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Abstract

Most current state-of-the-art solutions for reinforcement learning tasks, such as the
Atari benchmark, are gradient-based approaches. These approaches can be costly to
train computationally and financially. Furthermore, they can suffer from vanishing and
exploding gradients, sensibility to the initialization of the weights, and their performances
often depend on the architecture chosen by the researchers.

This work intends to find a competitive, less costly option instead of gradient-based
algorithms for complex reinforcement learning tasks such as the Atari benchmark. It does
so by extending the experimentation of the Weight Agnostic Neural Networks (WANNs),
as conceptualized by David Ha and Adam Gaier in 2019. Their work proposes a new
method that modifies the NEAT algorithm and does not rely on weight training during
the neural network architecture evolutionary search. They aim to encode the correct
behavior for a task already in the network architecture.

This work aims to determine up to which level of performance and with which
limitations we can consider the Weight Agnostic Neural Networks as a competitive
alternative to SGD-based algorithms for more complex environments such as the Atari
benchmark suite, on both the RAM and the image representation.

Furthermore, we compare the WANNs against gradient-based baselines such as Deep
Q-Network (DQN), Advantage Actor-Critic (A2C), and Proximal Policy Optimization
(PPO). We tested the WANNs and the gradient-based baselines on five Atari 2600 games
from the Arcade Learning Environment. Moreover, we performed a hyperparameter
importance analysis over the WANNs hyperparameters. This analysis aims to understand
first which hyperparameters most influence the score over a single game and second
which hyperparameters are more influential over the set of considered games.

The hyperparameter importance analysis showed that the probability of mutating
an activation function is the most important hyperparameter for the evolution of the
WANNs. The results of the experiments show that without the finetuning, we cannot
consider the WANNs a competitive alternative to gradient-based methods over such
complex tasks. The finetuned WANNs with the RAM representation over the game
Battle Zone reached performances comparable to DQN and PPO, outperforming A2C.
We also discuss the limitations of the WANNs and highlight possible further develop-
ments.
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1 Introduction

Most current state-of-the-art solutions for reinforcement learning tasks, such as the Atari
benchmark, are gradient-based approaches [1, 2, 3]. While showing state-of-the-art perfor-
mances, these approaches also have some drawbacks, such as high costs, vanishing and ex-
ploding gradients, sensibility to the initialization of the weights, and high dependency on the
architecture chosen by the researchers.
This work intends to find a competitive, less costly option instead of gradient-based algorithms
for complex reinforcement learning tasks such as the Atari benchmark. It does so by extending
the experimentation of the Weight Agnostic Neural Networks (WANNs), as conceptualized by
Gaier and Ha [4].
The inspiration behind the Weight Agnostic Neural Networks [4] sees its roots directly in
biology, in the innate capacities of precocial species. The term precocial refers to those species
in which the newly born already possess particular skills or abilities. The main idea is that
the brain’s structure at birth already encodes these skills. From here, Gaier and Ha [4] aimed
to search for neural network architectures able to perform specific tasks even with random
weights, avoiding weight training. The search for these architectures is guided by different
mutations. The mutation probabilities are defined by specific hyperparameters whose values
can be finetuned.
Their first step was to give the weights a less important role in the process compared to their
crucial role in traditional approaches. Instead of having random weights, each connection in
the network has the same weight, and they test each architecture with a variety of weight
values.
Gaier and Ha [4] tested this method on reinforcement learning control tasks such as Cart-
PoleSwingUp, BipedalWalker, and CarRacing. Control tasks such as CartPoleSwingUp and
BipedalWalker have an observation space described by a state vector, while the observation
space of CarRacing is described by an image. This leaves the following questions: how do the
WANNs scale on more challenging tasks? Which hyperparameters influence their performances
the most? Given the difference in observation spaces between the experimented tasks, how do
the WANNs perform with different observation space representations?
Since the WANNs do not have the drawbacks mentioned above, and given the results reported
by Gaier and Ha [4] on the tasks they experimented on, we decided to explore the potential of
the WANNs on more complex benchmarks such as the Atari benchmark. The Atari benchmark
also provides both a state vector representation of the observation space, the status of the
RAM representation, and an image representation.
The aim of this work can be captured in the following research question:

Can Weight Agnostic Neural Networks be considered a competitive alternative to gradient-
based algorithms on Atari environments?

To answer our main research question, we have devised the following four subquestions:

• Q1: Which WANNs hyperparameters are more influential for each game and across
games?

• Q2: How do the WANNs perform on the RAM representation compared to the gradient-
based approaches?
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• Q3: How do the WANNs perform on the image representation compared to the gradient-
based approaches?

• Q4: How much does the finetuning of WANNs impact the performances?

Instead of comparing the WANNs with the current state of the art (such as MuZero [1],
Agent57 [2], and GDI-H3 [3]), given the differences in compute expenses and complexities,
they are compared with the gradient-based agents Deep Q-Networks (DQN), Advantage Actor-
Critic (A2C), Proximal Policy Approximation (PPO), trained using the stable baselines library
[5]. Even if outdated, these agents still represent a reliable baseline against which to evaluate
the performances of a new approach such as the one explored in this work.
We carry out this analysis using the Atari-5 benchmark [6], consisting of Battle Zone, Double
Dunk, Name This Game, Phoenix and Q*bert.
These environments provide an image observation space and a RAM observation space. Both
were used to carry out the experiments. In order to use images as input, Gaier and Ha [4] used
a pre-trained Variational Autoencoder (VAE). The use of a pre-trained variational autoencoder
means that we cannot exactly call the full system “weight agnostic” since it relies on an element
trained with gradients. In order to explore the potentiality of the WANNs independently from
gradient-based elements, we also experiment with the RAM representation, and we experiment
with the gradient-based agents using this representation as well.
A hyperparameter importance analysis is carried out to investigate which hyperparameters have
a more significant impact on performance during evolution over each game and which hyper-
parameters are more important across different games. Out of the explored configurations,
the ones yielding better predicted performances are used to carry out the complete evolution
process over each game.
Furthermore, the finetuning of the evolved neural networks is performed using the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), a gradient-free stochastic optimization evo-
lutionary algorithm.
We present the results achieved by the WANNs in comparison with the gradient-based agents
before and after finetuning. The results before the finetuning show that the gradient-based
approaches outperformed the WANNs in all the games using both the RAM and the image
representation. The results after the finetuning process show interesting results over the RAM
representation, with the RAM finetuned WANN performing comparably to DQN and PPO
over the game Battle Zone, outperforming A2C. Over the game Phoenix, the RAM finetuned
WANN outperformed DQN and A2C, performing slightly worse than PPO.
The main contributions of this work can be summed up as follows:

• A comprehensive evaluation was carried out, which covered 5 Atari games and compared
the Weight Agnostic Neural Networks (WANNs), firstly evolved with shared weights and
successively finetuned, using image representation and RAM representation. The WANNs
were compared against gradient-based methods.

• Insights into the hyperparameter configurations that lead the evolutionary search of the
WANNs through a hyperparameter importance study. This presents an analysis of how
the tuning of each hyperparameter affects the predicted performance of the WANNs
over each game. It also shows how the hyperparameter responsible for the probability of
mutating the activation function is the most important across games.
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This thesis is structured as follows. In Section 2, we will mention the Related Works. In Section
3, we will provide information on topics on which this work is based, such as reinforcement
learning, evolutionary algorithms, and CMA-ES, used as a gradient-free method to finetune
the weights of the evolved WANNs. In Section 4, we will present the methods used throughout
this work, more specifically, the WANNs, the proposed VAE, DQN, A2C, and PPO. In Section
5, we will present the setup used to carry out the experiments, including the used benchmark,
the hyperparameter importance analysis, the hyperparameters used for the WANNs, and the
hyperparameters and architectures used for the gradient-based agents. In Section 6, we discuss
the achieved results and highlight the potential and limitations of our work. In Section 7, we
conclude our work outlining possible directions for further developments.

2 Related Work

As mentioned by the authors of the original WANNs paper Gaier and Ha [4], their work sees
connections and differences not only with various topics in artificial intelligence and deep
learning but also in other fields. Considering that our work is carried out as an expansion on
top of their work, we see some of the same connections.

Neural Architecture Search This field traces its origins at the beginning of the 1990s
with the first works on evolutionary computing as search algorithms for possible topologies
for neural networks [7, 8, 9, 10, 11]. The goal of the techniques of this field is to search for
topologies that, after training the weights, can perform better than human-designed topologies.
Therefore, even if the network architecture gains slightly more importance, the weights are still
the key and main actor in providing the solutions in encoding the knowledge [4].
The WANNs have a similar but different goal. They search for neural networks that encode
the solution of a task directly in the architecture of the network, even without weight training.
They minimize the importance of the weights in the process. This fundamental difference also
highlights the difference in computational cost since the weights of each candidate architecture
need to be trained in the classic neural architecture search techniques. This costly operation
is instead avoided in the WANNs.

Variance Networks The WANN approach also connects with the work of Neklyudov et al.
[12] since both approaches use a uniform distribution with zero mean to sample the weights
from, and both approaches evaluate the performances on network ensembles. While the WANN
uses a fixed uniform distribution [4], the uniform distribution of the variance layer concept is
parametrized by its variance. Their work is also connected to Bayesian Neural Networks
(BNNs) [13]. In BNNs, the weight parameters are not treated as fixed values but are considered
random variables sampled from a distribution. Taking different values at each iteration, they
add uncertainty to the model. The distribution’s parameters can be learned from the data, but
the number of parameters in the distribution is often larger than the number of weights in the
network.

Network Pruning The process of Network Pruning was introduced by LeCun et al. [14]
and researched in the following years, leading to its application also to CNNs [15]. Starting
from a fully trained neural network architecture, it produces smaller networks by removing the
connections with small weights, creating sparse networks that supposedly still perform as well
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as the starting, trained one. While this can be seen as a top-down perspective, the WANN
approaches the concept in the other direction, in a bottom-up fashion, starting from minimal
networks and adding connections and, therefore, complexity. While the pruning of a network
requires an already trained network that performs supposedly well on the task, the WANN
evolutionary approach does not have these requirements.

Algorithmic Information Theory Following up on the concept of aiming for simpler
neural networks, the WANNs also see connections with the field of Algorithmic Information
Theory (AIT). Specifically, it connects with the Kolmogorov complexity of a computable object
[16], the shortest length of a computer program capable of producing that object as an output,
and the concept of Minimum Description Length (MDL) [17].
Throughout the years, much work has been done towards the simplification of neural network
architectures, with ideas related to MDL, such as soft-weight sharing and the introduction of
noise in the weights in order to reduce the amount of information [18, 19].
Instead of working on a predefined network architecture of which we want to understand the
necessary (and minimal) information capacity to represent the weights, we focus on finding
the minimal architecture required to encode solutions to a variety of tasks.
Instead of having random weights, the authors of the original WANNs paper Gaier and Ha [4]
imposed for each connection in the network the same weight, and they tested each architecture
with a variety of weight values.
A single shared weight value is preferred to a sampled set of random weights because, given the
growth of the network generation after generation and a subsequential increase in dimension-
ality, the sampling of the weight space becomes unfeasible due to the curse of dimensionality.

Neuroscience The original WANNs paper [4] links itself to the concept of connectomes
presented by Seung [20]. Connectomes are graphs representing the mapping of all the neural
connections in a brain. Brains like the human one are incredibly complex and dense, therefore
challenging to map. In contrast, more superficial structures like the ones created in this process
can be analyzed to understand how the network structure learns, representing the acquired
knowledge through connections.
In this work, connectomes are used to analyze the networks generated by the evolution process
for each game, both with the RAM and the image representation.

Hyperparameter Importance Analysis Hutter et al. [21] proposed an algorithm that
could compute the marginal of random forest predictions and successively use these predictions
within a functional ANOVA framework to quantify the importance of hyperparameters and of
the interactions between hyperparameters.
Based on this work, van Rijn and Hutter [22] explored the possibility of defining, given an
algorithm, which are its most important hyperparameters not only on a specific dataset but
across datasets. Similarly, Sharma et al. [23] worked on the definition of the most important
hyperparameters across datasets for residual neural network architectures.
In the scope of this work, the importance of the WANNs hyperparameters guiding the exact
evolutionary behavior of the networks is analyzed. This analysis aims to understand which
hyperparameters have a more significant impact on the WANN performance over the evolution
of the network for each game and which hyperparameters are more important across different
games.
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Atari Benchmark Since the release of the Arcade Learning Environment by Bellemare
et al. [24], which includes a suite of 57 games originally developed to be played on the Atari
2600 video console, this framework has been considered a standard well-suited benchmark to
analyze the performances of reinforcement learning agents on a wide set of different tasks,
testing the general capacity of an agent, such that a significant number of state-of-the-art
advancements in the field have been tested against this framework [1, 2, 25, 26, 27].
Bellemare et al. [24] affirm that the Arcade Learning Environment framework represents a good
benchmark because, in an ideal situation, “the algorithm should be compared across domains
that are (i) varied enough to claim generality, (ii) each interesting enough to be representative
of settings that might be faced in practice, and (iii) each created by an independent party to
be free of experimenter’s bias.” [24].
As observed by Obando-Ceron and Castro [28], applying traditional methods to the entire
suite of 57 games is computationally expensive. As noticed by Aitchison et al. [6], such costs
restrict the possibility of generating results on the whole benchmark to a handful of research
groups, highlighting how out of 17 algorithms listed on the paperswithcode website1 on the
full Atari-57 benchmark, 16 of them are from research groups within Google or Deepmind.
Intending to address the issue of the high costs in generating results over the complete Atari-
57 benchmark, Aitchison et al. [6] proposed a new methodology for selecting a subset of
games within a certain benchmark suite, intending to keep this new subset small but still
representative of the original full suite.
While different works throughout the years did select subsets of games (e.g., the Deep Q-
learning Network (DQN) paper by Mnih et al. [25] focuses on a subset of 7 games), the
authors suggest specific subsets of the Atari-57 benchmark, respectively called Atari-5, Atari-
3, and Atari-1, basing the selection of games on their ability to predict median score estimates.
In their work, firstly, they formalize the summary score of a subset of a Reinforcement Learning
benchmark such that “it minimizes the number of environments, and is informative of the
algorithm’s performances” [6]. Subsequently, Aitchison et al. [6] point out how for the Arcade
Learning Environment, a widely used summary score is the median score, and they aim to
predict it as a target score. Taking only small subsets of environments, they consider the
prediction of this target score as a viable methodology to understand which specific subset
best predicts the target score through linear regression.
Given a set of algorithms, together with the individual performances on the environments
and the aggregate score of each of the algorithms over the environments, taking a subset
of environments together with the corresponding aggregated performances per algorithm, the
goal is to find a mapping that best predicts the aggregated score from the subset of aggregated
performances [6].
Over the Atari-57 benchmark, the possible scores within the games can differ by different
orders of magnitude (e.g., the game Double Dunk has a score bounded in [-24,24], while the
game Phoenix has no such bound having the current best score on paperswithcode of 959580
points, achieved by GDI-H3 [3]). Aitchison et al. [6] log normalized the scores to apply this
methodology to the Atari-57 benchmark.
Aitchison et al. [6] created 57 single-game linear regression models, using the score of a single
game to predict the median score over the whole Atari-57 benchmark. They used the score
obtained in a specific game as the independent variable and the median score over all 57 games
as the dependent variable. The games were then ranked based on how well the model could
predict the median score.

1www.paperswithcode.com
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Subsequently, Aitchison et al. [6] applied this procedure to all the five-games subsets, defining
the best one as Atari-5, which includes Battle Zone, Double Dunk, Name This Game, Phoenix,
and Q*bert [6]. Then from Atari-5, they evaluated all the triple-games subsets within Atari-5
to determine Atari-3 as the best subset of three games: Battle Zone, Name This Game, and
Phoenix. Finally, they defined Atari-1 as the best subset containing only one game from the
Atari-3 subset, identifying Name This Game as the best single-game subset within Atari-3.
The results obtained by Aitchison et al. [6] point out how some games, such as Pong, Surround,
and Tennis, carry almost no predictive abilities. Interestingly, the single game that better
predicts the median score is not the game of the Atari-1 benchmark, Name This Game, but
Zaxxon.

3 Background

3.1 Reinforcement Learning

The standard reinforcement learning setting is usually defined as an agent A interacting with
an environment E for several discrete timesteps. At each timestep t, A receives the state st
and selects an action to perform at that timestep at from the set of possible actions. The
agents select the action based on the policy π, which represents a mapping from states to
actions [27]. Interacting with the environment, the agent will receive back the next state of
the environment st+1 and a reward at that timestep rt. Continuing throughout this loop, the
agent will reach a terminal state and the game will be over, starting the process again for a
new episode. The goal of the agents is to maximize the cumulative reward from timestep t
until the end of the episode, Rt =

∑∞
k=0 γ

krk, where each k represents the steps performed
starting from t, and γ represents a discount factor for future and immediate rewards, aiming
at maximizing the reward at each state [27]. We formalize the timesteps from t to infinity. In
practice, the sum in the formula is not for infinite timesteps but for a specific finite horizon of
timesteps, that can depend from the setup. The action-value function Qπ(s, a) is responsible
for estimating the expected return of performing a given action a in a given state s following
a given policy π. Considering policy gradient algorithms such as A2C and PPO, the function
can be represented as [27]

Qπ(s, a) = E[Rt|st = s, a] (1)

The value function V π(s) instead is responsible for estimating how good it is for the agent to
be in a specific state in terms of future rewards. In the scope of policy gradient algorithms, it
can be described as [27]

V π(s) = E[Rt|st = s] (2)

Based on the action-value function, we can define the optimal action-value function asQ∗(s, a),
representing the maximum expected return attainable by following a particular policy π after
observing a sequence of states s and performing an action a,

Q∗(s, a) = maxπE[Rt|st = s, at = a, π] (3)

Reinforcement Learning algorithms can be categorized based on different perspectives:

• If the algorithm is value-based or policy-based:

– Value-based methods aim at estimating the value function and then derive the
policy indirectly from the value function.
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– Policy-based methods aim at explicitly learning the policy function (π : s → a)
directly.

• If the algorithm is model-based or model-free:

– Model-based methods aim at learning a model of the environment [29] and the
dynamics of the environment to predict the environment’s responses.

– Model-free methods interact directly with the environments.

• If the algorithm is on-policy or off-policy:

– In on-policy methods, the agent interacts with the environment following the same
policy that is updated while experiencing the environment.

– In off-policy methods, the agent interacts with the environment using a policy
and uses the experience gained by this policy to update and optimize a different
“target” policy.

In this work, we will see a different set of agents as elements of comparison: an off-policy,
value-based, and model-free method such as DQN [25] in Section 4.2; an on-policy, policy-
based, model-free such as PPO[26] in Section 4.4 and an on-policy, model-free one such as
A2C[27] in Section 4.3, which combines value-based and policy-based components with its
Actor-Critic approach.

3.2 Evolutionary Algorithms

Drawing inspiration from the concept of evolution, Evolutionary Algorithms are a class of
population-based optimization algorithms that, through the application of biology-inspired
genetic operators (such as mutation or recombination), iteratively optimize a population of
candidate solutions.
Seeing its roots already in the 1960s and 1970s [30, 31], with the development of ideas
such as evolution strategies and evolutionary programming, this class of algorithms did not
take off until the 1980s [32], with publications such as Goldberg’s doctoral thesis on gas
pipeline optimization and later on with its book [33]. In the 1990s, much work has been
carried out focusing on the differences between genetic algorithms and evolutionary strategies,
extended research on selection mechanisms, self-adaptation, and surveys have been published
[34, 35, 36, 37]. Books such as the one by Bäck [38] were published. In this book, the
author overviews the main approaches considered in evolutionary algorithms, such as genetic
algorithms, evolution strategies, and evolutionary programming.
An outline of the main elements and procedure of a general evolutionary algorithm is given as
follows: The algorithm starts by initializing the population of individuals, where each individual
represents a potential solution for the problem considered, often encoded as binary strings,
integers, combinations of them, or real-valued vectors. Considering this algorithm as a search
process, each individual can be seen as a search point in the solution space [39].
Each individual is then evaluated based on an objective function that will estimate a fitness
value [39], determining the quality of that individual at solving the considered task.
Based on the fitness function and the chosen selection mechanism, each individual can have a
higher or lower chance of being selected for the continuation of the process. There are several
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selection mechanisms, and the one used by Gaier and Ha [4] is tournament selection, explained
more in detail in Section 4.1.
The successive step, maintaining the inspiration from the biological process, is reproduction.
The selected individuals are now part of a reproduction process as parents, and a new generation
of individuals is created by applying previously mentioned operators such as recombination and
mutation.
In the recombination operator, the two selected parents exchange genetic information. The mu-
tation operator is supposed to apply minor modifications to one individual’s genome [39]. While
genetic algorithms emphasize the recombination operator as the leading actor in the search
[39], evolution strategies instead employ normally distributed mutations to modify real-valued
vectors. Finally, evolutionary programming accentuates mutation, not applying recombination
of individuals [39].
This loop is repeated for several generations until the predefined budget runs out or when
a satisfactory solution is found. In doing so, this algorithm explores the search space and
improves the quality of the solutions.

3.3 Covariance Matrix Adaptation Evolution Strategy

Firstly introduced by Hansen and Ostermeier [40] and recently reintroduced by Hansen [41],
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a derivative-free stochastic
optimization evolutionary algorithm. As mentioned in the previous section, in an evolutionary
algorithm, the mutation operator is supposed to apply minor modifications to one individual’s
genome [39], which is the representation of a neural network in our work.
CMA-ES is based on the covariance matrix, a square matrix that describes the dependencies
between pairs of variables in the distribution of a random vector.
Given an initial solution and an initial standard deviation, the CMA-ES process starts by
defining an initial distribution from which individuals are sampled. It does so by initializing a
covariance matrix, a mean vector, the step-size, and the evolution paths for the covariance ma-
trix. The evolution paths can be seen as a historical record of the search directions, containing
information about the correlation between consecutive steps. After the evaluation of the fitness
of these individuals, the best ones are selected. These best solutions are then recombined and,
through a step-size control based on the evolution path of the step-size (which defines the
magnitude of the update), used to adapt the covariance matrix. In doing so iteratively, the
algorithm explores promising areas of the search space.

4 Methods

In this section, we describe the methods used throughout this work. The section of interest
in this work is Section 4.1, where we describe the WANNs. In Sections 4.2,4.3, and 4.4, we
describe the gradient-based methods we want to compare the WANNs against.

4.1 Weight Agnostic Neural Networks

Introduced by Gaier and Ha [4], the Weight Agnostic Neural Networks framework is an evolu-
tionary way to search for neural network architectures which encode solutions directly in the
architecture of the network itself rather than in the weights.
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The evolutionary search process for these architectures takes inspiration from the NeuroEvolu-
tion of Augmenting Topologies (NEAT) strategy proposed by Stanley and Miikkulainen [42].
While NEAT optimizes at the same time both the architecture and the weights, the WANNs
avoid the expensive weight optimization step. Instead, each network is evaluated with a variety
of shared-weight values. They enable weight-sharing on all the weights in the network, reducing
the number of weights to sample to just one[4]. This allows for a more efficient sampling of
weight values since it is reduced to the sampling of a single value. In doing so, they highlight
the role of the architecture, reducing the importance of the weights.
Gaier and Ha [4] decided to enable weight-sharing instead of sampling random weight values
because, given the growth of the network generation after generation and a subsequential
increase in dimensionality, the sampling of the weight space becomes unfeasible due to the
curse of dimensionality.
The performance of each architecture, and therefore of each individual, is defined as the
cumulative reward of that individual with each available shared-weight value, averaged over
the number of values tested.
The process, also shown in the Figure 1 from the original WANNs paper [4],is carried out as
follows:

1. Initialization A first population of individuals is generated, where each individual is a
minimal neural network.

2. Evaluation Each individual is tested over at least one rollout for each one of the possible
shared weight values.

3. Rank The individuals are ranked based on the scores and complexity of the networks.

4. Vary Through tournament selection, the best ones are picked, and randomly mutating
them, a new population is created.

Figure 1: Graphic overview of the WANNs main evolutionary search loop [4]

After the last step, the algorithm starts back from the evaluation step. The minimal networks
generated at the beginning of the loop consist of the input and output layers, and only a
fraction of the possible connections between the two layers are activated.
The selection method used in this work is the tournament selection, given its efficiency and its
possibility to adjust the selection pressure as needed, as observed by Miller and Goldberg [43].
The primary functioning of the tournament selection involves hosting a series of “tournaments”

12



between randomly picked individuals. The selected individuals are compared based on their
ranking, and the ones with the highest ranking advance in the process. Since Gaier and Ha [4]
opted for a deterministic version of the algorithm, the individual with the highest fitness wins
the tournaments and is selected.
The main elements responsible for the modifications of the network topology search are three
possible random mutations, which are also operators inspired by NEAT [42]. By splitting
an existing connection, a new node is added with a random activation function assigned.
Furthermore, a new connection can be established between two nodes that were not previously
connected. Finally, it is possible to randomly reassign the activation function of one of the
hidden nodes to one of the available ones.
As mentioned in Section 2, one of the aims is not only to have networks capable of encoding
a solution of a task in the architecture but also that this architecture is as simple as possible.
Aiming at having simpler networks, they applied the connection cost methodology from Clune
et al. [44], ensuring that the less complex one will be chosen when comparing two networks
with similar performances.
Each individual is evaluated over three elements: the mean reward of all the shared-weight
values, the complexity of the architecture identified as the number of connections, and the
highest peak performance reached within the evaluations of the various shared-weight values.
Approaching finding the best individuals as a multi-objective optimization problem, they sorted
the individuals on a Pareto dominance basis [45]. In doing so, the authors aim to pick a more
complex network only if it shows a noticeable improvement in performance.
Since such an increase in performance might need a higher degree of complexity, they relax
this constraint by ranking based on mean and peak performances 20% of the time and ranking
following the criteria of mean performance and number of connections 80% of the time.
Given the introduction of the weight-sharing mechanism, we report the three metrics also
reported by Gaier and Ha [4] in their code at the end of each generation:

• Elite Fit (EF) For each generation, the elite fit reports the average cumulative reward
of the best-performing individual of that generation over the six shared-weight values.

• Best Fit (BF) The best fit reports the highest average cumulative reward achieved
overall so far. It will be the same as the elite fit after the first generation. When a newer
individual has a higher average cumulative reward, this network is evaluated in what can
be considered an evaluation generation that is not part of the evolutionary process. If
the average cumulative reward over this generation is higher than the previous best fit,
the best fit will be updated to the newer value.

• Peak Fit (PF) The peak fit reports the single highest reward reached by the current
best fit. This value can sometimes decrease. For instance, the current best fit’s rewards
are [200, 200, 200, 200, 200, 400], the average reward will be 233.33, and the peak fit will
be 400. In the next generation, the elite fit’s rewards are [300, 300, 300, 300, 300, 300],
with an average reward of 300 and a peak fit of 300. This elite fit will be the new best
fit because its cumulative reward is higher, and the peak fit will be the new best fit’s
peak fit, even if it is lower than the previous one.
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4.1.1 WANN Hyperparameters

The WANNs project includes a series of hyperparameters with a list and description available
in the original WANNs paper’s repository[4].2

Some of these hyperparameters can depend on the hardware (i.e., the popSize hyperparameter,
the number of individuals in the population, which seems reasonable to set at the same number
of CPU cores available to parallelize the process).
The hyperparameters responsible for guiding the architecture’s evolution are the probabili-
ties related to the possible mutation operators since the likelihood of a specific mutation
will lead the search in different directions. Together with the probabilities of adding a node
(prob addNode), adding a connection (prob addConn), and changing the activation function
(prob mutAct); also the probabilities of enabling a disabled connection (prob enable) and of
enabling each initial connection (prob initEnable) influence the direction of the search since
they define the starting point of the search. Other hyperparameters, such as select eliteRatio,
are in charge of the greediness of the algorithm, managing the number of individuals in the
population that will pass on to the next generation without mutations.
In the original repository, JSON files are included, containing both the default configurations
for the process and the modifications for each of the environments tested initially (Cart-
PoleSwingUp, BipedalWakler-v2, CarRacing-v0). Each of these files refers to the specific task
defined in the configuration file that will instantiate the correct environment with the newly
updated hyperparameter configuration.

4.1.2 Variational Autoencoder

In the original WANN paper [4], the authors used a pre-trained Variational Autoencoder (VAE)
to encode the images into a vector to use as an input for the WANNs. We trained a VAE
specifically for each game.
The gradient-based approaches apply specific preprocessing to the screen, scaling the RGB
210x160 pixels to grayscale 84x84 images. The same preprocessing steps have been applied to
the VAE at first. The architecture of the encoder of the first VAE was inspired by the structure
of the CNN used by Mnih et al. [25].
We propose another VAE structure, described more in-depth in Appendix B. The reconstruc-
tions obtained with both architectures are shown in Appendix B.
The encoder of the proposed VAE takes as input the 160x160 RGB images instead of the 84x84
grayscale ones. The Gym environment’s RAM representation is a vector of shape (128,). The
dimension of the latent vector of the VAE used as input for the WANN has the same shape.
The decoder takes as input a vector of shape (128,) and reconstructs the image.
The reconstructed images for the game Q*bert using this architecture are shown in Appendix B.
While the convolutional layers of gradient-based approaches can learn to visualize the correct
details while playing and exploring more levels, the VAE was trained on a dataset of images
created using a random agent. This represents a potential limitation for the reconstruction
quality of the image-based WANNs, since the reconstruction quality will gradually degrade
because the VAE might struggle to encode the images when the individuals reach unseen
levels, deviating from the initial dataset.
In a game like Q*Bert, a random agent can easily activate the cubes of the higher “floors” since
the game starts with the character on the top cube. Behaving randomly, the agent does not

2https://github.com/google/brain-tokyo-workshop/blob/master/WANNRelease/

prettyNeatWann/p/hypkey.txt
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reach the lower cubes very often. This leads to the gradual degradation of the reconstruction
quality previously mentioned. The cubes of the lower “floors”, being reached less often, are
reconstructed less accurately.

4.2 Deep Q-Network

Firstly introduced by Mnih et al. [25], and based on the Q-Learning algorithm introduced by
Watkins and Dayan [46], the Deep Q-Network is a model-free off-policy algorithm initially
created aims at connecting a reinforcement learning algorithm to a deep neural network effi-
ciently operating on RGB training data. In a Temporal-Difference (TD) Learning method such
as DQN [47], the optimal-value function is defined as

Q(st, at)← Q(st, at) + α[Rt+1 + γmaxaQ(st+1, a)−Q(st, at)][47] (4)

In algorithms such as DQN, the action-value function can be described using an approximator
function, defined as Q(s, a; θ), to estimate the action-value function Q(s, a; θ) ≈ Q∗(s, a). In
this case, the approximator function is non-linear and is represented by a neural network, the
Q-Network, with parameters θ. The process of optimization and training of the Q-Network
minimizes a series of loss functions that changes at every ith iteration, as shown in

Li(θi) = E(r + γmaxa′Q(s′, a′; θi−1)−Q(s, a; θi)
2)[27] (5)

This process is called one-step Q-Learning because the action value Q(s, a) is updated based
on the one-step return given by r + γmaxa′ Q(s′, a′; θi−1), where s′ represents the next state
encountered by the agent. The authors also utilize the experience replay technique proposed by
Lin [48] where the experience of the agent at each timestep, defined as et = (st, at, rt, st+1), is
stored into a dataset and pooled into a replay buffer. From this buffer, experiences are drawn,
and Q-Learning updates are applied. After these updates, the agent will decide which action to
perform, basing the decision on a ϵ-greedy policy [25]. The agent has to learn off-policy since
the learning is based on experience replay and generated by parameters that differ from the
current ones. Furthermore, since it does not try to model the environment, it is a model-free
algorithm.

4.3 Advantage Actor-Critic

The Advantage Actor-Critic approach proposed by Mnih et al. [27] instead of the experience
replay executes multiple agents in parallel, using multiple environment instances. The main
idea behind this approach is to propose an alternative to the experience replay buffer, which
requires more memory and computation per real interaction [27]. The agent will be experi-
encing a wide range of different states at every timestep. This different paradigm for deep
reinforcement learning allows the robust application, using deep neural networks, of a broader
range of on-policy algorithms [27]. Differently from the method explained in the previous sec-
tion, the Advantage Actor-Critic algorithm is model-free policy-based, and it tries to directly
parametrize the policy π(a|s; θ), and the parameters θ are updated through gradient ascent
on the estimated return E[Rt]. It is based on the REINFORCE family of algorithm [49], which
performs updates of the policy parameters θ in the direction of

∇θ log π(at|st; θ)Rt (6)
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which is the unbiased estimate of ∇θE[Rt]. Williams [49] points out that this estimate shows
a high variance. A way to reduce this variance is to subtract a learned function with the state
as input bt(st), called baseline, from the return Rt [49]. The resulting gradient is then

∇θ log π(at|st; θ)(Rt − bt(st))[27] (7)

One of the baselines often used to scale the variance of the policy gradient is an estimate of the
value function, V π(st) ≈ bt(st). This estimate allows us to define the concept of advantage
of an action at in a state st as

A(st, at) = Q(at, st)− V (st) (8)

considering the relation Rt−bt(st) as such since Qπ(at, st) estimates Rt and V π(st) estimates
bt [27]. In doing so, emerges what can be seen as an actor-critic dynamic between the policy
π (the actor) and the baseline bt (the critic) [47].
In the scope of this work, instead of the asynchronous version of the actor-critic algorithm
(A3C) proposed by Mnih et al. [27], we use its synchronous version, A2C. A2C waits for each
actor to perform the number of predetermined tmax steps before the update, calculating the
average of the reward reached by the actors until tmax.

4.4 Proximal Policy Optimization

Belonging to the family of policy gradient methods together with A2C, the Proximal Policy
Optimization (PPO) algorithm introduced by Schulman et al. [26] makes use of a “surrogate”
objective function, optimized while alternately sampling data from the environment. Based on
the gradient shown in Equation 7 and the concept of advantage mentioned in the previous
section and in Equation 8, a gradient estimator ĝ can have the form

ĝ = Êt[∇θ log πθ(at|st)A(st, at)] (9)

The aim of Schulman et al. [26] was to propose an improvement over their previous work on
Trust Region Policy Optimization (TRPO)[50]. In the TRPO paper, Schulman et al. [50] aim
to optimize the policy through a constrained optimization problem, where the “surrogate”
objective function is optimized but with a constraint on the size of the policy update in order
to have a more stable optimization of the policy. They aim to maximize

Êt[
πθ(at|st)
πθold(at|st)

Â] (10)

where θold represents the parameters of the policy before the update, constrained by

Êt[KL[πθold(·|st), πθ(·|st)]] ≤ δ (11)

as shown by [50, 26]. Defining
πθ(at|st)
πθold(at|st)

(12)

as the probability ratio rt(θ), such that rt(θold = 1). TRPO’s maximization objective is

L(θ) = Êt[rt(θ)Ât][50] (13)
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while the new objective proposed by PPO is

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)][26] (14)

where ϵ is a hyperparameter. While the first term in the min function is the TRPO’s maximiza-
tion objective, the second term clips the probability ratio modifying the surrogate objective.
Considering the minimum, the final objective is a lower bound on the unclipped objective [26].
As seen for A2C, also PPO can be parallelized over a number of actors. At each iteration, N
actors collect a predefined amount of T timesteps of data. Afterwards, a surrogate loss is com-
puted over NT timesteps of data and optimized with minibatch stochastic gradient descent
for a number of epochs.

5 Experimental Setup

While the WANNs were originally tested on relatively simple tasks, we evaluated them on more
complex tasks, such as games from the Atari benchmark. In the tasks evaluated by Gaier and
Ha [4] ( CartPoleSwingUp, BipedalWalker, and CarRacing), the information in the observation
space is well-defined, such as the cart position and velocity for CartPole.
CartPoleSwingUp and BipedalWalker have low-dimensional observation spaces in the form of
a state vector of four dimensions for CartPoleSwingUp, and a state vector of 24 dimensions for
BipedalWalker. The CarRacing environment observation space consists instead of a 96x96x3
pixel image. The authors used a pre-trained Variational Autoencoder (VAE) to interpret the
pixels. In the Atari benchmark, the observation space of the environment can be described as
a 210x160x3 image (it may vary, some environments have 250x160x3) or as a (128,) state
vector representing the status of the RAM.
The RAM state vector represents the state of the game world at any time, such as the score,
and the position of game objects, not including the screen memory. Each game has its own
memory layout, each state vector is therefore game-specific.
Even with the RAM representation, the observation space and the action space of the Atari
benchmark are significantly bigger and more complex. Furthermore, the Atari benchmark con-
tains games with complex dynamics and intricate gameplays, where diverse strategies can be
applied to succeed, with reward systems that require long-term planning. Gaier and Ha [4] also
included the possibility of finetuning the evolved networks. Of the different algorithms they
provide, we carried out the finetuning process with the gradient-free CMA-ES (mentioned in
Section 3.3) as a step successive to the evolution of the network.

All the experiments have been carried out on the computing cluster GRACE of the ADA
research group. This cluster can be used by the members of the group and consists of 34
nodes, of which 24 are CPU nodes (with 2 CPUs each), and 8 of them are GPU nodes (with
2 or 4 GPUs each depending on the node). Each CPU is an Intel(R) Xeon(R) CPU E5-2683
v4 @ 2.10GHz, while each GPU is an NVIDIA Corporation GP102 GeForce GTX 1080 Ti. The
gradient-based methods with image representation have been run on GPU nodes, while the
rest of the experiments have been carried out on CPU nodes.
Taking into account the availability of the shared cluster and considering the work on the Atari-
57 benchmark carried out by Aitchison et al. [6], we decided to use the Atari-5 benchmark in
this work. This benchmark includes the games Battle Zone, Double Dunk, Name This Game,
Phoenix and Q*Bert.
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5.1 Hyperparameter Importance Analysis

As mentioned in Section 4.1.1, Gaier and Ha [4] in their repository3 provided defaults and
specific modifications for each of the tasks explored by the authors.
Taking inspiration from the hyperparameter importance across datasets analysis proposed by
van Rijn and Hutter [22], we carry out a hyperparameter importance analysis applying the
functional analysis of variance (fANOVA) framework [51]. To do so, we used the fANOVA
package introduced by Hutter et al. [21].
The analysis we carry out in this work aims to assess the relative importance of each hy-
perparameter in relation to the variation observed in the performance for each game in the
benchmark and how the hyperparameters rank by importance among the games.
The fANOVA package introduced by Hutter et al. [21] can measure across the considered
configuration space how much each hyperparameter explains the variance of the performance,
which is predicted with an Empirical Performance Model (EPM) based on a random forest.
This yields how much every single hyperparameter or combination of hyperparameters explains
the variance of the performance [21, 22].
This framework depends on the concept of marginal of a hyperparameter, how a given value
for a hyperparameter performs as part of a configuration, taking the average over all possible
values of the remaining hyperparameters [23].
The default hyperparameters of the WANN process are described in Table 4 in Appendix A.
Focusing on the hyperparameters responsible for leading the architecture search, as previously
mentioned, we define a configuration space [52] as shown in Table 1:

Hyperparameter Values Description
prob initEnable [0.0,0.55] chance to enable each initial connection
prob mutAct [0.0,0.55] chance to change node activation function
prob addNode [0.0,0.55] chance to add node
prob addConn [0.0,0.55] chance to add connections
prob enable [0.0,0.55] chance to enable disabled connection

Table 1: Hyperparameters responsible for leading the architecture search and the ranges
from which the test configurations have been sampled for each of the hyperparameters.
Each hyperparameter is sampled from a uniform distribution.

We sample 30 configurations from this configuration space and test each configuration on each
game. Each hyperparameter is sampled from a uniform distribution. Due to time constraints,
we were not able to sample more configurations and therefore test more configurations. The
WANNs have been tested with these 30 configurations on every game for 10% of the available
budget. Therefore, since the total budget amounts to 10 million steps, each configuration has
been tested for 1 million steps. In doing so, we can explore how the WANNs perform with each
configuration performs on the allocated budget, and how the prediction of the performances
can vary for each game given the different values of each hyperparameter.
While the hyperparameters included in the configuration space were allowed to vary within the
ranges shown in Table 1, other hyperparameters were fixed to guarantee the correct functioning
of the process.
In Section 6, we will analyze the marginals of the hyperparameters in the configuration space,
namely the probability of adding a new connection, the probability of adding a new node, the

3https://github.com/google/brain-tokyo-workshop/blob/master/WANNRelease/
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probability of enabling a disabled connection, the probability of enabling each initial connection,
and the probability of mutating activation function.

5.2 Weight Agnostic Neural Networks

We select the configurations that performed better during the runs over 1M timesteps for
each game to carry out the full experiments on the WANNs. We use these configurations to
perform complete evolutionary processes over each game with each representation. We set a
budget of 10 million timesteps, the same amount of timesteps performed in the experiments
of the gradient-based approaches [25, 26, 53].
We used timesteps as a budget to compare the performance of the gradient-based approaches
and the WANNs. In spite of the differences in the operations these approaches perform, such
as gradient updates and mutations, we can still compare them based on the timesteps each
approach executes. Using timesteps as a budget also gives us an idea of how much each
approach needs to interact with the environment to learn.
Since the gradient-based approaches apply some preprocessing to the Atari environments,
the same preprocessing has been applied to the WANNs. In Section 4.1.2, a more in-depth
explanation is provided of how images are treated in the image version of the experiments.
Even if it is technically possible, it is not recommended to take images as input for the WANNs
directly. The network would create one input neuron for each pixel, creating massive networks
from the beginning and making the evolution process require a high amount of memory.
Given the available hardware with 32 cores, the population size of these experiments has
been set to 32, which we also believe it to be a reasonable setting while keeping our limited
computation budget in mind. A higher number of elements in the population could have
provided a higher degree of diversity, potentially leading to a higher degree of exploration and
enlarging the portion of solution space explored. However, given the predefined budget, this
would lead to a lower number of generations.
We test every individual with six possible shared-weight values [−2,−1,−0.5, 0.5, 1, 2] since
the authors realized that, likely due to saturation of the activation functions, the networks
with a shared-weight value greater than 2 performed similarly, while the values included in the
set show the highest variance in performances of the networks. The individual will play the
game and achieve a reward with each of these shared-weight values. The performance of the
individual is then defined as the cumulative reward achieved with each shared-weight value,
averaged over the number of values.
For instance, if an individual plays with the shared-weight values [−2,−1,−0.5, 0.5, 1, 2] and
achieves the rewards [600, 100, 300, 400, 200, 500], its average cumulative reward will be (600+
100 + 300 + 400 + 200 + 500)/6 = 350. At the end of each generation, we report the three
metrics also reported by Gaier and Ha [4] in their code: the elite fit, the best fit, and the peak
fit, previously mentioned in Section 4.1. In the WANNs graphs, together with the elite fit, also
its smoothed function will be shown to facilitate the visualization.
These three metrics will lead the evolutionary process. As previously mentioned, we will also
train and test three gradient-based methods (DQN, A2C, PPO) on the RAM and image
representation of each game.
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5.3 Gradient-based Agents

For the experiments involving the gradient-based agents, the hyperparameter configurations
listed in their respective papers [25, 27, 26, 53] were followed. In the original papers, A2C and
PPO used the CNN architecture presented by Mnih et al. [25].
This architecture consists of a first convolutional hidden layer with 16 filters of size 8 with
stride 4, a second convolutional hidden layer with 32 filters of size 4 with stride 2, a third fully-
connected hidden layer consisting of 256 rectifier linear units, and a fully-connected output
layer with a single output for each valid action.
For DQN, we used the architecture proposed by Mnih et al. [53] since their original paper
contains a wider overview of results for the DQN agent.
This architecture consists of three convolutional hidden layers and one fully-connected hidden
layer, where the first one convolves 32 filters of size 8 and stride 4, the second one convolves
64 filters of size 4 and stride 2, the third one convolves 64 filters of size 3 and stride 1 and
the fully-connected hidden layer has 512 output units, followed by the fully-connected output
layer with one output unit for each valid action.
For the experiments regarding the RAM representation, only the fully-connected layers of the
previous architectures have been used.
Hence, for the DQN agent with RAM representation, we have one hidden layer with 512
rectifier linear units, followed by a fully-connected output layer with one output unit for each
valid action. For the PPO and A2C agents, there is one fully-connected hidden layer with 256
rectifier linear units, followed by the fully-connected output layer with one output unit for each
valid action.
For DQN, the network architecture is the same between the Q-Network and the target Q-
Network, while for PPO and A2C, both using the ActorCriticPolicy from stable-baselines3 [5],
the network architecture is the same for the policy-net and the value-net. All the gradient-based
approaches have been tested using the implementation provided by Raffin et al. [5].

6 Results

In this section, we discuss the results of our experiments. First, we will analyze the results of the
analysis carried out to identify the most important hyperparameters. With this analysis, we aim
to answer the research subquestion Q1. Secondly, we present the results of the WANNs and
the gradient-based agents over the Atari-5 benchmark. We first present the results achieved
with the RAM representation in Section 6.2, then we present the results achieved with the
image representation in Section 6.3. For both the RAM and the image representation, the
plots containing the training curves of each agent for each game will be shown in their specific
sections. For each representation, we first analyze the results achieved by the WANNs at the
end of the evolution process, together with the results of the gradient-based agents. Analyzing
the results of these experiments, we aim to answer the research subquestions Q2 and Q3.
Afterwards, we provide the results of the finetuned WANNs compared with the gradient-based
agents with each representation. Observing the results of the finetuned WANNs, we aim to
answer the research subquestion Q4. In Sections 6.2 and 6.3, we provide tables summarizing
the comparison for each representation between the evolved WANNs, the finetuned WANNs,
and the gradient-based approaches.
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The code to reproduce the experiments is available on GitHub.4

6.1 Hyperparameter Importance Analysis

Using the functional ANOVA package introduced by Hutter et al. [21], we can generate and
visualize the predicted performance marginals of every hyperparameter for every game. On the
x-axis, we will show the range of values the hyperparameter can take within the configuration
space. On the y-axis, we plot the predicted marginal performance (representation of the reward
of that configuration over that game).
In Figure 2, we show the marginal performance predictions of each hyperparameter in the
configuration space for Battle Zone. In Figure 3, we show the marginal performance predictions
of each hyperparameter over Double Dunk, which shows an unexpected trend due to a specific
behavior assumed by the WANNs. The figures of the games Phoenix, Name This Game, and
Q*Bert (Figures 20,19,21) can be found in Appendix A.2.

(a) (b) (c) (d) (e)

Figure 2: Marginal performance prediction for the hyperparameters of the configuration
space for the Battle Zone game. The red area represents the standard deviation, while
the blue line represents the marginal.

These plots are helpful in understanding trends in the interaction between the hyperparameter
values and the performances [23]. For the probability of adding a new node, plotted in Figure 2a,
we notice that a higher probability of adding a new connection leads to slightly worse predicted
performances. The same trend arises in the plot of the probability of mutating an activation
function, plotted in Figure 2e, which predicts worse performances when the hyperparameter
value is higher. We notice a different trend in the plot of the probability of enabling each initial
connection, showing higher predicted performances with higher probabilities. The plots of the
marginal predictions of the hyperparameters over the game Double Dunk, shown in Figure 3,
show an unexpected trend which will be explained more in detail in Section 6.2.
Given the differences in the trends across the different games, it is interesting to analyze
the variance contribution of each hyperparameter across the benchmark, which we show in
Figure 4.
We notice that the probability of mutating is generally more influential than the probability
of enabling a connection. The three leading mutation operators are indeed the three most
influential hyperparameters. The probability of enabling a connection has two outliers, and the
distribution is positively skewed since the median is closer to the bottom of the interquartile
range. The probability of enabling each initial connection has an average higher than the
median, with a fourth quartile wider than the first quartile. The probability of adding a new
node has a relatively homogeneous variance contribution since the whiskers have almost the
same length. The probability of adding a new connection shows the presence of an outlier.

4https://github.com/moneantonio/wannthesis
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(a) (b) (c) (d) (e)

Figure 3: Marginal Performance Prediction for the hyperparameters of the configuration
space for the Double Dunk game. The blue line represents the marginal, and since the
WANN over the Double Dunk game exhibited an unexpected behavior explained in Section
6.2, there is no standard deviation.

Figure 4: Boxplot of the variance contribution per hyperparameter across games

The probability of changing the activation function shows a higher variance contribution. It
also shows whiskers of the same length and a median almost centered in the box, meaning
that the distribution is similar to a normal distribution.
In the default configuration provided by Gaier and Ha [4], reported in Table 4 shown in
Appendix A, the authors give a slightly higher probability to the creation of a new node
(0.25) rather than to the establishment of a new connection (0.20). In contrast, they give
the mutation of the activation function the highest probability (0.50). The probabilities given
to each possible mutation will bias the search towards different kinds of modifications in the
network architectures. Our analysis highlights the mutation of the activation function as the
most influential hyperparameter, answering the first research subquestion Q1. Following the
mutation of the activation function, we find the establishment of a new connection and the
addition of a new node as the next most important hyperparameters.

6.2 RAM Representation

The monitor implemented by Raffin et al. [5] was used to visualize the training process of the
gradient-based approaches. The preprocessing for these agents includes frame-skipping every
4 frames. As a result, the agent’s training is plotted over 40 million frames, equivalent to 10
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million timesteps with frame-skipping of 4 frames. The evolutions of the WANNs, on the other
hand, are plotted over the generations they were able to complete within the allocated budget.
We now look at the comparison between the evolutionary process and the gradient-based
agents’ training using the RAM representation.

(a) (b) (c)

Figure 5: In Figure 5a, the evolution process of the WANN over the Battle Zone game
with the RAM representation is shown, reporting the three values previously mentioned:
Elite Fit, Best Fit, and Peak Fit. In Figure 8b, the training process of the three gradient-
based agents is shown over a span of 40M timeframes (which are roughly 10M timesteps
with a frameskip value of 4). The connectome representing the network generated during
the evolution is shown in Figure 5c

We first observe the evolution of the Battle Zone game shown in Figure 5a. We notice how
the highest average score is achieved almost immediately, blocking the evolution in a local
optimum. The rest of the generations were not able to improve from that, as shown in the elite
fit smoothed curve, which ends with roughly the same score as it started, if not slightly worse.
The connectome shown in Figure 5c shows that no new nodes were added to the network,
even if the evolution process over Battle Zone was carried on for almost 500 generations.

(a) (b) (c)

Figure 6: In Figure 6a, the evolution process of the WANN over the “Name This Game”
game with the RAM representation is shown, reporting elite fit, best fit, and peak fit. In
Figure 6b, the training process of the three gradient-based agents is shown over a span
of 40M timeframes (which are roughly 10M timesteps with a frameskip value of 4). The
connectome representing the network generated during the evolution is shown in Figure
6c.

We now observe the connectome and the evolution plot of the game Name This Game (Figures
6c,6a). A sparse but slightly more complex network has evolved after 160 generations, with
only two minimal hidden layers, with 5 and 2 nodes each. We notice how the elite fit rewards
have improved more steadily over the generations. At the same time, the peak fit is initially
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unstable but stabilized afterward throughout the evolution, while the elites and the bests
improve. This behavior suggests that while one of the shared-weight values performed well
from the beginning, individuals learned to perform better with the other shared-weight values
throughout the generations. In doing so, the individual improved the behavior with the other
shared-weight values and got closer to the value that first led to the high score, converging to
a local optimum after roughly 90 generations.
It is helpful to observe the plotted results and focus on the performances of the gradient-based
approaches.
Using the best fit as a frame of reference for the WANNs, it would seem that the WANN per-
formed better than the A2C RAM agent over Battle Zone, which shows an irregular curve with
difficulties in learning from that specific representation. However, since the best fit represents
the highest average reward reached over the entire evolutionary process, it does not represent
a reliable and constant performance basis. Instead, it seems reasonable to use the elite fit as
a frame of reference for the WANNs, since it represents the highest average reward reached
at every single generation compared to the gradient-based agents. Considering this, we see
how the gradient-based methods outperform the WANNs in most games, not considering the
particular case of Double Dunk. Over Phoenix, the DQN RAM agent performed as poorly
as the WANNs, and the same happened for the A2C RAM agent over Q*bert, where both
approaches got stuck in similar behaviors.
A particular case is the Double Dunk game because, looking at the simple performance value at
the end of the training, one would think that the WANN performed surprisingly well. However,
some interesting behavior arises after observing the plots shown in Figure 7, the rendering of
the agent playing and looking at the fitness values of the first generation of individuals.

(a) (b) (c)

Figure 7: In Figure 7a, the evolution process of the WANN over the Double Dunk game
with the RAM representation is shown, reporting elite fit, best fit, and peak fit. In Figure
7b, the training process of the three gradient-based agents is shown over a span of 40M
timeframes. The connectome representing the network generated during the evolution is
shown in Figure 7c.

According to the game description provided on the gym website, “at the beginning of each
possession, the agent selects between a set of different plays and then executes them to either
score or prevent the rivals from scoring. The game lasts a set amount of time or until one of
the teams reaches a certain score”[54].5

In the first generation, a small number of individuals with some of the shared-weight values
reached poor results as expected, reaching scores around the -18 and -20 marks. However, most
individuals performed a fixed -2 for every shared-weight value. After observing the rendering

5https://www.gymlibrary.dev/environments/atari/double_dunk/
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of the actual agent playing, it is fascinating to notice a specific behavior arose after the first
possession in which the opponent scores. The agent can now choose between the offense and
defense sets of action.
However, it alternates without picking one until the end of the available timesteps. Since
at the end of each generation, the “best performing” ones are chosen accordingly to their
performance value, this behavior is carried out throughout the whole evolutionary process.
The evolution process over Double Dunk only evolved for roughly 140 generations (Figure 7a),
while its network did not show any sign of evolution, as seen in Figure 7c.
All the plots depicting the evolution processes with the RAM representation before the ap-
plication of the finetuning process and the plots describing the training of the gradient-based
approaches with that representation over each game are reported in Appendix A.3 together
with the connectomes of the networks evolved during the evolutionary process (Figure 27).
We present the evaluation performances using the RAM representation of the evolved WANNs
against the gradient-based approaches and the finetuned WANNs in Section 6.2.
As mentioned in the original paper [4], the project includes the possibility of finetuning the
networks generated by the evolutionary process. We do this using the CMA-ES presented in
Section 3.3. In the code provided by Gaier and Ha [4], the number of generations needed to
have performances close to the best performances for the environments at hand was set at 150.
After this number of generations, Gaier and Ha [4] affirm that one could simply kill the process
since a termination criteria was not defined. In this work, the finetuning process of the RAM
representation networks lasted 300 generations (which lasted approximately 10 minutes for
each network). For time reasons, the finetuning process of the image representation networks
lasted 150 generations (which lasted approximately 8 hours for each network).

(a) (b)

Figure 8: In Figure 8a, the finetuning process of the WANN over the Battle Zone game with
the RAM representation is shown, reporting the minimum reward reached, the maximum
reward reached, and the average reward reached with CMA-ES. In Figure 8b, the training
process of the three gradient-based agents is shown over a span of 40M timeframes (which
are roughly 10M timesteps with a frameskip value of 4).

Observing the Battle Zone plot, as shown in Figure 8a, it is impressive to notice how the
average reward of that network, previously averaging approximately 2000 points, at the end
of the process reaches an average reward of approximately 11000 points, achieving perfor-
mances comparable with the gradient-based approaches on the same game with the RAM
representation.
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(a) (b)

Figure 9: In Figure 9a, the finetuning process of the WANN over the Double Dunk game
with the RAM representation is shown, reporting the minimum reward reached, the max-
imum reward reached, and the average reward reached with CMA-ES. In Figure 9b, the
training process of the three gradient-based agents is shown over a span of 40M time-
frames (which are roughly 10M timesteps with a frameskip value of 4).

Observing the Double Dunk plot, shown in Figure 9a, which showed a wrong behavior before
finetuning as shown in Figure 7a, after finetuning, the reward was stuck in a local optimum
until the first half of the allocated generations. Afterward, after roughly 180 generations, it
was able to stray away from the local optimum, reaching lower minimums and slightly higher
maximums, suggesting that it started exploring different behaviors.

(a) (b)

Figure 10: In Figure 10a, the finetuning process of the WANN over the “Name This Game”
game with the RAM representation is shown, reporting the minimum reward reached, the
maximum reward reached, and the average reward reached. In Figure 10b, the training
process of the three gradient-based agents is shown over a span of 40M timeframes (which
are roughly 10M timesteps with a frameskip value of 4).

The plot of Name This Game is shown in Figure 10. All three curves show a more pronounced
improvement in the first 50 generations, while the average reward curve had a slight improve-
ment until the 80th generation. All three curves then converged and did not get closer to the
score reached by the gradient-based approaches shown in Figure 10b.
All the plots of the finetuning process with RAM representation, paired with the plots of the
gradient-based approaches on the same games with that representation, are also shown in
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Appendix A.5.1.
In Table 2 we present the comparison of the rewards achieved by the evolved WANNs (“Evolved”),
the finetuned WANNs (“Finetuned”), and the gradient-based agents (DQN, A2C, PPO) using
the RAM representation:

Game Evolved Finetuned DQN A2C PPO
Battle Zone 416.66 11200.00 11384.00 3019.00 12030.00
Double Dunk −2∗ 0.80∗ −21.64 −15.50 −1.31
Name This Game 591.00 778.00 3257.70 2801.78 2954.26
Phoenix 163.50 713.05 378.80 519.45 908.74
Q*bert 110.83 577.50 3598.47 239.52 1207.35

Table 2: Table reporting the reward reached by the WANNs before finetuning (Evolved),
the WANNs after finetuning (Finetuned), and the gradient-based approaches on each
game with the RAM representation averaged over 10 evaluation runs. For the evolved
WANNs, the presented scores are the average over the 6 different shared-weight values.
This means that each individual plays 10 times with each shared-weight value for a total
of 60 runs.

Looking at the comparison of the reward achieved by the evolutionary process before finetuning
and the gradient-based agents over 10 evaluation runs, we notice how the gradient-based
approaches perform better in almost every game, answering the research subquestion Q2.
Considering instead the performances reached by the WANNs after finetuning, we notice the
impact of the finetuning in comparison with the scores of the evolved WANNs, where the
finetuned WANNs showed an increase in performance on every game, answering the research
subquestion Q4 over the RAM representation. We notice the most significant increase over
the Battle Zone game, where the finetuned WANN performs comparably with DQN and PPO,
outperforming A2C. Over Phoenix, the finetuned WANN outperforms DQN and A2C. Over
Q*bert, the finetuned WANN outperforms A2C but is still strongly outperformed by DQN and
PPO.
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6.3 Image Representation

(a) (b) (c)

Figure 11: In Figure 11a, the evolution process of the WANN over the Battle Zone game
with the image representation is shown, reporting elite fit, best fit, and peak fit. In Figure
11b, the training process of the three gradient-based agents is shown over a span of
40M timeframes (which are roughly 10M timesteps with a frameskip value of 4). The
connectome representing the network generated during the evolution is shown in Figure
11c.

The evolution of the WANN, the training of the gradient-based approaches, and the connec-
tome of the generated network are shown in Figure 11.
It is noticeable how the image representation, even if it shows a lower best fit, has a sensibly
higher peak fit. The peak fit was achieved almost immediately, as it happened during the
evolution using the RAM representation.
Furthermore, considering that the results of the gradient-based approaches align with the
previous publications, with the PPO image agent performing even better, it is intriguing to
point out that A2C yields only a slight improvement over the best fit of the WANN.
While the connectome of the RAM representation over Battle Zone showed no added nodes
or layers, the connectome created by the process using the image representation (shown in
Figure 11c) showed a first sign of evolution. It has a first sparse layer with 80 nodes and a
second layer with only three nodes.

(a) (b) (c)

Figure 12: In Figure 12a, the evolution process of the WANN over the Double Dunk
game with the image representation is shown, reporting elite fit, best fit, and peak fit. In
Figure 12b, the training process of the three gradient-based agents is shown over a span
of 40M timeframes (which are roughly 10M timesteps with a frameskip value of 4). The
connectome representing the network generated during the evolution is shown in Figure
12c.
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The comparison between the RAM and image representations over Double Dunk (presented
in Figure 12) shows some intriguing results.
Unlike the RAM representation, the image version, probably aided by the spatial information
provided by the VAE encoding and missing in the RAM representation, actually had perfor-
mance improvements, starting from bad scores, as expected.
Observing the game’s rendering, we can see how the agent plays and does not get stuck in
the “waiting for the timesteps to end” behavior previously mentioned.
However, it is worth noting that at the end of the process, it is impossible to view how the
agent acted when it yielded good rewards during the evolutionary process. It could be possible
that while some of the weight-shared values led the agent actually to play the game, other
ones still pushed for that kind of behavior, leading to what can be mistakenly interpreted as
averaged good results, like the peak fit almost immediately reached.
The Double Dunk connectomes are instead identical, suggesting that the high average scores
reached going further through the evolutionary process of the image version might also be
influenced, at least partly, by a group of individuals pushing for the “wait for the timesteps to
end” behavior.

(a) (b) (c)

Figure 13: In Figure 13a, the evolution process of the WANN over the “Name This Game”
game with the image representation is shown, reporting elite fit, best fit, and peak fit. In
Figure 13b, the training process of the three gradient-based agents is shown over a span
of 40M timeframes (which are roughly 10M timesteps with a frameskip value of 4). The
connectome representing the network generated during the evolution is shown in Figure
13c.

The difference between the Name This Game plots (shown in Figure 13), instead, show a
way higher peak fit in the image representation version, around 1750 points, while the ram
version had a peak fit of approximately 950. While the RAM version got stuck at a local
optimum pretty fast, the image version shows an unstable curve of the elite fit. We believe the
exploration process was still active and did not get stuck in a local optimum as it happened
for the RAM version.
Furthermore, the best fit value reached by the image version is even higher than the peak
reached by the RAM version, showing the importance of spatial information in such a game.
The network generated by the image representation of Name This Game (shown in Figure
13c) has the same number of layers, 2. Still, it has a higher number of nodes, which might be
the reason for the increased performance of the image version compared to the RAM version.
All the plots describing the evolution processes with the image representation before the
application of the finetuning process, and the plots describing the training of the gradient-
based approaches with that representation over each game are reported in the Appendix A.4
together with the connectomes of the networks evolved during the evolutionary process (Figure

29



33). We present the evaluation performances using the image representation of the evolved
WANNs against the gradient-based approaches and the finetuned WANNs in Section 6.3.
We now observe the results of the finetuning process over the networks generated while playing
the games using the image representation.

(a) (b)

Figure 14: In Figure 14a, the finetuning process of the WANN over the Battle Zone
game with the image representation is shown, reporting the minimum reward reached, the
maximum reward reached, and the average reward reached. In Figure 14b, the training
process of the three gradient-based agents is shown over a span of 40M timeframes (which
are roughly 10M timesteps with a frameskip value of 4).

While the finetuning process yielded very positive rewards over the game Battle Zone with the
RAM representation, it did not show the same improvement over the image representation, as
shown in Figure 14.
After the application of the finetuning process, the maximum and average rewards did not
change over the generations, confirming the gradient-based approaches as the best performers.

(a) (b)

Figure 15: In Figure 15a, the finetuning process of the WANN over the Double Dunk
game with the image representation is shown, reporting the minimum reward reached, the
maximum reward reached, and the average reward reached. In Figure 15b, the training
process of the three gradient-based agents is shown over a span of 40M timeframes (which
are roughly 10M timesteps with a frameskip value of 4).

Before the finetuning process, Double Dunk with the image representation yielded theoretically
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good results, as shown in Figure 12. Still, given the behavior shown by the RAM representation,
it is not possible to confirm the fact that the high scores of the image representation were also
yielded by that same behavior that influenced the average score.
During the finetuning process, shown in Figure 15, there was no noticeable improvement, with
irregular curves around the same mean from the beginning to the end of the process.

(a) (b)

Figure 16: In Figure 16a, the finetuning process of the WANN over the game Phoenix with
the image representation is shown, reporting the minimum reward reached, the maximum
reward reached, and the average reward reached. In Figure 16b, the training process of the
three gradient-based agents is shown over a span of 40M timeframes (which are roughly
10M timesteps with a frameskip value of 4).

Over the game Phoenix, on the other hand, which showed an average of approximately 100
points during the evolution using the image representation, the finetuning process yielded some
improvements, as shown in Figure 16a.
Already from the first generation, it showed an average reward of 350 points, even higher than
the best fit reached during the evolution, reaching an average of 580 points by the end of the
process.
The peak performance reached during the evolution has been surpassed, reaching an average
of 2000 points. While PPO and DQN performed quite well in this game, A2C showed similar
performances.
In Table 3 we present the comparison of the rewards achieved by the evolved WANNs (“Evolved”),
the finetuned WANNs (“Finetuned”), and the gradient-based agents (DQN, A2C, PPO) using
the image representation:
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Game Evolved Finetuned DQN A2C PPO
Battle Zone 683.33 3400.00 14438.00 4459.00 38093.00
Double Dunk −14.83∗ −1.80∗ −22.07 −3.75 −3.07
Name This Game 569.44 624.00 7885.19 5828.33 5924.07
Phoenix 96.67 795.00 3480.64 853.15 4973.16
Q*bert 366.66 380.00 10354.40 7666.02 14111.07

Table 3: Table reporting the reward reached by the WANNs before finetuning (Evolved),
the WANNs after finetuning (Finetuned), and the gradient-based approaches on each
game with the image representation averaged over 10 evaluation runs. For the evolved
WANNs, the presented scores are the average over the 6 different shared-weight values.
This means that each individual plays 10 times with each shared-weight value for a total
of 60 runs.

Looking at the comparison of the reward achieved by the evolutionary process before finetuning
and the gradient-based agents over 10 evaluation runs, we can see that the gradient-based
approaches outperformed the WANNs before and after the finetuning. Over the Battle Zone
game, the WANN resulting after the finetuning gets closer to the score reached by A2C but
is still outperformed by all the gradient-based approaches. Over Phoenix, the resulting WANN
gets closer to the score achieved by A2C but is still outperformed by all the other gradient-based
agents.
We noticed some interesting improvements with the finetuning of the evolved WANNs using
the RAM representation, presented in Section 6.2. Over the image representation, we do not
see a comparable enhancement in performance, answering the research subquestion Q4 over
the image representation.
Observing the results achieved with the image representation, it seems clear how the WANNs
are not yet ready to be compared with the gradient-based approaches over a complex task
such as the Atari benchmark, answering the research subquestion Q3.
Observing the results achieved with the RAM representation we see how the finetuning per-
formed with CMA-ES had a significant impact on the evolved WANNs when using that repre-
sentation, such that over the Battle Zone and Phoenix games the finetuned WANNs performed
comparably with DQN and PPO, outperforming A2C.
The difference in impact of the finetuning process over the RAM and image representation can
be related to the performance bottleneck of the VAE. The reconstruction quality of the VAE
degrades gradually with the advancement in the levels of the games, making the encoding of
the images less accurate. The status of the RAM instead, even if it lacks the visual information
provided by the screen images, does not get degrade while advancing in the games.
All the plots of the finetuning process with image representation, paired with the plots of the
gradient-based approaches on the same games with that representation, are shown in Appendix
A.5.2.

7 Conclusions & Future Works

In this work, we conducted experiments on the Atari benchmark, which was not explored in
the Weight Agnostic Neural Networks original paper. We compared the performance of the
WANNs with three gradient-based agents, DQN, PPO, and A2C, over the RAM and the image
representations of the observation space. We also conducted a hyperparameter importance

32



analysis to identify the most influential hyperparameters across games and the values of these
hyperparameters that yield higher predicted performances for each game.
Our aim was to determine up to which level of performance and with which limitations we
can consider the Weight Agnostic Neural Networks as a competitive alternative to SGD-based
algorithms for more complex environments such as the Atari benchmark.
The hyperparameter importance analysis showed that the probability of mutating an activation
function is the most important one for the evolution of the WANNs, followed by the probability
of adding a new connection and the probability of adding a new node. Further developments
in this area include an analysis with a higher number of configurations sampled from the
configuration space and a higher number of hyperparameters included in the configuration
space. Before finetuning, the gradient-based agents outperformed the evolved networks both
with the RAM and the image representation. The RAM version of the WANNs exhibited an
unexpected strategy over the Double Dunk game, where the agent would wait for the available
timesteps to finish instead of playing the game.
The performances of the WANNs are poor compared to the gradient-based techniques over
the image representation, indicating that they are not currently a competitive alternative
to gradient-based approaches on the Atari benchmark. One of the main limitations of the
WANNs is the potential bottleneck in performance caused by using a VAE due to how the
training dataset was generated. Further developments regarding the VAE could involve the use
of different agents to create the training datasets or exploring alternative ways to treat the
image as input.
The finetuned WANN with the RAM representation over the game Battle Zone scored an
average of 11200.00 points, outperforming A2C (3019.00 points) and performing comparably
with DQN (11384.00 points) and PPO (12030.00 points), encouraging further future research.
Applying the finetuning process to the networks generated using the image representation
did not enhance the performances significantly. Further works include the application of the
WANNs to different tasks that do not require the interpretation of the image input, such as
the MuJoCo physics engine.
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A Detailed Results

A.1 Default Hyperparameters

Hyperparameter Default Value Description
task swingup name of task
alg wDist standard either 6 chosen values or linspace of alg nVals
alg nVals 6 number of weights to test when evaluating individual
alg nReps 4 number of repetitions when evaluating individuals
alg probMoo 0.80 chance of applying second objective when using MOO
maxGen 1024 number of generations to run algorithm
popSize 128 number of individuals in population
prob crossover 0.0 chance of crossover
prob mutAct 0.50 chance to change node activation function
prob addNode 0.25 chance to add node
prob addConn 0.20 chance to add connections
prob enable 0.05 chance to enable disabled connection
prob initEnable 0.5 chance to enable each initial connection
select cullRatio 0.2 % of individuals to remove before selection
select eliteRatio 0.2 % of individuals to pass on to next generation unchanged
select tournSize 8 number of competitors in each tournament
save mod 8 generations between saving results to disk
bestReps 20 number of times to test new ’best’ solutions to confirm

Table 4: Default hyperparameter values provided by the author of the original WANN
paper [4], mentioned in Section 5.1

A.2 Marginal Performance Predictions

(a) (b) (c) (d) (e)

Figure 17: Marginal Performance Prediction for the hyperparameters of the configuration
space for the Battle Zone game, mentioned in Section 6.1. The red area represents the
standard deviation, while the blue line represents the marginal.

39



(a) (b) (c) (d) (e)

Figure 18: Marginal Performance Prediction for the hyperparameters of the configuration
space for the Double Dunk game, mentioned in Section 6.1. The red area represents the
standard deviation, while the blue line represents the marginal.

(a) (b) (c) (d) (e)

Figure 19: Marginal Performance Prediction for the hyperparameters of the configuration
space for the Name This Game game, mentioned in Section 6.1. The red area represents
the standard deviation, while the blue line represents the marginal.

.

(a) (b) (c) (d) (e)

Figure 20: Marginal Performance Prediction for the hyperparameters of the configuration
space for the Phoenix game, mentioned in Section 6.1. The red area represents the stan-
dard deviation, while the blue line represents the marginal.

(a) (b) (c) (d) (e)

Figure 21: Marginal Performance Prediction for the hyperparameters of the configuration
space for the Q*bert game, mentioned in Section 6.1. The red area represents the standard
deviation, while the blue line represents the marginal.
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A.3 RAM Representation

(a) (b)

Figure 22: In Figure 22a, the evolution process of the WANN over the Battle Zone game
with the RAM representation is shown, reporting elite fit, best fit, and peak fit. In Figure
22b, the training process of the three gradient-based agents is shown over a span of 40M
timeframes (which are roughly 10M timesteps with a frameskip value of 4).

(a) (b)

Figure 23: In Figure 23a, the evolution process of the WANN over the Double Dunk game
with the RAM representation is shown, reporting elite fit, best fit, and peak fit. In Figure
23b, the training process of the three gradient-based agents is shown over a span of 40M
timeframes (which are roughly 10M timesteps with a frameskip value of 4).
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(a) (b)

Figure 24: In Figure 24a, the evolution process of the WANN over the “Name This Game”
game with the RAM representation is shown, reporting elite fit, best fit, and peak fit. In
Figure 24b, the training process of the three gradient-based agents is shown over a span
of 40M timeframes (which are roughly 10M timesteps with a frameskip value of 4).

(a) (b)

Figure 25: In Figure 25a, the evolution process of the WANN over the game Phoenix
with the RAM representation is shown, reporting elite fit, best fit, and peak fit. In Figure
25b, the training process of the three gradient-based agents is shown over a span of 40M
timeframes (which are roughly 10M timesteps with a frameskip value of 4).
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(a) (b)

Figure 26: In Figure 26a, the evolution process of the WANN over the game Q*bert with
the RAM representation is shown, reporting elite fit, best fit, and peak fit. In Figure
26b, the training process of the three gradient-based agents is shown over a span of 40M
timeframes (which are roughly 10M timesteps with a frameskip value of 4).

(a) Battle Zone (b) Double Dunk (c) NTG (d) Phoenix (e) Q*bert

Figure 27: Connectomes of the networks generated during the evolutionary process over
each game with the RAM representation.

A.4 Image Representation

(a) (b)

Figure 28: In Figure 28a, the evolution process of the WANN over the Battle Zone game
with the image representation is shown, reporting elite fit, best fit, and peak fit. In Figure
28b, the training process of the three gradient-based agents is shown over a span of 40M
timeframes (which are roughly 10M timesteps with a frameskip value of 4).
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(a) (b)

Figure 29: In Figure 29a, the evolution process of the WANN over the Double Dunk game
with the image representation is shown, reporting elite fit, best fit, and peak fit. In Figure
29b, the training process of the three gradient-based agents is shown over a span of 40M
timeframes (which are roughly 10M timesteps with a frameskip value of 4).

(a) (b)

Figure 30: In Figure 30a, the evolution process of the WANN over the “Name This Game”
game with the image representation is shown, reporting elite fit, best fit, and peak fit. In
Figure 30b, the training process of the three gradient-based agents is shown over a span
of 40M timeframes (which are roughly 10M timesteps with a frameskip value of 4).
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(a) (b)

Figure 31: In Figure 31a, the evolution process of the WANN over the Phoenix game
with the image representation is shown, reporting elite fit, best fit, and peak fit. In Figure
31b, the training process of the three gradient-based agents is shown over a span of 40M
timeframes (which are roughly 10M timesteps with a frameskip value of 4).

(a) (b)

Figure 32: In Figure 32a, the evolution process of the WANN over the Q*bert game with
the image representation is shown, reporting elite fit, best fit, and peak fit. In Figure
32b, the training process of the three gradient-based agents is shown over a span of 40M
timeframes (which are roughly 10M timesteps with a frameskip value of 4).

(a) Battle Zone (b) Double Dunk (c) NTG (d) Phoenix (e) Q*bert

Figure 33: Connectomes of the networks generated during the evolutionary process over
each game with the Image representation.
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A.5 Finetuning

A.5.1 RAM Representation

(a) (b)

Figure 34: In Figure 34a, the finetuning process of the WANN over the Battle Zone
game with the RAM representation is shown, reporting the minimum reward reached, the
maximum reward reached, and the average reward reached. In Figure 34b, the training
process of the three gradient-based agents is shown over a span of 40M timeframes (which
are roughly 10M timesteps with a frameskip value of 4).

(a) (b)

Figure 35: In Figure 35a, the finetuning process of the WANN over the Double Dunk
game with the RAM representation is shown, reporting the minimum reward reached, the
maximum reward reached, and the average reward reached. In Figure 35b, the training
process of the three gradient-based agents is shown over a span of 40M timeframes (which
are roughly 10M timesteps with a frameskip value of 4).
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(a) (b)

Figure 36: In Figure 36a, the finetuning process of the WANN over the “Name This Game”
game with the RAM representation is shown, reporting the minimum reward reached, the
maximum reward reached, and the average reward reached. In Figure 36b, the training
process of the three gradient-based agents is shown over a span of 40M timeframes (which
are roughly 10M timesteps with a frameskip value of 4).

(a) (b)

Figure 37: In Figure 37a, the finetuning process of the WANN over the game Phoenix with
the RAM representation is shown, reporting the minimum reward reached, the maximum
reward reached, and the average reward reached. In Figure 37b, the training process of the
three gradient-based agents is shown over a span of 40M timeframes (which are roughly
10M timesteps with a frameskip value of 4).
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(a) (b)

Figure 38: In Figure 38a, the finetuning process of the WANN over the game Q*bert with
the RAM representation is shown, reporting the minimum reward reached, the maximum
reward reached, and the average reward reached. In Figure 38b, the training process of the
three gradient-based agents is shown over a span of 40M timeframes (which are roughly
10M timesteps with a frameskip value of 4).

A.5.2 Image Representation

(a) (b)

Figure 39: In Figure 39a, the finetuning process of the WANN over the Battle Zone
game with the image representation is shown, reporting the minimum reward reached, the
maximum reward reached, and the average reward reached. In Figure 39b, the training
process of the three gradient-based agents is shown over a span of 40M timeframes (which
are roughly 10M timesteps with a frameskip value of 4).
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(a) (b)

Figure 40: In Figure 40a, the finetuning process of the WANN over the Double Dunk
game with the image representation is shown, reporting the minimum reward reached, the
maximum reward reached, and the average reward reached. In Figure 40b, the training
process of the three gradient-based agents is shown over a span of 40M timeframes (which
are roughly 10M timesteps with a frameskip value of 4).

(a) (b)

Figure 41: In Figure 41a, the finetuning process of the WANN over the “Name This Game”
game with the image representation is shown, reporting the minimum reward reached, the
maximum reward reached, and the average reward reached. In Figure 41b, the training
process of the three gradient-based agents is shown over a span of 40M timeframes (which
are roughly 10M timesteps with a frameskip value of 4).
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(a) (b)

Figure 42: In Figure 42a, the finetuning process of the WANN over the game Phoenix with
the image representation is shown, reporting the minimum reward reached, the maximum
reward reached, and the average reward reached. In Figure 42b, the training process of the
three gradient-based agents is shown over a span of 40M timeframes (which are roughly
10M timesteps with a frameskip value of 4).

1

(a) (b)

Figure 43: In Figure 43a, the finetuning process of the WANN over the game Q*bert with
the image representation is shown, reporting the minimum reward reached, the maximum
reward reached, and the average reward reached. In Figure 43b, the training process of the
three gradient-based agents is shown over a span of 40M timeframes (which are roughly
10M timesteps with a frameskip value of 4).
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B Details on Variational Autoencoder

(a) Encoder (b) Decoder

Figure 44: VAE Architecture. Figures generated using Visualkeras [55].

The architecture of the encoder is shown in Figure 44a and summarized as follows:

• First convolutional hidden layer, with 32 filters of size 1 and stride 1

• Second convolutional hidden layer, with 32 filters of size 4 and stride 2

• Third convolutional hidden layer, with 64 filters of size 4 and stride 2

• Skip connection followed by 2 convolutional layers, each with 64 filters of size 3 and
stride 1

• Add Layer and Flatten

• Two dense layers generate the distribution’s mean and log variance, and a custom
Lambda Layer combines the two

The architecture of the decoder is shown in Figure 44b and summarized as follows:

• A first Dense layer followed by a Reshape maps the (128,) input into a 4D tensor.

• Skip connection, followed by two transposed convolutional hidden layers, each with 64
filters of size 3 and stride 1

• Add layer

• Transposed convolutional hidden layer, with 64 filters of size 1 and stride 1

• Transposed convolutional hidden layer, with 64 filters of size 3 and stride 2

• Transposed convolutional hidden layer, with 3 filters of size 3 and stride 2
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(a) (b)

(c) (d)

Figure 45: On the left of each of the presented Figures 45a,45b,45c,45d, the 84x84 resized
grayscale screens are shown. On the right, the reconstructions of the 84x84 grayscale im-
ages from the game Q*bert, using decoder architecture inspired by the CNN architecture
of the original DQN paper [25].

In Figures 45a,45b,45c,45d, we show the comparison between the original images (on the left)
and the images reconstructed using the previously mentioned VAE (on the right). We notice
how the reconstructions are often not correct or lack important details. The reconstruction
in Figure 45d looks more accurate compared to the other ones, but it lacks some important
details that have a key role in games such as Q*bert. The main character, present in the
original frame in the lower right angle of the frame, is missing, and some of the cubes of the
bottom “floor” have not been activated.
Using the setup presented in Section 4.1.2, the reconstructed images for the game Q*bert
have been generated accurately, as shown in Figure 46.
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(a) (b)

(c) (d)

Figure 46: On the left of each of the presented Figures 46a46b,46c,46d, 160x160 resized
RGB screens are shown. On the right, the reconstructions of 160x160 resized RGB images
from the game Q*bert, using the proposed VAE.

As shown in Figure 45d, while the cubes of the higher “floors” are correctly activated, going
to the lower “floors” the reconstruction of the activation gets less accurate. This issue is less
pronounced in the RGB version, as we can see in Figure 46b. The cube activated on the lowest
“floor” is reconstructed but with a slightly dark color.

Game Reconstruction Loss KL Loss Total Loss
Battle Zone 10088.12 15.18 10103.30
Double Dunk 2528.98 9.87 2538.85
Name This Game 11466.80 14.50 11481.30
Phoenix 2181.17 10.51 2191.68
Q*bert 4385.25 17.77 4403.02

Table 5: Table reporting the reconstruction loss, the KL loss, and the total loss of the VAE
during training for each of the games. The scale of the reconstruction and total losses can
vary throughout the games.

Encoder Summary

Model: "encoder"

__________________________________________________________________________________________________

Layer (type) Output Shape Param # Connected to

==================================================================================================

encoder_input (InputLayer) [(None, 160, 160, 3 0 []

)]

encoder_conv_0 (Conv2D) (None, 160, 160, 32 128 ['encoder_input[0][0]']

)
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batch_normalization_18 (BatchN (None, 160, 160, 32 128 ['encoder_conv_0[0][0]']

ormalization) )

re_lu_10 (ReLU) (None, 160, 160, 32 0 ['batch_normalization_18[0][0]']

)

encoder_conv_1 (Conv2D) (None, 80, 80, 32) 16416 ['re_lu_10[0][0]']

batch_normalization_19 (BatchN (None, 80, 80, 32) 128 ['encoder_conv_1[0][0]']

ormalization)

re_lu_11 (ReLU) (None, 80, 80, 32) 0 ['batch_normalization_19[0][0]']

encoder_conv_2 (Conv2D) (None, 40, 40, 64) 32832 ['re_lu_11[0][0]']

batch_normalization_20 (BatchN (None, 40, 40, 64) 256 ['encoder_conv_2[0][0]']

ormalization)

re_lu_12 (ReLU) (None, 40, 40, 64) 0 ['batch_normalization_20[0][0]']

conv2d_4 (Conv2D) (None, 40, 40, 64) 36928 ['re_lu_12[0][0]']

batch_normalization_21 (BatchN (None, 40, 40, 64) 256 ['conv2d_4[0][0]']

ormalization)

activation_8 (Activation) (None, 40, 40, 64) 0 ['batch_normalization_21[0][0]']

conv2d_5 (Conv2D) (None, 40, 40, 64) 36928 ['activation_8[0][0]']

batch_normalization_22 (BatchN (None, 40, 40, 64) 256 ['conv2d_5[0][0]']

ormalization)

add_4 (Add) (None, 40, 40, 64) 0 ['batch_normalization_22[0][0]',

're_lu_12[0][0]']

activation_9 (Activation) (None, 40, 40, 64) 0 ['add_4[0][0]']

flatten_2 (Flatten) (None, 102400) 0 ['activation_9[0][0]']

mu (Dense) (None, 128) 13107328 ['flatten_2[0][0]']

log_var (Dense) (None, 128) 13107328 ['flatten_2[0][0]']

custom_lambda_2 (CustomLambda) (None, 128) 0 ['mu[0][0]',

'log_var[0][0]']

==================================================================================================

Total params: 26,338,912

Trainable params: 26,338,400

Non-trainable params: 512

__________________________________________________________________________________________________

Decoder Summary

Model: "decoder"

__________________________________________________________________________________________________

Layer (type) Output Shape Param # Connected to
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==================================================================================================

decoder_input (InputLayer) [(None, 128)] 0 []

dense_2 (Dense) (None, 102400) 13209600 ['decoder_input[0][0]']

reshape_2 (Reshape) (None, 40, 40, 64) 0 ['dense_2[0][0]']

conv2d_transpose_4 (Conv2DTran (None, 40, 40, 64) 36928 ['reshape_2[0][0]']

spose)

batch_normalization_23 (BatchN (None, 40, 40, 64) 256 ['conv2d_transpose_4[0][0]']

ormalization)

activation_10 (Activation) (None, 40, 40, 64) 0 ['batch_normalization_23[0][0]']

conv2d_transpose_5 (Conv2DTran (None, 40, 40, 64) 36928 ['activation_10[0][0]']

spose)

batch_normalization_24 (BatchN (None, 40, 40, 64) 256 ['conv2d_transpose_5[0][0]']

ormalization)

add_5 (Add) (None, 40, 40, 64) 0 ['batch_normalization_24[0][0]',

'reshape_2[0][0]']

activation_11 (Activation) (None, 40, 40, 64) 0 ['add_5[0][0]']

decoder_conv_t_0 (Conv2DTransp (None, 40, 40, 64) 4160 ['activation_11[0][0]']

ose)

batch_normalization_25 (BatchN (None, 40, 40, 64) 256 ['decoder_conv_t_0[0][0]']

ormalization)

re_lu_13 (ReLU) (None, 40, 40, 64) 0 ['batch_normalization_25[0][0]']

decoder_conv_t_1 (Conv2DTransp (None, 80, 80, 64) 36928 ['re_lu_13[0][0]']

ose)

batch_normalization_26 (BatchN (None, 80, 80, 64) 256 ['decoder_conv_t_1[0][0]']

ormalization)

re_lu_14 (ReLU) (None, 80, 80, 64) 0 ['batch_normalization_26[0][0]']

decoder_conv_t_2 (Conv2DTransp (None, 160, 160, 3) 1731 ['re_lu_14[0][0]']

ose)

dc_reco (Activation) (None, 160, 160, 3) 0 ['decoder_conv_t_2[0][0]']

==================================================================================================

Total params: 13,327,299

Trainable params: 13,326,787

Non-trainable params: 512

__________________________________________________________________________________________________
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