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Abstract

Monitoring the water distribution network to maintain the security of the water

supply is meaningful and challenging work. Placing sensors in the network to detect

the contamination event is a common and effective way to achieve the goal. It is a

multi-objective optimization problem (MOP) to decide where to install sensors. Many

studies have been conducted on developing approaches for MOP; however, scant at-

tention has been paid to centrality metrics. Moreover, the centrality-based approach

simply used nodes, leading to limited search space and diversity. In this study, we pro-

pose an approach to combining the two approaches, aiming to explore a large enough

decision space and benefit from the centrality metric. To this end, we select two objec-

tives as our optimization objectives, namely the minimum detection and the detection

likelihood (coverage). We use a preselected subset of nodes as candidates to reduce the

computation load. NSGA-II is used as the backbone optimization algorithm; in addi-

tion, we analyze the distributions of centrality and use them as heuristic information

to design the mutation operator. We test the algorithm on the benchmark network,

BWSN1. After experiments, Pareto fronts and hypervolume indicators are used to an-

alyze the performance results, and we found that combined centrality methods show

better performance.
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Chapter 1

Introduction

1.1 General motivation and explanation of the topic

In modern society and cities, the water supply system is a fundamental infrastructure.

As the scale of towns expanded, the water supply system became more complex,

which also increased the risk to water security. There are different kinds of threats,

such as water leaking, water pollution, or other disasters occurring in the water supply

systems. In this study, we focus on water contamination.

Contamination means an unexpected substance is dissolved in water. This is harm-

ful to public health, especially when the contamination substance is toxic. The con-

tamination substance could be easily spread out through the connected pipes in the

water supply system, increasing the influence further. To make the water supply sys-

tem robust, deploying an efficient and accurate contamination detection solution in a

water distribution system is necessary. A commonly used method is placing sensors

at specific locations in the water supply system. Once a contamination event occurs,

when the contaminated substance carried by the water flow passes by one of the sen-

sors, it could be detected, and if the concentration exceeds a threshold, the event could

be sent to the relevant departments, and they would take action, such as locating and

repairing.

There are several aspects to the efficiency of a sensor detection solution, such

as the detection time, the population affected prior to detection[17], accuracy, the

number of sensors used, and so on. Different sensor placement solutions would lead

to performance differences in these aspects. However, determining optimal positions

in a network for sensor placement is a typical NP-hard problem. The problem is hard
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1.4. Related work

because the number of possible positions to place the sensors grows exponentially with

the number of sensors.

1.2 Related work

The Battle of Water Sensor Networks (BWSN)([17]) design challenge was conducted

to compare various approaches to solving this problem for the water distribution net-

work. There are four designed objectives: the expected detection time, the expected

population affected, the expected amount of contaminated water consumed, and the

detection likelihood. Since then, many studies have been conducted on this Multiple-

objective Optimization Problem(MOP), and different approaches are implemented,

such as genetic algorithm(GA) based([6], [19], [13]), greedy search based([2], [15],

[10]), heuristics based([1], [11]), and Particle swarm algorithm based([12], [16]). How-

ever, scant attention has been paid to the network’s exclusive metrics from the aspect

of network/graph theory, such as centrality.

Besides, in some studies that are centrality-based ([18], [21], [20]), they simply

use the nodes with high centrality as sensor placement candidates, which leads to the

search space being restricted and the diversity being damaged.

Therefore, in this study, we proposed an approach to combine the two approaches,

aiming to explore a large enough decision space and benefit from the centrality metric.

1.3 Research Question

As discussed above, for this MOP, we decide to use an evolutionary algorithm (EA)

integrated with centrality to fulfill the task. Then, the main research question we have

is:

• How centrality metric could be integrated within an EA?

• Is the centrality metric beneficial for the sensor placement problem?

1.4 Approach

Firstly, we will conduct a preselection over all the nodes in the water distribution

network. This would be helpful to reduce computation workload, and different prese-

lections will be discussed and compared.

2



Chapter 1. Introduction

Then, we will analyze and formulate the sensor placement problem in mathematical

form. We will use NSGA-II([4]) as our backbone algorithm, and based on the frame-

work of the algorithm, we will convert the problem into chromosomes, individuals, and

a population set. A centrality-based mutation operator will be tested.

The experiments are divided into three parts: preselection, simulation, and op-

timization. From the preselection, we get the candidate set of all nodes for further

optimization. During the simulation period, we will construct all the possible con-

tamination events and run simulations on a hydrodynamic simulator. By doing this,

we can get a detection time matrix recording the minimal detection time for each

node for all the possible contamination events. We can use this matrix to compute

the optimization objective functions. Finally, we run the optimization algorithm with

different sensor number settings.

1.5 Structure of the thesis

The remainder of this thesis is structured as follows: In Chapter 2, we will discuss the

problem we will solve in more detail, including the properties of the water distribution

network that we will study, the concepts of MOP, and the sensor placement problem

formulation in the MOP context. The standard version of NSGA-II will be explained

as well.

In Chapter 3, we will introduce the methods we used, and different centrality met-

rics are explained, including not only their definition but also the internal meaning

they would stand for, and according to this, we propose our way to utilize the central-

ities; After that, we compare three preselection methods and determine the candidate

set we will work on. Then, we will introduce the centrality-based mutation method

we designed for NSGA-II.

We show and discuss the results in Chapter 4, including the centrality distribution,

Pareto fronts, and hypervolume changes.

Finally, we have a conclusion in Chapter 5, we give a summary of this thesis and

list the possible future work.
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Chapter 2

Problem Definition

In this chapter, we will introduce the problem that we work on, explain the background

mathematical concepts, and formulate the problem as a mathematical problem. The

standard version of NSGA-II will then be explained in more detail.

2.1 Water distribution network

A water distribution network is an infrastructure to carry water from waterworks or

wells to satisfy different kinds of consumers. It is composed of many different kinds

of components, such as pipes, junctions, pumps, valves, and tanks. Typically, in a

water distribution network, pipes are denoted as edges, and junctions or tanks are

denoted as nodes. In this paper, we focus on the Battle of the Water Sensors Network

1 (BWSN1)([17]). This network consists of 126 junctions, 168 pipes, one constant

head source, two pumps, two tanks, and eight valves. The layout of the network is

shown in Figure 2.1.

2.2 Multiobjectives optimization problem

There are classes of problems for which, when we try to solve them, we have to make

trade-offs between two or more conflicting objectives in order to arrive at a solution,

in other words, multiple criteria decision-making. For example, when we construct a

building, we want to minimize the investment cost and maximize the durability at the

same time. A formal mathematical definition is given as follow [7]:
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Chapter 2. Problem Definition

Figure 2.1: Layout of Battle of the water sensors network1(BWSN1)

Definition 2.2.1 (Multiobjective Optimization). Given m ( m g 2 ) objective func-

tions f1 : X → R, . . . , fm : X → R which map a decision space X into R, a multiob-

jective optimization problem (MOP) is given by the following problem statement:

minimize f1(x), . . . ,minimize fm(x), x ∈ X

When we try to apply optimization to these problems, more than one objective

function should be optimized. However, there is no single solution that can optimize

each objective simultaneously, which means if one objective improves, then at least

one of the other objectives will get worse. To compare the two solutions, the definition

of Pareto dominance is given as follows:

Definition 2.2.2 (Pareto Dominance). A solution x1 is said to Pareto dominate a

solution x2, if and only if: ∀i ∈ {1, . . . , n} : fi(x
1) f fi(x

2) and ∃i ∈ {1, . . . , n} :

fi(x
1) < fi(x

2).

where fi is the i-th objective function. With this definition, the objective sets

could be arranged in Pareto order. The definitions of Efficient Point, Efficient Set,

and Pareto Front are as follows:

Definition 2.2.3 (Efficient Point, Efficient Set, Pareto Front). [7] The minimal ele-

ments of the Pareto order on decision space are called efficient points.
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2.2. Multiobjectives optimization problem

The subset of all efficient points in decision space is called the efficient set.

The subset of all non-dominated objective points in objective space is called the Pareto

Front.

There are four quantitive design objectives proposed in [17], in this project, we

choose two of them to optimize, namely the expected time of detection and the detec-

tion likelihood.

Expected time of detection, for a particular contamination event, the time of

detection by a sensor is the elapsed time from the start of the event to the first time

detecting a nonzero contamination concentration. In a particular sensor placement

solution with n sensors, tj refers to j-th sensor’s detection time. The time of detection

for this sensor placement solution, td, is the minimum among all the sensors in the

solution.

td = min
j

tj , j ∈ {1, . . . , n}

The objective function to be minimized is the average detection over all possible con-

tamination scenarios,

F1 =
1

m

m
∑

i=1

td → min

Where m is the total number of all contamination scenarios.

Detection likelihood is an indicator for the probability of detection of a contam-

ination event, it is estimated by

F2 =

m
∑

i=1

dr

where dr=1 if contamination event r is detected, otherwise zero. m is the total number

of possible contamination events. To convert the maximization to minimization, we

use the inverse of F2 as the optimization objective

F2 =
1

∑m

i=1
dr

In addition, the sensor budget could serve as another objective, since in a practical

environment we prefer to find solutions that have good performance with fewer sensors.

However, to be consistent with the settings in BWSN, we chose to set the sensor

budget as the constraint. Besides, we will try more sensor budget settings to observe

the impact of sensor budgets, and the result will be shown later.

To simulate contamination events occurring in the network, each node will be

injected with a certain amount of contaminated substance, and each injection is a single
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Chapter 2. Problem Definition

contamination event, so in the BWSN1, the total number of possible contamination

events is 129 (126 junctions, 1 head source, and 2 tanks). The injection starts at the

beginning of the simulation and lasts for two hours; the total simulation duration is

96 hours.

In a solution to the problem of sensor placement, every node has only two choices:

be chosen for placement or not, so this is a binary optimization problem. When

we design the chromosome, it is straightforward to use binary encoding. In each

chromosome sequence, each bit represents a node, if that node is chosen for sensor

placement, the corresponding bit is assigned with 1, otherwise 0.

When we try to install sensors in the water distribution network, the sensor budget

is a problem that must be considered. In the BWSN challenge, different sensor budget

options are given; we will adopt these and try more options.

After the previous analysis, the problem we study could be formulated as follows:

F1 =
1

m

m
∑

i=1

td → min

F2 =
1

∑S

i=1
dr
→ min

s.t.
∑

xi f n

xi ∈ {0, 1}

where xi denotes the bits in the chromosome, n is the sensor budget.

2.3 NSGA-II

An evolutionary algorithm (EA) is a generic population-based optimization method

inspired by biological evolution. Similar to the process of evolution, there are four

typical components:

• reproduction: generates new offspring from the population

• recombination: gene crossover from parents’ chromosome

• mutation: gene mutation occurred at some points of chromosome

• selection: select parents from the population set
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2.3. NSGA-II

For a problem to be optimized, a candidate solution is considered an individual in the

whole population set. After every generation, the better offspring will be retained,

which is called the ”elitist strategy”. After generations of evolution, the result will

converge on a local or global optima.

The algorithm we used in this study, NSGA-II([3]), is a Pareto dominance-based

multiobjective evolutionary algorithm (MOEA). The main loop of NSGA-II is given

by Algorithm 1.

Firstly, the population set is initialized, it can be randomly generated under the

constraints. Then, to produce one new individual of the next generation, three steps

should be executed, namely select parents, crossover, and mutate. In the process of

select parents, two parents are selected from the population set. There are different

kinds of selection methods; we choose the tournament selection method, which selects

two tournaments from the population set, and the winner of each tournament is used

for crossover. The comparison between two individuals is based on a ranking method

that will be explained later.

The next step is the crossover for the parents we got in the previous step. We

recombine the chromosomes to generate new ones, and we choose the single-point

crossover method shown in Figure 2.2. In this method, one crossover point is randomly

selected, and the segment between the beginning of the chromosome and the crossover

point is copied from one parent, and the rest is copied from the other parent. With

this operation, we can get two new chromosomes. The crossover operator makes sure

that features in the current population set can be passed down from one generation

to the next; otherwise, the process of evolution would be totally random.

Figure 2.2: Single point crossover, the top red and blue bars denote the chromosomes of
parents and the bottom two bars represent the recombined children’s chromosomes.

Then, the following step is mutation. Upon the chromosomes generated in the

previous step, some bits in the chromosomes are selected and inverted, randomly se-

lecting the mutation position is a simple and common way. In this paper, we proposed
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Chapter 2. Problem Definition

a centrality-based method to identify the mutation position, and this will be explained

later in more detail. The mutated chromosomes are considered the offspring, and they

are added to the offspring set. The mutation step is beneficial for producing new

features in the offspring, which means the diversity of the gene pool increases.

All the steps described before can be considered the variation part; in this part,

new individuals are generated, and after combining them with the current population

set, we get a double-sized population set. To keep the better half of the combined

population set as the next generation, a two-level ranking method is applied over the

population set.

The first-level ranking is non-dominated sorting; the algorithm is given in Algo-

rithm 2. After the non-dominated sorting process, the population set is divided into

partitions with different ranks; the individuals in the partitions with higher ranks are

better than the ones in the partitions with a lower rank. Inside each partition, the

crowding distance is computed for every individual. A crowding distance is the accu-

mulated distance from the neighbor individual along each objective. It is described

in Algorithm 3, and it reflects the crowding degree, an individual who has a high

crowding distance indicates it is located in a sparse position and is more different from

others. In NSGA-II, it is encouraged to choose individuals with a higher crowding

distance for crossover and the next generation to maintain diversity.

Algorithm 1 NSGA-II

Initialize population P0 ¢ Xµ

while not terminate do

Qt← ∅
for all i ∈ {1, . . . , µ} do

(x1, x2)← select parents(Pt)
ri ← crossover(x1, x2)
qit ← mutate(ri)
Qt ← Qt ∪ qit

end for

(R1, . . . , Rl)← non dom sort(Pt ∪Qt)
Pt+1 ← Find the top µ best out of Pt ∪Qt

t← t+ 1
end while

9



2.3. NSGA-II

Algorithm 2 non-dominated sorting

Population P
Rank k ← 0
while p ̸= do

k ← k + 1
Rk ←non-dominated solutions in P
P ← P \Rk

end while

return R1, . . . , Rk

Algorithm 3 crowding-distance sorting

R, partitions with the same non-dominance rank
r = |R|
for j = 1,. . . , m (number of objectives) do

L← sort R by j-th objective ascendingly
for i = 1, . . . , —R— do

ci = 0
x← i-th individual in R
m,n← upper and lower neighbor to x in L
ci+ = (mj + nj), mj , nj are the j-th objectives of m,n

end for

end for

return crowding distance c1, . . . , cr

10



Chapter 3

Methods

In this chapter, we will introduce the method we used in more detail. First, we will

discuss the centrality metrics from different angles. Then, preselection methods will be

explained. Also, we will give a description of the centrality-based mutation method.

The following are the evaluation methods and experimental settings.

3.1 Centrality Metrics Discussion

For element-level analysis, centrality represents the importance of a node in a network,

from different aspects. The simplest measure of centrality is degree centrality([9]),

which is the number of edges connected to the node.

Betweenness centrality([8]) is another centrality measure computed based on

the shortest path in the network. It is computed by the equation:

g(v) =
∑

s ̸=t ̸=v

σst(v)

σst

where σst(v) represents the number of shortest paths between vertex s and t that

passes through v, σst is the total number of the shortest path between vertex s and

t. Betweenness is used to measure the degree to which a vertex plays the role of a

”bridge” in a network or graph. When moving to a water distribution network, a

node with high betweenness centrality means it connects more parts of the network

together, so if a sensor is placed at this position, the detection probability would be

higher than at other nodes.

11



3.2. Preselection

Eigenvector centrality is used to measure the influence of a node within a net-

work. The concept is that a node’s influence is also determined by its neighbors’

importance. Connections to high-scoring nodes contribute more to the score of the

node in question than equal connections to low-scoring nodes. It is computed by the

equation:

e(v) =
1

λ

∑

i∈V

αv,ixi

In this equation, λ is the eigenvalue of the adjacency matrix, αv,i is 1 when the two

vertex v and i are connected, otherwise 0. xi is the eigenvector centrality of vertex i,

it could be initialized to 1. After iteratively computing across the network, the final

result will converge, and then we get the eigenvector centrality of each vertex. In the

water distribution network, a node with higher eigenvector centrality means it could

be an important facility, such as a reservoir or waterworks, so it is a good choice for

sensor placement.

To retain the features of both betweenness centrality and eigenvector centrality, we

proposed a method called combined centrality, which is a weighted sum of these two.

As aforementioned, every kind of centrality represents importance in a single aspect.

However, for a real-world network, for example, a water distribution network, we make

decisions only relying on one single centrality, which would be insufficient and, more

than this, would lead to biased results. In a centrality combined with more than

one centrality, different centralities contribute to the final centrality. The following

equation is used to compute the combined centrality

c = 0.5 ∗ b(v) + 0.5 ∗ e(v)

where 0.5 is the weight for each centrality, which means the two centralities have the

same contribution to the final centrality. Other weight possibilities could be investi-

gated in further research.

3.2 Preselection

The water distribution network used in this paper consists of a total of 129 nodes.

The total number of possible solutions with x sensors would be the x-combination of

129 nodes, namely
(

129

x

)

, which will be extremely huge. To reduce the computation

load, it is necessary to apply a pre-processing method to gain a subset of total nodes;

at the same time, the result generated from this subset should not be worse than that

12



Chapter 3. Methods

from all nodes. There two ways are considered.

a), Diao et al. [5] developed a method based on controllability analysis to pre-select

nodes as sensor placement candidates, which are called driver nodes. A minimum of

47 nodes is enough for full control of contaminant intrusions.

b), Another way is based on centrality. As aforementioned, the nodes with higher

centrality are more important, so it is straightforward to treat these nodes as can-

didates. Based on these approaches, we get three groups of candidates, as shown in

Table 3.1. After experiments based on these candidates, the hypervolume indicator

result is shown in Figure 3.1. We can see that the subset based on controllability has

the best performance, so this subset will be used to provide candidates in the following

experiments.

Table 3.1: Three preselection candidate sets, generated by controllability, betweenness
centrality, and eigenvector centrality

approach candidates nodes
controllability 7, 8, 10, 13, 14, 16, 21, 26, 36, 37, 38, 39, 41, 42, 45, 48, 50,

52, 64, 66, 72, 73, 74, 76, 80, 82, 83, 84, 85, 91, 93, 99, 100,
101, 106, 110, 112, 113, 114, 118, 123, 124, 125, 126, 129,
130, 131

betweenness cen-
trality

1, 20, 21, 22, 23, 30, 31, 34, 37, 47, 48, 49, 54, 58, 59, 60, 61,
62, 63, 64, 65, 68, 69, 70, 72, 73, 75, 76, 77, 78, 79, 80, 81,
82, 85, 86, 87, 88, 89, 90, 91, 92, 97, 98, 99, 109, 110

eigenvector cen-
trality

33, 50, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101

3.3 Centrality-based mutation in NSGA-II

In this section, we will introduce the centrality-based mutation improvement used

in NSGA-II. The original approach is random mutation, which means the mutation

position is randomly chosen from the chromosomes, and each position has the same

probability of being chosen. However, as aforementioned, in a water distribution

network, each node has a different centrality or importance, and this will lead to

different contributions to the detection time and coverage. It is straightforward that

we hope the nodes with higher centrality have more chances to be investigated. The

method is given in Algorithm 4. As described in the algorithm, the nodes with the top

10 highest centrality values will be assigned 5 times higher weights than other nodes,

13



3.4. 2-dimensional analysis

Figure 3.1: Hypervolume changes with different sensor budget settings, generated from
experiments with three different preselection candidate sets.

which means by this way we try to make sure that the nodes with higher centralities

have a higher probability to be selected for mutation.

As discussed in Section 3.1, we have three centrality options, namely betweenness

centrality, eigenvector centrality, and combined centrality. Besides, we will use the

original version mutation as a baseline. The experiments will be based on these four

mutation approaches.

3.4 2-dimensional analysis

As discussed in Section 2.2, we have two objective functions to optimize, so we can use

a 2D Pareto front to visualize the results of previous algorithms. A typical example of

a 2D Pareto front is as shown in Figure 3.2. In this figure, the two axes represent the

two objectives, respectively; the scatter line is the nondominated set (Pareto front),

and the dominance direction is top-right. The left part of the Pareto front is the

dominant space, which is the space to seek improvement. The shape of the Pareto

14



Chapter 3. Methods

Algorithm 4 Choose mutation position

S ← preselected candidate nodes are sorted by the centrality descendingly
upper = 10 ∗ 5 + (|S| − 10)
rand← randomly draw a integer from [1, upper]
c = 5
for i ∈ {1, . . . , |S|} do

if rand fc then

return i
else

if i f 10 then

i = i+ 5
else

i = i+ 1
end if

end if

end for

front could be varied, but all the points on the Pareto front are nondominated by each

other. In this paper, we use the horizontal axis for coverage and the vertical axis for

detection time.

3.5 Evaluation

We use the hypervolume indicator to evaluate the performance of results generated

from experiments. The hypervolume indicator measures the size of the dominated

space, bound from above by a reference point [7], as shown in Figure 3.3, where

r is the reference point and the size of the gray area is the hypervolume. For the

fixed reference point, the greater the hypervolume indicator, the bigger the size of the

dominated space, which means better performance. In this study, we choose the upper

bound value of both objectives as the reference point, avoiding a negative hypervolume

indicator. The simulation duration is 96 hours (96 * 3600 seconds), and the maximum

uncoverage indicator is 1, so the reference point is [345600, 1].

3.6 Experimental setup

This section contains a description of the experimental setup. The software and tools

we used are listed as follows:

• Python 3.9, the environment for the experiment.
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3.6. Experimental setup

Figure 3.2: An example of 2D Pareto front, the two axes represent two objectives.

• Wntr[14], a Python package to simulate the resilience of water distribution net-

works.

• EPANET 2.0, software used to model a water distribution network.

• Networkx, a Python package to compute the centrality metrics.

• Matplotlib, a Python pack to visualize the results.

• NSGA-II, implemented in the Python programming language.

16



Chapter 3. Methods

Figure 3.3: Hypervolume indicator computation example, y(i) is the nondominated point
on the Pareto front, r is the reference point, and the size of the gray area is the hypervolume
dominated by the Pareto front. [7]
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Chapter 4

Results

4.1 Centrality distribution and Interpretation

We first investigate the distribution of betweenness centrality, eigenvector centrality,

and combined centrality. Figure 4.1 shows the distribution of centralities across all

nodes in the network. We can see that higher centrality is concentrated in the ranges

junction-20 to junction-35 and junction-55 to junction-101, at some junctions, they

have only one nonzero centrality, and after combination, they would be paid more

attention to. In a word, a single centrality focuses on a smaller range than the combined

centrality.

Table 4.1 shows the correlation matrix between betweenness centrality and eigen-

vector centrality, and we can see that there is a weakly positive correlation between

them.

Table 4.1: The correlation matrix between betweenness centrality and eigenvector central-
ity.

betweenness eigenvector
betweenness 1.000000 0.312631
eigenvector 0.312631 1.000000

4.2 Multiple Pareto Fronts

As aforementioned in Section 3.3, we have four mutation approaches, and for each ap-

proach, we test a different number of sensors, namely 5, 10, 15, 20, 25, 30, 35, 40, and 45.
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Figure 4.1: The distributions of different centralities. The horizontal axis is the junction
index and the vertical axis is the centrality value.

Figure 4.2 shows the Pareto fronts result after simulations. The four images represent

different mutation operators, and in each image, the horizontal axis is the uncoverage

and the vertical axis is the detection time counted in seconds. Different colored dots

represent the Pareto front with different sensor numbers. The same pattern is that, as

the number of sensors increased, both objectives improved. However, after the number

of sensors reaches 30, the improvement is little. This is consistent with the discussion

in Section 3.2.
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4.4. Hypervolume indicator

Figure 4.2: Pareto fronts for various sensor number settings. The horizontal axis is the
uncoverage indicator, and the vertical axis is the minimum detection time. The top-left image
is the Pareto fronts for baseline mutation, the top-right image is for eigenvector centrality-
based mutation, the bottom-left image is for betweenness centrality, and the bottom-right
image is for combined centrality. Different color dots represent the Pareto fronts for different
sensor budgets.

4.3 Hypervolume indicator

Figure 4.3 shows the hypervolume changes under different mutation operators and

sensor numbers. In each image, the horizontal axis is the generation number, and the

evolution repeats for 100 generations; the vertical axis is the hypervolume indicator.

4.4 Interpretation of Results

From the results above, all four mutation approaches based on NSGA-II can converge,

as can be seen both from Figure 4.2 and Figure 4.3. It indicates that NSGA-II is

suitable for solving such problems. Specifically, in the top-left image, when the sensor

number is 5, the maximum uncoverage (worst case) indicator is around 0.022, which

means the detected scenario number is about 12(1/0.022), and the maximum detection

time is around 50,000 seconds. After the sensor number increases to 30, the ideal
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Figure 4.3: Hypervolume changes for various sensor number settings. The horizontal axis
is the generation number, and the vertical axis is the hypervolume. Each image is for one
sensor number. In each image, blue, yellow, green, and red lines denote baseline, eigenvector
centrality, betweenness centrality, and combined centrality, respectively.

number as discussed in Section 4.2, the maximum uncoverage drops to 0.013, which

means it detects around 77 scenarios out of 129 and the maximum detection time is

about 15000 seconds.

In Figure4.3, the hypervolume indicator reveals the performance difference be-

tween these four mutation approaches. For the final converged hypervolume (greater

is better), we can see that the combined centrality, which we proposed in this study,

shows better performance in 6 settings out of 9 (5, 10, 15, 20, 30, 40), the betweenness

centrality has the second-best performance, taking the second position in 4 settings

(5, 15, 20, 25, 40), and the first position in 1 setting (45). When talking about the

convergence speed, we cannot see any obvious pattern.
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Chapter 5

Conclusions

5.1 Summary

In this study, we investigated the probability of solving a sensor placement problem

using the multiple objectives optimization approach. Starting from this thought, we

tried to use the standard version algorithm, NSGA-II, an EA-based algorithm, to

solve this problem on a benchmark network. We also proposed the idea of using the

centrality metric of the network to improve the performance of the algorithm, namely,

centrality-based mutation. Different preselection methods are compared to reduce the

computation workload. After experiments with different sensor numbers and mutation

methods, we find that NSGA-II is suitable to solve the sensor placement problem.

When increasing the number of sensors placed in the network, both the detection time

and coverage improve significantly. However, after the number reaches a threshold,

there is less room for improvement. What’s more, the centrality-based mutation we

proposed, specifically the combined centrality mutation, shows the best performance

compared to other approaches.

5.2 Response to the research question

When coming back to the question we proposed at the beginning of this thesis, for

the first question, to integrate the centrality metric within the NSGA-II, we designed

a centrality-based mutation operator, by this approach, the mutation is expected to

occur more likely on the nodes with higher centrality.

To answer the second question, we found that simply using the nodes with high
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centrality as preselection is not beneficial for the performance, only taking one central-

ity into account for centrality-based mutation is also not helpful. A form of weighted

summation of two kinds of centrality shows a performance improvement.

5.3 Future work

We conduct experiments on a network with 129 nodes, which is a small-scale network;

in the future, we will test the algorithm with large-scale networks, such as BWSN

Network 2, a network with 12,523 nodes.

Centrality is a big family; there are many other centralities we can investigate,

such as closeness or pagerank centrality. In addition, trying to find out the practical

meaning of centrality in the context of the water distribution network is helpful to

understand centrality better.

Finally, in this study, we proposed the combined centrality method. In the exper-

iments, we simply set the same weight for two kinds of centrality. We think that it

is not the only choice; different weight settings could be explored, especially when we

combine three or more types of centrality.
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