiration
from previous works in the field.
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M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser et al.,
“Starcraft ii: A new challenge for reinforcement learning,” arXiv preprint
arXiv:1708.04782, 2017.

[9] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin,
K. Tuyls, D. Reichert, T. Lillicrap, E. Lockhart et al., “Relational deep
reinforcement learning,” arXiv preprint arXiv:1806.01830, 2018.

[10] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[11] X. Wang, J. Song, P. Qi, P. Peng, Z. Tang, W. Zhang, W. Li, X. Pi,
J. He, C. Gao et al., “Scc: An efficient deep reinforcement learning
agent mastering the game of starcraft ii,” in International conference on
machine learning. PMLR, 2021, pp. 10 905–10 915.

[12] L. Han, J. Xiong, P. Sun, X. Sun, M. Fang, Q. Guo, Q. Chen, T. Shi,
H. Yu, X. Wu et al., “Tstarbot-x: An open-sourced and comprehensive
study for efficient league training in starcraft ii full game,” arXiv preprint
arXiv:2011.13729, 2020.

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[15] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[16] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes,
M. Barekatain, A. Novikov, F. J. R Ruiz, J. Schrittwieser, G. Swirszcz
et al., “Discovering faster matrix multiplication algorithms with rein-
forcement learning,” Nature, vol. 610, no. 7930, pp. 47–53, 2022.

[17] D. J. Mankowitz, A. Michi, A. Zhernov, M. Gelmi, M. Selvi, C. Padu-
raru, E. Leurent, S. Iqbal, J.-B. Lespiau, A. Ahern et al., “Faster sorting
algorithms discovered using deep reinforcement learning,” Nature, vol.
618, no. 7964, pp. 257–263, 2023.

[18] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
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APPENDIX A
MICROSTAR AND ALPHASTAR COMPARISON
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(a) General overview of the architecture of MicroStar.

(b) General overview of the architecture of AlphaStar [10].

Fig. 14: Comparison between MicroStar and Alphastar architecture. Most notably the Delay, Queued and Selected units heads
were not implemented but even all parts that were implemented were down-scaled considerably.


