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Abstract

Compilers are usually single-threaded programs, sequentially translating source code into executable
machine code. By taking advantage of modern multi-core CPUs equipped with explicitly parallel SIMD
instructions, we adapt previous work performing this task on GPUs to work on conventional CPUs.
This results in an implementation of a parallel compiler capable of higher throughput than a traditional,
fully sequential approach would yield.

This thesis describes Ptilopsis, an AVX2-based multithreaded CPU implementation of the backend
of a parallel compiler, which is capable of transforming an abstract syntax tree into RISC-V code using
novel compiler steps described in previous work. Experimental evaluation of these steps using various
types of input data shows that Ptilopsis compares favorably to a GPU-based implementation. A number
of bottlenecks present on the GPU-based implementation are not present on the CPU, while others
remained unaffected.
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1 Introduction

Compilers serve a vital part in software development, as these programs are what allow developers to
express their programs in higher-level concepts and not have to worry about how these concepts eventually
translate into executable machine code. Despite optimization efforts, compilation still remains a primarily
single-threaded process. Because of this, modern build systems often run multiple instances of the compiler
in parallel to try and improve the total throughput. Despite this, utilization often is not optimal, and
large source files can still take a significant amount of time to compile.

Previous work described Pareas [Voe21] [Hui21] [VHR22], a parallel compiler running on a GPU written
in Futhark [HSE+17]. Due to the SIMT nature of GPU architectures, it is not suitable to simply run
each step of the compiler in parallel or to run multiple instances of the compiler. Therefore, the steps a
traditional compiler uses to achieve the described transformation were redesigned to be more efficiently
parallelized for execution on a highly parallel processor such as a GPU. These efforts resulted in a very
high total throughput, especially for large input files.

In this thesis, we investigate the effectiveness of applying these same modified compiler steps using SIMD
while running on a multi-core CPU. To do so, we describe Ptilopsis, a compiler backend based on Pareas,
which transforms a previously generated abstract syntax tree into binary RISC-V code in a parallel manner.
The backend was specifically chosen for investigation because of its reliance on many similar operations, in
this case, tree walk operations. For the implementation of Pareas conventional pointer-based tree operations
were modified into operations on contiguous data representing the AST as what is effectively a parent
point tree, stored in array form, called an inverted tree. For Ptilopsis, these operations were adapted to
work on a conventional CPU using AVX2 intrinsics [Intc] and multiple CPU threads.

Ptilopsis is available on GitHub at https://github.com/TypeA2/Ptilopsis.

1.1 Overview

In this thesis, we describe the implementation, workings, and effectiveness of the Ptilopsis compiler backend,
as well as compare it to that of Pareas. Section 2 will outline the workings of traditional compilers, the
usage of Single Instruction, Multiple Data (SIMD) instructions and intrinsics, and considerations when
using the C++ programming language for the task of implementing a parallel compiler. Section 3 describes
the individual steps performed by the compiler and how the implementation of Ptilopsis differs from that
of Pareas. In Section 4 various experiments are performed in order to characterize the implementation’s
performance with multiple different kinds of input files. Finally, in Section 4.4 the results and implications
of these results are discussed and compared to those of Pareas. Additionally, limitations as well as possible
future improvements to the backend are identified.
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2 Background

2.1 Compilers

In general, a compiler can be said to consist of two phases: analysis and synthesis [ALSU06]. The analysis
phase takes the original source code as its input and transforms it into an intermediate representation
suitable for the synthesis part to work with. This transformation also includes verifying the code’s syntactic
and semantic validity and providing feedback to the user if there is an issue with these properties. Afterward,
the synthesis phase generates an actual executable program from this intermediate representation and
other relevant information gathered by the analysis phase, like a symbol table. The analysis and synthesis
parts are often called the front end and back end respectively. A schematic overview of the steps that
make up these phases is shown in Figure 1. In practice, not all compilers perform all these steps, and often
multiple steps are combined into one, removing the need for an intermediate representation. Traditional
compilers perform these different stages in sequence using a single CPU thread.

2.2 Parallelism

CPUs typically operate on two conceptual inputs: a stream, or sequence, of instructions to execute and a
stream of data to manipulate in a manner described by the instructions in the instruction stream [Fly66].
In order to achieve faster processing, parallelism (processing multiple elements) may be applied to the
instruction stream, the data stream, or both. Different applications of these methods are discussed below.

2.2.1 Multithreading

A conventional CPU core executes based on a single instruction stream and a single data stream. This can
be considered a Single Instruction, Single Data (SISD) architecture. In the past decades, systems with
only a single core have largely been replaced by systems with multiple cores. These cores generally operate
independently on their own instruction and data streams, leading to what we call a Multiple Instruction,
Multiple Data (MIMD) architecture.

In addition to this, it has been observed that with both of these architectures, the utilization of the
individual components is not optimal in most cases, meaning that components may be idle, waiting for
data from other components to be ready, while they could be used to process more data. A solution to this
is simultaneous multithreading, a technique that allows a single core to execute multiple instruction and
data streams, in order to optimize the utilization of its functional units [TEL95]. This method exposes a
single physical core as two ”logical” cores to the system running on it, allowing it to be treated in a manner
similar to having multiple cores. While the scaling is not perfect, this method does allow for increased
parallelism.
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2.2.2 SIMD

A different approach is a Single Instruction, Multiple Data (SIMD) architecture. With this architecture, a
single instruction from the instruction stream specifies the operations to perform on multiple data input
streams or on multiple elements from a single stream. This can be the same operation on each input, or
different operations depending on what the specification describes. This approach allows multiple data
inputs or elements to be processed in parallel, reducing the sequential nature of performing multiple of the
same operation.

A major set of SIMD instructions on x86 and x86 64 platforms are the Intel Advanced Vector Extensions
(AVX) [Lom11], and AVX2 [HMB+14], which operate on 128-bit and 256-bit data registers respectively.
These data registers can be treated like multiple data types: 32 8-bit integers, 16 16-bit integers, 8 32-bit
integers, 4 64-bit integers, 8 32-bit floating point, and 4 64-bit floating point values. By allowing these
many data types, these extensions are highly flexible.

2.3 C++

Using the C++ programming language, both of the previously mentioned methods of parallelism can be
implemented.

Starting from C++11 the C++ standard library has included mechanism for creating multiple threads
(std::thread), as well as synchronization mechanisms such as mutexes (std::mutex), locks
(std::unique_lock) and atomic data types (std::atomic<T>). C++20 expands upon this, and in partic-
ular, provides a re-usable thread coordination mechanism in std::barrier. Using these functionalities, it
is possible to have multiple threads running, have each execute a part of an algorithm, and wait for all
other threads to have finished execution as well before continuing.

C++17 provides explicitly parallelized versions of common algorithms, such as sorting an array or filtering
elements. The GCC compiler uses the Intel oneAPI TBB [Inta] internally for this functionality, while the
MSVC compiler uses native APIs provided by the Windows OS.

In addition to using the C++ standard library, most major C++ compilers provide intrinsics for writing
AVX and AVX2-based code1. Because of C++’s compile-time capabilities, it is possible to write wrapper
functions for these intrinsics that result in the same instructions being generated as if it were written by
hand. Additionally, operator overloading allows for more streamlined usage of these intrinsics, as it is
possible to map long intrinsic names such as _mm256_add_epi32(a, b) to common and easily readable
operators (a + b for the previous example).

Compilers are sometimes able to identify common patterns in normally written code and compile these
to applicable AVX2 instructions when tasked to, but this behavior is limited and unreliable. Ideally, one
would write either conventional C++ and have the compiler translate this to SIMD code, or write somewhat
conventional code within a provided framework and have the compiler still generate SIMD code, similar to
how the Futhark language operates. However, due to the nature of C++’s compile-time capabilities, these
options can be impractical or of limited use. In practice, this parallelization task is usually performed
manually by the programmer, by specialized compilers (such as the Intel oneAPI DPC++/C++ Compiler
[Intb]) or frameworks, or even especially designed programming languages.

1intrinsics are functions that are specially handled by the compiler, in this case mapping the functions to one or more
AVX or AVX2 instructions.
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2.4 General-purpose computing on GPUs

Another common example of modern parallel processing is the modern GPU. When operating these
generally have a single instruction stream, but with thousands of individual cores operating on these same
instructions and data in parallel. On a high level, these can thus be classified as SIMD. However, it can be
useful to further refine this concept. Modern GPUs follow the concept of the Array Processor architecture,
meaning a single control unit controls many independent processing elements, each with its own registers
and optionally storage [Fly72]. Nowadays this is often called a Single Instruction, Multiple Threads (SIMT)
processor.

In addition to being SIMT processors, GPUs are also associative, or predicated SIMD processors. This
means that every compute unit always ”sees” every instruction, but only acts upon them when told to
do so. This leads us to a major downside of this architecture, namely that branching is expensive, since
both branches need to be fully executed by all cores in the system, instead of every core only executing a
single branch based on the data it was assigned. Even so, the massive levels of parallelism achieved by
these processors often make up for this downside, as well as programming efforts to keep branching to a
minimum being able to further reduce the impact. Due to the inherent heavily branching program flow of
traditional compilers, these types of programs pose an additional challenge for parallelization.

2.5 Related Work

Intel has created the oneAPI TBB library for parallel programming [Inta]. This library is based on letting
the programmer break down computations into smaller tasks that are automatically and efficiently executed
on multi-processor systems. This has been shown to scale well to many-core systems and is used by GCC for
the implementation of parallel algorithms in the C++ standard library, but still suffers from the previously
discussed issue that traditional compilation steps simply do not allow for much parallel processing.

The Parallel GCC project attempts to parallelize some of the steps of the GCC compiler and shows modest
speedup when doing so. However, the overall structure of the compiler is not specifically adapted to parallel
processing, and there is only a limited number of steps that are executed in parallel. Notably, it mostly
focuses on optimization within individual functions, which presents the same potential problems as faced
by the register allocation step of Pareas and Ptilopsis regarding the type of input data, where the level of
parallelism scales with the number of functions, leading to source files with very few functions to mostly
compile in a sequential manner.

The Vc library, available at https://github.com/VcDevel/Vc, allows for explicitly data-parallel
programming in C++ [KL12] [Kre15]. By defining new types and overloading their relevant operators,
this library achieves AVX-based code generation with a more natural syntax than compiler intrinsics.
It allows for easy parallelization of data processing tasks without external code generation or manually
writing the intrinsics. However, it is still mostly based on operations on individual data elements, instead
of higher-level constructs like a language like Futhark may allow, and as such it doesn’t provide significant
value or ease of programming over similar abstractions that were purpose-written for Ptilopsis.

In the 1980s and 1990s, there was considerable development of parallel architectures, which in turn led to
significant interest in the concept of parallel compilers [SB93]. Despite this, compilers have remained largely
sequential programs. Only recently the inverted tree data structure was proposed to aid parallelization
[Hsu19], and the Pareas compiler is largely based on work from the 1980s and 1990s and on relatively
recent work.
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3 Design and Implementation

This section describes how the Ptilopsis compiler backend operates, what changes were made compared to
Pareas, and what challenges were encountered. Whereas Pareas is written in Futhark, a language specifically
designed for parallelism, we have chosen to implement Ptilopsis in C++. This brings advantages in the
ease of use of explicitly parallel AVX2 intrinsics, as well as the option to apply conventional programming
methods to aid in implementing the compiler. We chose to implement Ptilopsis using AVX2 rather than
AVX-512 because it still provides a feature set sufficient for implementing a parallel compiler, while being
available on almost all relatively modern desktop, laptop and server CPUs at this time.

3.1 Primitives

Most compiler steps follow a load-calculate-store pattern, where data is initially loaded into AVX2 registers,
before being manipulated using common arithmetic operations, and using masks for conditionals, before
storing the calculated data in the same place or in newly calculated positions. AVX2 has several operations
to help with this.

Shifts

AVX2 contains functionality to bit-shift 32-bit elements by a specified amount in the form of
_mm256_slli_epi32, using vpslld, for left-shifts, and _mm256_srli_epi32, using vpsrld for right-shifts.
However, there is no functionality to shift all 256 bits in a register as a single unit. The larger shift instruc-
tions operate on 2 individual 128-bit lanes (_mm256_slli_si256 with vpslldq and _mm256_srli_si256

with vpsrldq for left and right shifts respectively). This stems from AVX2 being an extension of AVX,
which operates on 128-bit registers instead of 256-bit registers. This restriction allowed these 256-bit oper-
ations to be easily split up into 2 128-bit operations. This functionality however is required to implement
an efficient SIMD prefix sum operation [ZWR20], and as such must be emulated using other instructions.
Using AVX-512 it is easily implemented using the valignd instruction, but using only AVX2 it must be
implemented in a different manner.

For a left shift, the lower 128 bits of the source are first placed in the upper 128 bits of the result, and
the other bits are set to 0. When we are shifting by exactly 128 bits, this is already the correct result.
For a shift of less than 128 bits _mm256_alignr_epi8 (vpalignr) is used. This instruction operates on 2
128-bit lanes again, and concatenates the corresponding lanes of both inputs, before shifting the result
and storing the lower 128 bits of each lane. Because we previously already performed what is effectively a
single 128-bit shift, these 2 lanes are used to shift the lower and the upper halves separately, resulting in
effectively a single-lane shift. For a shift of more than 128 bits, the lower 128 bits are always zero, and the
original lower 128 bits are at least in the upper 128 bits, so the previously mentioned _mm256_slli_epi32

(vpslld) is used to shift both lanes further. Since the lower half is already zero, this remains zero. A right
shift effectively uses the same approach but instead starts by placing the upper 128 bits from the source in
the lower 128 bits of the result, before using the same instructions and methods to emulate the correct
type of shift.
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Load and Store

The most basic operations are 256-bit loads and stores, which use _mm256_load_si256 and
_mm256_store_si256, both of which translate to the vmovdqa instruction, to load 8 subsequent 32-bit ele-
ments into vector registers or store the contents of such a register to memory. These require 32-byte aligned
addresses. There are also unaligned versions called _mm256_loadu_si256 and _mm256_storeu_si256 using
the vmovdqu instruction. As the aligned load and store operations may perform better than unaligned
loads and stores, even when both operate on aligned data, the latter should only be used when it is known
that the data is unaligned.

Masked Load and Store

Further refinement comes in the form of masked loads and stores (_mm256_maskload_epi32 and
_mm256_maskstore_epi32, both using vpmaskmovd). Here, along with an address and optionally the
data to store, a mask is also passed. For every 32-bit element in this mask, the operation (load or store) is
only performed if the highest bit is set. This way, loading irrelevant data can be avoided, and overwriting
data we have not manipulated or do not want to overwrite is also avoided, while still having the benefits
of AVX2 operations.

Gather and Scatter

Finally, AVX2 contains gather operations, but no scatter operations. A gather operation takes a base
pointer and a vector or array of indices and based on a given element size, loads all elements in the
index array from memory. This way, 8 non-adjacent 32-bit integers can be loaded from memory into a
single AVX2 register. A scatter operation is effectively the reverse, taking a base pointer, array of indices,
and an array of values to store, and using these inputs stores each value at the index specified by its
corresponding element in the index array relative to the base pointer. The AVX2 intrinsics using 32-
bit elements (_mm256_i32gather_epi32 and _mm256_mask_i32gather_epi32) both use the vpgatherdd
instruction, and the latter takes an optional mask and source argument. The former unconditionally loads
all elements, and the latter only loads the element if the corresponding upper bit in the mask is set. If this
is not the case, the element is copied from the source argument. This can be used to zero out skipped
elements, or assign any other value to them. AVX2 lacks scatter operations entirely (see Section 5.1), and
as such this is implemented by extracting the AVX2 registers to 8-element std::array instances, and
using a normal for-loop.

3.2 Compiler

Ptilopsis uses a thread pooling system. This means that all threads that are to be used are started before
the actual compilation stage. Every thread is then kept waiting until there is a multithreaded task to be
performed, and after execution of the assigned task it goes back to waiting. This minimizes the performance
impact of starting up multiple threads. In addition to this, on GCC platforms, a parallel sort is performed
on a dummy array twice in order for TBB to populate its global thread pool. When using MSVC, this
step is also performed, but in a less controlled manner as the exact details are specified by the Windows
Thread Pool API.

The compiler stages are the same as in Pareas, in particular: preprocessing, instruction counting, instruction
generation, optimization, register allocation, jump fixing, and postprocessing. Implementation and design
choices are the same as described for Pareas in [Hui21], and any relevant additions have been detailed
below.
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AST representation

The compiler receives an AST in post-order format, which was specifically chosen for Pareas for parallel
processing. This means that when nodes are processed left to right they are actually processed from
the bottom of the syntax tree upwards. Instead of using nodes based on instances of a struct or class
interconnected using pointers to various instances representing AST nodes, like in traditional compilers,
all node fields are stored separately in arrays of either signed or unsigned 32-bit integers (int32_t and
uint32_t). These arrays are specially aligned on 32-byte boundaries, which is required for processing
them with AVX2 instructions. This data type is chosen such that all required types within the language
we are compiling can still be represented (namely 32-bit integers and 32-bit floating point numbers), but
without compromising on parallelism, as 32-bit elements allow us to process 8 elements with a single AVX2
instruction, compared to just 4 with 64-bit elements. This, along with the RISC-V code being limited to
the 32-bit subset, means the compiler almost entirely operates with 32-bit operands. Every node contains
6 logical fields: node type, node data type, index of the parent node, depth of the current node, child index
(the number of nodes with the same parent preceding this node), and a generic node data field. Details
can be found in Appendix A.

When the AST is generated, the node and data types used correspond to those used in the Pareas compiler.
These are first translated to Ptilopsis-specific types, which are designed with specific bit patterns that can
make later operations using AVX2 instructions easier (see Appendix A), without changing the semantic
meaning. In a full implementation, the frontend would output the correct types, so this step is only needed
so we can reuse the existing parser, and because of this the translation step is not benchmarked.

Register types

When initially generating registers, the compiler differentiates between virtual registers and physical
registers. Physical registers are stored as integers 0 through 63, values 0 through 31 representing x0 through
x31, and values 32 through 63 representing f0 through f31. Virtual registers are stored as integers 64 and
higher. As described in [Hui21], the exact virtual register used is based on the instruction address.

Execution methods

All compiler steps are processed with either Singlethreaded AVX2, Multithreaded AVX2, Singlethreaded
Scalar or Multithreaded Scalar code. Due to the limitations of the AVX2 extensions, it is not always
possible to implement every part of the code with AVX2 instructions. Most notably, a scatter function
is missing from AVX2, so this step is always executed in a scalar manner. Similarly, it is not always
worthwhile or even possible to implement an algorithm in a multithreaded manner, as setting up the
execution does come with an overhead, and potential data dependencies increase this.

3.2.1 Preprocessing

Preprocessing prepares the AST for the later stages, allowing for better parallelization and less branching.
This stage is performed using multithreaded AVX2 since every node is processed completely independently
of all other nodes.

Function argument preprocessing

According to the RISC-V calling convention, integer arguments may be passed in registers a0 through
a7 or on the stack, and floating point arguments may be passed in registers fa0 through fa7, in integer
registers a0 through a7, or on the stack. Based on any function argument node’s child index and node
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data, we can calculate the number of preceding integer and floating point arguments, and thus how the
current node should be passed. Function declaration and function call arguments are isolated by making
use of the bit pattern properties of the node type as described in Appendix A. Using this mask, for every
node that is a floating point argument in an integer register, the lowest bit is set using a bitmask operation.
Additionally for every node, if it is either an integer or a floating point argument on the stack, the second
bit is set. Finally, the node data field is modified to reflect the new node type. For any arguments in
their corresponding natively-typed registers, it is simply the index of the argument register it is stored in.
For floating point arguments in an integer register, it is updated to the index of the integer register it is
contained in. Finally, if it is an argument on the stack, the node data field is set to the index on the stack,
which can be multiplied by 4 in later stages to obtain the byte-based offset.

Function call argument list

To further simplify later processing we set the node data of function call argument lists to the total number
of stack-based arguments. Since the tree is stored in post-order, we can look at the node immediately
preceding the function call argument list to get the final argument. If this is a stack argument, its node
data is its index on the stack, so adding 1 results in the total number of stack arguments. If this is not the
case, however, the number of stack arguments is calculated based on the total number of arguments for
each type. Masked store operations are used to update only the argument list nodes’ data.

Comparison node preprocessing

All comparison operator nodes have been designed in a similar fashion to function argument nodes. By
applying a bitwise AND followed by an equals comparison using the basic equals expression type, we
create a mask for all nodes that have a comparison operator of any type as a parent node. Originally
these operators return integers for type checking purposes, but for processing into machine code it is more
practical for these to return the types they are comparing. Since this means only updating the parent’s
type when one or more of its children is a floating point node of any kind, we also create a mask for this.
For all resulting nodes, we scatter the floating point data type to the data types of the parent nodes.

3.2.2 Instruction Counting

The instruction counting stage calculates how many instructions each node generates and where these
will be placed in the final executable code. Additionally, a table of all functions is generated, which stores
the start index, size, and end index for each function. By pre-calculating the position and size of each
instruction, it is possible to perform the compilation of each node independently, since the position in the
resulting instruction buffer will already be known.

Initial counting

The first step of the instruction counting stage calculates the base position and size of each node. These will
later be adjusted depending on the context of the nodes. This initial calculation is based on information
relating to the node and a lookup table, allowing it to be performed using multithreaded AVX2 since all
nodes are independent of each other. First, the node type and data type are used to obtain a base number
which will be used to further calculate node size. Next, an adjustment value is calculated. Using the
masking methods described in Section 3.2.1, every function call argument list node’s size is incremented
by 1, plus 1 per argument node it has as children. These instructions are used for storing the arguments
in the correct locations according to the calling convention. Again using a similar masking method, all
conditional nodes (if-statement, if/else-statement and while-statement) are isolated. On all 3 of these
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nodes, if the lowest bit is 0, the first child is the relevant conditional, and if the lowest bit is 1 the second
child is the conditional node. Then, if a node is the conditional node of any of these conditional nodes,
the size is incremented by 1. Finally, the size of the second child of an if/else-statement, so the node
containing the else-branch, is also incremented to accommodate the unconditional jump over this block
when it’s not executed.

Offset calculation and correction

Based on the previously calculated node sizes, using a singlethreaded AVX2 prefix sum [ZWR20], the
preliminary offset for each node is calculated. Next, for every node that is the conditional node for a
branching statement, the position of the node is set to the end of its allocated space. Profiling has shown
that on small inputs ( 5 KiB), this step accounts for 2.1% of the total execution time of the instruction
counting step, which grows to 8.0% on the largest input (50 MiB) when the entire program uses only 1
thread. When using 32 threads in total, the related overhead causes the fraction of time spent on this
step to shrink to 0.56% on the smallest input. When operating on the largest (50 MiB) input using 32
threads, this singlethreaded component represents between 21% and 25% of the total execution time for
the instruction counting step. Since instruction counting represents a very small segment of the total
execution time, it was decided to implement this in a singlethreaded manner. This pattern of marginal
gains has shown to also hold in other places where a prefix sum is used, so these are implemented in a
singlethreaded manner for the same reason. In addition to calculating the preliminary offsets, the positions
of all function call arguments are set relative to their parent node (which will always be a function call
argument list). This adjustment step is executed using multithreaded AVX2.

Function table generation

Finally, using singlethreaded AVX2, a table containing all needed information for all declared functions
is generated. Using a simple equals comparison and store operation, the node index of every function
declaration is stored. Using these indices, the previously calculated locations for these declarations are
loaded, and the offset of every function is set to 6 plus this value (the 6 instructions are used for managing
the function’s stack frame). After this, function sizes are calculated by looking at the offset of the next
function using unaligned reads, and finally, the function end indices are calculated using the function
offsets and function sizes. The level of parallelism that is able to be achieved by these steps is limited
to the number of functions present in the input. As is shown in Section 4.3, regardless of the number of
functions in the input, the instruction counting step represents a very small part of the total execution
time, so there a. In addition to this, these operations are largely loads and stores, so further investigation
should be done to determine whether memory bandwidth represents a significant bottleneck.

3.2.3 Instruction Generation

The instruction generation step is responsible for calculating what opcodes are used to represent each node.
The node types have been chosen to work well with this step. Instruction generation works in parallel on
every level of the AST. This is because information about child nodes may be needed to properly compile
some nodes. To achieve this scheduling, the compiler first generates an array containing the index for every
node. This is then sorted using multithreaded scalar code based on the depth field of the corresponding
node. Next, the start indices for all levels are isolated, again with multithreaded scalar code. This is done
by comparing the depth of every node in the sorted list to the depth of the previous node. If this value
has changed, this means the current depth level has changed, and the value is stored. Following this,
starting from the bottom of the AST and working upwards, every level is processed individually using
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multithreaded AVX2. Since every node is designed to generate at most 4 instructions, it is possible to
process 2 nodes at a time with AVX2.

Using the node type, data type, and an index between 0 and 3 for each node, a gather operation is used to,
for each of the 4 instructions in every node, obtain whether there is actually an instruction at the specified
location. It is important here that no work is done on the second instruction in the AVX2 vector if it does
not exist. Unlike Pareas, where the nodes are generated and the data to propagate to higher levels is stored
and scattered to the relevant locations afterward, Ptilopsis stores these immediately after the generation
step for each of the 1 or 2 nodes. This is not a problem for the algorithm, as it does not rely on values
being unwritten or zero initially. Using the same previously described masking and gather operations,
the opcode, jump targets, and virtual registers are calculated, and at the end, any data that needs to
be propagated to the parent node is scattered using a normal loop. This is repeated for every node in
every level, working upwards. Pareas generates all these instructions and then uses a scatter operation to
store them at the correct location, just like the propagation data. Ptilopsis instead stores the instructions
directly, as this part of the algorithm also does not rely on unwritten data being read as zero, this still is
valid, and prevents unnecessary allocations.

3.2.4 Optimization

The main implemented optimization is dead expression elimination, but other optimizations could be
adapted to efficiently be applied here, as long as they do not rely on the physical registers. Initially, using
multithreaded AVX2 code, all registers that are read from (so registers that appear as rs1 or rs2 in any
instruction) are marked as used. Following this, a set of optimizations is applied in a loop until there are
no optimizations applicable anymore in the resulting code.

For every iteration, two steps are executed using multithreaded AVX2. First, for every instruction, if its
destination register is a virtual register and it is not used, both source registers (if present) are marked as
unused as well. After this, for every instruction, if it is a store instruction, the source register is marked as
used, since this is required for stores to actually work. These two steps are repeated until no registers are
marked as unused or used in a single iteration.

Finally, in order to create a mask for all instructions on whether they are enabled after the optimization
step, a multithreaded AVX2 operation is used to create a mask which, for all instructions, indicates
whether it should be considered in later steps of the compilation process. A mask is used since resizing the
instruction arrays is an expensive operation, and masking out unused instructions is relatively cheap. All
instructions that have a physical destination register (which may be used for stack frame setup or other
related matters) or are marked as having any register in-use are marked as used.

3.2.5 Register Allocation

Register allocation translates all present virtual registers to physical registers. To do this, it must keep
track of all registers currently in use. This inherently requires a sequential approach, so to still be able to
make use of parallelism, instead of processing each instruction in parallel, every function is processed in
parallel. Using multithreaded AVX2, all functions are divided among all threads. Every thread processes at
most 8 functions at a time since our base unit is still a 32-bit integer. The amount of iterations is decided
by the number of instructions in the largest function.

Within every function, the occupation of every register is kept track of in a bitmask. Since there are 64
possible registers, we use 64-bit integers for this, every bit representing one of our physical registers. Since
we process 8 functions at a time, this means we require 2 256-bit AVX2 vectors to keep track of this. For
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this, we duplicate the relevant arrays, with a * lo and a * hi variant. Aside from this usage mask, every
function also has a preservation mask which indicates what registers have been used within the function.
This is necessary when a function is called, as some of the physical registers must be saved by the caller
before a function. When the compiler encounters a function call instruction, all physical registers that
must be preserved are swapped to the stack, and the registers they reside in are considered free for re-use.

The registers that need to be allocated always contain a specific, often name-carrying symbol. After
instruction generation, these are represented by virtual registers. Since the virtual registers are read-once,
this means a symbol may be split up into multiple sub-symbols, but the end result is the same. Aside
from the previously mentioned masks, the compiler also keeps track of a mapping that maps the physical
registers to the symbols currently residing in it. The symbols are represented by the virtual register they
originate from and a field that indicates whether it is currently swapped out to the stack. Additionally,
the compiler keeps track of a mapping that maps virtual registers (or symbols) to the physical register
they currently reside in. In order to preserve consistency, a copy of this mapping must be made for every
iteration, to be able to look back at the unmodified. Normally, the processing of every function would have
to wait for a single thread to copy over 64 32-bit elements for every function. Since we divide the load
across multiple threads, every thread only has to copy over 64 32-bit elements for every function that was
assigned to it. This step was measured to form a bottleneck when running on a single thread, so this is an
important part of parallelization (for more details see Section 4). Pareas generates all register allocation
results before performing a scatter operation, but Ptilopsis writes the results after each iteration. As with
the instruction generation, because this only relies on already-generated data, the result is the same, but a
lot of allocation and memory accesses have been avoided.

After the allocation step itself, using multithreaded AVX2, new instruction sizes are calculated in parallel
for each instruction. For each instruction, if it still has a virtual source or destination register, its size
is incremented by 1 to make space for the load instruction required to load in the swapped-out value.
Next, also using multithreaded AVX2, the start and end instructions for each function are expanded to
make space for the instructions required to store and load the preserved registers used by that specific
function. A singlethreaded AVX2 prefix sum is used to calculate the new instruction offset. Finally, a
multithreaded AVX2-based loop is used to scatter all instructions to their new locations. Where needed,
symbols are loaded into temporary registers (t0 for integer and ft5 for floating point symbols) and stored
on the stack. The resulting instructions are inserted directly into the new arrays storing them. After
executing the steps as described in Function table fixing to make sure the function positions have been
adjusted, the instructions for storing and loading preserved registers are inserted. This partially works
with multithreaded AVX2, but since there is no AVX2-based popcount, parts have been done in scalar
code. The full instruction words with opcode, source, and destination are generated and inserted in the
space at the start and end of each function that was previously allocated for this purpose.

Function table fixing

A step that is executed more than once is function table fixing. This step is performed whenever instructions
are inserted or removed, so an instruction offset table is passed to this step, which indicates the new index
of every instruction. This table is processed by a multithreaded AVX2 loop which adjusts the function
start indices, function sizes, and function end indices to their new locations.

3.2.6 Jump fixing

Jump fixing inserts needed instruction in order to properly load jumped-to addresses, since these require
multiple instructions to load in RISC-V. First, using a multithreaded AVX2 operation, a bitmask is used
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to isolate all unconditional jump instructions, and their instruction size is set to 2. Using a singlethreaded
AVX2 prefix sum, a new position for every instruction is calculated again.

Using multithreaded AVX2, the necessary instructions are inserted to load the full addresses. For direct
jump instructions (unconditional jumps), an auipc instruction is inserted, which along with the original
instruction results in a normal auipc-jump pair. For branching instructions (conditional jumps), there is
no facility to use a pre-calculated address, but the immediate value must be calculated as a relative offset
to the instruction. The relevant bits are directly inserted in the correct position in the instruction word.
All these bitwise operations are independent of each other, and part of the instructions AVX2 supplies, so
they can be efficiently executed in parallel.

Finally, the steps described in Function table fixing are executed again.

3.2.7 Postprocessing

Postprocessing merges the generated instruction words together with the source and destination registers.
RISC-V always places rd, rs1 and rs2 at the same position in the instruction word, so these are just
shifted into position and combined with a bitwise OR, before being stored in the instruction buffer. This
happens with multithreaded AVX2.

3.3 Scalar version

In order to help with implementing the optimized parallel version, a version of the Pareas/Ptilopsis backend
was implemented that tries to match the original Pareas implementation as closely as possible, using only
singlethreaded scalar code. As such, it is highly inefficient when it comes to factors like the number of
allocations and memory accesses, but it serves as a baseline to demonstrate the effectiveness and scalability
of the (multithreaded) AVX2 implementation.

3.4 Challenges

As noted previously, a major functionality missing from AVX2 is the scatter primitive. Although the scalar
implementation can easily replace this, it has not been benchmarked whether this significantly impacts
performance.

A major challenge was dealing with conditionals and AVX2. Generally, masks are used to only modify
elements that we intend to modify, but this does suffer from the same problem that GPUs exhibit, where
some units are effectively idle because their specific assigned element is skipped by the conditional. An
attempt has been made to minimize this by not executing certain branches entirely when no element of
the mask is set. Despite this, whenever a branch occurs in the AVX2 code, there is a high likelihood that
some elements are excluded, leading to an effective decrease in parallelization.

While multithreading does increase core utilization, it does bring overhead. Setting up each thread’s
task can be costly, and locking efficiently is not trivial. As such, not every step possible has been made
multithreaded, as some steps did not pose a significant bottleneck in the entire process, even at the largest
tested input size of 50MB, and the performance gained by the parallelization of these steps would not
make up for the additional overhead introduced by distributing the work over multiple threads.
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4 Experiments

In order to evaluate the various AVX2 and multithread components of Ptilopsis, various experiments were
run using the same files that were used to evaluate Pareas, and the results are compared. These input
files are available through the Pareas repository at https://github.com/Snektron/pareas, and are
specifically designed to be representative of real-world inputs. An explanation of this and more detailed
information regarding the exact specifications of these files can be found in [Hui21]. These files contain
generated source code, which is first parsed to a pointer-based AST using conventional methods in C++,
before being passed to the Ptilopsis backend in the previously described inverted tree format.

The first set of test files (subfolder basic) tests the impact of increasing the AST size on the execution
time. The second set of test files (subfolder funclen) tests the impact of increased function sizes with
roughly similar total AST sizes. The third and final set of test files (subfolder shape) tests the impact of
the total height of the AST with a roughly constant total AST size.

For each experiment, statistics have been collected across 15 runs of the program. Only the execution time
of each individual step was taken into account in order to negate any effects the testing instrumentation
might have on the final results. This means the initial input parsing and external data structure setup
time are not measured. However, the execution time for setting up or copying all data structures and
buffers relevant to the compilation itself is taken into account.

Every input file was tested with the following number of threads: 1, 2, 4, 8, 16, 32, 64, 96, 128, 160, 192,
and 224 threads. In addition to this, for every combination of thread count and input file, 4 configurations
have been tested, named m0, bm0, m1, and bm1, with the following command line flags added, the function
of which is explained in Appendix B:

• Configuration m0: -m 0

• Configuration bm0: -b -m 0

• Configuration m1: -m 1

• Configuration bm1: -b -m 1

All experiments were performed on the same machine, the specifications of which can be found below in
Table 4.1. The compiler used was g++ (GCC) 12.2.0.

CPU Type AMD EPYC 7702

CPU Count 2

Total CPU Cores 128

Total CPU Threads 256

RAM Amount 512 GB

Table 4.1: Hardware specifications of the machine used for the experiments

Complete details on reproducing the experiments can be found in Appendix B. All results are listed in
Appendix C
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Note on threading

Only binaries of Ptilopsis that were built using the GCC toolchain respect the specified thread count,
since some parallelism is implemented using the parallel variants of C++ STL algorithms like std::sort.
These algorithms do not expose an API for limiting the number of threads used. When built using GCC,
the compiler uses a backend based on the Intel oneAPI TBB [Inta], which can easily be manipulated into
limiting the number of total threads. Since no such API exists when compiled using MSVC, this will
always use the automatic thread count decided by the Windows Thread Pool API [Thr].

4.1 File Size

This experiment contains 7 input files, that yield ASTs which all have the same height but an increasing
number of nodes and functions. Starting from 1, the total sizes of these input files are roughly 5 KiB,
10 KiB, 100 KiB, 500 KiB, 1 MiB, 10 MiB, and 50 MiB. These test files are structured to be relatively
similar to usual real source files, with multiple functions of limited size, and somewhat deep nesting of
expressions, leading to a limited, but not a low, total height for the resulting AST.

Figure 2 shows the results for a small and a medium-sized test file. Because of the significantly worse
performance at high thread counts, the full results for configurations c and d are not shown here, but
these can be seen in Appendix C.

From these graphs, we can conclude that at small input file sizes, the overhead for synchronizing multiple
threads becomes a major bottleneck. We see some improvements with the 500 KiB input file when using
a small number of threads instead of just 1, but in both cases, the performance starts to significantly
degrade when using 64 or more threads.

Figure 2 also shows the results for the largest 50 MiB source file. From this, we can conclude that on very
large inputs there are significant benefits to multithreading, but with diminishing returns. When going
from 1 to 2 threads, the total execution time is reduced by around 50%, but when using 32 threads it is
still around 1

10 of the original execution time. When using more than 32 threads on configurations c and
d, the total execution time starts to increase significantly, likely due to heavy contention on all available
cores. On configurations a and b there is a slight increase in execution time, but not as significant as with
the 2 previously mentioned configurations.

In addition to the overall runtime, we can see that, on large input files, parallelization of the register
allocation step yields large improvements, while the optimization stage improves moderately and the
instruction generation step quite poorly.

It is notable that when using 32 or more threads on small input files, the total execution time starts
increasing. This is possibly caused by our testing system being equipped with 2 physical CPUs, leading to
performance regression when a task is not running solely on a single physical CPU due to memory access
latency.

4.2 Function Size

The second set of experiment files contains 8 input files with roughly the same total size, but a decreasing
number of functions. This means that each individual function on average gets longer. This type of input
specifically targets the register allocation step, as this is performed sequentially within each function, and
only parallelized by the total number of functions.

Figure 3 shows the average execution time for an input file with a very large number of functions, one
with a moderate number, and one with a small number of functions. We can see that a smaller number of
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Figure 2: Partial data showing the execution time of 3 input files with different total sizes

functions results in a lower execution time, with the fraction represented by the register allocation step
shrinking significantly as well. A performance regression when using 32 or more threads is seen just like in
Section 4.1, and especially configurations c and d perform poorly in this situation.

Unlike in Section 4.1, the difference multithreading makes is small, with the biggest improvement visible
when a very high number of functions are compiled. When the number of total functions shrinks, the
benefit provided by multithreading is reduced. Despite this, we can see that multithreading is most effective
in the register allocation step when a high number of functions are present. The instruction generation
step sees moderate performance improvement with more threads but seems to be mostly unaffected by
the total number of functions present. These results are expected, since instruction generation schedules
all instructions based on their level in the AST, regardless of what function they belong to. This is not
the case for register allocation, and as such, this step is more affected by a change in the total number of
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Figure 3: Partial data showing the execution time of 3 input files with a differing total number of functions

functions.

4.3 Shape

The final set of experiment files contains 6 files with corresponding maximum AST depths of 9, 19, 34, 36,
42, and 49. Since function nodes are always located at the second level of the AST, a deeper AST leads
to significantly larger functions. Figure 4 shows the results for a relatively shallow AST, a moderately
deep AST, and a very deep AST. Based on these results we can conclude that, while the instruction
generation step is not significantly affected by the depth of the AST, the register allocation step is the
main contributor to a high execution time with a very deep AST as input. Since the parallelism of this step
is bound by the number of functions, and deeper ASTs necessarily mean larger functions when the total

17



number of functions remains roughly equal, this result is expected as there is less parallelism achievable in
large functions.

Based on the results it is also clear that multithreading significantly speeds up this step relative to a
single-threaded approach, but the total execution still takes very long on average with very deep ASTs,
despite the test files themselves being of similar size.
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(a) 9-deep AST
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(b) 19-deep AST
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(c) 49-deep AST
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Figure 4: Partial data showing the execution time of 3 input files with varying AST depths

4.4 Comparison to Pareas

Because of the similarity between Pareas and Ptilopsis, it is possible to use the same files to benchmark
them and compare the results to the original results obtained in [Hui21].

Pareas was run on an NVIDIA RTX 3090, with 10496 cores and 24GiB of memory, with a bandwidth of
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936.2GB/s. Ptilopsis was run on a dual Epyc 7702 system, featuring 64 cores and 128 threads along with
204.8GB/s of memory bandwidth per socket, configured as 2 NUMA nodes. However, it usually performed
best when running using 16 or 32 threads, with significant performance regressions when using 64 or more
threads. Since the Linux scheduler is NUMA-aware [NUM], it will attempt to schedule our threads on the
same node. At 64 threads, we exceed the number of physical cores per node, so there is a high likelihood
that a thread may be scheduled on a physical core of a different node, and this is reflected in our result.
Further investigation could be done into the effects of pinning the threads on a single node.

Overall, as was discussed in previous sections, the CPU is better suited for some parts of the compilation
process. Specifically, register allocation benefits from the MIMD nature of a multi-core CPU, since
branching is not as expensive. Conversely, a SIMT system like a GPU is better suited to processing many
individual elements, which is what most other steps of the compilation process consist of. The previously
tested workloads are discussed in detail below.

File size

Figure 5 shows the total execution time for different input sizes for Ptilopsis, showing both the AVX2
implementation, and the scalar implementation, compared to that of Pareas. This shows superlinear
scaling based on input size for the scalar implementation, as well as roughly linear scaling for the AVX2
implementation and sublinear scaling for Pareas. At low input file sizes, the usage of 32 threads hurts
performance. This is expected and was previously discussed in Section 4.1. This effect decreases as the
filesize increases, and once the filesize reaches 100 KiB the scaling shows the same characteristics as when
using only 1 thread. This is in contrast to Pareas, which performs significantly worse at low filesize, but
scales in a sublinear fashion. It is notable that, except for an outlier result at an input size of 1 MiB, the
scaling of Pareas across the full range of input files looks similar to that of Ptilopsis when using multiple
threads on the smallest four input files. However, there is not enough data on the performance of Pareas
on even larger filesizes to confirm this.
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Figure 5: Comparison of scaling on input size for singlethreaded scalar, singlethreaded AVX2, and
multithreaded AVX2 implementations, as well as Pareas
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Because of the poor parallelization, register allocation on Pareas takes a disproportionate amount of
time compared to other stages. At larger input sizes, register allocation is still a major part of the total
execution time of Ptilopsis, but it is not nearly as much as in Pareas. This step likely benefits heavily from
the independent nature of multiple CPU cores, allowing for a lower performance penalty when branching
depending on different parts of the input data, instead of every core having to execute every instruction,
regardless of whether that core’s assigned data actually uses the result of the branch currently being
executed.

Function Length

Figure 6 shows the total execution time for a different number of functions with a similar total size for
Ptilopsis, again showing the AVX2 and the scalar implementation, compared to that of Pareas. With
decreasing function length, and thus increasing total function count, all of the implementations in Ptilopsis
initially show a slight execution time decrease, before this starts increasing again. Pareas on the other
hand exhibit a significant decrease in total execution time as the number of functions increases, with a
slight increase again near the upper end of the tested function counts. In both cases, an increased number
of functions means better parallelism, but the optimal number for Pareas seems to be a lot higher than
that of Ptilopsis.

To explain the difference between Ptilopsis and Pareas, we speculate that memory bandwidth during the
register allocatio may play a role. An important part of this stage is copying over the current state of all
registers of all functions assigned to the current thread. This is bandwidth-limited, and as such, when a
smaller number of total functions exist, the total amount of data that needs to be copied for this step is
lower, leading to a speed-up instead of a slow-down when fewer functions are present, despite the achieved
levels of parallelism being lower.

Further analysis may be needed to determine what causes the observed minimum execution times for both
Pareas and Ptilopsis, and whether the observed scaling pattern holds for inputs with a higher number of
functions.
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Figure 6: Comparison of scaling on function size for singlethreaded scalar, singlethreaded AVX2, and
multithreaded AVX2 implementations, as well as Pareas
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Shape

With this type of input file, Figure 7 both Pareas and Ptilopsis exhibit very similar behavior as the AST
depth increases.. As shown in Figure 4, the register allocation step is the main bottleneck for deeper ASTs,
which mimics behavior seen with Pareas. As the depth of the AST increases, every function also grows in
size. Since the parallelization of the register allocation stage is bound by the total number of functions,
not the size of these functions, this leads to a bottleneck.

Interestingly, input files 4, 5, and 6 take nearly the same amount of time on a single CPU thread as on the
GPU, input file 3 performs slightly faster, but input files 1 and 2 perform significantly slower.
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Figure 7: Comparison of scaling on AST depth for singlethreaded AVX2, multithreaded AVX2 and Pareas

4.4.1 Scalar Implementation

Both Figure 5 and Figure 6 contain data points for the provided purely scalar implementation. Due to the
superlinear scaling based on the input size, only the first 5 test files were tested in the former. Still, this
serves to compare the AVX2 implementation to a naive reimplementation of Pareas on a CPU.

This scalar implementation is significantly slower in every situation than all other tested implementations.
Additionally, it shows a significantly different scaling based on input size than both Pareas and Ptilopsis’
AVX2 implementations. Despite this, the scaling is very similar in terms of the total number of functions
to that of the AVX2 implementations. This indicates that in this situation, the bottleneck in both cases
is likely related to something inherent to running on the CPU. As mentioned in Section 4.4, given the
reliance of the register allocation step on copying memory, memory bandwidth constraints are a likely
cause.
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5 Scalability and limitations

Generally, we can see that increasing the number of threads allocated to all tasks brings some improvements
in total execution time, but these improvements do not scale linearly in most cases. The exception to this
is on very deep ASTs, as tested in Section 4.3. This is because in this case, the main bottleneck is register
allocation, which scales quite well with multiple cores as long as the number of functions stays the same.

Often, the lowest execution time is achieved when using between 16 and 64 cores. Notable is an increase in
total execution time when using 64 or more cores. Reasons for this can be twofold. Firstly, since there is
more than a single process running on the system, as the CPU usage grows, resource contention of these
CPU resources can lead to a suboptimal execution environment. Secondly, since the 2 CPUs in the testing
system do not share a physical socket, there is additional latency when data moves between the physical
CPUs. At 64 threads, a single CPU cannot satisfy the process anymore when it comes to physical cores,
so there’s a higher chance of the process residing on multiple physical CPUs, which leads to additional
memory access latency. This is particularly noticeable when using the alternate locking methods, as these
rely on memory being synced between the different threads. On Linux systems, the scheduler attempts to
minimize the effects of this when all threads are able to be scheduled on a single CPU [NUM], but beyond
64 there it seems to generally favor assigning each thread a physical CPU core over keeping the threads on
the same socket, which especially leads to slowdowns when using the alternate locking method.

This poor scalability could be at least partially mitigated by designing a potential compiler in such a way
that each thread can stay ”close” to the resources it requires.

5.1 Future Work

In the paper describing Pareas, multiple potential areas for further research and improvements were already
identified. In addition to these, we identified some potential CPU-related improvements that may warrant
further research.

AVX-512

Currently, Ptilopsis uses AVX2, emulating more complicated constructs using these as needed. Modern
server CPUs, and some modern consumer CPUs, nowadays contain support for a further extension of this
instruction set, named AVX-512. As the name implies, this is capable of operating on 512-bit registers
instead of 256-bit registers, which is already an avenue for increased throughput. In addition to this, the
AVX-512 extension contains many additional instructions that help the programmer. Notably is native
support for a scatter operation. Further research can be done into how these extensions may benefit SIMD
applications such as Ptilopsis.

Cache

Our results show that when each thread processes multiple adjacent elements instead of the default
ordering, a modest speedup may be observed. The current implementation does not take CPU data- or
instruction-caching into account, while this has previously been shown to be able to significantly improve
the performance of many CPU applications. Further research could be done into how these factors may
affect SIMD applications operating on such large arrays of data.
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Futhark

As previously mentioned, Futhark is particularly suited to parallel data processing, while C++ can be
difficult to work with when attempting this. Futhark natively supports translating Futhark code into
multiple different languages. It should be possible to create one such backend of the Futhark compiler that
outputs explicitly parallel SIMD code instead of the sequential C code the C backend outputs. This may
prove to be easier than getting similar multithreaded and SIMD code generation functionality to work in
C++, and it may also provide some avenues for further optimization.

Hybrid Architecture

We observed that the location and cause of bottlenecks when compiling on a CPU differ from those
observed when compiling on a GPU. It may be feasible to combine both of these approaches in a hybrid
compiler, capable of offloading certain parts of the compilation on the GPU while running the rest on
the CPU. This would require careful programming efforts regarding the offloading mechanism since, on
most common systems, the link used to transfer data between CPU and GPU memory has relatively high
latency compared to directly accessing local memory. In contrast, some GPU devices share their memory
with the CPU, in which case this latency may not be present. Further research could be done into such an
offloading mechanism and possible heuristics on when to use it.
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6 Conclusion

In this thesis, we adapted previous work in parallel code generation on GPU architectures to work on
conventional multi-core CPUs. The Ptilopsis compiler uses AVX2 instructions and multiple CPU threads
to generate machine code from a previously generated syntax tree, using a set of compiler stages previously
designed to implement a compiler running on GPU architectures.

The performance using multiple configurations was measured, and we found that it can outperform a
GPU-based compiler on smaller inputs, but that these benefits diminish if the input allows the GPU to
better take advantage of its level of parallelism. Based on the measured results, the compiler generally
exhibits the lowest total runtime when running on a modest amount of threads, between 8 and 48, with a
modest to high number of threads showing significant slowdown on small inputs due to extra work required
for distributing work across all threads. We found that performance is affected by memory bandwidth
and, more importantly, memory latency, as spreading work across multiple CPUs with a relatively high
latency interconnect shows slowdowns disproportionate to the overhead of simply running more threads.
Finally, we found different performance characteristics compared to a GPU-based implementation. The
GPU implementation performs worse when the input is small, but the total execution time does not grow
as fast as on the CPU, meaning very large inputs will perform better on a GPU-based implementation.
Bottlenecks were also different, partially caused by the difference in memory bandwidth and different
options for efficient memory usage, leading to the register allocation stage making up a smaller part of the
total execution time, but other stages taking proportionally longer to execute.

Additional optimizations may be done in addressing problems caused by the CPU architecture, such as
memory bandwidth and latency, as well as cache usage and thread synchronization. Further work can also
be done in making programming for multiple threads using SIMD easier, potentially using AVX-512 or a
purpose-built language such as Futhark.
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A AST Reference

The Ptilopsis AST uses the same nodes types and data types as Pareas. The main difference is that all
fields are stored as 32-bit integers to help with AVX2-based processing. Despite this, only the lower 8 bits
are actually used currently, but this can theoretically be expanded to use all available bits. Three classes
of nodes have also been given special bit patterns to allow for faster processing. These three classes are:

• Conditional (if, if/else and while)

• Comparisons (==, !=, <, >, <=, >=)

• Function Arguments (including function call arguments)

Since the upper 24 bits are still always zero as of now, the upper 4 of the remaining 8 bits have been used
to construct special bit patterns. For conditionals this is 0b1101, for comparisons 0b1110 and for function
arguments 0b1111. Since all subtypes of these nodes are often processed in a similar manner, a single
bitmask and a single equals comparison can be used to isolate any one of these nodes, instead of having to
compare and logical OR with every single one. Additional special properties are listed below.

• For conditional statements, the lowest bit is the index of the child node representing the corresponding
conditional. This means that for if and if/else nodes, the conditional child is 0, and for while-nodes
it is 1.

• For function arguments the lowest 3 bits are used to represent information about the type of node:

bit 0 - If set, the argument is a floating point argument passed in an integer register.

bit 1 - If set, the argument is on the stack.

bit 2 - If set, the argument is a call argument.
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B Reproducibility

This section describes how to setup the compiler in order to perform the experiments. All source code and
experiment files are available at the git repository at https://github.com/TypeA2/Ptilopsis. The
original Pareas repository with the same experiment files is available at https://github.com/Snektron/
pareas.

Ptilopsis is written in C++, using C++20, and requires a modern compiler. It can compile and work on
both Windows and Linux systems. The following compilers have been tested on their respective native
platforms:

• CentOS 7 & Debian 11: g++ (GCC) 12.2.0

• Windows 11 22H2: MSVC Version 19.34.31721 (x64)

Additional requirements for the compilation of Ptilopsis are the Meson build system, of which version
0.63.0 and 0.63.1 have been tested, and the ninja build system (version 1.11.1 has been confirmed to
work).

In addition to these build system requirements, on Linux platforms also require oneAPI TBB [Inta] and
pthreads to be installed. TBB can usually be installed under the name libtbb-dev on the system’s native
package manager, and pthreads is normally already installed. Finally, a tool like pkg-config should be
installed so Meson can find these installed libraries.

Finally, the hardware running Ptilopsis must be capable of executing AVX2 256-bit vector instructions.

After these requirements have been satisfied, the project can be set up and compiled on a Linux system
using the commands as shown in Listing B.1.

meson setup <builddir> --buildtype <buildtype>

cd builddir

ninja <builddir

Listing B.1: Steps for compiling Ptilopsis

The following notes should be taken into account with regards to the setup:

• <builddir> should be replaced by any valid directory path.

• <buildtype> should be one of {debug, debugoptimized, release} (Meson supports other values
but these are not supported).

– debug is an unoptimized binary, and should only be used for checking correctness of code and
debugging known issues.

– debugoptimized is optimized but does include debug information, and as such can be used for
debugging. This configuration also measures the time between individual compilation steps
with a higher granularity. This however does mean the total execution time is not reliable, as it
includes time taken for printing these results, but it can be used to find bottlenecks.

– release is the most optimized version, and this was used for the experiments.

The resulting executable will be placed in the specified builddir and will be named ptilopsis (or
ptilopsis.exe under Windows platforms). Relevant command-line option are as follows:
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• -t <threadnum> Total number of threads to use for processing. One extra thread is used as the
main control thread, and this value is limited to the maximum number of CPUs available in the
system minus 1. It is recommended to not use all available threads, but at most somewhere between
50% and 85%.

• -m <0 or 1> Controls the method of synchronizing threads between task. 0 uses the platform’s
std::barrier<>, while 1 uses a custom spinlock based on principles described in [Rig].

• -b When passed, use an alternate ordering of each thread’s work to potentially improve caching
effects. By default, when using a total of x threads, operating on y data elements, given a thread’s
index i, each thread processes the elements at index e = i+ n · x for n ≥ 0 while e < y With -b,
each thread instead processes n = ⌈y/x⌉ adjacent elements, starting at index i · n. Due to spatial
locality of the data, this can improve performance.

• -i <mininstr> The minimum number of 256-bit vectors of finalized instructions to process per
thread. Since instructions are stored as 32-bit integers, this value is multiplied by 8 to obtain the
minimum total number of instructions processed on each thread for every step of the compilation
process. For non-instruction-based steps, this value is approximated: when operating on nodes, it
is divided by 4, as each node will generate up to 4 instructions, and when operating on functions
it assumes every function is of an average size based on the total number of instructions and the
number of functions present.

• -p Aside from all logging happening on stderr, this additionally prints all stage names and the
number of nanoseconds taken in a CSV format to stdout.

The compiler can now be used for testing. The test input files used for experiments are stored in
testfiles/pareas. Assuming the initial setup commands are executed in the project’s root directory,
with builddir = build and buildtype = release, an example run of the program can be seen in
Listing B.2

./ptilopsis ../testfiles/pareas/basic/7.in -b -t 128

Listing B.2: Example invocation of the Ptilopsis compiler

Scripts have been provided for automated testing and data collection in the form of tests.py and
test scalar.py, which should be invoked as shown in Listing B.3. The former will automatically perform
15 iterations of every specified testing configuration, and write the duration of every step for every iteration
to results.csv in a CSV format, while the latter will benchmark a limited subset of test files using the
scalar implementation, and write the results to results scalar.csv.

./tests.py ./release/ptilopsis ./testfiles/pareas results.csv

./test_scalar.py ./release/ptilopsis ./testfiles/pareas results_scalar.csv

Listing B.3: Example invocation of the testing scripts

Finally, the visualize.py and visualize scalar.py scripts are used for the automatic generation of
the graphs and tables from the CSV output produces by the previous scripts. When invoked as shown
in Listing B.4, these generate all relevant graphs and tables in the specified root directory based on the
previously generated benchmarking data.
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./visualize.py ./results.csv ./tex/figures

./visualize_scalar.py ./results_scalar.csv ./results.csv ./text/figures

Listing B.4: Example invocation of the visualization generation scripts
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C Experiment Results

This section lists all graphs listing average execution time, and tables containing the minimum and
maximum execution time for every input configuration, as well as the standard deviation. Graphs contain
the same 4 configurations as described in Section 4.
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Figure 8: Average execution time for files in basic
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Figure 9: Average execution time for files in basic
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Figure 10: Average execution time for files in funclen
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Figure 11: Average execution time for files in funclen
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Figure 12: Average execution time for files in shape
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