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Abstract

This study investigates the impact of the length of epochs and feature engineering
techniques on Electroencephalography (EEG) classification tasks. The work is imple-
mented on a dataset consisting of EEG data of 47 Parkinson’s Disease patients. Five
epochs of 10 seconds exist for each patient. We partition each 10-second epoch into
two 5-second epochs to compare the results of using different lengths of epochs. For
feature engineering, we compare two techniques: a combination of ts-fresh and Boruta
and Catch22. The former applies ts-fresh to extract an amount of time series features for
each epoch of EEG data and uses Boruta to select a small set of significant features for
the classification model. Catch22 is a collection of 22 canonical time-series characteris-
tics. An automated random forest model tuned using Bayesian optimization, is applied
for the classification tasks based on the features provided by the feature engineering step.

Using the combination of ts-fresh and boruta shows similar performances for the
10-second and 5-second epochs data. However, when we conduct experiments using
the average of 5 epochs, 10-second data presents better performance with an F1-score
of 92%. While for the experiments using individual epochs (e.g., conducting five inde-
pendent experiments using one epoch), 5-second data obtains better performance with
a maximum F1-score of 96.5%. In addition, we conduct two experiments on Catch22,
namely the Catch22-Compact method (i.e., selecting 22 out of 5*22 features) and the
Catch22-Comprehensive method (using 110 features). The Catch22-Compact method
obtains a maximal F1-score of 97% when performing on individual epochs and an F1-
score of 93.4% for the average of 5 epochs for 10-second data, and it obtains a maximum
F1-score of 99.3% and 96.5% for the same settings of 5-second data.

In conclusion, this study demonstrates that classification performance depends on
feature engineering techniques and the EEG epoch length. The Catch22-Compact method
is the best compared to the other tested feature engineering methods across all data
settings in this thesis.
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1 Introduction

More than 10 million people have been diagnosed with Parkinson’s Disease(PD) worldwide
which is deemed the second most common neurodegenerative disease1. Parkinson’s disease is
a neurodegenerative disorder which is characterized by motor symptoms as well as non-motor
symptoms such as cognitive impairment [6]. Cognitive function may be difficult to assess due
to impaired visuospatial ability, motor symptoms may impair drawing/writing exercise, and
speech difficulties may impair verbal fluency. On the other hand, biomarkers could provide a
more objective and efficient way to track changes in the cognitive function of patients with
PD. Electroencephalography (EEG) is considered a potential biomarker for cognitive function
in Parkinson’s disease due to its unbiased nature, however, qualitative assessment requires
expertise and quantitative analyses require long epochs without artifacts [7]. EEG is a non-
invasive technique that measures the electrical activity of the brain using electrodes placed on
the scalp [7]. EEG is a useful tool which is used to predict cognition [7]. This examination
has a duration of almost 30 minutes and each patient should follow strict instructions[7]. As
a result of the strict instructions, only a small part of the produced data (i.e., some seconds)
contains fewer artifacts.

This research aimed to study the impact of the size of EEG epochs on classifying whether a
patient has ”good cognition” or ”poor cognition” by using an automated machine learning
pipeline. A random forest model is trained using patients who have been classified as having
either good or poor cognitive performance based on clinical assessment. The dataset consists
of 47 patients and each patient has five epochs from an EEG examination. 27 patients are
labelled as having ”good cognition” and 20 patients as having ”poor cognition”. The labels
of patients were defined in accordance with research [12].

In addition, two feature engineering techniques were employed in the experiments to transform
the raw data into meaningful and informative features, thereby enhancing the performance and
interpretability of the machine learning model. The performance of these techniques was com-
pared to determine the best one for the data. The first technique is ts-fresh combined with
boruta where ts-fresh extracted a large number of features from each time series and Boruta
selected the most relevant features for training the model. The second technique is Catch22,
which only extracted and selected 22 features of each time series which is significantly less
than ts-fresh. The reason for choosing this technique is to reduce the dimensionality of the
data and speed up model training.

The rest of this project is organized as follows. In Section 2, an overview of the related work
is given. In Section 3, the datasets and automated machine learning pipeline were described
in detail, as well as the two feature engineering techniques that were used to extract and
select features. Section 4, the results of the experiments are shown and the performance of
evaluation metrics is interpreted. Section 5, is the conclusion and the future work is shown in
Section 6.

1https://www.parkinson.org/understanding-parkinsons/statistics
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1.1 Problem Definition

Doctors use EEG examination as a biomarker to model cognition. Furthermore, an EEG ex-
amination can be performed in patients with Parkinson’s disease who are unable to undergo
cognitive testing to be classified as having ”good cognition” or ”poor cognition”. This is a
supervised classification problem which predicts the cognition of a patient with PD based on
EEG examination. An EEG examination consists of several time series which originate from
the measurements of electrodes which are used during the examination. The study will utilize
the generated time series data of 47 patients with PD as the input. Since it is a binary classi-
fication problem, the objective is to classify patients into two classes: poor cognition (0) and
good cognition (1) in accordance with research [12].

Moreover, the evaluation metrics will be the F1-score and accuracy, where the F1-score mea-
sures the performance of a binary classification problem, and the accuracy measures the per-
centage of correct prediction of the model. The process will involve data cleaning and an
automated machine learning pipeline which consists of the following steps: feature engineer-
ing, model selection and hyperparameter optimization. The data will be split into training and
test sets, and cross-validation will be used to tune the hyperparameters and select the best
model.

The main challenge in cognitive prediction lies in the difficulty of interpreting EEG data due
to the potential presence of artifacts that can hinder accurate analysis and interpretation.
Currently, a selection of 5x10 sec. epochs (i.e., segments) are considered to be required for
accurate reflection of the total EEG [12]. This project will investigate whether fewer seconds
can give equally reliable results based on the metrics. This would mean that fewer EEGs are
discarded due to too many artifacts and decreased pre-processing time due to less stringent
criteria for epoch selection.

1.2 Objective and Research Questions

The objective of the thesis project is to assess whether fewer data can give reliable results for
the cognition of patients with Parkinson’s Disease. In addition, it was investigated whether
fewer seconds of EEG examination can predict ”poor cognition” or ”good cognition” following
the same procedure such as the 10 seconds of examination. For this reason, the used dataset
consists of five epochs of an EEG of 10 seconds, while two subsets were generated by splitting
the dataset of 10 seconds such that the length of 5 seconds was obtained. These subsets
consist of five epochs of an EEG of 5 seconds, namely Part 1 and Part 2. Moreover, two
different feature engineering techniques are compared to find the technique with the most
reliable results.

The research questions to reaching this objective are:

1. What is the impact of the length of EEG epochs for the performance of machine learning
models on classifying Parkinson’s patient cases?

2. What impact does each feature engineering technique (i.e., ts-fresh - boruta, Catch22)
have on the model that predicts whether a patient with PD has poor or good cognition?
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These research questions align with the objective of using fewer seconds of data and classi-
fication of patients based on cognitive function. They aim to investigate the existing feature
engineering techniques by using the 10-second dataset and the two subsets of 5-second and
explore potential improvements, and evaluate the performance of the Random Forest model.
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2 Related works

In [19], the authors perform an extensive literature review, analyzing a wide range of papers
focused on automated machine learning (AutoML) techniques and their potential applica-
tions in healthcare. The objective is to explore improvements in AutoML and consider how
these techniques can be leveraged to address healthcare challenges such as disease diagno-
sis. The review presents several noteworthy findings. Firstly, various AutoML approaches are
identified, including automated feature engineering, hyperparameter optimization, pipeline op-
timizer, and neural architecture search. The advantages and limitations of each approach are
presented while providing information about the effectiveness of various healthcare tasks. Fur-
thermore, it shows how automated techniques can help select features and optimize models
for better accuracy and efficiency. It also shows how AutoML can improve patient care and
medical decision-making. However, it is important to recognize that there are challenges in
implementing AutoML in healthcare settings, such as the interpretability of automated models,
and the need for domain-specific knowledge integration. These challenges need more research
and development. Overall, this paper makes a substantial contribution to the field of auto-
mated machine learning in healthcare.

In [12], the authors used an automated machine learning pipeline to evaluate the cognitive
function of PD patients. The pipeline consists of feature extraction (i.e., ts-fresh), feature se-
lection (i.e., Boruta), Random Forest classifier and hyperparameter optimization. The patients
have been classified into two classes ”good cognition” and ”poor cognition”. Five epochs were
selected from the EEG of each patient which contains the recorded results of 21 electrodes.
These records of electrodes are time series used as input in the machine learning pipeline.
Then, the ts-fresh method was used to extract features and the boruta method to select the
most important features. After that, the selected features were used to train the model, and
a hyperparameter method, namely Mixed-integer Parallel Efficient Global Optimization, was
performed to optimize the hyperparameters of the model. By using the automated extract
method for the features the model achieved an accuracy of 84%, while the extracted features
in combination with clinical features increased the accuracy to 91%.

In the context of the same project similar to the research above in [8], the same steps of an au-
tomated EEG-based machine-learning pipeline were performed. The data come from patients
who suffer from Parkinson’s Disease during Deep Brain Stimulation screening. There are six
neuropsychological domains. The test scores of all patients were standardized and the average
per domain was computed. The number of patients was 112, from them 20 were selected with
a high cognitive score, 20 were selected with a low cognitive score, and the remaining people
were selected with intermediate cognitive performance. It also used 21 electrodes that are the
global peak frequencies, while the global was compared with occipital peak frequencies. By
using as a dataset the global peak frequencies in the pipeline and applying cross-validation
the accuracy was 0.92. On the contrary, the usage of occipital peak frequencies gave a lower
accuracy of 0.67.

In [10], electromyography (EMG) time series were used in an automated machine learning
pipeline to predict whether a person is healthy or not. The dataset consisted of 65 subjects, of
which 40 have Inclusion Body Myositis (IBM) and amyotrophic lateral sclerosis (ALS), while 25
are healthy. This is a supervised classification problem and the classification labels are Diseases
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for IBM and ALS patients and CTRL for healthy subjects. The automated machine-learning
pipeline of this work follows the same steps mentioned above.

In this project, the aim is to compare two different methods of feature engineering namely ts-
fresh combined with boruta and Catch22. Moreover, a dataset of 10 seconds and two subsets
of 5 seconds was used to evaluate those methods and find if one epoch with fewer sizes can
give reliable results compared to the average of features of five epochs with fewer sizes based
on the analysis of EEG time series.
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3 Methodology

3.1 Dataset

The raw data consists of the results of an electroencephalography(EEG) examination in 127
patients. Figure 1 illustrates how the electrodes are placed on a patient’s scalp for the ex-
amination. The dataset used contains five epochs of each patient and each epoch represents
ten(10) seconds of the examination. Moreover, each epoch consists of twenty-one(21) time se-
ries where each time series reflects the difference in electric potential between an electrode and
a reference electrode [3], in this case, a common reference is the electrode Cz. Furthermore,
each patient with Parkinson’s disease(PD) is labelled as having ”good cognition” or ”poor
cognition”. The raw data was obtained by the Leiden University Medical Center (LUMC).

Figure 1: Imaging electrodes on the patient’s head [15]

3.1.1 Pre-processing dataset

Missing values handling

The initial dataset as mentioned above consisted of the patient’s epochs (i.e., patient id and
patient time series) and the patient’s labels (i.e., patient id and labels). At first, it was observed
that the labels were referring to 60 patients while the total number of patients was 127. To
arrive at the final dataset the intersection of these two subsets was taken based on patient
id. The patient’s epochs had 127 patients of which 80 patients were discarded because there
were no labels for them. This results in 47 patient epochs (i.e., 127 minus 80 with no labels)
and 47 patient labels (i.e., 60 minus 13 without patient epochs).

Moreover, the raw data consisted of five epochs for each patient. Each epoch contains the
measurements of 21 time series which are the measurements of the electrodes that were used
to perform the examination and the duration of each epoch is 10 seconds of examination.
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Choice of epoch length

Table 1 displays the data format utilized in this project. The first data set consists of five
10-second epochs of the examination clinicians have assessed that contain fewer artifacts and
it is the raw data. Each epoch consists of 21 time series, with time series containing 5000 data
points, which serves as the length of the time series. Two additional subsets, named Part 1
and Part 2, were generated from the first dataset of 10 seconds by splitting the dataset in the
middle, resulting in two 5-second subsets. Each epoch within these subsets also contains 21
time series but the length of the time series is 2500 data points for both subsets.

EEG cases Labels
Name of set Patients Epochs Class 0 Class 1 Dimension Length

10 seconds 47 5 20 27 21 5000
5 seconds (Part 1 and
Part 2)

47 5 20 27 21 2500

Table 1: Overview of data format used as input in feature engineering

Table 2 contains the four approaches taken into account to execute the experiments. These
approaches were developed based on the data format in Table 1 which contains the seconds of
each epoch of the EEG and the average of features of those epochs. More specifically, Ind-10s
approach includes features of each individual epoch of 10 seconds from the EEG, while the
average of features from five 10-second epochs is contained in Avg-10s approach. Features
from each individual 5-second epoch of the examination, including both Part 1 and Part 2,
are contained in Ind-5s approach and Avg-5s approach includes the average of features of
five epochs of 5 seconds (Part 1 and Part 2). In Approaches Ind-5s and Avg-5s, the subsets of
5 seconds were utilised. These approaches were applied to execute the experiments by using
two different feature engineering techniques to extract and select features, namely ts-fresh
combined with boruta, and Catch22.

Labels
Approach Description Patients Epochs Class 0 Class 1

Ind-10s Automated Features
10sec (each epoch)

47 5 20 27

Avg-10s Automated Features
10sec (averaged)

47 Averaged Features
of epochs

20 27

Ind-5s Automated Features
5sec (each epoch)

47 5 20 27

Avg-5s Automated Features
5sec (averaged)

47 Averaged features
of epochs

20 27

Table 2: Overview of the Approaches for executing experiments with Automated Machine
Learning Pipeline, namely Individual 10s Features (Ind-10s), Averaged 10s Features (Avg-
10s), Individual 5s Features (Ind-5s), Averaged 5s Features (Avg-5s)
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3.2 Machine learning pipeline

The pipeline used in this project was created for application in the automotive industry, for
time series classification tasks with vehicle on-board data [11], [13]. Moreover, it has been
used to predict the cognitive function of patients who suffer from PD by using EEG [12]. It
has also been applied to EMG (electromyography) to limit arbitrary choices by using EMG
time series from healthy people and patients with either myopathic or neuropathic diseases
[10]. Figure 2 illustrates the steps of the automated machine learning pipeline used to execute
the experiments.

The three main steps of the pipeline are:

1. Feature engineering (Extracted features and Selected features)

2. Modelling

3. Hyper-parameter optimization

Figure 2: Illustration of the process of performing the experiments by using the Automated
Machine Learning pipeline

3.2.1 Feature Engineering

Feature engineering contains the extraction of meaningful features from raw data and their
transformation into formats optimized for utilization by machine learning models [20]. Feature
engineering is the procedure of extracting and selecting features of each time series. Here, two
different engineering features were used. The first is ts-fresh fused with Boruta, and the latter
is Catch22. They are described in detail below.

Ts-fresh and Boruta

Feature extraction is an important procedure for time series analysis. Selecting and calculating
features from time series is time-consuming and needs the expertise of specialists to extract
meaningful features from time series. However, there is a python package, ts-fresh (Time Series
FeatuRe Extraction based on Scalable Hypothesis tests) which is a faster method that uses 63
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time series characterization methods [5] and extracts more than 750 features2 for each time
series.

Ts-fresh was applied to extract 16528 features from each time series of the patients. However,
it was required to verify that the same features were present in all files. Therefore, a script
was created to compare the features across the files and identify any discrepancies. After that,
the data frame was checked for nan values and found that 85 features had missing values.
It was decided to drop these features from the data frame. As a result, the total number of
features was 16443, which means that 783 features were extracted from each time series. It is
observed that the number of extracted features is different from the default number based on
the research [5], i.e., 794. This can be due to factors such as the length of the time series or
the characteristics of the data. However, the number of features was very high and a feature
selection method was used to reduce the dimensionality of the dataframe.

Hence, those extracted features were utilised as input in the Borura algorithm to select the
most important features. To perform features selection the library BorutaPy was used. Boruta
is based on the Random Forest method. This method is quick and does not require tuning the
parameters and it produces an estimation for the most important features. Boruta generates
shadow features using the random shuffle method from the extracted features. It then com-
pares the extracted features with the shadow features and checks if the extracted feature is
better, in which case the algorithm keeps it [14].

Catch22

Canonical Time-series Characteristics (Catch22) is a method that generates twenty-two fea-
tures from a time series. In this project, a Python package of pyCatch22 was used to provide
a collection of time-series features. These features are designed to be useful for time series
classification tasks.

The main idea is to extract features from a time series that capture different aspects of its
shape, dynamics, and distribution. The chosen features are robust, interpretable, and com-
putationally efficient[4]. The package contains a set of features that span through different
aspects of time series, including their autocorrelation, distributions and outliers, complexity,
fluctuation scaling aspects, and stationarity[4].

The features are computed using a combination of statistical and machine-learning techniques.
These techniques evaluate the univariate performance, combine feature scores, and select a
reduced set of important features which is useful in accordance with two steps of the filtering
process, namely performance filtering and redundancy minimization [4]. A time series is pro-
vided as input in Catch22 and the Python package computes a feature vector, i.e., 22 features
as output.

To extract features from each time series in this project, a function was applied to compute 22
different statistics for each time series. This resulted in a set of 21 rows which is the number
of time series, each with 22 features, for each patient. However, this format was not suitable
for the analysis, since a single row of 22 features for each patient is needed. Moreover, the

2https://nils-braun.github.io/tsfresh-on-cluster-1/
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time series varied widely in their values and using the mean or median across them to reduce
the dimensionality was not feasible.

For this reason, the time series from the different brain regions were employed, specifically the
frontal, temporal, central, parietal, and occipital regions, which correspond to the electrode
placements. The names of the electrodes for each region are listed in Table 3. Data originating
from these electrodes were the time series that were used in this project to extract features.
Each region provided a set of time series, with 22 features extracted for each time series.
Then, the average of these features was calculated across all time series in each region to
create a final set of 22 features. For instance, the occipital region consists of two electrodes,
namely O1 and O2, the referred time series of these electrodes are ”O1-Cz” and ”O2-Cz”.
For each time series, 22 features were extracted, resulting in two sets of 22 features. After
that, the average of each feature across the two time series was computed to create a single
set of 22 features for the occipital region. This process was repeated for each region and then
the resulting sets of features were concatenated into a single set of features for each patient,
with 5 rows (one for each region of the brain) and 22 columns (one for each feature). As a
result, the dimensionality of extracted features from Catch22 decreased. Table 4 shows the 22
extracted features of the Catch22 method [4] for each time series.

Regions Electrodes

Frontal F3, F4, F7, F8, Fz
Temporal T3, T4, T5, T6
Central C3, C4, Cz
Parietal P3, P4, Pz
Occipital O1, O2

Table 3: Five different regions of the brain and the electrodes of each region

Then, two different methods were employed to perform the experiments as they are illustrated
in Table 5. The first method is Catch22-Comprehensive which consists of an array for each
patient that contains all features from the five regions i.e., 110 (5x22)features. The second
method is Catch22-Compact where the arrays of all patients of the previous steps were con-
catenated into a dataframe and a filtering method was employed to select the most important
features. To perform the filtering method, from the library ”sklearn.feature selection”, the
function ”selectKBest” was used. This function creates an object by using as a score function
the ”f classification”, this function calculates the ANOVA F-value for the features which is the
degree of linear dependency between two features. Due to the fact that Catch22 generates 22
features, the 22 most important features were selected from the 110 features of the Catch22-
Comprehensive method. After that, the selected features were used as input to Random Forest
Classifier model to train the model.
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No Feature names

1 DN HistogramMode 5
2 DN HistogramMode 10
3 CO f1ecac
4 CO FirstMin ac
5 CO HistogramAMI even 2 5
6 CO trev 1 num
7 MD hrv classic pnn40
8 SB BinaryStats mean longstretch1
9 SB TransitionMatrix 3ac sumdiagcov
10 PD PeriodicityWang th0 01
11 CO Embed2 Dist tau d expfit meandiff
12 IN AutoMutualInfoStats 40 gaussian fmmi
13 FC LocalSimple mean1 tauresrat
14 DN OutlierInclude p 001 mdrmd
15 DN OutlierInclude n 001 mdrmd
16 SP Summaries welch rect area 5 1
17 SB BinaryStats diff longstretch0
18 SB MotifThree quantile hh
19 SC FluctAnal 2 rsrangefit 50 1 logi prop r1
20 SC FluctAnal 2 dfa 50 1 2 logi prop r1
21 SP Summaries welch rect centroid
22 FC LocalSimple mean3 stderr

Table 4: Overview of 22 extracted features of Catch22

Method Description Dimension Length

Catch22-Comprehensive Extracted features from 5 regions electrodes 110 47
Catch22-Compact Extracted features using filter method 22 47

Table 5: Overview of the methods for the extracted features from the Catch22 method.

3.2.2 Random Forest classifier

Random forest is an ensemble learning method that uses many decision trees to do the pre-
diction. Each decision tree is trained by using a subset of the training set and features. After
that, the results of all decision trees are gathered and the class with the most votes is the
result of the model [9]. This model is simple and efficient and is used in different domains
while achieving good performance. This model also uses the hyperparameters of the Decision
Tree classifier and Bagging Classifier [9].

Here, the selected features were used as input in the Random Forest model. This model
was applied by using the function ”RandomForestClassifier” from the scikit-learn (sklearn) li-
brary. The parameters that were selected to be used were n estimators, max depth, bootstrap,
max features, min samples leaf, min samples split. As mentioned above, the Random Forest
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consists of several decision trees. Each decision tree is independent of the remaining ones. By
using the Random Forest algorithm the overfitting is reduced by using the majority ranking of
the decision trees [1].

For the experiments, the extracted features from five individual epochs of 10 seconds and 5
seconds were used, as well as the average of the features of all epochs for the seconds referred
to earlier.

3.2.3 Hyperparameter Optimization

To achieve a good performance of the model, the best hyperparameters should be selected.
There are several methods to optimize the parameters, such as Grid Search, Evolutionary
Algorithm, and Bayesian Optimization [9]. Firstly, Table 6 indicates the names of the hyper-
parameters of the Random Forest model and the range of values examined to choose the best
values for the model.

Parameter Values

max depth none, 2, 4,...,100
n estimators 1,2,....1000

min samples leaf 1,2,....10
min samples split 2,3...,20

bootstrap True, False
max features auto, sqrt, log2

Table 6: The range of hyperparameters to optimize the Random Forest Classifier

The Bayesian Optimization algorithm was selected to optimize the model. This algorithm uses
intelligence to select the next set of hyperparameters that will improve the model. This method
is repeated until it converges to an optimum. The Bayesian Optimization is preferable to tune
the hyperparameters of a well-performing model on the validation dataset.

However, in Table 6, parameters containing categorical and integer values exist. For this rea-
son, Mixed-integer Parallel Efficient Global Optimization (MIP-EGO) [17], [18], is selected to
handle mixed variables namely integer and categorical. This method is efficient in optimizing
expensive problems. This algorithm proposes a candidate hyperparameter setting at each iter-
ation. The number of iterations executed in the experiments is 200 iterations.

Subsequently, this setting is evaluated by measuring the performance of the model using the
test set. In order to tune the hyperparameters, a k-fold cross-validation setup is used, where k
represents the number of folds, here 10-fold. Cross-validation divides the data into ten folds.
During this process, the model is trained and evaluated ten times, with each fold serving
as a validation set while the remaining folds are utilized for training. Notably, the model’s
evaluation takes place when the hyperparameter optimization method is applied within each
test set, representing a single fold of cross-validation.
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3.2.4 Evaluation

Two metrics were used to evaluate the model, namely accuracy and F1-score. Accuracy is the
number of correct predictive classes divided by all samples. The accuracy is computed by using
the formula:

Accuracy =
TP + TN

TP + TN + FP + FN

where

• TP is True Positive,

• TN is True Negative,

• FP is False Positive

• FN is False Negative

F1-score is the harmonic mean of the precision and recall. It is used in binary classification
problems where the labels are ”positive” and ”negative” [1]. F1-score is computed by using
the formula:

f1 = 2× precision× recall

precision+ recall
.
Precision measures how many of the predicted classes as positive are predicted correctly by
the model while recall measures how many of the positive samples in the dataset are correctly
captured by the model [1].

However, the accuracy works well when the dataset is class balanced i.e., the number of class
1 and class 2 are the same. Whilst, the F1-score takes into account Precision and Recall, it is
more appropriate for imbalanced binary classification problems than accuracy.
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4 Results and Discussions

This section consists of two subsections that provide a detailed description of the experiments
and their corresponding results. Two distinct feature engineering techniques were applied,
utilizing three different sets of data. The first dataset consists of five epochs of 10 seconds
and each epoch is part of a complete EEG examination. Additionally, there are two subsets
consisting of five epochs of 5 seconds that were derived by dividing the aforementioned initial
dataset in half.

Consequently, a total of three sets of data were used for conducting the experiments. For
each approach, namely Ind-10s, Avg-10s, Ind-5s, and Avg-5s, five independent runs have been
conducted for each feature engineering technique. Below the experiments of each feature
engineering technique are described in detail.

4.1 Using Machine Learning pipeline with ts-fresh and Boruta

Firstly, the Ind-10s approach consists of 10 seconds dataset and was used for feature extraction
using ts-fresh. 16443 features were extracted and used as input to Boruta to select the most
important features. Similarly, in the Ind-5s approach, the dataset was divided into 5 seconds
subsets (Part 1 and Part 2) and the same feature extraction and selection process was repeated
for each subset.

Subsequently, the experiments were performed in each epoch separately. The number of ex-
periments performed was five (5) executions. Table 7, shows the features selected more times,
i.e., more than 4 times out of 5 experiments for Approaches Ind-10s and Ind-5s.

No Selected Feature names

1 P4-Cz fft coefficient attr ””imag”” coeff 64
2 Pz-Cz partial autocorrelation lag 8
3 T3-Cz fft coefficient attr ””imag”” coeff 71
4 A1-Cz fft coefficient attr ””abs”” coeff 65
5 F7-Cz fft coefficient attr ””angle”” coeff 4
6 O2-Cz fft coefficient attr ””angle”” coeff 25
7 O2-Cz fft coefficient attr ””real”” coeff 53
8 P4-Cz fft coefficient attr ””angle”” coeff 64
9 T6-Cz fft coefficient attr ””angle”” coeff 88
10 T6-Cz fft coefficient attr ””imag”” coeff 88
11 T3-Cz fft coefficient attr ””imag”” coeff 39

Table 7: Overview of the features selected more times during the experiments for Ap-
proaches Ind-10s and Ind-5s by using ts-fresh combined with Boruta.

The above-mentioned features (Table 7) adhere to the following naming format:

{time series name} {feature name} {parameter 1} {value 1} {parameter 2} {value 2}

where ”time series name” represents a different time series of the dataset, ”feature name”
represents a different ts-fresh feature [5] and parameters and values show the different choices
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of the parameters [5]. For instance, feature ”P4-Cz fft coefficient attr ””imag”” coeff 64”,
refers to P4-Cz time series, the ts-fresh feature is ”fft coefficient”, and the first parameter is
”attr” and its value is ”imag” while the second parameter is ”coeff” with value ”64”. The
majority of selected features were related to the FFT coefficient (Fast Fourier Transform co-
efficient). FFT coefficient algorithm computes the Fourier coefficient of the one-dimensional
discrete Fourier Transform for real input [5]. The FFT coefficients are used as a set of features
to represent the frequency content of the time-series signal [5].

The experiments of Approaches Avg-10s and Avg-5s were performed by averaging the features
of all five epochs. The experiments of those approaches were also executed five times. Table
8 indicates the features selected more times, i.e., more than 2 times out of 5 experiments for
Approaches Avg-10s and Avg-5s. The format of the extracted features is the same as previ-
ously described.

No Selected Feature names

1 P3-Cz cwt coefficients coeff 0 w 2 widths (2, 5, 10, 20)
2 T6-Cz fft coefficient attr ””imag”” coeff 15
3 C3-Cz fft coefficient attr ””abs”” coeff 99
4 T3-Cz fft coefficient attr ””imag”” coeff 72
5 A1-Cz fft coefficient attr ””real”” coeff 73
6 A2-Cz ar coefficient coeff 7 k 10
7 F4-Cz fft coefficient attr ””angle”” coeff 17
8 F8-Cz ar coefficient coeff 8 k 10
9 F8-Cz fft coefficient attr ””angle”” coeff 66
10 Fp1-Cz cwt coefficients coeff 3 w 5 widths (2, 5, 10, 20)
11 P4-Cz fft coefficient attr ””imag”” coeff 97
12 Pz-Cz fft coefficient attr ””real”” coeff 15
13 Pz-Cz fft coefficient attr ””real”” coeff 89
14 T4-Cz fft coefficient attr ””angle”” coeff 15
15 T5-Cz index mass quantile q 0.7
16 T5-Cz index mass quantile q 0.8

Table 8: Overview of the features selected more times during the experiments for Ap-
proaches Avg-10s and Avg-5s by using ts-fresh combined with Boruta.

Table 9 displays the results of feature selection for the 10-second dataset and the two 5-second
subsets (referred to as Part 1 and Part 2). The feature selection was conducted using both the
extracted features of individual epochs and the average of extracted features of all epochs to
conduct the experiments. Table 9 illustrates the range of selected features obtained from the
Boruta algorithm after five separate runs. Notably, the Boruta algorithm selected a different
number of selected features in each execution. A noteworthy observation is that the 10-second
dataset has selected more features in both individual epochs and the average of epochs. For
instance, Epoch 3 has a range from 1 to 11 features during the execution of experiments
which means that the Boruta algorithm selected one feature in one execution and 11 features
in another execution out of the five runs. Moreover, the average of features of all epochs has a
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Range of selected features
Epochs 10 sec 5 sec (Part 1) 5 sec (Part 2)

1 1-7 5-9 1-3
2 1-6 2-7 4-10
3 1-11 4-10 4-13
4 2-6 1-6 1-6
5 2-4 2-5 2-10

averaged epochs 2-11 1-5 1-6

Table 9: The range of selected features by using the Boruta method for features of each
epoch and the average of features of all epochs by using the datasets of EEG examination
after 5 runs.

range from 2 to 11. Conversely, the 5-second subsets (Part 1 and Part 2) selected more features
in the individual epochs than the average of epochs during the five execution of experiments.
It is worth noting that out of five epochs, the two subsets selected more features in three of
them. The range of selected features varied in Part 1, ranging from 5 to 9 for Epoch 1, ranging
from 2 to 7 for Epoch 2, and ranging from 4 to 10 for Epoch 3, while Part 2 exhibited a range
from 4 to 10 in Epoch 2, a range from 4 to 13 in Epoch 3, and a range from 2 to 10 in Epoch 5.

Epochs
Approach metric 1 2 3 4 5

Ind-10s
Accuracy 86.8± 7.9 87.4± 7.9 91.9± 6.5 91.7± 7.9 87.8± 5.1

F1-score 86± 8.4 86.5± 8.5 91.5± 6.8 91.3± 8.4 87.38± 5.3

Ind-5s
(Part 1)

Accuracy 95.3± 2.7 90.8± 3.7 95.9± 4.5 86.1± 7.8 89.7± 5.2

F1-score 95.1± 2.9 90.3± 3.9 95.8± 4.7 85± 8.4 89.2± 5.4

Ind-5s
(Part 2)

Accuracy 84.9± 4.6 96.2± 3.1 96.6± 3.1 89.3± 5.2 91.8± 4.1

F1-score 83.9± 5.3 96± 3.2 96.5± 3.2 88.7± 5.5 91.5± 4.3

Table 10: Performance scores of Ind-10s approach and Ind-5s approach for each epoch
separately by using ts-fresh and boruta for features extraction and selection. The score of
metrics is computed on the test set and averaged in a 10-fold cross-validation. The mean
and standard deviation are the averages of the 5 executions of the experiments.

Table 10 and Table 11 present the results of the model evaluation metrics, specifically accuracy
and F1-score. These tables showcase the average values of the mean and standard deviation
across the five experiment executions. Table 10 demonstrates that the accuracy of the Ind-10s
approach among the individual epochs fluctuates between 86, 8% with a standard deviation
of 7.9% and 91.9% with a standard deviation of 6.5%. In comparison, the Avg-10s approach
(Table 11) achieves an accuracy of 92.3% with a standard deviation of 8.1%. On the contrary,
in Table 10, the Ind-5s approach has better accuracy among the individual epochs in rela-
tion to the Avg-5s approach (Table 11) which has lower accuracy for the average of epochs.
Moreover, the Ind-5s approach shows larger accuracy in comparison to the Ind-10s approach
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among the individual epochs, while the Avg-10s approach has better accuracy with regard
to the Avg-5s approach. It is additionally worth noting that Part 2 of 5 seconds of data has
greater accuracy in comparison to Part 1 of 5 seconds among the individual epochs and the
average of epochs. It is interesting to observe that the individual epochs with a large accuracy
have selected more features during the experiments. For instance, the Ind-10s approach has
an accuracy of 91.9% in Epoch 3 which is the highest among the individual epochs and the
range of selected features in this epoch fluctuates from 1 to 11 during the experiments which
is also the highest amount of selected features.

Another metric which plays a significant role in the project is the F1-score which is the most
appropriate metric for the imbalanced dataset used in this study. Table 10 indicates that there
is a fluctuation among the individual epochs in Approaches Ind-10s and Ind-5s. F1-score fluc-
tuates between 86% and 91.5% among the individual epochs of the Ind-10s approach, while
the range of the F1-score is between 83.9% and 96.5% for the Ind-5s approach (Part 2).
However, it is observed that Epoch 3 has a better performance in both approaches. Table 11
shows that the Avg-10s approach has better performance with a percentage of F1-score of
92% and a standard deviation of 8.5%, while the Avg-5s approach has a lower F1-score with
86.3% and 91.2% for Part 1 and Part 2 respectively. F1-score also has slightly better results
in Part 2 of 5 seconds subset in relation to Part 1 of 5 seconds subset in each epoch and the
average of epochs.

Approach metric Averaged epochs

Avg-10s
Accuracy 92.3± 8.1
F1-score 92± 8.5

Avg-5s
(Part 1)

Accuracy 86.8± 9
F1-score 86.3± 9.3

Avg-5s
(Part 2)

Accuracy 91.8± 7.2
F1-score 91.2± 7.9

Table 11: Performance scores of Avg-10s approach and Avg-5s approach for the
average of epochs by using ts-fresh combined with boruta for features extraction and
selection. The score of metrics is computed on the test set and averaged in a 10-fold
cross-validation. The mean and standard deviation are the averages of the 5 executions
of the experiments.

Furthermore, the Ind-5s approach (Part 1 and Part 2) in Table 10 demonstrates superior F1-
score results for each epoch. Part 1 has higher performance in epochs 1 and 3, surpassing
the percentage of 95% with a standard deviation of 2.9 and 4.7 respectively. On the other
hand, Part 2 achieves better results in epochs 2 and 3, exceeding the percentage of 96% with
a standard deviation of 3.2% in both epochs. By comparing the range of extracted features
from Table 9 with F1-scores in Table 10 and Table 11 it is noticed that epochs with a larger
range of selected features have better F1-scores than the epochs with fewer selected features.

Figure 3 shows the visual representations of the distributions of the five execution of the exper-
iments for the Approaches Ind-10s and Ind-5s (Part 1 and Part 2). The vertical axis represents
the values of the F1-score, while the horizontal axis indicates the individual epochs. Figure 3a
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shows five box plots where each box plot corresponds to a specific epoch, namely 1, 2, 3, 4,
and 5. Epochs 1 and 4 have large distributions which means that the results of experiments
are more dispersed. However, Epoch 4 performs better than Epoch 1 because the median of
Epoch 4 is 91.3% while the median of Epoch 1 is almost 82. Moreover, the distribution of
Epoch 3 has shorter distribution than the other epochs, however, the median is low in the
inter-quartile range. Comparing Epoch 3 and Epoch 4 in the Ind-10s approach, it is observed
that the distribution of Epoch 3 is slightly better than Epoch 4 where the 50% of the distri-
bution is spread between almost 86% and 97%.

Then, by comparing Figure 3b and Figure 3c, the Ind-5s approach of Part 2 has better distribu-
tions among the individual epochs than the Ind-5s approach of Part 1. Figure 3b depicts that
three out of five epochs have better distributions, namely epochs 1, 2 and 3, than epochs 4
and 5. On the other hand, Figure 3c shows better distributions for epochs 4 and 5 in relation to
Figure 3b where the F1-score of the five experiments is more dispersed. However, both parts of
the Ind-5s approach have a good distribution in Epoch 3, but the Ind-5s approach of Part 2 is
better because the interquartile range is shorter and the median is close to the upper quartile.
Moreover, Epoch 2 of Part 2 has a good distribution because the results of experiments are
less dispersed and the median is in the middle of the box plot. However, the maximum and
minimum values have a large range. Yet, Epoch 3 has a higher median than Epoch 2 in Part 2
of the Ind-5s approach and based on Table 10 the F1-score is slightly different between these
two epochs.
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(a) Ind-10s approach: F1-score for each epoch of the 10sec dataset

(b) Ind-5s approach: F1-score for each epoch of the 5sec data
(Part 1)

(c) Ind-5s approach: F1-score for each epoch of the 5sec data(Part
2)

Figure 3: Visualization of the results of Approaches Ind-10s and Ind-5s using ts-fresh and
Boruta
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Figure 4 illustrates the results of experiments for Approaches Avg-10s and Avg-5s which are
the averages of the features from five epochs for the dataset of 10 seconds and 5 seconds
(Part 1 and Part 2) respectively. Comparing these results, it becomes evident that the Avg-10s
approach outperforms the Avg-5s approach for both Part 1 and Part 2. The F1-score values
obtained from the experiments exhibit less variability in the case of the Avg-10s approach.
The box plot of the Avg-10s approach illustrates a compact distribution with the median posi-
tioned close to the centre, indicating relatively consistent performance. The range between the
maximum and minimum values is also limited, further emphasizing the stability of the results.
Conversely, the distribution of Avg-5s (Part 1) demonstrates a wider range, suggesting a more
diverse spread of values. However, the distribution of Part 2 shows a narrower range, with the
majority of values concentrated in the third quartile. This concentration is indicated by the
median value being situated in this particular area of the box plot.

Figure 4: Visualization of the results of Avg-10s approach andAvg-5s approach using
ts-fresh and Boruta

In conclusion, after the experiments, the most robust data set is observed in the Avg-10s
approach. The average of features for all epochs gives better results in both accuracy and F1-
score with values of 92.3% and 92% respectively for the dataset of 10 seconds. The difference
in metrics is small.

Subsequently, it is observed that the best results of the Ind-5s approach for the data of 5
seconds, namely Part 1 and Part 2, were given by Part 2. In Part 2, the individual epoch
distributions have a smaller range compared to Part 1. Averaging the epochs in Figure 4 also
indicates a good distribution in Part 2 compared to Part 1 where the distribution was spread
over a larger range.
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4.2 Using Machine Learning pipeline with Catch22

As before, the same approaches were employed to execute the experiments using a different
feature engineering technique. The data of 10 seconds and 5 seconds (Part 1 and Part 2) were
examined to observe how the model performs. Catch22 is a technique that extracts and selects
22 features from each time series. In this case, the experiments were performed separately in
two methods as indicated in Table 5.

4.2.1 Catch22-Comprehensive method

The dataset of 10 seconds and the two subsets of 5 seconds of 47 patients with PD was utilised
to extract 22 features from each time series. To distinguish the time series, the electrodes from
each side of the brain were utilised. The 22 features were obtained by averaging the values of
the electrodes within the same brain region, ensuring that each feature represented a specific
region of the brain (Table 3). For each epoch, a set with 5 rows, which are the five different
regions of the brain, and 22 columns, which are the extracted features, was generated. Then,
for each patient, an array (1x110), is created by concatenating all values of the previous set.
Finally, a dataframe was created by concatenating the arrays of all patients (i.e., 47x110) and
was used as input in the model.

Epochs
Approach metric 1 2 3 4 5

Ind-10s
Accuracy 96.4± 8 93.5± 8.5 96.1± 7.4 95.8± 9.3 99.2± 1.8

F1-score 95.8± 9.3 92.6± 9.8 95.5± 8.5 95.4± 10.2 99.1± 2

Ind-5s
(Part 1)

Accuracy 91.5± 5.3 97.2± 4 86.8± 7.6 96.6± 3.3 89.7± 6.6

F1-score 90.6± 6 97± 4.4 85.2± 9.4 96.4± 3.6 88.7± 7.4

Ind-5s
(Part 2)

Accuracy 88.8± 12 89.3± 7.8 97.7± 1.6 99.7± 0.5 96.4± 4.2

F1-score 87.5± 13.2 87.8± 9.3 97.5± 1.7 99.7± 0.5 96.1± 4.6

Table 12: Performance scores of Ind-10s approach and Ind-5s approach for each epoch
separately by using 110 selected features. The score of metrics is computed on the test
set and averaged in a 10-fold cross-validation. The mean and standard deviation are the
averages of the 5 executions of the experiments.

Table 12 and Table 13 present the performance of the pipeline for different approaches using
110 features. The performance was measured by two metrics: Accuracy and F1-score. The
F1-score of all approaches is slightly lower than accuracy but follows a similar trend. As shown
in Table 12, Ind-10s approach achieves higher accuracy rates with more than 93% for all indi-
vidual epochs than the Ind-5s approach (Part 1 and Part 2). The subset of 5 seconds (Part 2)
of the Ind-5s approach ranges between 88.8% and 99.7%, while Part 1 of 5 seconds has slightly
lower accuracy than Part 2. However, it is worth noting that the Ind-5s approach in Part 2 of 5
seconds performs better in epochs 3 and 4 with F1-scores 97.5% and 99.7% and low values of
the standard deviation of 1.7% and 0.5% respectively. The F1-score of the Ind-10s approach
fluctuates between 92.6% with a standard deviation of 9.8% and 99.1% with a standard devi-
ation of 2%, across the individual epochs. The Ind-10s approach achieves the highest F1-score
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in Epoch 5. On the other hand, the Ind-5s approach has an F1-score from 87.5% to 99.7%
among epochs for the subset (Part 2) of 5 seconds. Considering the number of features (i.e.,
110), the large percentages of the F1-score of individual epochs and the standard deviation in
these epochs show that the model may overfit.

Table 13 indicates the results of Approaches Avg-10s and Avg-5s using the 110 extracted fea-
tures of Catch22 feature engineering. To run the experiments of these approaches, the average
of features for all epochs was used to train the model, and the results were from the test set. It
is observed that the Avg-10s approach performs better as the accuracy and F1-score are 94.8%
and 94.1% respectively than the Avg-5s approach. On the contrary, the results of the Avg-5s
approach for the two subsets of 5 seconds are slightly low, Part 1 has an accuracy of 92.1%
and F1-score 90.7%, while Part 2 has an accuracy of 87.1% and F1-score 85%. The results
of the two approaches, i.e., the Avg-10s approach and the Avg-5s approach are compared in
terms of the mean and the standard deviation of the averaged epochs. The Avg-10s approach
has a higher mean and a lower standard deviation than the Avg-5s approach, indicating that
it is more consistent and reliable. The Avg-5s approach has two parts, but both have larger
standard deviations than the Avg-10s approach, meaning that they have more variation and
uncertainty. The data of the Avg-10s approach are also closer to the mean than those of the
Avg-5s approach, which shows that it had fewer outliers.

Based on the results of Table 12 and Table 13, it is noticed that in the Ind-5s approach, Part
2 of 5 seconds performed better in individual epochs and mostly in epochs 3 and 4 than Part
1. On the other hand, in the Avg-5s approach, Part 1 of 5 seconds has better results in the
average of epochs.

Approach metric Averaged epochs

Avg-10s
Accuracy 94.8± 7.4
F1-score 94.1± 8.3

Avg-5s
(Part 1)

Accuracy 92.1± 10.5
F1-score 90.7± 12.5

Avg-5s
(Part 2)

Accuracy 87.1± 8.3
F1-score 85± 10

Table 13: Performance scores of Avg-10s approach and Avg-5s approach for the
average of epochs by using 110 selected features. The score of metrics is computed on the
test set and averaged in a 10-fold cross-validation. The mean and standard deviation are
the averages of the 5 executions of the experiments.

Figure 5 illustrates the results of the F1-score metric for Approaches Ind-10s and Ind-5s. Figure
5a shows the results of the Ind-10s approach for each epoch of the five executions of experi-
ments. It is observed that there is an overfitting of the model because epochs 1, 4 and 5 are
almost 100%. This may happen because of the large number of features, i.e., 110. However,
the range of values of the F1-score in Epoch 2 is large which means that each iteration of the
experiments gave a different F1-score which fluctuated from 100% to below 83%. Whilst the
median of Epoch 2 is almost 99% which means that most values of the F1-score are found
close to the third quartile of the box plot.
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(a) Ind-10s approach: F1-score for each epoch of the 10sec dataset
by using 110 features

(b) Ind-5s approach: F1-score for each epoch of the 5sec dataset
(Part 1) by using 110 features

(c) Ind-5s approach: F1-score for each epoch of the 5sec dataset
(Part 2) by using 110 features

Figure 5: Visualization of the results of Approaches Ind-10s and Ind-5s using Catch22
feature engineering and considering all features extracted for each brain region.
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Figure 5b and Figure 5c indicate the results of the Ind-5s approach for each epoch after five
runs of experiments for Part 1 and Part 2 respectively. In Figure 5b it is noticed that Epochs 1,
3, 4 and 5 have a large range of distribution in relation to Epoch 2 where its values span across
a short range. The same happens in Figure 5c for epochs 1, 2 and 5 where the distribution
of the results is large, while Epoch 3 has less dispersed results of F1-score and the median is
almost 97%. On the other hand, Epoch 4 is almost 100% which means that the model may
overfit.

Figure 6: Visualization of the results of Avg-10s approach andAvg-5s approach using
Catch22 feature engineering and taking into account the 110 features extracted from each
brain region.

Approaches Avg-10s and Avg-5s are illustrated in Figure 6 where the average of features
for all epochs was used to execute the experiments. Similarly, five runs of experiments were
performed and Figure 6 indicates the distribution of results. It is observed that the Avg-10s
approach has better results than the Avg-5s approach because the Avg-10s approach has a
large distribution but the median was found at 100%. However, the Avg-5s approach has also
larger distribution for Part 1 of 5 seconds than the Avg-10s approach but the median is lower
than the dataset of 10 seconds. Comparing Part 2 of Avg-5s and the other two approaches,
Part 2 of the Avg-5s approach has reduced dispersion compared to the other two. However,
the median of the Avg-5s approach (Part 2) is slightly more than 85%, while in the other two
approaches, the medians are over 98%.
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4.2.2 Catch22-Compact method

The original 110 features extracted by Catch22-Comprehensive were used to select 22 fea-
tures. A filtering method was applied to rank the most important features. Then, the model
was trained using only the 22 selected features for each of the four approaches listed in Table
2. The purpose of this experiment is to test how well the model can classify the data using a
fixed number of features, which is the main idea of the Catch22 technique and to evaluate the
performance of Catch22. Table 14 shows the 22 features that were selected most frequently
across all approaches.

No Selected Feature names

1 CO trev 1 num F-region
2 SP Summaries welch rect area 5 1 P-region
3 CO trev 1 num C-region
4 DN OutlierInclude p 001 mdrmd T-region
5 SP Summaries welch rect area 5 1 O-region
6 SP Summaries welch rect centroid C-region
7 DN HistogramMode 5 P-region
8 DN OutlierInclude n 001 mdrmd F-region
9 DN OutlierInclude n 001 mdrmd T-region
10 DN OutlierInclude p 001 mdrmd F-region
11 DN OutlierInclude p 001 mdrmd O-region
12 CO f1ecac C-region
13 CO FirstMin ac C-region
14 CO HistogramAMI even 2 5 O-region
15 DN HistogramMode 10 O-region
16 DN OutlierInclude n 001 mdrmd C-region
17 DN OutlierInclude n 001 mdrmd O-region
18 DN OutlierInclude p 001 mdrmd P-region
19 SB BinaryStats mean longstretch1 P-region
20 SB TransitionMatrix 3ac sumdiagcov T-region
21 SC FluctAnal 2 dfa 50 1 2 logi prop r1 P-region
22 SC FluctAnal 2 rsrangefit 50 1 logi prop r1 F-region

Table 14: Overview of 22 extracted features of Catch22 by using filtering method

The above-mentioned features adhere to the following naming format: {name of the fea-
ture} {region of the brain} where ”name of the feature” represents a different Catch22
feature [4] and ”region of the brain” refers to a specific region of the brain as shown in
Table 3 with each letter representing the initial letter of each region. For example, fea-
ture ”CO trev 1 num F-region”, refers to Catch22 feature CO trev 1 num, describing Time-
reversibility statistic ⟨(xt+1 − xt)

3⟩t [4] and F-region is the Frontal side of brain (Table 3).

The performance of the two approaches, Ind-10s and Ind-5s, is compared using accuracy and
F1-score metrics in Table 15. The table shows the average of the mean and the standard devi-
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ation of the outcomes from five repeated experiments. The accuracy metric is slightly higher
than the F1-score metric for both approaches. For the Ind-10s approach, the accuracy values
range from above 82% to 97.7% with a standard deviation between 3.4% and 7.3% across the
individual epochs. For the Ind-5s approach which used two subsets of 5 seconds, the accuracy
values of Part 1 vary from above 88% to above 98%, and for Part 2 from 87.9% to 99.3%
across the individual epochs. Based on the results of two subsets (i.e., Part 1 and Part 2),
it is observed that Part 2 of the Ind-5s approach has better accuracy values in epochs 3 and
4 with a low standard deviation, 2.1% and 1.4% respectively. On the contrary, Part 1 of the
Ind-5s approach has the best results in Epoch 4 with an accuracy of 98.9% and a standard
deviation of 2.5%. Yet, the F1-score is a more reliable metric than the accuracy for evaluating
the performance of the approaches since the class labels are not balanced.

Table 15 shows that the F1-score of the Ind-10s approach fluctuates from 80.3% to more than
97% among the different individual epochs, while the F1-score of the Ind-5s approach (Part
1 and Part 2) ranges from 86.9% to 98.8% for Part 1 and from 87% to 99.3% for Part 2
among the epochs. Comparing Part 1 and Part 2 of 5 seconds subsets, it is noticed that the
automated machine learning pipeline achieves higher results of F1-score for epochs 3, 4 and 5
in Part 2 than in Part 1. However, it is also important to note that the F1-score of the Ind-10s
approach exceeds 94% in 4 out of 5 epochs, whereas the F1-score of Part 2 of the Ind-5s
approach surpasses 97% in only 3 out of 5 epochs.

Epochs
Approach metric 1 2 3 4 5

Ind-10s
Accuracy 97.7± 3.4 95.1± 6.2 95± 3.7 82.7± 7.3 97.6± 3.6

F1-score 97.5± 3.6 94.8± 6.7 94.6± 4 80.3± 8.9 97.5± 3.9

Ind-5s
(Part 1)

Accuracy 89.4± 6.7 97± 2.5 93.5± 5.6 98.9± 2.5 88.5± 7.6

F1-score 88.2± 8 96.9± 2.7 93± 6.2 98.8± 2.6 86.9± 9.1

Ind-5s
(Part 2)

Accuracy 88.3± 4.6 87.9± 2.2 98.6± 2.1 99.3± 1.4 97.4± 2.4

F1-score 87± 5.5 87± 2.4 98.5± 2.2 99.3± 1.5 97.2± 2.6

Table 15: Performance scores of Ind-10s approach and Ind-5s approach, for each
epoch separately by using 22 selected features. The score of metrics is computed on the
test set and averaged in a 10-fold cross-validation. The mean and standard deviation are
the averages of the 5 executions of the experiments.
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Approach metric Averaged epochs

Avg-10s
Accuracy 94.1± 6.3
F1-score 93.4± 7

Avg-5s
(Part 1)

Accuracy 86.9± 6.7
F1-score 85.5± 7.8

Avg-5s
(Part 2)

Accuracy 96.7± 3.6
F1-score 96.5± 3.9

Table 16: Performance scores of Avg-10s approach and Avg-5s approach, the average
of epochs by using 22 selected features. The score of metrics is computed on the test set
and averaged in a 10-fold cross-validation. The mean and standard deviation are the
averages of the 5 executions of the experiments.

Additionally, Table 16 shows the result of the accuracy and F1-score of Approaches Avg-10s
and Avg-5s. It is observed that the Avg-10s approach has a slightly higher accuracy (94.1%)
than F1-score (93.4%). The same trend is observed for the Avg-5s approach with both subsets
of 5 seconds. However, Part 2 of the Avg-5s approach outperforms Part 1, achieving over 96%
in both accuracy and F1-score, while Part 1 only reaches close to 85% in both metrics.

The graph representations of F1-scores for each epoch for the Ind-10s approach and the Ind-5s
approach are illustrated in Figure 7, which shows the performance of the Catch22 technique
by using 22 selected features. Figure 7a shows the results of the Ind-10s approach among the
individual epochs for five executions of experiments. It is observed that the Ind-10s approach
performed better in epochs 1 and 5 which have a better distribution of F1-scores during the
five executions of experiments. Epoch 5 has a small range of distribution but a lower median
than Epoch 1, which has a slightly large range of distribution and a high median. This suggests
that the 22 features were more consistent but less effective in Epoch 5 than in Epoch 1 in the
Ind-10s approach.

The F1-scores of the Ind-5s approach, namely the two subsets of 5 seconds, are shown in Figure
7b and Figure 7c. Epoch 4 stands out with an F1-score of nearly 100% in both parts, indicating
a good fit of the features to the model. This result was achieved by using the cross-validation
method to prevent overfitting. However, Epoch 2 has a short distribution and the median is
almost 0.95 in Figure 7b while the other epochs have much lower medians. Figure 7c depicts
a good distribution except in Epoch 4, in Epoch 3, where the results of the experiments are
less scattered than epochs 1, 2 and 5, and its median is close to 100%.
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(a) Ind-10s approach: F1-score for each epoch of the 10sec dataset
by using 22 features

(b) Ind-5s approach: F1-score for each epoch of the 5sec dataset
(Part 1) by using 22 features

(c) Ind-5s approach: F1-score for each epoch of the 5sec dataset
(Part 2) by using 22 features

Figure 7: Visualization of the results of Ind-10s approach and Ind-5s approach using
Catch22 feature engineering and considering the most important 22 features extracted by
using the filtering method.
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Figure 8: Visualization of the results of Avg-10s approach and Avg-5s approach
using Catch22 feature engineering and taking into account the most important 22 features
extracted by using the filtering method.

Figure 8 illustrates the F1-score of the experiments, after five runs, of Approaches Avg-10s and
Avg-5s. It is noticed that the Avg-5s approach, and specifically Part 2 of 5 seconds, achieves
the highest results in relation to the results of the Avg-10s approach and Part 1 of the Avg-5s
approach. Furthermore, the box plot of Part 2 of the Avg-5s approach indicates a larger spread
of values than Part 1 of the Avg-5s approach, and a median that is close to the middle of
the box, implying that the middle 50% of F1-scores are equally distributed in the interquartile
range. On the other hand, the results of the Avg-10s approach are more dispersed than Part
1 and Part 2 of the Avg-5s approach, and the median is close to 95%. Whereas, the Avg-5s
approach of Part 1 exhibited a slight distribution of values between almost 0.89 and 0.85,
with a higher density of values near 0.89. In addition, Part 2 of the Avg-5s approach has a
good distribution and the median is 96.5% which means the average of features of all epochs
performs better than the Avg-10s approach and Part 1 of the Avg-5s approach.

35



5 Conclusion

The main objectives of this study were to identify a reliable dataset that could assist clinicians
in diagnosing cognitive function and to compare the performance of two feature engineering
techniques. To achieve these objectives, a dataset of 10 seconds and two subsets of 5 seconds
were utilised, each containing five epochs for each patient and 21 time series for each epoch.
An automated Machine Learning pipeline was applied to execute the experiments using two
feature engineering techniques: ts-fresh combined with Boruta, and Catch22. The experiments
revealed that the features selected by ts-fresh combined with boruta varied for each experi-
ment, as well as the number of selected features. On the other hand, Catch22 extracted 22
features for each time series and two methods were created, namely Catch22-Comprehensive
and Catch22-Compact.

Based on the results of the data, the 10 seconds dataset showed better performance in aver-
aged epochs with an F1-score of 91.99%, while the other two subsets showed better results
among the individual epochs by using the ts-fresh combined with boruta. It was noticed that
the average of epochs of 10 seconds dataset was robust and consistent as it had observed in
[12]. On the other hand, using the 10 seconds dataset and the two subsets of 5 seconds (Part 1
and Part 2), Catch22 was applied to extract and select 22 features from each time series. This
led to two different methods of conducting the experiments, namely Catch22-Comprehensive
and Catch22-Compact. The first one used all the features from each brain region, resulting in
110 features in total. The second one used only the 22 most important features by using a
filtering method. The Catch22-Comprehensive method produced a model that was overfitted
due to the high number of features and a relatively small dataset. The Catch22-Compact
method performed better for the Ind-5s approach and specifically Part 2 of 5 seconds subset,
achieving the highest F1-score.

In conclusion, the Ind-10s approach and Ind-5s approach had better results by using the
Catch22 technique with 22 selected features than by using ts-fresh combined with Boruta by
the mean of the F1-score from the five runs of experiments as presented in Table 15. Based
on the approaches that used the different lengths of data, i.e., the Ind-10s approach used 10
seconds and the Ind-5s approach used 5 seconds, the five epochs of 5 seconds can be used
instead of the five epochs of 10 seconds because both approaches yielded similar results in
Catch22-Compact method. However, the Ind-5s approach consisted of two subsets of 5 sec-
onds, which were obtained by dividing the dataset of 10 seconds into two parts, which was
a random procedure. If the 5 seconds subset had been selected by the clinicians, using their
expertise, then the results might be more reliable.

Furthermore, comparing the two feature engineering techniques, Catch22 achieved higher F1-
scores in all approaches and the standard deviation was very low in the average of five execution
of experiments. However, the cross-validation method has been used in Catch22 but there is
a possibility of overfitting due to the relatively small data. In contrast to Catch22, which al-
ways selects the same 22 features for each time series analysis, ts-fresh combined with Boruta
chooses a different number of selected features during the experiments. This leads to different
performance outcomes for the two techniques. For example, ts-fresh combined with Boruta
tends to achieve higher F1-scores when it selects a large number of features, while Catch22
has more consistent and robust results across different approaches. The reason for Catch22’s
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best performance is that it includes a diverse set of features that capture various aspects of
time series dynamics, such as autocorrelation, distribution, outliers and scaling properties [4].
However, further research is required to avoid overfitting in the model.

6 Future work

This project has provided valuable insights into the use of the dataset of 10 seconds and the
two subsets of 5 seconds for the diagnosis of cognition of patients with Parkinson’s Disease and
comparing two feature engineering techniques. However, there are several topics for further
exploration and improvement:

Towards the same direction, alternative feature engineering techniques, such as tsflex [16] and
tsfe [2], could be assessed based on their performance within an automated machine learning
pipeline, providing insights into their effectiveness in capturing relevant patterns and improving
predictive models.

One potential direction is to investigate whether epoch selection can be entirely avoided, ex-
ploring alternative approaches to handle the data more effectively.

In addition, it would be worthwhile for future work to investigate the performance of the model
using datasets comprising varying sizes of epochs directly sourced from clinicians. This will
allow us to assess the impact of different epoch lengths on diagnostic accuracy and provide a
more comprehensive understanding of the system’s robustness.

An intriguing approach for further research could involve evaluating the performance of various
machine learning models, including Support Vector Machines or deep learning architectures.

Exploring these directions can enhance our understanding of the optimal handling of time
series data in Parkinson’s Disease diagnosis and develop the feature engineering techniques
within the context of Automated Machine Learning. Such investigations have the potential to
improve the accuracy and efficiency of automated systems.
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tomated machine learning for eeg-based classification of parkinson’s disease patients. In
2019 IEEE International Conference on Big Data (Big Data), pages 4845–4852, 2019.

38
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