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Preface

Dr Joan Sánchez de Toledo is a hard worker and persuasive individual. As for myself, Pol
Mor Puigventós, I am a very organized person and like to think in advance, plan my journeys
and be in control. However, I thrive on challenges and hold a belief in destiny.

Almost two years ago, Joan invited me to visit Sant Joan de Déu, where he serves as the head
of the Heart Area and the Pediatric Cardiology department. While his expertise and research
primarily revolve around advancements in cardiology procedures, he actively encourages his
colleagues to embrace the presence of data science experts and their influence on their work.
During my visit, I was shown the eCare, an ensemble of teams, rooms and resources that
focus on involving all members of the hospital in its mission to centralize and standardize data
collection processes for future enhanced patient care.

Last Christmas, Joan once again extended his invitation, allowing me to meet the data
scientists who work alongside clinicians. Patricia Garcia Cañadilla, Arnau Valls Esteve, and
Adriana Modrego Muñoz explained the data they managed to gather and expressed their wish
to tackle some of their challenges with machine learning. One of them is predicting the Length
of Stay. This is, the duration of time that a patient spends admitted and receiving medical
care at the hospital. They offered me the possibility of utilizing their data for this purpose,
which potentially could become the focus of my master’s thesis.

At that moment I already had submitted a proposal for a different project related to the ex-
ploration theory in the domain of Reinforcement Learning for my thesis. However, as mentioned
earlier, Joan’s persuasive nature and my inclination towards challenges led me to embrace the
opportunity to collaborate on this endeavour. So here we are.

Medicine now compared to medicine in the future. From Rajkomar et al. (2019).

A 49-year-old patient notices a painless rash on his shoulder but does not seek care.
Months later, his wife asks him to see a doctor, who diagnoses a seborrheic kerato-
sis. Later, when the patient undergoes a screening colonoscopy, a nurse notices a dark
macule on his shoulder and advises him to have it evaluated. One month later, the pa-
tient sees a dermatologist, who obtains a biopsy specimen of the lesion. The findings
reveal a noncancerous pigmented lesion. Still concerned, the dermatologist requests a
second reading of the biopsy specimen, and invasive melanoma is diagnosed. An on-
cologist initiates treatment with systemic chemotherapy. A physician friend asks the
patient why he is not receiving immunotherapy.

A 49-year-old patient takes a picture of a rash on his shoulder with a smartphone app that
recommends an immediate appointment with a dermatologist. His insurance company
automatically approves the direct referral, and the app schedules an appointment with
an experienced nearby dermatologist in 2 days. This appointment is automatically cross-
checked with the patient’s personal calendar. The dermatologist performs a biopsy of the
lesion, and a pathologist reviews the computer-assisted diagnosis of stage I melanoma,
which is then excised by the dermatologist.
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Abstract

Our objective is to introduce an algorithm for predicting the Length of Stay (LoS) at
Sant Joan de Déu hospital in Barcelona. Predicting the LoS in a hospital refers to forecast-
ing the total duration of a patient’s hospitalization after admission at the hospital. While
numerous studies have tackled this problem, the prevailing solutions predominantly rely on
non-interpretable algorithms, and often yielding low accuracies in their predictions.

In critical domains like healthcare, where interpretability and trust are essential, non-interpretable
algorithms like neural networks may not be suitable for addressing the problems at hand. How-
ever, interpretable models, such as rule-based models, provide clear explanations for their
predictions, making them more suitable and trustworthy in such scenarios.

In our study, we select S-CLASSY, a rule-based model, which uses beam search and human
guidance in its learning process. Collaborating closely with domain experts, we create a human-
guided pipeline to train the S-CLASSY model for LoS prediction, prioritizing performance and
interpretability.

We compare its performance with other models, both interpretable and non-interpretable,
and explore the effect of human guidance through the preferred variables that drive the initial
patterns search in the data. Additionally, we assess the model’s interpretability using existing
and new quantitative metrics, and qualitative feedback from the experts.

Therefore, we achieve an understandable model, considered interpretable and transparent
by the clinicians to predict the LoS. Nevertheless, medical relevance in the generated rules is
not achieved, which is essential for gaining medical professionals’ acceptance. To address this
limitation, we suggest future steps for S-CLASSY to generate medically relevant rules, aiming
to enhance the model’s practicality, making it usable and trustworthy for medical professionals.
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Chapter 1. Introduction

Research has played a pivotal role in the progress of humankind, with each new discovery,
we have gained a sense of security and confidence. In this era of ever-advancing technology,
the domain of healthcare, particularly in hospitals, stands as a complex ecosystem where the
well-being of patients and the efficient allocation of resources are of utmost importance. In
this context, the integration of machine learning (ML) algorithms has become increasingly
prevalent, offering powerful tools for analyzing and predicting patient outcomes.

Nevertheless, based on the criterion of interpretability, we can categorize machine learning
algorithms into two distinct types. Non-interpretable models, such as neural networks, and
interpretable models, such as decision trees. Existing literature addresses the issue of explaining
neural networks, notably XAI by Gunning et al. (2019), but also many more in recent years
(Xu et al., 2019) as the topic gathered much more attention, both in the research community
and industry. However, the networks themselves do not offer explanations about how they
arrive at a particular prediction, necessitating the development of external techniques to gain
insights. This is why our research endeavours to explore alternative approaches that prioritize
interpretability as a starting point.

In particular, we focus on the development of interpretable ML algorithms (Doshi-Velez &
Kim, 2017), which have gained substantial relevance, particularly in domains where clarity is
crucial due to the critical nature of the decision-making process, such as healthcare. Ensuring
that our algorithm is interpretable is of utmost importance as we seek to address a healthcare
problem where transparency is a must. We look for allowing healthcare practitioners to scru-
tinize and comprehend the factors influencing the outcomes of the predictor (Ahmad et al.,
2018). Our motivation stems from the understanding that the collaborative involvement of
experts can greatly enhance the development and effectiveness of our algorithm.

Consequently, we place emphasis on incorporating human guidance to steer the algorithm’s
search. Specifically, we aim for medical doctors to drive the search by using their specific
criteria. This approach aligns with the concept of informed machine learning (von Rueden
et al., 2021), where human feedback plays a crucial role in guiding the learning process. We
can draw parallels to examples of this human influence in reinforcement learning algorithms,
where extensive literature already exists on incorporating human input to improve the learning
outcomes (Zhang et al., 2021).

For this thesis, we use the S-CLASSY algorithm introduced by Papagianni & van Leeuwen
(2023) as it aligns well with the project’s requirements. S-CLASSY is a rule-based algorithm
used for classification tasks, focusing on discovering meaningful patterns in the data that lead
to accurate predictions. It is an extension of the original CLASSY (Proença & van Leeuwen,
2020) and SSD++ (Proença et al., 2022) algorithms.
Rule learning is a field within interpretable machine learning that involves creating models like
decision trees, rule sets, and rule lists.
CLASSY, can produce interpretable rule lists, making it suitable for applications where trans-
parency and understandability are crucial. This model employs the minimum description length
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Chapter 1. Introduction 1.1. Predicting the Length of Stay

(MDL) principle to select the best rule among competing rules, effectively compressing the
data.
Moreover, S-CLASSY incorporates human guidance in the process. By preparing a list of
preferred variables, the algorithm is directed to search for patterns in the data according to
the input from human experts. This human guidance approach enhances S-CLASSY’s inter-
pretability, making it even more usable for understanding the model’s predictions.

Our research primarily focuses on the prediction of the Length of Stay (LoS) for patients
admitted to a hospital, with a specific emphasis on collaborating with Sant Joan de Déu’s
(SJD) pediatric hospital in Barcelona. The main objective of our study is to train an algorithm
on the hospital’s data that can accurately forecast the duration of a patient’s stay until
discharge, whether in the Intensive Care Unit (ICU) or the ward, following heart surgery for
postoperative care. Together, we conduct interviews with the healthcare staff and we gather
valuable insights into the specific needs and requirements to tackle this task.

1.1 Predicting the Length of Stay

The Length of Stay (LoS) for patients in a hospital refers to the number of days they
spend during a single admission event (Huntley et al., 1998). This admission event is the time
that one person stays in a hospital from the moment of their admission until their discharge.
Predicting the LoS for patients is often challenging and usually done retrospectively. LoS can
vary across different levels, such as ICU, step-down units, and general floor areas. It can also
be evaluated separately for each area or combined to provide a total LoS. Apart from being
a key indicator of hospital resource consumption, LoS offers valuable insights into the patient
flow within care units and environments, playing a crucial role in evaluating the operational
functions of different healthcare systems. It is often considered a metric to assess resource
utilization, cost, and the severity of illness.

The LoS is a complex concept influenced by various factors, sometimes competing with
each other. For example, the patient’s genetics, the extent or seriousness of trauma or disease,
the overall medical or surgical treatment received, the quality of care provided (including the
availability of resources), environmental conditions outside the hospital (such as sanitation),
and the accessibility of intermediary and long-term care facilities. LoS serves as a measurable
outcome that directly correlates with hospital costs and the economic consequences of trauma
and disease (Stone et al., 2022).

Addressing the Length of Stay issue provides an opportunity to hit two targets with one
shot. Firstly, by discharging patients at the appropriate time, unnecessary healthcare costs
can be curtailed, leading to improved resource allocation and financial efficiency. Secondly, a
targeted approach to the LoS minimizes the risk of patients contracting secondary infections
within the hospital environment, ultimately enhancing patient safety and well-being.
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Chapter 1. Introduction 1.2. Research questions

At Sant Joan de Déu, being a pediatric hospital, an additional factor comes into play. Due
to the young age of the patients, they are generally unable to communicate their symptoms
or express their desire for discharge if they feel in good shape. As a result, predicting the
Length of Stay becomes crucial for the hospital to provide reassurance to the families who
eagerly await the end of their children’s hospital stay. Offering an accurate and reliable answer
regarding the expected duration of the stay is of utmost importance. Dr Joan Sánchez de
Toledo emphasizes the relevance of this, stating, “When an individual finds themselves in the
1% of the possibilities, it becomes a 100% reality for them”. Therefore, it is always important
to be cautious even when displaying highly certain predictions.

The relevance of this matter is currently noteworthy. The lack of evidence in this domain
highlights the necessity for more extensive studies aimed at exploring approaches that can
reliably forecast the LoS, especially in neonatal care (Seaton et al., 2016). In order to provide
enhanced support and information to these patients and their families during their hospital-
ization, we address the crucial aspect of determining the LoS, which holds great importance
for the well-being and satisfaction of the patients themselves (Borghans et al., 2012).

1.2 Research questions

The objective of this research is to provide insights and solutions to the following research
questions pertaining to the Length of Stay in a hospital setting, specifically addressing the
challenges faced at the Sant Joan de Déu hospital.

1. We aim to understand the characteristics of the LoS problem and evaluate different
models to determine the most effective approach for making accurate predictions. We
analyze and compare the performances of various off-the-shelf models and observe that
their accuracies are comparable to S-CLASSY. Additionally, we assess the difficulty asso-
ciated with solving the LoS problem by analysing the prediction errors of the algorithms.

2. We assess the effect of human guidance in the S-CLASSY model. We compare the
output of the model both when using simulated and real knowledge. In addition, we
compare it with its predecessor, CLASSY, and examine their predictions. We motivate
our decision for the S-CLASSY model to tackle this task given the similar accuracy to
CLASSY and the enhanced interpretability and adaptability.

3. We investigate the interpretability of the selected algorithm, S-CLASSY, to confirm our
preference for this model. We focus on the accuracies obtained and the compactness of
the rule lists. Fewer rules and conditions are generally preferred for better interpretability.

4. We iterate a second time with the medical experts, to get their impressions regarding
the performance and interpretability of our approach. Furthermore, we propose ideas to
enhance the usability of a new version of S-CLASSY, providing medically relevant rules.
This avenue aims to improve trust and gain the acceptance of the experts involved.

1.3 Approach and contributions

Our objective is to comprehensively grasp the intricacies of this problem by leveraging data
analysis and conducting interviews with the healthcare staff at Sant Joan de Déu in Barcelona.
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Chapter 1. Introduction 1.3. Approach and contributions

It becomes clear that clinicians prioritize two key aspects in a predictive solution: accuracy
and interpretability. They require a tool that can provide accurate predictions, serving as a
reliable second opinion to their own estimations. This tool should not only confirm their initial
assessments but also challenge their predictions when necessary, prompting them to reconsider
their assessments and make more informed decisions.

To meet these requirements, the solution needs to be interpretable, allowing healthcare
professionals to understand and trust the underlying reasoning and decision-making process,
they need it to be intuitive. Moreover, it should align with the clinicians’ thinking process by
employing the same variables and metrics they use in their own assessments. Inspired by the
human thinking process, our primary focus is on maximizing interpretability as a solid first step
towards building trust and facilitating the future integration of the algorithm into the existing
workflow of healthcare professionals.

To explore the LoS problem, we employ the data from Sant Joan de Déu and engineer
multiple datasets utilizing distinct pre-processing techniques. Although the LoS problem is
inherently a regression problem, we approach it as a classification problem in our study. Con-
sequently, we generate four distinct label sets that define different LoS intervals. Therefore, we
discretize the output in four different ways, to consider four different problems. This allows us
to evaluate the performance of various methods while addressing diverse problem formulations.

In our first experiment, we validate the comparable accuracy achieved by the S-CLASSY
algorithm in comparison to other off-the-shelf non-interpretable methods. For this assessment,
we train the models with the different engineered datasets (exhibiting distinct variables) to
solve the four classification problems. Following this procedure, separately for each problem, we
can compare different metrics across the models. In addition, we prepare confusion matrices
to understand what errors the different models are committing.

In our second experiment, we emphasize the model’s ability to incorporate human guidance.
In addition, we compare the performances of the different interpretable methods, namely a
decision tree, CLASSY, and S-CLASSY with simulated knowledge and real knowledge.
We utilize the S-CLASSY model with simulated knowledge, following the same procedure
as the authors of S-CLASSY, as one of our baseline methods. Through comparison to this
model, we assess the relevance of actual real expert knowledge used in this work compared
to what can be deduced using machine learning. To do that, we analyze the frequency of the
preferred variables within the generation of the first rule, to confirm the benefits and impact
of incorporating human guidance into the algorithm, while keeping track of the accuracies of
the models.

In our third experiment, the focus of our investigation lies in assessing the interpretability of
the algorithm. We evaluate interpretability quantitatively, employing various metrics to facili-
tate comparison between interpretable models. Further, we introduce an additional metric for
rule-based models called accumulated usage. This measure illustrates the algorithm’s capacity
to provide comprehensive coverage of the data through robust rules.
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Chapter 1. Introduction 1.4. Outline of this thesis

In our last task, we gather feedback from healthcare professionals regarding the generated
model. Our discussions with the professionals encompass various aspects, including the struc-
ture of the rule lists, interpretability, readability for clinicians, and the identified limitations of
our solution.
Additionally, healthcare professionals propose ideas for better application. They recommend
immediate improvements, including limiting the search space to a specific population and
adapting again both the overall and preferred variables.
By implementing these changes, the generated rules become more transparent, enhancing their
simplicity and comprehensibility. However, further research is needed to create patterns with
clinical relevance that align with medical thinking procedures.

1.4 Outline of this thesis

Following this introduction, we delve into a review of the related work, in Chapter 2, in the
domain of interpretable machine learning models and recent advancements in state-of-the-art
models for predicting the Length of Stay in hospital settings.

Chapter 3 delves into the foundational concepts necessary for comprehending the CLASSY
and S-CLASSY algorithms. We define the general rule learning framework and elucidate the
workings of CLASSY, which leverages the minimum description length (MDL) principle as
the rules selection criterion. Additionally, we introduce S-CLASSY, which incorporates human
guidance and beam search into the rule learning process.

Building upon this groundwork, Chapter 4 focuses on the presentation of the data and
requirements of Sant Joan de Déu. In Section 4.1, we outline the variables involved, per-
form exploratory data analysis, and propose a data pre-processing pipeline to engineer various
datasets that are utilized later in the experiments chapter. Additionally, in Section 4.2, we
delve into a description of the specific clinical requirements and subsequently translate it into
a well-defined machine learning problem formulation in Section 4.3.

Moving on to Chapter 5, we provide details on the experimental setup and the metrics
employed. We then proceed to address our four primary research questions, namely: the com-
parative performance of S-CLASSY against other non-interpretable models, the impact of
human guidance, the interpretability of the model, and the analysis of the expert’s feedback.

In Chapter 6, we engage in a discussion about the methods to address the Length of Stay
(LoS) problem, the strengths and limitations of S-CLASSY to perform this task, and the new
research line that emerges as a result of this work.

Lastly, in Chapter 7, we present our conclusions, summarizing the key findings of this study.
Furthermore, we propose potential avenues for future research in this domain.
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Chapter 2. Related Work 2.1. Length of Stay

In this chapter, we examine the literature related to the Length of Stay problem and inter-
pretable machine learning techniques.
Firstly, we provide a comprehensive overview of the LoS concept, emphasizing its relevance
across various fields and applications. Furthermore, we present a thorough review of existing
works in the field of LoS, ranging from the utilization of heuristic metrics to the development
of ad-hoc neural network models to solve this task.
Secondly, we delve into the literature concerning interpretable machine learning. We explore
different rule-based and Bayesian methods that have been proposed and implemented, ulti-
mately leading us to the adoption of the S-CLASSY method in this thesis.
Through this detailed exploration, we aim to establish a solid foundation for our research and
identify the most appropriate method for addressing the LoS problem in an interpretable and
effective manner.

2.1 Length of Stay

The Length of Stay of patients in a hospital has been extensively investigated during the last
decades. In Rotter et al. (2008) it was observed how future research had to focus on properly
understanding the clinical pathways of the patients in the hospital to address the problem
better. Only in the last years, have machine learning and artificial intelligence techniques
started to replace the heuristic methods employed previously. As stated in the survey of Stone
et al. (2022) there’s the need for a unified framework that still has not been reached. That is,
understanding the data, justifying the models employed, using appropriate evaluation measures
and model acceptance from the clinical community, among others.

Recent advances use the publicly available MIMIC datasets (Johnson et al., 2018). For
example, in Wang et al. (2020) where they study the third version of MIMIC. Later, with
MIMIC-IV (Johnson et al., 2020), a pre-processing pipeline was also prepared for it by Gupta
et al. (2022), not only addressing the LoS problem, but also mortality or phenotype prediction.
In addition, they offer a pipeline to pre-process the data and allow other researchers to address
those problems with their own algorithms. Trained on MIMIC, new architectures are proposed
like Temporal Pointwise Convolutions (TPC) (Rocheteau et al., 2021) and GRU-D (a new
type of RNN incorporating masking and time intervals) (Che et al., 2018).

Even if frameworks are proposed to address the problem, it can be approached with all
kinds of prediction models, both regression and classification. For instance, facing the problem
with Random Forest (Mansouri et al., 2020), Gradient Boosting trees (Nemati et al., 2020),
Autoencoders (Zebin et al., 2019) or ConvNets (Rocheteau et al., 2021), among others.

The survey conducted by Verburg et al. (2014) compared several existing regression methods
for predicting the Length of Stay (LoS) of individuals. These methods were used in real-
case scenarios for predicting the LoS in patients or as tools for ICU quality and efficiency.
Their survey concluded that the studied models did not meet the requirements for accurate
predictions.
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More recently, several studies attempted to reapply one of the studied models in the previous
survey. This is the APACHE IV model for LoS prediction. However, the findings of de Carvalho
et al. (2020) indicated that the APACHE IV model was not reliable for predicting LoS in the
ICU they examined. Similarly, Zangmo & Khwannimit (2023) demonstrated that the APACHE
IV model exhibited poor performance in predicting ICU LoS specifically in patients with sepsis.
To date, no successful studies have been reported in this particular field.

Furthermore, to the best of our knowledge, there is a lack of literature considering the
prediction of Length of Stay using probabilistic or interpretable models. This research gap
highlights the need for novel approaches that can provide accurate and interpretable predictions
for LoS in hospital settings.
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Chapter 2. Related Work 2.2. Interpretable machine learning

2.2 Interpretable machine learning

When looking for interpretable classifiers, the existing literature provides us with several
potential solutions, such as decision trees, rule sets, and rule lists, among others. These models
possess the advantage of not requiring extensive amounts of data, lengthy training processes,
or a large number of hyperparameters. Our focus lies in the development of models that are
easily understandable by human users.

We refer to Molnar (2020) for an extensive overview of interpretable machine learning
models. Here, we provide a brief summary of the most relevant work.

Initially, we delve into the analysis of rule sets, meaning an unordered set of rules. A few
approaches have been developed, particularly in the context of multi-class problems. Existing
examples in the literature include IDS (Lakkaraju et al., 2016) and DRS (Zhang & Gionis,
2020). However, these approaches still retain some level of order and lack a probabilistic
nature, thereby making it challenging to categorize them solely as strategies operating with
sets. To address this limitation, Yang & van Leeuwen (2022) propose TURS, introducing a
Truly Unordered Probabilistic Rule Sets solution.

When examining the one-vs-all approach, classic algorithms like RIPPER (Cohen, 1995) or
FURIA (Hühn & Hüllermeier, 2009) need hyperparameter tuning and return ordered lists of
rule sets, offering non-trivial interpretability of their results. Additionally, a limitation of these
existing models is the absence of probability predictions, which means they do not provide an
uncertainty measure for the predictions. This is a crucial aspect, especially in applications such
as medicine, where having an indication of the prediction’s reliability is essential.

Bayesian methods such as SBRL (Yang et al., 2017) have been proposed, but they are
constrained to binary classification tasks and a limited number of candidate rules. The work
of Aoga et al. (2018) proposes a solution combining probabilistic rule lists and the Minimum
Description Length (MDL) principle. Nonetheless, it is again limited to binary classification
and limited scalability.

The limitations of being restricted to binary classification and limited scalability, as well as
the emphasis on prediction tasks, were tackled by Proença & van Leeuwen (2020) with the
development of the CLASSY algorithm. Later, Proença et al. (2022) proposed the SSD++
algorithm that uses beam search for candidate generation to find good rule lists in a straight-
forward fashion. Finally, S-CLASSY was proposed by Papagianni & van Leeuwen (2023) com-
bining the two previous works and emphasizing the importance of leveraging the expertise of
domain specialists in enhancing prediction tasks.

S-CLASSY does have a drawback in its utilization of lists, which introduces an additional
layer of complexity in terms of interpretability due to the explicit order in the rule list. On
the other hand, TURS, which generates rule sets, lacks the advantage of leveraging human
guidance, which is particularly valuable given the scope and actors involved in this project.
Consequently, we opt to use S-CLASSY for this work.
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Chapter 3. Rule Learning 3.1. MDL-based rule learning

In this chapter, we provide a comprehensive overview of the interpretable models employed
in this research. First, we introduce the fundamental principles of rule learning and present the
MDL principle learning approach used in the CLASSY algorithm.
Second, we delve into the concept of human-guided rule learning, which involves incorporating
domain experts’ knowledge into the learning process. We outline how this concept is realized
in the S-CLASSY algorithm and its potential application to the problem at hand.
By thoroughly defining both concepts, following the MDL principle and human-guided rule
learning, we establish a solid framework for our study, enabling us to explore the effectiveness
and interpretability of the S-CLASSY algorithm in addressing the LoS prediction problem.

3.1 MDL-based rule learning

3.1.1 Rule learning

Let us define D = (X, Y ) as a supervised dataset, comprising a variable set X and a multi-
class label vector Y . Here, X represents the instance space, while Y represents the set of all
|Y | classes. Furthermore, we have V = v1, v2, ..., vm as the set of all m = |V | variables in X,
where each vi corresponds to a one-dimensional variable with a domain of dom(vi). Within
the dataset, each record (x, y) ∈ D consists of an instance x = (x1, x2, ..., xm) ∈ X, which
is a vector of values where xi ∈ dom(vi) for each vi, and a class label y ∈ Y that pertains to
the respective instance.

Rule antecedent consequent usage

1 IF 32 < bypass time (minutes) < 110 THEN Pr(fast recovery)=75% 26%
Pr(slow recovery)=25%

2 ELSE IF surgery duration (minutes) >= 406 THEN Pr(fast recovery)=12% 28%
Pr(slow recovery)=88%

3 ELSE IF average systolic blood pressure < 76.3 THEN Pr(fast recovery)=0% 10%
AND 18 < surgery overtime (minutes) < 95 Pr(slow recovery)=100%
AND standard deviation SpO2 >= 2.63

∅ ELSE THEN Pr(fast recovery)=52% 36%
Pr(slow recovery)=48%

Table 3.1: Example of a probabilistic rule list obtained with S-CLASSY on the SJD data.
SpO2 refers to oxygen saturation in blood. We define “surgery overtime” as the minutes
that the surgery has been extended longer than planned.

In this supervised learning setup, our aim is to learn rules from the data. In this context,
a rule, denoted as r, is a conditional statement that connects patterns to class probabilities.
Specifically, a rule consists of two components: an antecedent, represented by a pattern p,
and a consequent, represented by a probability distribution π(p). A pattern is a conjunction
of conditions over variables, and π(p) assigns probabilities to each class label in Y . See a rule
list example in Table 3.1.
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We describe the concept of a probabilistic rule list (PRL), denoted as R, which is an ordered
list of l + 1 rules: (r1, r2, ..., rl, r∅). The last rule in the list, r∅, is referred to as the default
rule and has an empty antecedent along with a probability distribution π∅. The usage of a
pattern p in the PRL is defined as the number of times the pattern occurs in the dataset D
while disregarding instances that have already been covered by previous patterns in R.

Specifically, we illustrate the concept of label-oriented (or class-specific) usage, which focuses
on the number of occurrences of a specific pattern pi in the dataset D that corresponds to a
particular class label l. This is calculated using the subset Dy=l, which consists of instances in
D where the class label is equal to l. The label-oriented usage is expressed as

usg
(
pi | R,Dy=l

)
= |{x ⊂ Dy=l | pi ⊑ x ∧ (

∧
∀j<i

pj ̸⊑ x)}|.

All in all, a PRL addresses the problem of rule learning for multiclass classification, where
the goal is to learn a rule list from a given supervised dataset. This rule list should be capable
of accurately predicting the class labels for unseen instances as well as compact and reliable.

3.1.2 CLASSY MDL-based learning

One notable algorithm that addresses the need for concise rule lists is CLASSY (Proença &
van Leeuwen, 2020). This algorithm utilizes the minimum description length (MDL) principle
to construct rule lists. By employing a greedy approach, CLASSY explores the given dataset
to identify informative rules that form the rule list. Following the MDL principle, often referred
to as induction by compression, CLASSY seeks to find the rule list that best compresses the
data, with compression serving as the guiding criterion. Notably, this approach eliminates the
need for hyper-parameter tuning and mitigates the risk of overfitting.
In this supervised setting, the goal is to learn a mapping from instances to class labels. This
means that the focus is not on discovering patterns within the instance data X itself, but
rather on identifying patterns in X that aid in predicting the class labels Y .

To establish a relationship between instances and class labels, the PRL model discussed in
the previous section is considered and the MDL principle is applied. Within the space of models
R, which comprises all ordered sets of patterns over X, given a Dataset for training D, the
optimal model R∗ is given by

R∗ = argmin
R∈R

L(D,R) = argmin
R∈R

[L(R) + L(Y |X,R)],

where L(R) is the length of the rule list encoding and L(Y |X,R) is the encoded length of
class labels Y given X and R.

The proposed heuristic by Proença & van Leeuwen (2020) is based on the concept of
compression gain achieved by adding a rule r to an existing rule list R, denoted as R⊕ r. We
present first the absolute gain, and then the normalized gain, as the latter is more suitable for
the task at hand.
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The absolute compression gain, denoted as ∆L(D;R⊕ r), measures the difference in code
length before and after adding rule r to R. It can be decomposed into two components: data
gain, ∆L(Y |X;R ⊕ r), and model gain, ∆L(R ⊕ r). The data gain captures the reduction
in code length for the class labels given the instance data, while the model gain reflects the
reduction in code length for the rule list itself.

In contrast, the normalized compression gain, denoted as δL(D;X ⊕ r), is calculated by
dividing the absolute gain by number of instances activated by the pattern p ∈ r. By considering
the normalized gain, the authors state that the model prioritizes rules that cover fewer instances
but yield more accurate predictions compared to rules with higher coverage. This approach
helps prevent the premature selection of large yet moderately accurate rules, which may lead
to local optima and hinder the exploration of the search space.

The authors hypothesize that by utilizing a normalized gain instead of absolute gain, we can
construct better rule lists during the greedy covering of the data, improving the overall per-
formance and avoiding potential pitfalls associated with local optima. This last consideration
is relevant to this thesis related to healthcare. In the healthcare domain, accurate predictions
related to a few data instances are prioritized over more uncertain predictions that cover more
data instances given the criticality of the problems.

3.2 Human-guided rule learning

The S-CLASSY algorithm (Papagianni & van Leeuwen, 2023) uses expert knowledge in the
learning process. The type of knowledge taken into account is related to preferred variables,
which are variables identified by the domain experts as having greater relevance compared to
other variables when learning a predictive model. These preferred variables are given higher
priority during the learning process, reflecting their importance according to the expert’s guid-
ance.

The authors of S-CLASSY combined the original CLASSY algorithm with the SSD++ beam
search algorithm (Proença et al., 2022). S-CLASSY performs a beam search adding rules to the
rule list following the compression criterion as its predecessors. However, firstly, a beam search
is conducted for each preferred variable, starting the search from the first specific preferred
variable. When the set of preferred variables is empty or the previous beam searches did not
yield any candidate rules, a beam search is carried out considering all possible rules, as in the
previous models.
This strategy guarantees that the search for candidate rules encompasses both the preferred
variables and all variables. This aspect holds great relevance in our research, as we actively
involve healthcare professionals in our study.

Since no expert knowledge was available for the datasets they tested in their work, they
simulated this expert knowledge. For this task, they trained a random forest model on the
entire dataset and ranked all variables based on entropy-based feature importance scores.
Then, they chose a subset of variables as preferred variables for the model following that
ranking. Additionally, they experimented with different preferred variable subsets, including
a random subset and the most and least important ones based on the feature importance
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scores. In the results, they notice that when selecting the most important variables or random
variables, the model’s performance remains similar. However, when using the least important
variables to guide the search, they observe worse predictive performance in certain tasks.
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Chapter 4. Data Preparation and Means 4.1. Data

Within this chapter, we present our methodology for preparing the data to conduct our
experiments.
In the first section, we provide a comprehensive description of the data utilized in our study.
This includes an analysis of the various sets of variables available, as well as an exploratory data
analysis to gain insights into their characteristics and distributions. Furthermore, we outline
our pre-processing pipeline, which encompasses the application of different feature engineering
approaches to refine the input variables. Additionally, we describe the creation of distinct
engineered datasets by discretizing the LoS values in various manners to train the different
classification models.
In the second section, we engage discussions with the medical team to gain more precise
information about the medical problem under investigation. This collaboration allows us to
leverage the expertise of the medical professionals and further refine our approach. By clarifying
the requirements and simplifying the data, we ensure that our methodology aligns closely with
the specific needs and expectations of the medical team.
Finally, in the third section, we transform the refined requirements into a machine learning
problem . We define three sets of variables tailored to address the specific medical problem at
hand and establish various problem configurations that serve as the basis for experimentation.
This step enables us to bridge the gap between the medical requirements and the ML prob-
lem formulation, ensuring that our approach is well-suited to address the research questions
effectively.

4.1 Data

In this section, we introduce the data used for this project.

The dataset of the pediatric hospital Sant Joan de Déu gathers the record of patients who
underwent heart surgery and includes information spanning a period of two years.

We define the terminology utilized in Sant Joan de Déu. In this dataset, patients are dis-
tinguished by their unique patient identifier. Added to the patient’s identifier, there is also
the episode identifier, as over the course of their life, each patient may have multiple hos-
pital admissions, each representing a distinct episode that commences with admission and
concludes with discharge or mortality. These episodes can span a range from some hours to
several months.
Within each episode, patients may experience one or more stays in various areas of the hospital,
such as the Intensive Care Unit (ICU), the Operation Room (OR), or the ward. We refer to
these multiple stays, within a hospitalization episode, as encounters.

At Sant Joan de Déu, patients are monitored both when being in the ward and in the
ICU. In the ICU they are connected to the monitoring central device and in the ward they
carry a mobile device that keeps track of their vital signs. In addition, once every eight hours,
the nursery team notes the medications given, the laboratory results, the conditions, and the
complications related to the patient. Furthermore, during surgery, the details of the procedure
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are noted, which provides us with valuable information on how the procedure was, especially
to interpret the posterior recovery process.

When it comes to the data, we sign an agreement with Sant Joan de Déu, agreeing that
their data will only be used for this thesis’ purposes and will be erased once the work is finished.
They send us the data through a safe data transfer channel from Leiden University and we
directly stored it on ALICE1.

This section primarily centers on the data cohort selection, followed by a description of the
variables, including those preferred by the clinicians. Subsequently, we conduct exploratory
data analysis (EDA) before proceeding with the data pre-processing steps. Finally, we present
the final processed data, ready for training the machine learning models.

4.1.1 Data selection

Following the guidance of medical doctors, our study focuses on a specific patient profile. At
Sant Joan de Déu, the primary interest lies in predicting the LoS for patients undergoing com-
plex surgeries, particularly the ones labelled as cardiac surgery. This subset of surgeries poses
greater challenges in terms of predicting the recovery time. Therefore, we exclude encounters
that followed cardiac electrophysiology or catheterization procedures. These procedures were
deemed less invasive and did not present substantial difficulties in predicting the patient’s
recovery duration.

Figure 4.1 visually represents the sequential steps undertaken to select the appropriate data
for the study. Several criteria are applied to ensure the relevance and precision of the dataset.
Firstly, as only a small number of patients (specifically, three) experienced a fatal outcome,
the focus of the study is shifted towards the recovery process.

To interpret the dataset properly, consecutive ICU or ward encounters are merged. In the
hospital system, new encounters are created even if a patient remained in the same ICU or
ward but was moved from one bed to another.

To concentrate solely on patients in the postoperative recovery phase, encounters following
different paths, which deviated from the standard flow of patients from the operation room
(OR) to the ICU or from the OR to the ward through the ICU, are removed. This selective
approach ensures that our study focuses on patients undergoing their immediate post-operative
recovery. As a result, in Chapter 5, we will predict the time that lasted this post-operative
encounter.

Finally, in order to capture the initial episode of hospitalization, stays related to subsequent
interventions are removed from the dataset. The decision to select only the first hospital
stay for predicting the Length of Stay in the study is based on several considerations and
objects of discussion during the meetings with medical doctors and data analysts. Firstly,

1ALICE (Academic Leiden Interdisciplinary Cluster Environment) is the high-performance comput-
ing facility of Leiden University and Leiden University Medical Center (LUMC). See https://www.

universiteitleiden.nl/en/research/research-facilities/alice-leiden-computer-cluster.
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Figure 4.1: Data selection pipeline for Sant Joan de Déu’s dataset.

focusing on the first hospital stay allows us to capture the initial episode of care and the
primary surgical intervention. This approach enables us to minimize the confounding effects
of subsequent interventions or complications that may arise during the patient’s recovery.
Subsequent interventions could notably impact the Length of Stay and introduce additional
variability that might not be directly related to the initial surgical procedure. Therefore, by
excluding subsequent stays, we aim to isolate the primary surgical intervention’s influence on
the LoS. Another reason for selecting the first hospital stay is the need to maintain consistency
and ensure comparability across the dataset. Including multiple stays for the same patient would
introduce dependencies and potential biases in the analysis. It is important to acknowledge that
the exclusion of subsequent hospital stays does limit the scope of analysis to the immediate
recovery period. Factors that influence readmissions or subsequent hospitalizations are not
explicitly captured in this particular study. However, by focusing on the first stay, we can gain
valuable insights into the immediate postoperative period and identify factors associated with
the LoS during that specific timeframe.

As a result, we include 222 ICU and 221 ward encounters to train and test our model. These
encounters belong to the same patients, after OR or after OR+ICU, with the difference of just
one patient. This one patient, underwent their first surgery one day after their birth. Thirteen
days after the surgery and the start of their ICU stay, they underwent another surgery (this is
why they did not go to the ward after the ICU). This patient had multiple complications and
surgeries. Their stay lasts for 92 days at the hospital until discharge. The patient would pass
away 5 months after discharge.
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4.1.2 Variables

Available variables

Sant Joan de Déu’s database contains multiple data from the patient’s stays, including
demographics, surgery details, complications, medications, lab results, and vital signs. These
multifaceted variables provide a comprehensive understanding of the factors that influence a
patient’s hospitalization duration. By exploring the relationships between these features and
the Length of Stay, we can identify key determinants and potentially develop strategies to
optimize resource allocation in healthcare settings.

Demographic information. We consider the variables age and sex. These variables allow
for the examination of potential age or sex-related differences in surgical outcomes, helping
the algorithm understand how these factors may influence the results. Age is a continuous
variable that encompasses patients from zero days to 19 years old. Sex is a binary variable.

Surgery details. They encompass a range of important parameters related to the surgical
procedure. These include the minimum body temperature recorded during surgery, the duration
of the bypass method, the expected duration of the surgery, and the actual time taken to
perform the surgery, among others. Another relevant factor are the scores, such as the STS
score, which serves as an indicator of the surgical procedure’s complexity. Analyzing these
details allows us to explore the relationship between procedural factors and patient recovery,
enabling us to find patterns between the surgical intervention and the posterior time to recover
from it. In general, the times for performing techniques during surgery are noted in minutes,
and the different scores are discrete variables.

Complications. The occurrence of post-surgical complications is an essential aspect to
consider when studying the length of hospital stay. Complications such as cardiocirculatory
arrest, pleural effusion, and reintubation can notably impact a patient’s recovery trajectory
and prolong their hospitalization. For instance, any of these complications can greatly increase
the LoS of that patient in the ICU or the need for readmission in ICU when being in the ward.
Understanding the relationship between these complications and the LoS provides valuable
insights into the factors that contribute to extended hospital stays. The complication variables
are discrete, noting how many times a complication occurred.

Medications. The drugs administered during the surgical process also play a role in deter-
mining the LoS. Anesthetic agents like midazolam or propofol, pain management drugs such
as paracetamol or metamizole, and medications used to control stroke volume and cardiac
output, like milrinone or adrenaline, may influence the patient’s recovery progress. Examining
the effects of these medications on the LoS can help identify optimal drug regimens that are
useful during surgery but also promote faster recovery and shorter hospital stays. This set of
variables comprises the following information: the timestamp indicating the time of medica-
tion administration, the dose of the medication (continuous variable), the dose normalized by
the patient’s weight (continuous variable), the unit of measurement (categorical variable), the
medication code (categorical variable), and the route of administration (categorical variable,
e.g., oral or intravenous).
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Lab results. The laboratory assessments obtained during the patient’s recovery phase pro-
vide valuable insights into their physiological status and progress. Parameters such as lactic
acid levels and oxygen saturation levels are indicative of the patient’s overall condition and
response to the surgical intervention. Analyzing the relationship between these lab results and
the LoS can provide valuable information on the impact of the patient’s recovery trajectory
on their hospitalization duration. This set of variables comprises the following information:
the timestamp indicating the time of measurement, the value for that parameter (continuous
variable), the interpretation of the value (categorical variable: abnormal high, abnormal low,
or normal), and the unit of measurement (categorical variable).

Vital signs. Recorded as time-series data, they are vital indicators of the patient’s physi-
ological stability throughout their hospital stay. Monitoring parameters such as diastolic and
systolic blood pressure, heart rate, respiration rate, SpO2 (oxygen saturation level) and tem-
perature allows for the continuous assessment of the patient’s health status. Certain changes
or deviations in these vital signs, as well as peak values, can signal potential complications
or recovery progress, thus influencing the LoS. The height and weight measurements are also
part of the time-series, as those values can change during the patient’s stay. However, they are
often not measured properly so we decide to discard them. All these variables are continuous.

Expert’s variables

In this section, we list the 21 variables that medical doctors generally can use to assess the
criticality of a patient. Given the values of these variables, they decide the discharge moment
for their patient.

1. Demographics

• Age

2. Surgery metrics

• Arrest time

• Clamp time

• Bypass time

• Minimum temperature of the body

• Emergency surgery or not

• Surgery duration

3. Vitals

• Average SpO2

• Average Heart rate

4. Laboratory

• Hemoglobin

• Platelets
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• Lactate

• Blood Glucose

• Urea

5. Complications

• Cardiac tamponade

• Pleural effusion

• Pneumothorax

• Sepsis

• Extracorporeal Membrane Oxygenation (ECMO)

• Cardiocirculatory arrest

• Reintubation

4.1.3 Exploratory Data Analysis

We explore the data, first by analysing the Length of Stay of the selected cohort patients
both in the ICU and the ward. See Figures 4.2 and 4.3 respectively. The medical team explains
to us that after the heart surgery, an extra dermal suture with staples is performed. These
staples cannot be removed before 6 days after the surgery, this is why the stays generally last
for one week in total, around 2 days at the ICU and 4 days at the ward after the surgery.

Figure 4.2: LoS values at the ICU, measured in days.

We observe that patients tend to stay more time in the ward compared to the ICU. We find
that in the ICU the vital signs are gathered every 30 minutes, while in the ward, every minute.

We also look at the times when the patient’s blood is pumped outside of the patient’s body,
allowing the surgeons to perform different practices. See Figure 4.4. First, the aortic clamp
time allows the heart to rest. Then, the Bypass time allows the blood to bypass the heart
and lungs through a machine. Finally, the cardiac arrest time, which is only used in extremely
delicate situations, for time slots of a maximum of 40 minutes. Scanning in detail the data
used for part (c) of the figure, only 5 patients are induced in arrest for a bit less than 40
minutes and one for almost 80 minutes.
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Figure 4.3: LoS values at the ward, measured in days.

(a) Time of clamp (b) Time of Bypass (c) Time of cardiac arrest

Figure 4.4: Surgery methods’ times in the operation room (OR).

In Figure 4.5, we study the different metrics used to qualify the difficulty of the surgery.
These metrics are highly correlated between them but follow different heuristics criteria. We
try to find which one is the most related to the LoS output for the specific case of Sant Joan
de Déu’s patients and evaluate which one suits the hospital better. The STS score depicts
µ = 1.96 and σ = 0.92. The RACHS1Score presents µ = 2.44 and σ = 0.92. Finally, the
Aristotle score has µ = 7.18 and σ = 2.27. A priori, we would prioritize using the Aristotle
score, as the metric exhibits a wider range of values. Also, we observe increased variability in
the data.

Figure 4.6 depicts the age distribution of the patients under study. It is worth saying that
in the case of heart pathologies, these conditions are frequently identified even before birth
in unborn babies. Consequently, a considerable number of newborn patients require surgical
interventions within a few days following their birth.

4.1.4 Pre-processing

In this section, we show the different pre-processing techniques used to generate the three
different resulting datasets for experimentation. We follow the pre-processing pipeline from
Figure 4.7. As a result of slight differences between the three paths, we generate the datasets
plain data, windowing plain data, and windowing quantiles data.
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(a) STS score distribution (b) RACHS1 score distribution (c) Aristotle score distribution

Figure 4.5: Scores measuring the surgeries’ difficulty.

Figure 4.6: Age distribution of the patients when being admitted at the hospital.

Missing data handling

Recommended by the hospital team, we minimize the existence of null values by forward-
filling the empty variables with their previous values. For instance, in the case of temperature
measurements taken by the nursery team, it is common practice to not measure the patient’s
temperature precisely every 8 hours if the patient’s recovery is progressing smoothly and there
are no indications of a temperature change. The principle of “no news, good news” is applied,
implying that if there are no recorded measurements for a specific variable at a given time, it
is assumed that there is no cause for concern. Also, we discard the measures of height and
weight as they are not measured for all patients and contain mistakes often.

Outlier detection and handling

We manually fix some values wrongly annotated, for instance, temperatures of “3737.0”
degrees Celsius. Other values that are above the working range are discarded. In addition, the
respiration rate is not measured with precision in the ward, so we discard this feature for the
ward LoS predictions.

Windowing transformation

We propose a hypothesis regarding how the hospital team handles the LoS problem on a
daily basis. To mimic the nurses’ procedure, we decide to predict the patient’s LoS at their
current location every 24 hours based on the metrics gathered from the previous 24 hours.
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Figure 4.7: Feature selection and engineering pipeline. Further, the * in the feature en-
gineering step indicates that the engineering of the variables for the static and the time-
series data is done separately depending on their type and later merged to create each
engineered dataset.

This approach aligns with their daily question of “How many days does this patient need to
be in ICU/ward given his surgery details and previous 24h of stay?”.
Following this procedure, the number of data samples generated per patient is the number of
days that last their encounter. Therefore, each data sample of a patient represents a snapshot
of the patient’s status on a particular day. See Figure 4.8.
Consequently, our training data includes the vital signs features from each day, combined with
the rest of the static variables related to the medical procedure and the postoperative hospital
stay. For example, let’s consider an example where a patient stays in the ICU for three days
after heart surgery. In this case, three distinct data samples are generated, each representing
a specific time frame within the episode. The first sample comprises the data from the initial
24 hours and has a LoS of 2. The second sample captures the data from the subsequent 24
to 48 hours, with a LoS of 1. Finally, the third sample encompasses the data from the 48 to
72 hours period, with a LoS of 0.

Static variables engineering

In this section, we explore the engineered variables from the original static variable sets.
Besides, simple operations are made, like calculating the age of the patient subtracting the
admission date from the birth date and formatting that value in months. As it is a pediatric
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Figure 4.8: LoS values at the ICU for the original and windowed data samples.

hospital, the difference between ages is crucial.

First, for the surgery details, we engineer two additional variables. The first one is the
estimated duration of the surgery compared to the actual time it took. This value surgery
overtime can help us predict possible complications during the surgery, affecting the LoS
of the patient. Second, patients generally have their surgeries on Tuesdays and Wednesdays,
following the hospital’s schedule, for which we create the feature surgery weekday. Any surgery
not performed on those days could lead to different outcomes in the LoS.

Second, for the medications, we have 62 categories available, this is, 62 different medications
that appear as administered at least once to any of the patients. The distribution of those
is very unbalanced, with common drugs administered very often and others just once in the
whole dataset. The variable that we use for training is the administered dose divided by the
patient’s weight, this way, we normalize the value to the patient’s characteristics.

Third, for the laboratory results, 30 categories are present in the dataset. In this table, added
to the times, amounts and units of the components measured, we have an indicator of either
normal, abnormal high, and abnormal low measurement interpretation. We use this indicator
to train the model, instead of using the measured amounts. Also, we create the variable
interpretations sum, depicting the sum of abnormal values that the results are showing for
that patient. This approach allows us to maintain an overall view of the laboratory data and
provides an additional, even though potentially oversimplified, metric for the predictor.

Fourth, for the complications, there are 37 categories available in the dataset. However, when
discussing them with the medical team, they indicate that many of them are not applicable
to our model, as they don’t affect the patient’s recovery. So, we focus on the detection of the
following, based on expert knowledge: Unexpected ICU admission, Extracorporeal Membrane
Oxygenation (ECMO), Cardiocirculatory arrest, Reintubation, Sepsis, Pneumothorax, Pleural
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effusion, and Cardiac tamponade. Additionally, we add the variable some event, accumulating
the number of adverse events that occur to this patient in that time period. We believe that
this way we still keep track of the overall situation, even if not defining specifically which event
is occurring.

Time-series variables engineering

To further explore the vital signs variables with their added temporal dimension, we opt to
conduct additional experiments. Our objective is to evaluate the effectiveness of various time-
series feature engineering methods in predicting the Length of Stay using the SJD dataset. In
order to achieve this, we create multiple versions of the existing datasets specifically tailored
for training purposes. These feature engineering methods enable us to generate diverse sets of
variables that capture different facets and characteristics of the data.

Baseline approach. We gather the vitals data containing oxygen saturation (SpO2), heart
rate, systolic and diastolic blood pressure, temperature, and respiration rate. Then, we extract
the following features for every variable: mean, standard deviation, maximum, minimum, first
quartile, and third quartile.

The Quantiles Approach. For this feature engineering method, we follow the Quantiles
Approach proposed by Alghatani et al. (2021) and perform the following pre-processing of the
time series data.
First, for each vital sign, we calculate the mean and standard deviation. Second, we calculate
the percent point function for each variable to get its low and high values using the calculated
features in the previous step. The low values are the ones below the first quartile and the high
values are the ones above the third quartile. Third, we remove the data points belonging to
the interquartile range. Fourth, we calculate the mean and standard deviation of the resulting
data. Fifth, to get the last new feature, we divide the number of resulting observations by the
original number of observations, obtaining the quartile percentages of the new data.
In Figure 4.9, we describe the effect that this transformation results on our data. For instance,
we pick the time-series data representing the Diastolic blood pressure of a patient for 24 hours.
After the transformation, the data close to the mean values is removed, giving more presence
to the anomalous values and influencing the new mean and standard deviation of the data.

All in all, we display mean, standard deviation, low quartile, high quartile, new distribution’s
mean, new distribution’s standard deviation, and quartile percentage for each vital sign.

Final data for training.

Input variables X. The static data available consists of the demographics, surgery details,
complications, lab results, and medications of the patient in the location (ICU or ward). In
addition to all those static values, we also use the time-series data representing the vital signs
of the patient, processed through different techniques.
With the different methods presented, we will experiment with three different engineered
datasets: plain, windowing plain, and windowing quantiles.
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(a) Original data (b) After applying the transformation

Figure 4.9: Effect on the diastolic blood pressure data of one patient when performing the
Quantiles Approach transformation.

1. plain data. We directly select the available data and apply the baseline method for
time-series feature engineering.

2. windowing plain data. We perform daily windowing on the data and apply the baseline
method for time-series feature engineering.

3. windowing quantiles data. We perform daily windowing on the data and apply the
Quantiles Approach method for time-series feature engineering.

Terminology definitions

We would like to provide definitions that will aid in understanding the experiments,
which involve various dimensions.
The resulting datasets X engineered with the plain, windowing plain, or windowing
quantiles methods are referred to as engineered datasets or simply datasets. For in-
stance, we may refer to the windowing method that generates the windowing plain
dataset.
Subsequently, in the next section, we establish distinct shapes for the predictor’s out-
put Y that arise when transforming the regression problem into a classification prob-
lem. These output shapes determine the number of targets to be predicted and their
distribution within the training data. We refer to them as problems or data binnings.
Examples of such problems include the 2-class or 3-class-A data binnings, defining the
labels for that problem.
Lastly, the supervised learning algorithms utilized for predicting the Length of Stay
from a specific dataset are referred to as algorithms, predictors or models, including
S-CLASSY, Random Forest, and Gradient Boosting, among others.
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Output labels Y . The output features will also be a subject of study as we create data
bins to accumulate several different LoS intervals (measured in days). This way, we transform
this regression problem into a multi-class classification problem. This process only involves
transforming the LoS timestamp to a category, therefore it is transparent to the engineered
dataset used.

(a) Data binning for binary classification. (b) Data binning for 3-class-A classification.

(c) Data binning for 3-class-B classification. (d) Data binning for 5-class classification.

Figure 4.10: Output data distributions for the ICU at SJD, creating four different datasets.

The motivation for creating different problems, using different model targets is that in
preliminary experiments, we find that the model’s accuracies are very sensitive to changes in
the manner of output discretization. Consequently, we can engineer different datasets from just
one, offering us the capacity for more experiments. We prepare four discretization schemas:
2-class, 3-class-A, 3-class-B and 5-class, see Figure 4.10 for the case of the ICU. We perform
similarly for the ward experiments, see Figure A.1 in the Appendix.

Therefore, we create four different problems to perform 2-class, 3-class (using two different
versions) and 5-class classifiers to show how the different models perform. The more classes,
the more difficult the problem is and the medical doctors should decide which classifier adapts
the best to their needs, based on this trade-off.

4.2 The clinical requirements

Prior to conducting the final experiments, we engage in an essential exchange of insights
and advancements with the medical experts, ensuring that our approach aligns closely with
their needs and requirements. We share the methods and data utilized for training, as well as
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preliminary results, which serve as a foundation for further discussion. During this interaction,
the medical experts provide valuable input and suggestions for enhancing our approach.

Firstly, they emphasize the importance of developing rules that can be assessed quickly
and easily by medical doctors, enabling them to comprehend the predictions effectively. To
achieve this, they underscore the importance of using simple and clear variables in the rule
list, facilitating the interpretability and usability of the model.

Secondly, the medical experts propose simplifying the origin of the variables used. Their
objective is to simplify the dataset and generate rules utilizing variables from fewer sets of
variables. They suggest exploring the possibility of excluding certain subsets of variables from
the training process. This approach aims to streamline the dataset, guided by expert knowledge,
and ensure that rules are generated using the most transparent variables.

Thirdly, recognizing the inherent differences in complexity between binary and 5-class classifi-
cation problems, the medical experts recommend conducting further experiments to determine
the most suitable approach for the hospital’s specific needs.

Taking these valuable inputs into consideration, we refine our approach accordingly, focusing
on the development of rules that are easily interpretable, and utilizing simpler and less number
of variables.

4.3 The machine learning problem

In this section, our focus is on defining the classification problem, particularly regarding the
selection of variables used for training. Additionally, we provide an overview of the final dataset
used for our experiments.
To ensure meaningful performance comparisons, we evaluate the S-CLASSY model, informed
by real expert knowledge, against S-CLASSY with simulated expert knowledge as a first
baseline, and well-established benchmark methods commonly recognized in the literature.

4.3.1 Expert’s variables selection

During the variable selection process for our experimental setup, we focus on adhering to the
requirements and recommendations provided by the medical team at Sant Joan de Déu. They
review an example of the rules generated using all 162 available variables. Subsequently, they
make some observations about the output. They indicate that clinicians often make Length of
Stay (LoS) predictions by considering only surgery details and vital signs in the Intensive Care
Unit (ICU), so the algorithm should focus on using these variable sets. Additionally, reducing
the number of variable sets used in the rule lists enhances interpretability, as fewer variables
need to be taken into consideration. Therefore, we proceed to experiment with reducing the
number of variables used for training to achieve improved interpretability.
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Preferred subset for S-CLASSY

Furthermore, following the guidelines proposed by the authors of S-CLASSY, we collaborate
closely with the medical team to establish a set of preferred variables. These preferred variables
serve as guidelines for creating our rule lists within the S-CLASSY model.
Together with the medical experts, we identify the seven variables considered by the clinicians
as the most important for predicting a patient’s recovery time, resulting in the selection of the
following variables, as the subset of variables to be preferred by the model: age (in months)
from the demographics section; surgery duration, clamp time, bypass time, andminimum
temperature in OR, from the surgery details section; and finally average heart rate, and
average SpO2 from the vitals data section.

Complete set for training

In preliminary experiments, we train the model with all the variables present, a total of 162
variables fed into the predictor for each sample. We observe long running times and complex
output rules. That is, with a high number of conditions per rule and more than ten rules per
rule list. We also observe not much presence of the features from the medications, laboratory
results or complications. We run a random forest algorithm and explore the feature importances
of the variables used. We observe that the variables from these categories have almost no effect
on the prediction of the random forest model either, not being present enough on the dataset
and the algorithms are not capable of learning from them. We test removing the medications
and laboratory results variables from the training data, reducing the number of variables to
70. We understand that the model is greatly simplified, reducing the number of variables to
less than half.

We run the S-CLASSY and Random Forest algorithms again, observing a low decay of the
ROCAUC of around 0.01 in both but much more clear rules from this simplified dataset. We
also plot the feature importances from the random forest algorithm, both Figures A.4 (for all
the variables) and A.5 (for the selected 70 variables) can be found in the Appendix section.

After consulting with the medical team, we discuss the preliminary results. The team empha-
sizes their priority of having an interpretable but also transparent tool, expressing discomfort
with the lack of transparency and simplicity that depict the variables associated with medica-
tions, laboratory results, and complications. Their guidance can be summarized as “the simpler,
the better”. Taking this into consideration, we proceed to further simplify the dataset, follow-
ing the expert’s guidance. Consequently, we exclude the variables related to complications and
the variables associated with the operating surgeon from the final training of the models as
the medical team highlights that these variables are not considered reliable indicators for the
prediction task.

As a result, the final list of variables is defined in Table 4.1.

4.3.2 Final data for experimentation

Upon reviewing the characteristics of the engineered datasets presented in Table 4.2, notable
observations can be made. The plain data exhibits a relatively small number of samples |D|
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Variable Name Type Domain Expert Variable?

age Numeric Demographics Yes
sex Binary Demographics No

surgery duration Numeric Surgery Procedure Yes
surgery overtime Numeric Surgery Procedure No
aristotle score Numeric Surgery Procedure No
STS score Numeric Surgery Procedure No
RACHS1 score Numeric Surgery Procedure No
bypass time Numeric Surgery Procedure Yes
clamp time Numeric Surgery Procedure Yes
arrest time Numeric Surgery Procedure No
minimum temperature in OR Numeric Surgery Procedure Yes
surgery weekday Numeric Surgery Procedure No
extubated in OR or not Binary Surgery Procedure No
defibrillation in OR or not Binary Surgery Procedure No

diastolic blood pressure Time-Series * Vital signs in ICU or ward No
systolic blood pressure Time-Series * Vital signs in ICU or ward No
heart rate Time-Series * Vital signs in ICU or ward Yes - the average value
respiration rate Time-Series * Vital signs in ICU or ward No
SpO2 (oxygen saturation level) Time-Series * Vital signs in ICU or ward Yes - the average value
temperature Time-Series * Vital signs in ICU or ward No

Table 4.1: The final list of variables for training. In bold the expert’s variables. Further,
* means that several variables are extracted from these time-series, depending on the
method used.

available for training, specifically 220 samples for the ICU and 212 samples for the ward. These
datasets also contain a substantial number of variables. It is worth mentioning that certain
patients have missing measurements for vital signs such as temperature and blood pressure,
leading to their exclusion from the dataset if we compare to the values presented in Section
4.1.1.
However, when applying a windowing approach to the data, where each window spans 24
hours, a substantial increase in the number of samples is observed for the remaining datasets.
In addition, the windowing quantiles data results in a smaller number of samples, compared
to the windowing plain data.

When taking a look at the available variables, the ward dataset consistently contains six
fewer variables in |X| compared to the ICU dataset, due to the exclusion of the respiration
rate vital sign. Furthermore, it is important to note that the Quantiles Approach generates
seven variables for each vital sign, whereas the baseline utilizes only six variables.

Additionally, we are interested in discovering associations in parts of the data that affect
the results when using different target distributions.
Two versions of the 3-class output binning are introduced with a one-day difference in their
binning. Specifically, we focus on the prediction of ICU LoS following the transformations
depicted in Figure 4.10. The two versions are 3-class-A and 3-class-B. In the A version, the
first bin encompasses patients who stay in the ICU for 1 to 2 days, while the B version selects
patients with only 1 day in the ICU for the first bin. Moving on, the second bin includes
patients who stay for 3-4 days in the A version, and 2-3 days in the B version. Lastly, the third
bin accounts for patients who stay 5 or more days in the A version, and 4 or more days in the
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B version.

Dataset \ location
ICU Ward

|D| |X| |xdem.| |xsur.| |xvit.| |Y | |D| |X| |xdem.| |xsur.| |xvit.| |Y |

2-class
plain 220 50 2 12 36 2 212 44 2 12 30 2
windowing plain 1.213 50 2 12 36 2 1.051 44 2 12 30 2
windowing quantiles 1.188 56 2 12 42 2 962 50 2 12 35 2

3-class-A
plain 220 50 2 12 36 3 212 44 2 12 30 3
windowing plain 1.213 50 2 12 36 3 1.051 44 2 12 30 3
windowing quantiles 1.188 56 2 12 42 3 962 50 2 12 35 3

3-class-B
plain 220 50 2 12 36 3 212 44 2 12 30 3
windowing plain 1.213 50 2 12 36 3 1.051 44 2 12 30 3
windowing quantiles 1.188 56 2 12 42 3 962 50 2 12 35 3

5-class
plain 220 50 2 12 36 5 212 44 2 12 30 5
windowing plain 1.213 50 2 12 36 5 1.051 44 2 12 30 5
windowing quantiles 1.188 56 2 12 42 5 962 50 2 12 35 5

Table 4.2: Datasets characteristics: |D| refers to the number of samples, and |X| to the
total number of variables, all binary or continuous. We specify the origin of these values
in the different categories: |xdemog.| are the two demographic values age and sex, |xsurgery|
are the surgery details variables, and |xvitals| are the variables generated based on the
time-series data from the vital signs. Finally, |Y | specifies the number of targets on each
dataset.
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Chapter 5. Experiments 5.1. Experiment setup

In this chapter, we begin by outlining the experimental setup, encompassing the details about
the machine learning models and their configurations, and the metrics employed throughout
the different experiments. Subsequently, we delve into the examination of the four experiments
conducted in this thesis, addressing the research questions posed.

5.1 Experiment setup

To mitigate bias in model evaluation and obtain more reliable performance metrics, we con-
duct standard 5-fold cross-validation for all the problems. The windowing plain and windowing
quantiles datasets utilize data windowing, generating multiple data samples from a single hos-
pital stay. In the process of data splitting, there exists a possibility that some data points from
the same hospital stay might be present in both the training and testing sets, which could
lead to slightly inflated performance metrics. We further discuss the implications of this later
in the document.
All metrics are calculated separately for each fold and we display their averaged values. For the
confusion matrices and plots, we assemble all the predictions in the test set from the different
runs. Nevertheless, the exhibited rules examples are model instances of one single run.

5.1.1 Models for comparison

In this section we describe the interpretable and non-interpretable models used in our ex-
periments.

decision tree. This model serves as the sole off-the-shelf interpretable model we use for
comparison. We initiate this experiment based on the observation that medical doctors can
employ decision trees derived from medical literature to predict the LoS.

random forest. We compare the performance of the ensemble method random forest (RF)
and S-CLASSY, which incorporates real expert knowledge. We initiate this experiment based
on the observation that the RF algorithm assigns scores to the variables utilized, employing a
ranking system based on entropy-based feature importance. The random forest method was
used by the S-CLASSY authors as a baseline, so we decide to start our analysis by comparing
it to this method.

multilayer perceptron. The multilayer perceptron (MLP) (Glorot & Bengio, 2010) de-
signed for this comparison is a simple neural network with two hidden layers, ReLU activation
functions for the hidden layers, Adam optimizer (Kingma & Ba, 2014) and a maximum training
of 500 iterations (epochs). The hidden layer sizes are adapted to the input and output sizes
of the model. The input layer varies between 50 and 55 nodes, while the first hidden layer
ranges between 40 and 45 neurons. The second hidden layer consists of 20 neurons, and the
output layer varies between 2 and 5 neurons, depending on the specific problem configuration.
In preliminary experiments, we perform simple hyperparameter tuning through grid search. We
test various sizes for the hidden layers, activation functions, and learning rates to design this
configuration.
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gradient boosting. The Gradient Boosting (GB) classifier (Friedman, 2002) combining
200 weak learners (regression trees). We use the default learning rate of 0.1. In addition,
both RF and GB offer the advantage of being an ensemble method, encompassing multiple
predictors, whereas S-CLASSY relies on a single rule list for its predictions.

5.1.2 Configurations

In this section, we present the configurations utilized for the different models and data
employed in our experiments. In Section 4.3 , we outlined the population selected for our
study and defined three distinct sets of input variables. We also engineered four different
problems by discretizing the output LoS variable in varying ways.

For the experiments presented in this section, we focus primarily on the ICU data. While we
performed similar experiments with the ward data for most of our research questions, we have
included the results of those experiments in the Appendix section for the sake of simplicity.

We employ specific configurations for the algorithms used in our experiments. By standardiz-
ing these configurations, we aim to ensure consistency and fair comparison across the different
models.

Firstly, for the S-CLASSY and CLASSY models, all experiments involve a minimum support
threshold ofms = 5%, limiting the inclusion of infrequent patterns (even if with high certainty).
The maximum pattern length is set to |r|max = 4, which ensures that each rule contains no
more than four conditions. This restriction is in line with the guidelines provided by the medical
team, as the interpretability of the output should not be overly time-consuming. However, we
do not limit the maximum amount of rules |R|.
Furthermore, we modify the number of cut points from the default value of 5 to 10. The
number of cut points refers to the number of points used to discretize a single-numeric variable.
Increasing the number of cut points provides the model with greater flexibility to identify more
accurate patterns.

Secondly, for the ensemble methods, namely random forest and gradient boosting, we fix
the number of weak learners to 200 for both models. For these models and also the decision
tree, we set the maximum depth of the binary trees to four. This last parameter is equivalent
to the pattern length |r|, mentioned above, required to define a pattern within the rule list
models. We are limiting the weak learners of the ensemble methods to have a similar shape
as our CLASSY algorithms.

5.1.3 Metrics

In this section, we discuss the metrics used for the evaluation of the models in the different
experiments. We define metrics to evaluate performance, human guidance, and interpretability.

Performance

The following evaluation metrics provide different perspectives on model performance to assess
the models’ effectiveness.
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Area Under the Receiver Operating Characteristic (AUROC). The AUROC is
a commonly used metric for evaluating classification models. It measures the model’s ability to
distinguish between positive and negative samples across different probability thresholds. The
Receiver Operating Characteristic (ROC) curve plots the true positive rate (sensitivity) against
the false positive rate (1 - specificity) at various threshold values. The AUROC represents the
area under this curve and provides an aggregated measure of the model’s performance. An
AUROC score of 1 indicates a perfect model, while a score of 0.5 suggests a random classifier.
We use this metric as it is commonly used in the works we are comparing with.

Area Under Precision-Recall Curve (AUPRC). The AUPRC is another metric used
to assess classification models. It evaluates the trade-off between precision and recall at various
probability thresholds. The Precision-Recall curve plots precision (positive predictive value)
against recall (sensitivity) at different thresholds. The AUPRC represents the area under this
curve. It is particularly useful when dealing with imbalanced datasets, as is often our case.
Higher AUPRC scores indicate better model performance.
In the sections where we assess human guidance and interpretability, we also use this metric,
in conjunction with human guidance and interpretability metrics, to maintain a perspective on
the models’ performance.

F1 Score. The F1 score is a metric that combines precision and recall into a single value,
providing a balanced measure of a classification model’s performance. It is calculated as the
harmonic mean of precision and recall. The F1 score ranges from 0 to 1, with 1 indicating per-
fect precision and recall, while 0 suggests poor performance. It is often used when the dataset
is imbalanced or when both precision and recall are equally important. In our experiments, we
use this metric averaging the result in a weighted fashion. So, we average each label’s metric
based on their support, for better comprehension of the performance.

Log loss The log loss, also known as logarithmic loss or cross-entropy loss, is also commonly
used for evaluating the performance of classification models. It measures the accuracy of the
predicted probabilities generated by a model compared to the true target labels.
The log loss penalizes incorrect predictions more severely, especially when the predicted prob-
ability is far from the true label. The added value of this metric for our experiments is mainly
that it provides a continuous measure of the model’s confidence in its predictions, making it
particularly useful when dealing with probabilistic classification models.
A lower log loss value indicates better model performance, with perfect predictions yielding a
log loss close to zero. Conversely, higher log loss values indicate poor model performance and
a lack of confidence in the predictions.

Overfitting degree. Overfitting occurs when a model learns the training data too well and
fails to generalize to unseen data. To evaluate overfitting, we calculate the average AUROC
difference between the training and testing sets in our 5-fold schema. If the model performs
notably better on the training set than the test set, it indicates overfitting.

Human guidance

Frequency of Preferred Variables. We use the frequency of the preferred variables in
the first rule of each rule list, denoted as f@1. This metric is introduced in the S-CLASSY
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work by Papagianni & van Leeuwen (2023). For this analysis, we take into account both
the frequency and position of the preferred variables within the generated rule lists. This score
could range from zero to four in our setup, as the maximum pattern length is set to |r|max = 4.
The models can employ the preferred variables for all the conditions in one rule or not use
them at all. Higher values of f@1 denote more influence of human guidance.

Interpretability

The following metrics provide quantitative measures to assess the interpretability of rule-
based machine learning models. The aim is to strike a balance between simplicity and accuracy,
ensuring that the generated rules are both understandable and effective in capturing the pat-
terns in the data.

Average Rule Length. The average rule length µ|r| measures the average number of
conditions present in each rule within the rule list. A shorter rule length indicates simpler
and more concise rules, which are generally easier to interpret and understand. On the other
hand, longer rule lengths can make it harder to comprehend the decision-making process of
the model. As defined earlier, rule length is limited to a maximum of four.

Average Number of Rules. The average number of rules in a rule list µ|R| measures
the average count of rules in the full rule list. A smaller number of rules typically leads to
more interpretable models. Having fewer rules makes it easier to identify and comprehend the
multiple data patterns used by the model. Conversely, a larger number of rules may introduce
additional complexity and make it more challenging to interpret and extract insights from the
model.

Accumulated Rule Usage Percentage. We define the accumulated rule usage per-
centage as ∑ usg % (or its equivalent 1 − usg∅ %). This metric evaluates the accumulated
coverage of the rules within the rule list, without taking into account the default rule. This
metric is expressed as a percentage, as we divide the sum of rule usage by the number of
samples in the training set. A higher percentage suggests that a larger portion of the dataset
is explained by the rules, which can aid in understanding the model’s decision-making process.
Conversely, a lower percentage indicates that the default rule is covering a bigger fraction of
the data, making it harder to interpret the model’s predictions.

5.2 Performance

5.2.1 Scores

One of our primary research questions focuses on the rationale behind selecting an inter-
pretable model, specifically S-CLASSY, over a non-interpretable model, such as neural net-
works, considering the potential differences in their performance. Therefore, we investigate
whether S-CLASSY, as an interpretable model, can achieve performance levels that are on par
with non-interpretable models of similar complexity, while also providing the crucial advantage
of interpretability.
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Problem Metric Model \Pre-processing plain windowing plain windowing quantiles

2-class

AUROC

S-CLASSY 0.719 0.674 0.657
RF 0.88 0.751 0.746
MLP 0.845 0.687 0.694
GB 0.848 0.732 0.73

AUPRC

S-CLASSY 0.654 0.649 0.628
RF 0.856 0.731 0.738
MLP 0.843 0.684 0.698
GB 0.826 0.719 0.73

F1

S-CLASSY 0.669 0.667 0.635
RF 0.726 0.7 0.698
MLP 0.745 0.654 0.672
GB 0.785 0.696 0.681

log loss

S-CLASSY 0.6 0.668 0.671
RF 0.466 0.566 0.565
MLP 1.017 1.005 0.849
GB 1.053 0.684 0.717

overfit

S-CLASSY 0.117 0.153 0.163
RF 0.114 0.136 0.148
MLP 0.155 0.227 0.197
GB 0.152 0.268 0.27

Table 5.1: Performance results comparing S-CLASSY to the non-interpretable models.
We display the results for the 2-class classification problem.

In Table 5.1 we present the different performances of S-CLASSY compared to the non-
interpretable models for the 2-class classification problems in the ICU data. We show the results
of each model with the different datasets generated through the three different methods: plain,
windowing plain, and windowing quantiles.

When examining the binary problem, we find that ensemble methods are the most effective
performers, followed by the multilayer perceptron and S-CLASSY.
In the case of training on the plain dataset, all the compared models demonstrate significantly
better performance than S-CLASSY. However, the MLP and GB models exhibit notably higher
loss and overfitting values compared to the random forest, which emerges as the best performer.
Nonetheless, when trained on data with windowing, S-CLASSY achieves performance values
much closer to those of the other models. Specifically, for the windowing data, the difference in
AUROC values between S-CLASSY and the best performer, RF, is 0.082, while in the previous
case, the difference was 0.202.

In general, the windowing plain, and windowing quantiles datasets allow the models to learn
better from the data than the plain data. For S-CLASSY, the AUROC values are 0.581 for
plain, 0.596 for windowing plain, and 0.601 for windowing quantiles. However, other methods,
like gradient boosting, might benefit from other data representations, as shown depicting
better AUPRC values with plain than with windowing quantiles data.

We provide additional experimentation between all these models, comparing their perfor-
mances in all the designed setups, and observing similarities in the different metrics. The results
of these experiments can be found in the Appendix, in Tables A.1 and A.2. For more details
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about the windowing quantiles results, see the ROC and precision-recall curves in Figures A.2
and A.3 in the Appendix.

To gain a deeper understanding of how these metrics reflect the challenges in learning, we
undertake further investigation to analyze the specific errors made by the models. We aim to
uncover insights into the areas where the models struggle.

(a) S-CLASSY (AUPRC = 0.521). (b) random forest (AUPRC = 0.673).

(c) multilayer perceptron (AUPRC = 0.63). (d) gradient boosting (AUPRC = 0.664).

Figure 5.1: Confusion matrices comparison between models for the 3-class version A ICU
problem, using the windowing quantiles data. A total of 1188 data points are presented.

5.2.2 Confusion analysis

Our interest is understanding the specific choices of a determined model. By evaluating
the true and predicted labels for each prediction on the test sets, we can discern the specific
choices made by a particular model. When looking at Figure 5.1, we first observe the class
imbalance. The data bins 1-2days, 3-4days, and 5+days are in 568, 176, and 444 instances
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respectively in the windowing quantiles dataset (this is the sum of values in each row of each
matrix). We observe that the bin 1-2days is also the most predicted by all the algorithms, as
it is also the most common to occur.

However, the bin 3-4days is difficult to predict, as can be easily confused with the previous
or the posterior one and occurs much less than the others. In this example, this bin (predicting
3-4 days in ICU) is frequently misclassified by the MLP and GB models, leading to incorrect
predictions most of the time. S-CLASSY and RF are never predicting it.
In the case of S-CLASSY, we observe how all rules decide either bin 1-2days or bin 5+days.
The algorithm focuses on finding the differences in the data from class 5+days, compared to
the majority of data belonging to class 1-2days. The target 3-4days is never predicted, not
being able to find any pattern for this label. The default rule of the algorithm is predicting the
most common class, 1-2days, after discarding the two others. See the rule list for S-CLASSY
in Listing 5.1.
When it comes to random forest, the trees that are part of the ensemble are mainly not able
to learn the patterns in the data that would lead to bin 3-4days. This is why in this example
this class is never predicted, focusing more on properly differentiating class 1-2days from class
5+days.

Based on the findings from this section, it can be concluded that the dataset poses relevant
challenges for prediction, as all the methods employed struggle to achieve accurate results.
However, it is important to note that the S-CLASSY model shows lower accuracies than the rest
of the models, but those are still comparable, especially when trained on the windowed data.
Therefore, S-CLASSY emerges as a promising model, showcasing its potential for effectively
predicting the Length of Stay of patients in a hospital setting, even in the face of a challenging
dataset.
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// Preferred variables: [’age_months ’, ’surgery duration ’,

// ’clamp time ’, ’bypass time ’, ’min. temperature in OR’,

// ’average Heart rate ’, ’average SpO2 ’]

// Rule list:

IF min. temperature in OR < 19.9

AND percent.Q Respiration rate < 0.35

AND average SpO2 < 96.3 THEN usage = 58;

// Pr(1-2days) = 0.0 Pr(3-4days) = 0.0 Pr(5+ days) = 1.0

ELSE IF surgery duration >= 396.0

AND high_q -Diastolic blood pressure < 54.8

AND 24.3 <= avg_q -Respiration rate < 48.7

AND percent_q -Heart rate < 0.59 THEN usage = 44;

// Pr(1-2days) = 0.0 Pr(3-4days) = 0.0 Pr(5+ days) = 1.0

ELSE IF average Systolic blood pressure < 75.33

AND 11.0 <= surgery overtime < 69.0

AND 2.3 <= std SpO2 < 4.2 THEN usage = 36;

// Pr(1-2days) = 0.0 Pr(3-4days) = 0.0 Pr(5+ days) = 1.0

ELSE IF low_q -Heart rate >= 138.31

AND std_q -Respiration rate < 5.34 THEN usage = 17;

// Pr(1-2days) = 0.0 Pr(3-4days) = 0.0 Pr(5+ days) = 1.0

ELSE IF 19.9 <= min. temperature in OR < 22.0

AND 11.0 <= surgery overtime < 29.0

AND average Heart rate >= 119.38

AND high_q -Diast. blood pressure < 54.80 THEN usage = 26;

// Pr(1-2days) = 0.0 Pr(3-4days) = 0.0 Pr(5+ days) = 1.0

ELSE IF std_q -SpO2 >= 4.62

AND 0.5 <= percent_q -Temperature < 0.66

AND percent_q -SpO2 >= 0.38 THEN usage = 22;

// Pr(1-2days) = 0.0 Pr(3-4days) = 0.045 Pr(5+ days) = 0.955

ELSE IF average Respiration rate < 29.05

AND surgery duration < 240.0

AND 1.0 <= STSScore < 2.0 THEN usage = 50;

// Pr(1-2days) = 1.0 Pr(3-4days) = 0.0 Pr(5+ days) = 0.0

ELSE IF high_q -Diastolic blood pressure >= 58.71

AND extubated in OR

AND percent_q -Diastolic blood pressure < 0.44

AND surgery duration < 325.5 THEN usage = 47;

// Pr(1-2days) = 1.0 Pr(3-4days) = 0.0 Pr(5+ days) = 0.0

ELSE IF age_months >= 64.0

AND percent_q -Respiration rate >= 0.35

AND std Heart rate < 8.32 THEN usage = 58;

// Pr(1-2days) = 0.931 Pr(3-4days) = 0.069 Pr(5+ days) = 0.0

ELSE IF std SpO2 < 1.25

AND 36.28 <= high_q -Temperature < 37.07

AND 88.36 <= high_q -Systolic blood pressure < 103.34

AND low_q -Diast. blood pressure < 55.03 THEN usage = 31;

// Pr(1-2days) = 1.0 Pr(3-4days) = 0.0 Pr(5+ days) = 0.0

ELSE IF 35.98 <= average Temperature < 36.15

AND 83.5 <= bypass time < 134.0

AND average Respiration rate < 33.79 THEN usage = 22;

// Pr(1-2days) = 1.0 Pr(3-4days) = 0.0 Pr(5+ days) = 0.0

ELSE IF 196.0 <= surgery duration < 287.0

AND avg_q -Diastolic blood pressure >= 53.93

AND std_q -Diastolic blood pressure >= 9.31

AND std Respiration rate < 7.10 THEN usage = 26;

// Pr(1-2days) = 1.0 Pr(3-4days) = 0.0 Pr(5+ days) = 0.0

ELSE usage = 513;

// Pr(1-2days) = 0.437 Pr(3-4days) = 0.265 Pr(5+ days) = 0.298

Listing 5.1: Rule list produced by S-CLASSY with real expert knowledge for the 3-class
windowing quantiles problem. All time values are denoted in minutes. The total training
samples for this example is 951.
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5.3 Human guidance

5.3.1 Scores

The objective of this section is to provide justification for the involvement of human experts
in guiding the search process. Similar to the previous section, we conduct a comparison of
accuracies and losses to ascertain the impact of expert insights on classification performance.
Specifically, we compare two versions of S-CLASSY: one utilizing real expert knowledge and
another utilizing simulated expert knowledge. Additionally, we compare these versions to the
decision tree and CLASSY models that do not incorporate human guidance constraints.

In conducting these experiments, we establish the expert variables as follows. Firstly, for the
real expert knowledge, we employ the variables that were described in the methods section,
consistently across all four different problems. Secondly, for the simulated expert knowledge,
as each problem is distinct, the feature importance scores obtained from the random forest
model yield different results.

Consequently, the S-CLASSY model incorporating the simulated expert knowledge adapts
by selecting different preferred variables for each specific problem, effectively tailoring itself
to the task at hand. For instance, the feature importance ranking for the 2-class problem is
detailed in Figure A.6, in the Appendix.

Problem Metric Model \Pre-processing plain windowing plain windowing quantiles

2-class

AUROC

S-CLASSY real kn. 0.719 0.674 0.657
S-CLASSY simulated kn. 0.732 0.55 0.626
CLASSY 0.711 0.681 0.669
Decision Tree 0.676 0.627 0.623

AUPRC

S-CLASSY real kn. 0.654 0.649 0.628
S-CLASSY simulated kn. 0.637 0.558 0.61
CLASSY 0.616 0.65 0.642
Decision Tree 0.643 0.617 0.615

F1

S-CLASSY real kn. 0.669 0.667 0.635
S-CLASSY simulated kn. 0.688 0.474 0.616
CLASSY 0.649 0.686 0.641
Decision Tree 0.705 0.612 0.628

log loss

S-CLASSY real kn. 0.6 0.668 0.671
S-CLASSY simulated kn. 0.6 0.695 0.716
CLASSY 0.671 0.638 0.66
Decision Tree 3.927 1.114 1.146

overfit

S-CLASSY real kn. 0.117 0.153 0.163
S-CLASSY simulated kn. 0.098 0.063 0.192
CLASSY 0.125 0.147 0.16
Decision Tree 0.285 0.216 0.225

Table 5.2: Performance results comparing S-CLASSY with real and simulated expert
knowledge to interpretable models. We display the results for the 2-class classification
problem.

The seven simulated preferred variables for this task are the following: first quantile sys-
tolic blood pressure, average systolic blood pressure, arrest time, age, minimum
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temperature in OR, bypass time, and average diastolic blood pressure.
Only overlapping with the real expert variables defined in Section 4.3 with age, minimum
temperature in OR, and bypass time.

Upon analyzing the performance results presented in Table 5.2, several noteworthy obser-
vations can be made. Firstly, the S-CLASSY model utilizing expert knowledge demonstrates
remarkably similar performance to the CLASSY model across all metrics. This suggests that
both models effectively learn and capture the patterns in the data, even though they employ
different variables for their rule lists in each iteration.
However, a notable contrast is observed when considering the S-CLASSY model with sim-
ulated knowledge. This particular variant exhibits noticeably lower performance across all
metrics, accompanied by higher loss values compared to the other models. This indicates that
the simulated knowledge approach employed by S-CLASSY fails to effectively learn from the
data and adequately capture the essential patterns, especially for the windowing plain data.
Considering the findings of the authors of S-CLASSY, the simulated knowledge performs worse
than selecting preferred variables randomly, which contrasts with their previous results.
By examining the rule lists generated by the three models, we gain further insights into the
reasons behind these performance results. This discrepancy in performance can be attributed
to the limitations of the simulated knowledge approach, highlighting the importance of genuine
expert knowledge in achieving better performance, especially given the hard dataset to learn.
See the generated rule lists in Listing A.1 for S-CLASSY with real expert knowledge, Listing
A.2 for S-CLASSY with simulated expert knowledge, and Listing A.3 for CLASSY, all in the
Appendix section.
Finally, when comparing the decision tree model to the rule lists, we observe comparable results
in the AUPRC and F1 metrics. However, it shows much greater loss and overfitting values than
the rest.

5.3.2 Preferred variables frequency

We study the frequency of preferred variables in the first rule of each rule list, denoted as f@1.
To gain an understanding of this influence, we calculate the average value of f@1 across all
folds. In Table 5.3 we can see the obtained results for both 2-class and 5-class problems.

Notably, for both problems, we observe that the S-CLASSY model when solving the plain
data, incorporates a preferred variable always once in the first rule. As those rule lists are
generally short and with low number of conditions, we hypothesize that the algorithm is not
able to find different combinations of variables, given the small number of training samples.
The CLASSY model is almost not using the expert’s variables.

Additionally, comparing the problems, we consistently observe AUROC values over 0.55 for
the 2-class and values below 0.48 for the 5-class problem. Despite this discrepancy in learning
capacities, both models present similar expert’s variables adoption in their rules.
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Problem Metric Model \Pre-processing plain windowing plain windowing quantiles

2-class

AUPRC
S-CLASSY real kn. 0.654 0.649 0.628
S-CLASSY simulated kn. 0.637 0.558 0.61
CLASSY 0.616 0.65 0.642

F@1
S-CLASSY real kn. 1 1.4 1.4
S-CLASSY simulated kn. 1 1.8 1.6
CLASSY * 0.2 0.6 0.6

5-class

AUPRC
S-CLASSY real kn. 0.459 0.427 0.408
S-CLASSY simulated kn. 0.469 0.402 0.369
CLASSY 0.47 0.428 0.42

F@1
S-CLASSY real kn. 1 1.6 1.6
S-CLASSY simulated kn. 1 2 2
CLASSY * 0 0.8 1

Table 5.3: Human guidance results comparing S-CLASSY with real and simulated expert
knowledge, and CLASSY. We display the results for the 2-class and 5-class classification
problems, with different distributions in the discretization method to decide the target
LoS in the ICU. Further, in the case of S-CLASSY real knowledge and CLASSY, we
count the average use of the preferred variables in the first rule, using the list of the real
expert’s variables. For the case of S-CLASSY with simulated knowledge, we use the list of
preferred variables using the feature importance feature of a random forest model trained
on all the data.

5.4 Interpretability

In order to achieve interpretability, we adhere to the widely accepted notion that smaller
models are easier to comprehend (Doshi-Velez & Kim, 2017). Accordingly, we evaluate the
number of rules and the number of conditions per rule. In addition, we assess the accumulated
rule usage ∑

usg in the rules different than the default rule.

The first crucial criterion is the compactness of the rule list, which entails having a relatively
small number of rules with a manageable number of conditions in each rule. To quantify
compactness, we consider two major metrics: the average rule length (µ|r|) and the average
number of rules in the rule list (µ|R|). Additionally, we aim to maximize the accumulated
usage of the rules ∑ usg , excluding the default rule. This metric provides insight into the
level of support that the patterns shown in the rules receive from the training data.

Upon reviewing the results presented in Table A.5, a comparison is made between the
interpretability metrics of the different models.

The number of conditions in a rule (µ|r|) is limited to four, which aligns with the observed
results as all values are close to this threshold. Additionally, upon examining the generated
rules, we observe how the models S-CLASSY and CLASSY employ notably more conditions
for the datasets windowing plain and windowing quantiles than plain while keeping similar
accuracies.
However, there is an exception, S-CLASSY with simulated knowledge is not capable of properly
learning from the windowing plain data, having lower values for all metrics.
Furthermore, when looking at the depth of the decision tree, it is always four.
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Problem Metric Model \Pre-processing plain windowing plain windowing quantiles

2-class

AUPRC

S-CLASSY real kn. 0.654 0.649 0.628
S-CLASSY simulated kn. 0.637 0.558 0.61
CLASSY 0.616 0.65 0.642
Decision Tree 0.643 0.617 0.615

µ|r|

S-CLASSY real kn. 1.983 2.901 3.088
S-CLASSY simulated kn. 1.767 1.4 3.112
CLASSY 1.883 2.857 3.002
Decision Tree * 4.0 4.0 4.0

µ|R|

S-CLASSY real kn. 2.2 6.0 5.3
S-CLASSY simulated kn. 2.2 1.0 5.6
CLASSY 2.2 6.2 5.8
Decision Tree * 13.5 15.2 15.6

∑
usg

S-CLASSY real kn. 0.48 0.544 0.508
S-CLASSY simulated kn. 0.456 0.163 0.477
CLASSY 0.472 0.525 0.547

runtime
S-CLASSY real kn. 7.248 17.33 18.77
S-CLASSY simulated kn. 7.262 0.175 19.695
CLASSY 7.589 18.53 21.021

Table 5.4: Interpretability results comparing S-CLASSY with real and simulated expert
knowledge to interpretable models. We display the results for the 2-class classification
problem. Further, the number of conditions per rule and the number of rules in the list are
compared with the average depth and average number of leaves in the tree, respectively.
The ∑ usg value does not have a similarity to any parameter of a tree. We do not have
the data for displaying the runtime of the tree.

In terms of the number of rules in the rule list (µ|R|), the situation is similar to the previous
metric, it depends on the dataset trained on, with the exception mentioned earlier for the case
of S-CLASSY. In addition, the decision tree is always presenting a similar number of leaves,
independently of the dataset, duplicating or triplicating the values of the rest of the models.

Furthermore, another way to confirm the anomaly in the S-CLASSY simulated knowledge
trained on windowing plain is the metric ∑ usg . Here, all models and configurations exhibit a∑

usg value of around 50%, while the model not performing well has a ∑
usg value of 16%.

This discrepancy shows that the expert rules used by S-CLASSY can have a negative effect
on its performance.

Finally, when taking a look at the runtimes, we observe how consistently S-CLASSY is
faster than CLASSY while obtaining similar accuracies. We hypothesize that this is due to the
pattern search times. S-CLASSY, using expert’s knowledge, is directed towards variables that
potentially create patterns with high usage, while CLASSY must search for those variables.
However, this advantageous feature can also be a drawback, as the algorithm may encounter
challenges when provided with suboptimal expert variables, leading to convergence on local
minima and resulting in poorer performance.

In summary, the results suggest that both S-CLASSY and CLASSY exhibit comparable
levels of interpretability, as indicated by the average rule length and the number of rules, while
the decision tree depicts much higher values for those metrics. In addition, S-CLASSY shows
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sensitivity to the preferred variables utilized and outperforms CLASSY in terms of runtime
efficiency.

5.5 Expert’s feedback

In this section, our attention shifts to the analysis of the obtained rules in collaboration
with medical doctors. In a prior iteration, as described for the clinical problem in Section
4.2, we collectively defined the problem to solve. Now, in a second iteration, we evaluate the
benefits and constraints of this solution concerning their specific problem and offer new ideas
for improvement.

First, they emphasize the importance of interpretability and adaptability for clinicians. They
consider the current state of the algorithm highly valuable due to its immediate interpretability.
However, the doctor needs a quick and easy-to-understand forecast for the LoS, so they insist
on keeping the variables simple. This includes avoiding complex transformations and sticking
to familiar variable features that are easy to express. Additionally, they prefer not to combine
different variables referring to the same measurement in a single rule, e.g., the average and
the maximum of a variable in the same rule.

Second, the obtained uncertainty values per rule are satisfactory for clinicians. The rules
in the rule list accurately represent a relevant percentage of the training data, together with
probability estimates that are generally close to zero or one.

Third, we emphasize the importance of the usage value, indicating how much of the training
data is activated by the rule. However, it is a difficult metric to understand, and they would
prefer not to communicate it. In the end, the minimum support threshold ms is defined by
this parameter, which is already sufficient.

Fourth, they express confidence that this model could be valuable for benchmarking across
hospitals. For instance, when trained in the data of multiple hospitals, and comparing the
rules, the differences between hospitals could also be assessed, allowing patients to choose the
hospital that best suits their specific case and needs.

Fifth, upon examining a CLASSY rule that started with multiple engineered variables not
immediately recognizable, they felt distrustful about it. However, when analyzing one of the
S-CLASSY rule lists, they grasped the rule’s process. For instance, when they interpreted a low
systolic blood pressure average and high max temperature variable, they understood that the
patient had hypotension and fever, potentially leading to complications. They emphasized the
need for the variables in the rules to be expressed in a language they can readily understand.

Sixth, we raise a concern considering the rule list method rather than a rule set. We grasp
that doctors potentially would not read the rules that come before the activated rule in their
specific case. A more intuitive shape for the rules could improve readability.
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Seventh, for this specific task, the values of several variables are not interpretable unless the
variable age is considered simultaneously. Normal values for blood pressure, for example, differ
between newborns and teenagers. Thus, rules that do not account for age, but are conditioned
on blood pressure, are not trusted by medical doctors.

Overall, they suggest immediate future work to improve the process and make the rule
lists more medically relevant. Without modifying the algorithm, they propose retraining the
model using data from newborn patients only, to solve the previous limitation mentioned.
Additionally, they recommend simplifying the variables by using the method windowing plain, as
in previous experiments, but excluding the resulting variables related to quantiles distributions,
and respiration rates. They note that the respiration rate value lacks general intuitiveness, as
it does not indicate whether the patient is intubated or not.
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In this chapter, we delve into reflection on our research. Initially, our focus is centred on
the method we devised for preparing the data, specially tailored to address the Length of Stay
problem in hospitals.
Subsequently, we engage in an in-depth examination of the strengths and limitations of em-
ploying the S-CLASSY algorithm to tackle the Length of Stay problem, guided by the insights
obtained after our experiments.
Lastly, we embrace the opportunity to discuss the new research line that emerges as a result
of our work.

6.1 Predicting the Length of Stay

The Length of Stay proves challenging to be predicted in a medical context. In the liter-
ature, multiple techniques for feature selection and extraction have been explored, such as
the approach of Alghatani et al. (2021). Additionally, multiple ad-hoc algorithms have been
developed, like the temporal convolutions introduced by Rocheteau et al. (2021). However,
achieving satisfactory performance has proven to be challenging, particularly when using only
2-class classifiers, resulting in performances that are far from excellent (Gupta et al., 2022). In
this thesis, we face the additional difficulty of working with a small dataset focused exclusively
on heart surgeries and limited to a two-year period.

In conventional supervised learning algorithms, the success of identifying patterns in data re-
lies on the assumption that datasets are relatively devoid of noise. Nevertheless, the healthcare
domain presents a distinctive scenario where multiple factors come into play, impacting the
discharge decision-making process, and rendering the identification and categorization of noise
a complex endeavour. Factors like the involvement of various medical team members, parental
anxiety for a swift discharge, or even the well-being of the attending surgeon all contribute to
the intricate and variable nature of the data under consideration.

Throughout this study, we have engaged in a series of iterative discussions and collabora-
tions with the medical team, aiming to gain a comprehensive understanding of the data and
the specific requirements of our research. A central focus has been placed on achieving an in-
terpretable solution, necessitating a preliminary interpretation of the clinical messages inherent
in the data. To achieve this, careful pre-processing and data selection have been undertaken,
tailored to optimize the adaptation of our algorithms to the targeted problem.

In our pursuit of interpretability, we have sought to emulate medical approaches during the
data pre-processing phase. This has involved techniques such as windowing the data to capture
relevant temporal patterns, simulating the cognitive processes of nurses to better comprehend
their decision-making rationale, and implementing the Quantiles Approach to strategically
eliminate data points situated in close proximity to the median.

We have successfully refined our process by streamlining the variables . This has been a
crucial step towards achieving the utmost interpretability of our algorithm. Nonetheless, we
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acknowledge that there remains substantial room for further enhancement, continuing the
iterative refinement process in close collaboration with the clinical experts. We seek to bridge
the gap between advanced algorithmic methodologies and the domain-specific knowledge held
by medical practitioners.

6.2 S-CLASSY

In this study, our research approach entails conducting numerous experiments to compre-
hensively evaluate and analyze the performance of S-CLASSY, incorporating both quantitative
and qualitative experiments.

In evaluating the performance of S-CLASSY, we deliberately select models with comparable
complexity, avoiding the use of overly simplistic models like predicting the majority class or
high-complexity task-specific temporal neural networks. This careful consideration ensures a
fair comparison, given the challenging nature of the dataset.

The findings suggest that the effect of human guidance may differ based on the quality of
the preferred variables given.
The lower performance of S-CLASSY when using simulated expert knowledge compared to
real expert knowledge prompts further analysis. As mentioned in the S-CLASSY paper, the
algorithm exhibited similar performance when using the top variables defined by the feature
importance of Random Forest (RF) and randomly selected variables. However, we observe
notable discrepancies in performance when comparing the models using real and simulated
expert knowledge in our experiments. We hypothesise that the dataset’s complexity plays
a relevant role in the algorithm’s ability to learn effectively. That is, the simulated expert
knowledge may not fully capture the nuances and intricacies present in the actual clinical
domain, leading to suboptimal variable selections.
We observe an example where S-CLASSY is the only model with poor performance when
guided with simulated expert knowledge. The preferred variables to use have to be carefully
chosen, and adapted to the data and the rest of the variables, so the algorithm does not
converge on local minima.
On the other hand, CLASSY is capable of discovering the relevant variables through its search
process without the explicit guidance of preferred variables.
This motivates us to continue exploring the optimal integration of real expert knowledge in
our predictions.

The effect of human guidance can still be enhanced by refining the overall selection of
variables to use, aiming to focus on those that are more interpretable and clinically relevant.
For instance, we should steer away from using metrics such as the standard deviation of blood
pressure, which can be challenging to interpret in isolation. Instead, if the variables used in
the training of the models directly relate to specific medical symptoms or conditions both
performance and interpretability can increase.
Examples of such variables include the maximum temperature, which can indicate the presence
of fever, and the minimum blood pressure, which may suggest hypotension. By focusing on
these medically relevant variables, we enhance the interpretability of our results and ensure
that our findings align more closely with the clinical domain.
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Consequently, a trade-off has to be found when deciding the variables for the algorithm.
Sophisticated techniques for data pre-processing, like windowing quantiles, often offer a better-
denoised dataset for the algorithms to find accurate rules. In addition, for variables that might
not be transparent, using transformations of the data like calculating the quartiles or the
standard deviation of a variable can help the algorithms find good patterns in the data.
However, these variables are not useful for S-CLASSY for two reasons. First, the preferred
variables have to be able to generalize across the data samples. When using very specific
variables, especially in the subgroup of preferred ones, the algorithm is directed towards local
minima. Second, these variables are not clear or usable by the clinicians. As a result, a trade-off
about the simplicity of the variables has to be studied.

An essential consideration in our analysis is the interpretability of the rules. We find that
approximately 54% of the examples in the binary problem dataset can be effectively delimited
by the generated rules, indicating that S-CLASSY performs well in terms of the accumulated
usage of the discovered rules.
Nevertheless, it is important to acknowledge that the remaining data is weakly explained.
This observation underscores the need for further refinement in the approach. To address this,
we recognize the relevance of incorporating additional variables that are better suited to the
problem. Moreover, optimizing the algorithm’s parameters could be crucial in enhancing its
ability to extract meaningful and interpretable rules from the data.

The resulting rule lists provide a clear and transparent representation of the algorithm’s
decision-making journey, providing a good trade-off between classification performance and
rule list sizes. It outlines how S-CLASSY selects specific populations based on different patterns
observed in the data and subsequently determines the appropriate outcome for each group.
This transparency and traceability of the algorithm’s reasoning substantially contribute to its
interpretability, making it easier for medical professionals to understand and trust the results.

However, it is essential to acknowledge that not all generated rules may align with medical
criteria or exhibit logical coherence as an ensemble. The rapid understanding of the rules by
doctors, and their ability to discern whether a rule aligns with medical criteria or not, serves
as a crucial validation of the interpretability and applicability of the algorithm’s outputs.
Moreover, when rules do not make sense following medical criteria, it serves as an opportunity
for further refinement and optimization of the algorithm. By integrating the medical team’s
insights and feedback, we can iteratively improve the rule generation process to ensure that
the rules derived by S-CLASSY are not only coherent but also medically meaningful.

6.3 New line of research

In the medical field, decision trees based on medical literature are used to assess the potential
presence of complications following specific conditions. However, in our work, we advance
beyond this level of model complexity. By exploring more sophisticated models, we seek to
present a different perspective in interpreting the data, thereby enabling a deeper understanding
of the underlying patterns and factors that influence patient outcomes.
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The reception of the S-CLASSY algorithm by medical professionals is one of cautious opti-
mism, recognizing its potential as a novel way of explaining complex medical data. However, the
integration of algorithms in the medical field is a gradual and meticulous process, demanding
a robust and reliable approach at every stage.
One of the primary challenges lies in the interpretability of the rules generated by S-CLASSY.
Medical professionals find it difficult to comprehend the selections of population patterns
defined by the algorithm, as they do not correspond to any recognizable medical condition.
This lack of alignment with existing medical knowledge hinders the immediate applicability of
the algorithm’s outputs in a clinical setting.
Nevertheless, it is essential to recognize that this is a common hurdle when incorporating
algorithms in medicine. Iterative refinement and collaboration with medical experts are critical
to overcoming this challenge. The insights and feedback provided by doctors play a crucial
role in guiding the algorithm’s development towards generating more medically relevant and
interpretable rules.

The ultimate objective is to develop a predictor that follows a similar process as the clinicians.
Therefore, we view rule lists as a suitable approach since they, like doctors, follow a sequential
order to discard patterns (symptoms leading to diseases). In contrast, rule sets would require
a more intricate representation of patterns.
Additionally, to align with clinicians’ practices, the variables used in the algorithm need to be
adapted to match those employed by clinicians to identify symptoms and determine outcomes.
Ultimately, by generating patterns that hold medical relevance, clinicians can place their trust
in the model’s outcomes. The combination of variables in the activated rule would present a
pattern that mirrors a specific symptom they recognize.
By fulfilling these conditions, clinicians could readily employ the algorithm without requiring
any prior training.
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7.1 Conclusion

The objective of our research is proposing a novel method to solve the Length of Stay at
Sant Joan de Déu in Barcelona. we perform different experiments and interviews with the
medical doctors, and gather valuable insights into the specific needs and requirements of the
clinicians regarding predicting the LoS.

In this study, we present a system that prioritizes two critical aspects in predictive solutions
for the healthcare domain: accuracy and interpretability. S-CLASSY was designed to be inter-
pretable, enabling healthcare professionals to comprehend and trust the reasoning behind the
predictions. Additionally, we ensure that the model aligns with the clinicians’ thinking process
by incorporating clinically relevant variables for their assessments.

In our experiments, we validate the comparable accuracy achieved by the S-CLASSY algo-
rithm in comparison to other models of similar complexity. Subsequently, we emphasize the
model’s ability to incorporate human guidance. Through the preferred variables feature of
S-CLASSY, employing the real expert knowledge, we confirm the benefits of incorporating
human guidance into the algorithm. Later, we evaluate the interpretability of S-CLASSY and
CLASSY, and we introduce the accumulated rule usage metric to complement our analysis,
showing how S-CLASSY covers more than half of the data with specific patterns and high ac-
curacies. Finally, our discussions with the professionals encompass various aspects, confirming
the interpretability of the studied model and proposing options for further development.

To sum up, the S-CLASSY algorithm shows promise as a novel way to explain complex
medical data. However, integrating algorithms into the medical field is a gradual process, and
interpretability remains a challenge. Collaborative refinement and feedback from doctors are
essential for developing more medically relevant and interpretable rules in the future.

7.2 Limitations and future work

The curse of dimensionality. To ensure the interpretability of the rules, we aimed to
keep the features straightforward and easy to comprehend. However, this approach has its
limitations, as it can hinder the algorithm’s performance. We recognize that employing more
aggressive feature extraction techniques or dimensionality reduction methods could potentially
enhance the accuracy of the models. Additionally, we used 24-hour time slots for feature ex-
traction. However, future research could explore windowing the data in different hour intervals
and with overlapping, and assess whether this leads to improved accuracies.

Class imbalance. In a typical setup, we strive to avoid class imbalance during training to
ensure equal representation and prevent bias in the results. However, in the healthcare domain,
the class imbalance is inherent due to a (fortunate) larger proportion of patients experiencing
fast recoveries compared to those who develop complications. Moreover, our solution allows
for experimentation with different target outcomes, incorporating varying the Length of Stay
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time-frames. This adaptability enables us to align with the specific needs of the hospital and
capture data patterns, as demonstrated by the comparison between the 3-class A and B dataset
versions. Even with a mere one-day shift, the algorithm discovers more effective patterns for
explaining the data.

Default rule of S-CLASSY. In general, across our results around half of the data is
covered by rules with specific patterns with high accuracy. In this domain, prioritizing patterns
that exhibit high confidence in their predictions proves beneficial, instead of prioritizing the
usage of these patterns.
However, the other half of the data is explained by the default rule. In the cases of 3-class and
5-class, the default rule generally predicts the majority class, which is reasonable given that the
preceding rules have focused on excluding the other outcomes. Nevertheless, we acknowledge
a limitation where the default rule occasionally exhibits equal likelihood among all classes. For
instance, in the 3-class example discussed in Section 5.2.2 the probabilities are 0.44, 0.26, and
0.30 with only a slight bias towards the first class.

Generalization over multiple datasets. In our study, we worked with a single dataset.
Within this data, we created various versions of it by segregating the ICU from the ward, em-
ploying different discretization methods for the outputs, and using diverse data pre-processing
techniques. However, relying solely on one dataset poses challenges in terms of generalization.
By gathering data from multiple hospitals, we can assess the generalizability of our approach
across different settings. This could then serve as a benchmarking measure, allowing for a
comparison of the strengths and weaknesses of various procedures employed by different hos-
pitals.

Medical decision trees. Decision trees predicting the LoS exist in the medical literature.
A comparison between the decision tree trained on SJD and the tree proposed in the literature
could bring more insights into the need for tailored variables for each problem. Perhaps the
integration of preferred variables defined in the literature as the optimal ones could enhance
the generalization of the algorithm.

Preferred patterns. The utilization of the preferred variables feature in S-CLASSY has
resulted in substantial improvements in the task at hand. Despite these advancements, com-
plete alignment with medical criteria has not been achieved yet. In light of this, a promising
avenue for future research lies in defining patterns that are directly related to symptoms and
illnesses. By incorporating these medically relevant patterns, we can guide the search pro-
cess in a manner that aligns with the knowledge and trust of medical doctors, enhancing its
interpretability.

Additional variables. Several aspects of a patient’s stay are not captured by any variable
in our dataset. For instance, medical doctors caution against utilizing the respiration rate
variable, even if our algorithm identifies accurate patterns associated with it. The reason for
this exclusion is that the normal values of the respiration rate depend on whether the patient
is intubated or not, and we lack access to this specific variable in our dataset.
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Cross-validation We employ standard 5-fold cross-validation. The windowing plain and
windowing quantiles datasets utilize data windowing, generating multiple data samples from
a single hospital stay which could be present both in the training and testing data.
However, it is important to note that this situation only results in a data leak for a maximum
of two hospital stays when the test set is obtained from data in the centre of the dataset.
Specifically, for folds two, three and four the first and last samples of the test dataset could
be part of a hospital stay shared with samples in the training data. For folds one and five, this
situation could occur only once.
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Appendix A. Appendix A.1. Experimentation with the ward data

A.1 Experimentation with the ward data

(a) Data binning the binary classification. (b) Data binning for 3-class-A classification.

(c) Data binning for 3-class-B classification. (d) Data binning for 5-class classification.

Figure A.1: Output data bins for the ward at SJD when windowing every 24 hours.
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A.2 Performance evaluation

A.2.1 S-CLASSY, RF, MLP, and GB
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Problem Metric Model \Pre-processing plain windowing plain windowing quantiles

2-class

AUROC

S-CLASSY 0.719 0.674 0.657
RF 0.88 0.751 0.746
MLP 0.845 0.687 0.694
GB 0.848 0.732 0.73

AUPRC

S-CLASSY 0.654 0.649 0.628
RF 0.856 0.731 0.738
MLP 0.843 0.684 0.698
GB 0.826 0.719 0.73

F1

S-CLASSY 0.669 0.667 0.635
RF 0.726 0.7 0.698
MLP 0.745 0.654 0.672
GB 0.785 0.696 0.681

log loss

S-CLASSY 0.6 0.668 0.671
RF 0.466 0.566 0.565
MLP 1.017 1.005 0.849
GB 1.053 0.684 0.717

overfit

S-CLASSY 0.117 0.153 0.163
RF 0.114 0.136 0.148
MLP 0.155 0.227 0.197
GB 0.152 0.268 0.27

5-class

AUROC

S-CLASSY 0.687 0.629 0.62
RF 0.809 0.702 0.698
MLP 0.747 0.665 0.676
GB 0.799 0.684 0.69

AUPRC

S-CLASSY 0.459 0.427 0.408
RF 0.671 0.524 0.516
MLP 0.591 0.474 0.468
GB 0.664 0.495 0.497

F1

S-CLASSY 0.452 0.397 0.394
RF 0.473 0.405 0.401
MLP 0.554 0.443 0.405
GB 0.547 0.431 0.443

log loss

S-CLASSY 1.317 1.668 1.992
RF 1.001 1.223 1.223
MLP 2.348 2.44 1.77
GB 3.067 2.128 2.14

overfit

S-CLASSY 0.048 0.153 0.153
RF 0.182 0.19 0.2
MLP 0.239 0.211 0.179
GB 0.201 0.316 0.31

Table A.1: Performance results comparing S-CLASSY to the non-interpretable models.
We display the results for the 2-class and 5-class classification problems, with different
distributions in the discretization method to decide the target LoS in the ICU. For the
binary problem, all models seem to learn from the data, even when having low accuracy
values. However, for the 5-class problem, almost all models and configurations struggle to
learn, with high loss and AUPRC values often below 0.5.
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Problem Metric Model \Pre-processing plain windowing plain windowing quantiles

3-A-class

AUROC

S-CLASSY 0.657 0.582 0.574
RF 0.843 0.734 0.725
MLP 0.749 0.668 0.692
GB 0.833 0.729 0.713

AUPRC

S-CLASSY 0.573 0.533 0.521
RF 0.79 0.677 0.673
MLP 0.72 0.628 0.63
GB 0.789 0.674 0.664

F1

S-CLASSY 0.616 0.515 0.556
RF 0.624 0.573 0.581
MLP 0.624 0.577 0.556
GB 0.685 0.601 0.595

log loss

S-CLASSY 1.117 1.399 1.363
RF 0.752 0.848 0.845
MLP 1.683 1.273 1.163
GB 1.71 1.049 1.112

overfit

S-CLASSY 0.045 0.034 0.032
RF 0.148 0.156 0.17
MLP 0.235 0.193 0.156
GB 0.167 0.271 0.287

3-B-class

AUROC

S-CLASSY 0.455 0.508 0.497
RF 0.755 0.713 0.704
MLP 0.686 0.679 0.592
GB 0.713 0.728 0.719

AUPRC

S-CLASSY 0.396 0.459 0.438
RF 0.682 0.619 0.609
MLP 0.625 0.586 0.494
GB 0.642 0.626 0.621

F1

S-CLASSY 0.437 0.495 0.452
RF 0.525 0.506 0.51
MLP 0.503 0.532 0.397
GB 0.507 0.567 0.553

log loss

S-CLASSY 1.561 1.497 1.54
RF 0.869 0.913 0.918
MLP 1.601 1.153 1.114
GB 2.154 1.052 1.094

overfit

S-CLASSY 0.039 0.023 0.003
RF 0.232 0.157 0.171
MLP 0.276 0.168 0.157
GB 0.287 0.272 0.281

Table A.2: Performance results comparing S-CLASSY to non-interpretable models. We
display the results for the two 3-class classification problems, with different distributions
in the discretization method to decide the target LoS in the ICU.
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A.2.2 S-CLASSY, CLASSY, and decision tree
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Problem Metric Model \Pre-processing plain windowing plain windowing quantiles

2-class

AUROC

S-CLASSY real kn. 0.719 0.674 0.657
S-CLASSY simulated kn. 0.732 0.55 0.626
CLASSY 0.711 0.681 0.669
Decision Tree 0.676 0.627 0.623

AUPRC

S-CLASSY real kn. 0.654 0.649 0.628
S-CLASSY simulated kn. 0.637 0.558 0.61
CLASSY 0.616 0.65 0.642
Decision Tree 0.643 0.617 0.615

F1

S-CLASSY real kn. 0.669 0.667 0.635
S-CLASSY simulated kn. 0.688 0.474 0.616
CLASSY 0.649 0.686 0.641
Decision Tree 0.705 0.612 0.628

log loss

S-CLASSY real kn. 0.6 0.668 0.671
S-CLASSY simulated kn. 0.6 0.695 0.716
CLASSY 0.671 0.638 0.66
Decision Tree 3.927 1.114 1.146

overfit

S-CLASSY real kn. 0.117 0.153 0.163
S-CLASSY simulated kn. 0.098 0.063 0.192
CLASSY 0.125 0.147 0.16
Decision Tree 0.285 0.216 0.225

5-class

AUROC

S-CLASSY real kn. 0.687 0.629 0.62
S-CLASSY simulated kn. 0.69 0.605 0.567
CLASSY 0.694 0.631 0.644
Decision Tree 0.678 0.599 0.602

AUPRC

S-CLASSY real kn. 0.459 0.427 0.408
S-CLASSY simulated kn. 0.469 0.402 0.369
CLASSY 0.47 0.428 0.42
Decision Tree 0.506 0.414 0.402

F1

S-CLASSY real kn. 0.452 0.397 0.394
S-CLASSY simulated kn. 0.46 0.408 0.388
CLASSY 0.447 0.4 0.417
Decision Tree 0.504 0.395 0.408

log loss

S-CLASSY real kn. 1.317 1.668 1.992
S-CLASSY simulated kn. 1.34 1.432 1.687
CLASSY 1.336 1.662 1.924
Decision Tree 7.457 3.656 3.552

overfit

S-CLASSY real kn. 0.048 0.153 0.153
S-CLASSY simulated kn. 0.012 0.019 0.061
CLASSY 0.008 0.154 0.133
Decision Tree 0.244 0.213 0.206

Table A.3: Performance results comparing S-CLASSY with real and simulated expert
knowledge to interpretable models. We display the results for the 2-class and 5-class
classification problems, with different distributions in the discretization method to decide
the target LoS in the ICU.
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Problem Metric Model \Pre-processing plain windowing plain windowing quantiles

3-A-class

AUROC

S-CLASSY real kn. 0.657 0.582 0.574
S-CLASSY simulated kn. 0.604 0.493 0.526
CLASSY 0.624 0.582 0.553
Decision Tree 0.675 0.578 0.608

AUPRC

S-CLASSY real kn. 0.573 0.533 0.521
S-CLASSY simulated kn. 0.549 0.463 0.481
CLASSY 0.566 0.522 0.512
Decision Tree 0.608 0.54 0.541

F1

S-CLASSY real kn. 0.616 0.515 0.556
S-CLASSY simulated kn. 0.58 0.413 0.51
CLASSY 0.569 0.492 0.558
Decision Tree 0.56 0.518 0.514

log loss

S-CLASSY real kn. 1.117 1.399 1.363
S-CLASSY simulated kn. 1.21 1.25 1.247
CLASSY 1.166 1.294 1.307
Decision Tree 4.995 1.682 1.535

overfit

S-CLASSY real kn. 0.045 0.034 0.032
S-CLASSY simulated kn. 0.063 0.023 0.032
CLASSY 0.052 0.035 0.055
Decision Tree 0.259 0.241 0.215

3-B-class

AUROC

S-CLASSY real kn. 0.455 0.508 0.497
S-CLASSY simulated kn. 0.422 0.495 0.492
CLASSY 0.422 0.502 0.504
Decision Tree 0.634 0.626 0.606

AUPRC

S-CLASSY real kn. 0.396 0.459 0.438
S-CLASSY simulated kn. 0.375 0.42 0.421
CLASSY 0.375 0.455 0.438
Decision Tree 0.521 0.514 0.499

F1

S-CLASSY real kn. 0.437 0.495 0.452
S-CLASSY simulated kn. 0.413 0.228 0.393
CLASSY 0.413 0.483 0.449
Decision Tree 0.482 0.489 0.434

log loss

S-CLASSY real kn. 1.561 1.497 1.54
S-CLASSY simulated kn. 1.465 1.257 1.34
CLASSY 1.465 1.423 1.535
Decision Tree 4.602 1.689 1.383

overfit

S-CLASSY real kn. 0.039 0.023 0.003
S-CLASSY simulated kn. 0.074 0.006 0.002
CLASSY 0.074 0.031 0.004
Decision Tree 0.257 0.18 0.194

Table A.4: Performance results comparing S-CLASSY with real and simulated expert
knowledge to interpretable models. We display the results for the two 3-class classification
problems, with different distributions in the discretization method to decide the target
LoS in the ICU.
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A.3 Interpretability evaluation
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Problem Metric Model \Pre-processing plain windowing plain windowing quantiles

2-class

AUPRC

S-CLASSY real kn. 0.654 0.649 0.628
S-CLASSY simulated kn. 0.637 0.558 0.61
CLASSY 0.616 0.65 0.642
Decision Tree 0.643 0.617 0.615

µ|r|

S-CLASSY real kn. 1.983 2.901 3.088
S-CLASSY simulated kn. 1.767 1.4 3.112
CLASSY 1.883 2.857 3.002
Decision Tree * 4.0 4.0 4.0

µ|R|

S-CLASSY real kn. 2.2 6.0 5.3
S-CLASSY simulated kn. 2.2 1.0 5.6
CLASSY 2.2 6.2 5.8
Decision Tree * 13.5 15.2 15.6

∑
usg

S-CLASSY real kn. 0.48 0.544 0.508
S-CLASSY simulated kn. 0.456 0.163 0.477
CLASSY 0.472 0.525 0.547

runtime
S-CLASSY real kn. 7.248 17.33 18.77
S-CLASSY simulated kn. 7.262 0.175 19.695
CLASSY 7.589 18.53 21.021

5-class

AUPRC

S-CLASSY real kn. 0.459 0.427 0.408
S-CLASSY simulated kn. 0.469 0.402 0.369
CLASSY 0.47 0.428 0.42
Decision Tree 0.506 0.414 0.402

µ|r|

S-CLASSY real kn. 2.1 2.985 3.262
S-CLASSY simulated kn. 1.967 2.444 2.509
CLASSY 2.1 2.981 3.175
Decision Tree * 4.0 4.0 4.0

µ|R|

S-CLASSY real kn. 2.0 9.0 8.2
S-CLASSY simulated kn. 2.4 4.2 4.4
CLASSY 2.4 9.2 8.2
Decision Tree * 15.6 15.8 15.8

∑
usg

S-CLASSY real kn. 0.341 0.54 0.53
S-CLASSY simulated kn. 0.358 0.269 0.271
CLASSY 0.366 0.571 0.583

runtime
S-CLASSY real kn. 8.078 32.106 34.309
S-CLASSY simulated kn. 9.102 13.352 16.661
CLASSY 9.691 33.742 35.331

Table A.5: Interpretability results comparing S-CLASSY with real and simulated expert
knowledge to interpretable models. We display the results for the 2-class and 5-class
classification problems, with different distributions in the discretization method to decide
the target LoS in the ICU. Further, for the Decision Tree, the number of conditions per
rule and the number of rules in the list are compared with the average depth and average
number of leaves in the tree, respectively. The ∑

usg value does not have a similarity to
any parameter of a tree. We do not have the data for displaying the runtime of the tree.
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Problem Metric Model \Pre-processing plain windowing plain windowing quantiles

3-A-class

AUPRC

S-CLASSY real kn. 0.573 0.533 0.521
S-CLASSY simulated kn. 0.549 0.463 0.481
CLASSY 0.566 0.522 0.512
Decision Tree 0.608 0.54 0.541

µ|r|

S-CLASSY real kn. 2.45 2.865 3.136
S-CLASSY simulated kn. 1.933 2.0 2.502
CLASSY 1.95 2.826 3.092
Decision Tree * 4.0 4.0 4.0

µ|R|

S-CLASSY real kn. 2.6 8.0 6.9
S-CLASSY simulated kn. 2.4 1.0 3.3
CLASSY 2.3 8.0 8.0
Decision Tree * 14.9 15.3 15.6

∑
usg

S-CLASSY real kn. 0.405 0.632 0.569
S-CLASSY simulated kn. 0.467 0.14 0.328
CLASSY 0.428 0.574 0.522

runtime
S-CLASSY real kn. 8.646 24.851 26.578
S-CLASSY simulated kn. 8.125 0.178 10.479
CLASSY 8.374 25.731 31.054

3-B-class

AUPRC

S-CLASSY real kn. 0.396 0.459 0.438
S-CLASSY simulated kn. 0.375 0.42 0.421
CLASSY 0.375 0.455 0.438
Decision Tree 0.521 0.514 0.499

µ|r|

S-CLASSY real kn. 1.817 2.882 3.107
S-CLASSY simulated kn. 1.533 2.0 2.369
CLASSY 1.533 2.801 2.932
Decision Tree * 4.0 4.0 4.0

µ|R|

S-CLASSY real kn. 2.1 6.9 6.2
S-CLASSY simulated kn. 2.1 1.0 3.1
CLASSY 2.1 7.0 6.3
Decision Tree * 12.6 15.8 15.6

∑
usg

S-CLASSY real kn. 0.471 0.597 0.554
S-CLASSY simulated kn. 0.439 0.105 0.319
CLASSY 0.439 0.599 0.524

runtime
S-CLASSY real kn. 7.919 22.44 24.785
S-CLASSY simulated kn. 7.608 0.185 10.224
CLASSY 8.256 23.038 25.508

Table A.6: Interpretability results comparing S-CLASSY with real and simulated expert
knowledge to interpretable models. We display the results for the two 3-class classification
problems, with different distributions in the discretization method to decide the target
LoS in the ICU. Further, for the Decision Tree, the number of conditions per rule and
the number of rules in the list are compared with the average depth and average number
of leaves in the tree, respectively. The ∑

usg value does not have a similarity to any
parameter of a tree. We do not have the data for displaying the runtime of the tree.
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A.4 Human guidance evaluation

Problem Metric Model \Pre-processing plain windowing plain windowing quantiles

3-A-class

AUPRC
S-CLASSY real kn. 0.573 0.533 0.521
S-CLASSY simulated kn. 0.549 0.463 0.481
CLASSY 0.566 0.522 0.512

F@1
S-CLASSY real kn. 1 1.8 1.4
S-CLASSY simulated kn. 1.2 2 2
CLASSY * 0 0.8 0.6

3-B-class

AUPRC
S-CLASSY real kn. 0.396 0.459 0.438
S-CLASSY simulated kn. 0.375 0.42 0.421
CLASSY 0.375 0.455 0.438

F@1
S-CLASSY real kn. 1 1.8 1.8
S-CLASSY simulated kn. 1 2 2
CLASSY * 0 0.6 0.6

Table A.7: Human guidance results comparing S-CLASSY with real and simulated expert
knowledge, and CLASSY. We display the results for the two 3-class classification problems,
with different distributions in the discretization method to decide the target LoS in the
ICU. Further, in the case of S-CLASSY real knowledge and CLASSY, we count the average
use of the preferred variables in the first rule, using the list of the real expert’s variables.
For the case of S-CLASSY with simulated knowledge, we use the list of preferred variables
using the feature importance method of a random forest model trained on all the data.
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A.4.1 AUROC and AUPRC curves

Figure A.2: AUROC plot for all models for the 2-class windowing plain problem.

Figure A.3: AUPRC plot for all models for the 2-class windowing plain problem.
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A.5 Rule list examples

// Preferred variables: [’age_months ’, ’surgery duration ’,

// ’clamp time ’, ’bypass time ’, ’min. temperature in OR’,

// ’avg -Heart rate ’, ’avg -SpO2 ’]

// Rule list: (970 training samples)

IF min. temperature in OR < 30.7

AND min -Systolic blood pressure < 60.0

AND q3 -Diastolic blood pressure < 50.0 THEN usage = 89;

// Pr(1-2days) = 0.0 Pr(3+ days) = 1.0

ELSE IF surgery duration >= 396.0

AND 36.35357142857143 <= avg -Temperature < 36.75

AND q1 -Diastolic blood pressure < 56.0 THEN usage = 53;

// Pr(1-2days) = 0.0 Pr(3+ days) = 1.0

ELSE IF min -Systolic blood pressure < 74.0

AND min -Respiration rate >= 23.0

AND min -SpO2 < 95.0 THEN usage = 144;

// Pr(1-2days) = 0.188 Pr(3+ days) = 0.812

ELSE IF min -Diastolic blood pressure < 44.0

AND surgery duration >= 289.0

AND gender >= 1.0 THEN usage = 96;

// Pr(1-2days) = 0.25 Pr(3+ days) = 0.75

ELSE IF max -Respiration rate >= 43.0

AND min -SpO2 < 92.0 THEN usage = 212;

// Pr(1-2days) = 0.524 Pr(3+ days) = 0.476

ELSE usage = 376;

// Pr(1-2days) = 0.801 Pr(3+ days) = 0.199

Listing A.1: Rule list produced by S-CLASSY with expert’s real knowledge for the 2-class
windowing plain problem.
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// Preferred variables:[’arrest time ’, ’age_months ’, ’bypass time ’,

// ’avg -Systolic blood pressure ’,’q1 -Systolic blood pressure ’,

// ’min. temperature in OR’, ’avg -Diastolic blood pressure ’]

// Rule list: (970 training samples)

IF age_months >= 25.0

AND 31.0 <= bypass time < 58.0 THEN usage = 92;

// Pr(1-2days) = 0.902 Pr(3+ days) = 0.098

ELSE usage = 878;

// Pr(1-2days) = 0.433 Pr(3+ days) = 0.567

Listing A.2: Rule list produced by S-CLASSY with expert’s simulated knowledge for the
2-class windowing plain problem.

// Rule list: (970 training samples)

IF q3-Diastolic blood pressure < 50.0

AND min -Systolic blood pressure < 60.0

AND min. temperature in OR < 30.7 THEN usage = 89;

// Pr(1-2days) = 0.0 Pr(3+ days) = 1.0

ELSE IF surgery duration >= 396.0

AND 36.35357142857143 <= avg -Temperature < 36.75

AND q1 -Diastolic blood pressure < 56.0 THEN usage = 53;

// Pr(1-2days) = 0.0 Pr(3+ days) = 1.0

ELSE IF min -Systolic blood pressure < 74.0

AND min -Respiration rate >= 23.0

AND min -SpO2 < 95.0 THEN usage = 144;

// Pr(1-2days) = 0.188 Pr(3+ days) = 0.812

ELSE IF min -Diastolic blood pressure < 44.0

AND surgery duration >= 289.0

AND gender >= 1.0 THEN usage = 96;

// Pr(1-2days) = 0.25 Pr(3+ days) = 0.75

ELSE IF max -Respiration rate >= 43.0

AND min -SpO2 < 92.0 THEN usage = 212;

// Pr(1-2days) = 0.524 Pr(3+ days) = 0.476

ELSE usage = 376;

// Pr(1-2days) = 0.801 Pr(3+ days) = 0.199

Listing A.3: Rule list produced by CLASSY for the 2-class windowing plain problem.
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A.6 Variable importances
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Figure A.4: All 162 features used to train the random forest algorithm, before performing
data selection.
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Figure A.5: The selected 70 features used to train the random forest algorithm, after
performing data selection.

Figure A.6: The final 50 features used to train the random forest algorithm.
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A.7 Decision tree plot
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Appendix A. Appendix A.7. Decision tree plot
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