
Opleiding Informatica

Ground State approximation with Product States

using Graph Theory

Christian Martens

Supervisors:
Evert van Nieuwenburg, Patrick Emonts & Jordi Tura

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 27/06/2023

www.liacs.leidenuniv.nl


Abstract

Ground states of one-dimensional quantum systems can be approximated efficiently (i.e. in
polynomial time) as product states. Finding the ground state efficiently can be mapped to a
graph problem in which we find the k shortest paths. We present two methods to improve
the run time of finding the k shortest paths for this specific application. In this application
the problem instances are comprised of directed acyclic graphs (DAGs). The first method
aims to improve the run time by slightly modifying the graph whilst maintaining the ability
to perform general graph algorithms on it, with an expected quadratic speedup. The second
method is the implementation of Eppstein’s algorithm, which has a better theoretical time
complexity than the algorithms that have been used so far.
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1 Introduction

Generally, finding the ground state of quantum systems and the corresponding energy is NP-hard
as shown by Kitaev, who draws a parallel between this problem and the well known constraint
satisfaction problem (CSP) [GKSV03]. In this CSP a set of constraints is given with regard to some
set of N classical particles that can be in q states. The decision problem is now to determine if
more than a given number of constraints can be satisfied. Even for one-dimensional systems this
problem remains hard [AGIK09].
Despite the general hardness of this problem, Schuch and Cirac show that the mean-field solutions
that neglect correlations between the particles can be computed in polynomial time for one-
dimensional (1D) systems [SC10]. They show this by first explaining how to efficiently solve for the
minimal energy of a classical spin chain and then showing how in a similar way the ground state
energy of 1D quantum systems can be approximated efficiently.
A classical spin chain is a 1D chain of spin systems where each of the sites has a spin that can have
any of d values. The minimal energy can be solved sequentially by going over the chain from left to
right. At every step, the minimal energy of the left half of the chain will only depend on the value
of the spin at the current position. The spins that will still influence the optimal energy of the part
of the chain to the right of the current position are said to be in the boundary setting. In the case
of the classical system only the spin at the left of the current site is in the boundary setting. For
each site, the energy needs to be minimized over d settings of the site to the left of it and as the
current site can also be in d settings the computational cost for a chain of N sites will thus be Nd2.
This algorithm not only yields the optimal energy but also the corresponding ground state.
The mean-field solution of a 1D quantum system with Hamiltonians of the form

H =
N−1∑
k=1

Hk,k+1, ||Hk,k+1||∞ ≤ 1 (1)

can be found in a similar way. The mean-field approach considers the quantum system in the form
of a product state, which is the tensor product of N smaller systems: |ψ⟩ = ⊗N |ψ⟩, |ψ⟩ ∈ Cd. This
is an incomplete description of the system as it only accounts for local interactions, which means
we cannot find the global optimum with this description. However, the global optimum can be
well approximated for systems that mostly have local interactions. The minimization problem with
respect to the product state description is then as follows (where all states are normalized):

E = min
|ψ1⟩,...,|ψN ⟩

N−1∑
k=1

⟨ψk, ψk+1|Hk,k+1|ψk, ψk+1⟩ (2)

Formula 2 shows the minimization of the sum of the energies of all subsequent pairs of neighboring
sites. |ψk, ψk+1⟩ denotes a local subsystem in the chain in which we consider sites k and k + 1. The
local Hamiltonian corresponding to that subsystem is denoted by Hk,k+1. Because the correlations
are neglected in the mean field approach, the minimal energy approximation of the system only
depends on the energy of the local subsystems. As so, the solution can be obtained using a dynamic
programming approach by dividing the problem into local sub problems and combining the results.
Because the parameters |ψk⟩ are continuous and the Hamiltonian that we use to compute the
energy is of exponential size, we cannot compute the energy exactly. Therefore, the minimization is
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restricted to a discrete set of solutions for each site, called an ϵ-net. The discrete solutions in the
ϵ-net are a set of vectors |ψαk ⟩ with α = 1, . . .A such that

∀|ψk⟩ ∈ Cd ∃α :
∥∥ |ψk⟩⟨ψk| − |ψαk ⟩⟨ψαk |

∥∥
1
≤ ϵ (3)

This formula describes how there exist vectors |ψαk ⟩ such that the norm of the difference of the
projection matrices of |ψk⟩ and |ψαk ⟩ is less than some value ϵ. The result of this for vectors in C2

can be visualised on the Bloch sphere as a net of points that are some bounded distance away from
each other on the sphere, see Figure 2.
This reduces the algorithm to the same algorithm as for the 1D classical spin chain, where the
number of discrete solutions that we consider is the number of settings each site can be in. This
way the algorithm will yield the optimal solution in the set of all product states that can be made
using the states that we consider on each site, scaling linearly in the number of particles and
quadratically in the number of states per particle [AAI10]. The key feature of the ϵ-net is that
because all solutions on a site differ by a bounded amount there is an upper bound on the error of
the ground state energy as product state.
The work of this thesis is part of a larger ongoing project at Leiden University by Jordi Tura and
Patrick Emonts. Their idea is that for the same type of Hamiltonians as in Formula 1, the structure
of the Hamiltonian can be used to find the ground state approximation more efficiently. Building
on the earlier works of Aharonov et al. and Schuch and Cirac, they are working on a method in
which the ϵ-net is refined iteratively. The method works by finding the k lowest energy states of the
system and increasing the resolution of the net in the area where the k lowest energy states were
found. This is done by disregarding those solutions on the net that were not part of the k lowest
energies and adding a new discrete set of possible solutions in-between the remaining solutions. In
the next iteration we consider the solutions that were not disregarded, together with the solutions
from the new set and find the k lowest energy states over the set of product states that use this
united set of solutions. This process is then repeated until it converges to the minimum value.
Note that because solutions are disregarded, the net is not an ϵ-net anymore as the constraint of
formula 3 does not hold anymore. However, according to their idea the ground state can still be
approximated using this method due to the structure of these specific Hamiltonians. The efficiency
comes from the fact that a lower number of solutions is now needed to achieve the same accuracy
as in the previously described ϵ-net method, or in other words a higher accuracy can be achieved
by considering the same number of solutions.
To benchmark this method they make use of the 1D transverse field Ising model with vanishing
transverse field (the field is set to 0). The reason to use this model is because in the case of the
field being set to 0, the model can be reduced to the classical Ising model with field 0 of which
the solution can easily be obtained. This means the model can be used to verify that the method
works. Although it is known how to solve this problem using the classical Ising model, it is treated
in the quantum mechanical way so that the same method can later be applied on quantum versions
of the model where the transverse field is not 0.
The implementation of this extended method can be understood by looking at the minimization
problem from a graph perspective. To find the minimal energy as given by Formula 2 we need to
consider all possible combinations of states that neighbouring sites ψk and ψk+1 of the product
state can be in. To represent all states from the discrete set of states that form the ϵ-net, we create
a set of vertices for each site, where each state of a site is represented by a vertex. To represent
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Figure 1: The Bloch sphere [09]. A state vector
|ψ⟩ can be represented with 2 angles, ϕ and θ.

Figure 2: The ϵ-net construction visualised as
the Bloch sphere covered in points that are a
bounded distance away from each other.

all combinations of states of a local system of neighbouring sites we add directed edges from all
vertices of site ψk to all vertices of site ψk+1. The sets of vertices are now topologically ordered
from ψ1 to ψN , where each set of vertices is only connected to the set of vertices of the succeeding
site, see Figure 3. The energy that corresponds to a combination of states of two neighboring sites
can be computed using the two-local Hamiltonian as ⟨ψk, ψk+1|Hk,k+1|ψk, ψk+1⟩, just like in the
sum of Formula 2. This energy is added as weight on the edge that connects the two states. Finding
the k lowest energy states on the set of product states of the complete system now corresponds to
finding the k shortest paths from the vertex set of site ψ1 to the one of site ψN in the graph.
In this thesis we show how the usage of these graphs in the new iterative method by J. Tura and
P. Emonts can be optimized by adjusting the graphs and we explore how better time complexities
can be achieved on finding the desired properties of the graphs that correspond to the ground state
approximation and its energy. As we make use of a layered graph structure as in Figure 3, we may
refer to the vertex sets ψ1 . . . ψN as layers. The states represented by the vertices in each set may
also be referred to as points.
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Figure 3: Example graph demonstrating the structure of the graphs that are used to find the
minimal energy. This graph has 5 “columns” of vertices representing 5 sites from left to right and 5
vertices in each column vertically representing the states a site can be in. Generally the graphs can
have any number of sites and states per site.

2 Preliminaries

2.1 Notation for notions from linear algebra

In quantum mechanics we often make use of linear algebra in the vector space of Cn. We usually
denote vectors in this vector space and other notions using a special notation known as Dirac
notation. In Dirac notation a vector is denoted as

|ψ⟩. (4)

Here ψ is a label for the vector and |·⟩ indicates that the object is a vector. Physicists also often
use special labels for some vectors, in particular we will use the following convention:

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
(5)

In Table 1 we summarize some of the important notations that are used [NC10, p. 62]. The tensor
product of vectors |ϕ⟩ and |ψ⟩ can also be abbreviated as |ϕ⟩|ψ⟩ or even |ϕ, ψ⟩.
In quantum mechanics we are also often interested in matrices that have certain properties, in
particular Hermitian matrices and unitary matrices.
The Hermitian matrix is a matrix that is equal to its own conjugate transpose, that is

H = H†. (6)

H† is also referred to as the adjoint of the H matrix. These matrices have the property that their
eigenvalues are always real-valued.
A Unitary matrix is a matrix of which the conjugate transpose is equal to its own inverse, that is

U † = U−1, (7)
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Notation Description
|ψ⟩ Vector. Also known as a ket
⟨ψ| The conjugate transpose of the vector |ψ⟩, also known as a bra
⟨ϕ|ψ⟩ Inner product between the vectors |ϕ⟩ and |ψ⟩
|ϕ⟩⟨ψ| Outer product between the vectors |ϕ⟩ and |ψ⟩

|ϕ⟩ ⊗ |ψ⟩ Tensor product of |ϕ⟩ and |ψ⟩
⟨ϕ|A|ψ⟩ Inner product between |ϕ⟩ and the matrix vector product A|ψ⟩
A† Conjugate transpose of the matrix A

Table 1: Notations used for notions from linear algebra known as Dirac notation. It is sometimes
also referred to as bra-ket notation.

which means that the product of the matrix with its conjugate transpose is equal to the identity
matrix: UU † = I. An important property of the unitary matrices is that the norm of vectors is
preserved under matrix vector multiplication.
One set of extremely useful matrices that are Hermitian and unitary are the Pauli matrices which
are listed in Figure 4, they are also equal to their own inverse (involutory).

I ≡
[
1 0
0 1

]
Y ≡

[
0 −i
i 0

]
X ≡

[
0 1
1 0

]
Z ≡

[
1 0
0 −1

]

Figure 4: The Pauli matrices.

With these notations we can explain the concepts from quantum mechanics to understand the
motivation of this thesis.

2.2 Quantum Mechanics

2.2.1 Systems and states

In physics we usually talk about physical systems and states. Physical systems are a part of the
physical universe that we try to describe and analyse [Bel12]. The state of a system is a set of
variables that describes the system at a certain point in time [Mes66].
The first postulate of quantum mechanics tell us that we make use of a complex Hilbert space to
describe the states of quantum systems, this is also known as the state space. The state a quantum
system can be in is described using a unit vector in the system’s state space, also known as the
state vector.
Some physical systems can be described using two-dimensional state vectors, also known as qubits.
Just like regular bits can be in the states 0 and 1, qubits can also be in two states represented by
|0⟩ and |1⟩. The difference between bits and qubits is that qubits can also be in states other than
these, namely, they can be in states that form a linear combination of |0⟩ and |1⟩ as show below:
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|ψ⟩ = α|0⟩+ β|1⟩ (8)

These are also known as superpositions [NC10, p. 13]. |0⟩ and |1⟩ form an orthonormal basis for
the state space, so by multiplying these vectors with the complex coefficients α and β we can form
any state vector. We can view |α|2 and |β|2 as the probabilities to measure the 0-state and 1-state
respectively. As the probability to measure something must be 1, the sum of the probabilities to
measure either of the states must also be 1, i.e. |α|2 + |β|2 = 1 [Wil10]. As a result of this the state
vector is a unit vector.
To make it easier to think about the state vectors it is common to visualise them. For high-
dimensional vectors this becomes difficult but two-dimensional vectors can be represented on the
Bloch sphere, see Figure 1. It may not be apparent how this can be done as one might think that
four dimensions are needed to represent a two-dimensional complex vector, one dimension for the
real and complex part of both dimensions. However, because of the restriction that the length of the
vector must be one, the visualisation can be brought back to 3 dimensions [Blo46]. Two-dimensional
state vectors can therefore also be represented by two angles, one for the polar and one for the
azimuthal angle, and thus by 2 parameters. A result of this representation is that orthogonal vectors
will be opposite to each other, as can be seen in Figure 1 where the vectors |0⟩ and |1⟩ are on the
north and south pole of the sphere.

2.2.2 Energy and the Hamiltonian

With each state that a system can be in, we usually associate some energy. We are often interested
in the state of a system that has the lowest energy, this state is also known as the ground state.
A system’s energy can be described using the Hamiltonian. Generally, the Hamiltonian can be
seen as an energy function, taking a configuration of the system as an argument and yielding the
corresponding energy. In quantum mechanics the Hamiltonian is an operator that corresponds
to the total energy of a system and is a Hermitian matrix, this comes from the second postulate
of quantum mechanics. Operator here means a function that maps vectors from one space to
another. The different energy levels that the system can be in are described by the eigenvalues of
the Hamiltonian. Note that because the Hamiltonian is Hermitian the eigenvalues will always be
real-valued. The states that correspond to these energy levels are those state vectors that are the
eigenvectors corresponding to these eigenvalues. Together they solve the eigenvalue equation

H|ψ⟩ = E|ψ⟩ (9)

also known as the stationary Schrödinger equation, where E is an eigenvalue of H. Thus, if the
state vector |ψ⟩ is an eigenvector of H, the energy corresponding to this state can be computed by
taking the inner product between |ψ⟩ and H|ψ⟩ and dividing by the norm of |ψ⟩, which we denote
as

E =
⟨ψ|H|ψ⟩
⟨ψ|ψ⟩ . (10)

If our states are normalized, we can leave the division by the norm out of the equation and we can
get the energy by just computing ⟨ψ|H|ψ⟩.
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2.2.3 Ising model

The Ising model is a mathematical model for studying ferromagnetism in statistical mechanics
[Gal99]. The 1D version of the model is concerned with a chain of sites, each to which a variable is
assigned representing the spin of the site, which is an intrinsic form of angular momentum carried
by elementary and composite particles [Mer98, Gri05].
In the classical Ising model, spins are represented by discrete variables and can be in either of the
two states +1 or −1. For a configuration σ that describes a spin configuration σk ∈ {+1,−1} for
each site k, the Hamiltonian of this model can be denoted as

H(σ) = J
∑
⟨ij⟩

σiσj + µ
∑
j

hjσj (11)

The notation ⟨ij⟩ here denotes that sites i and j are nearest neighbors, so this formula tells us
that each site has interactions with its nearest neighbors. The second term that is the sum over
individual sites accounts for the effect of an external magnetic field.
In the transverse field Ising model, a quantum version of the model, spins are represented by qubits
as the spin of a system can be in a superposition of states. The Hamiltonian for this model can be
denotes as

H = J
∑
⟨i,j⟩

ZiZj + h
∑
i

Xi (12)

Here Zk and Xk are the Pauli Z and X matrices, they represent the observable (a physical quantity
that can be measured) corresponding to spin along the z and x axes. The first sum term again
corresponds to the interactions between nearest neighbors and the second sum term to an external
field. If the coefficient h that determines the strength of the field relative to the nearest neighbour
interaction is 0, the model can be reduced to the classical model with field 0. First observe that we
lose the second sum term when there is no transverse field:

for h = 0 : H = J
∑
⟨i,j⟩

ZiZj (13)

Now notice that we are only left with Z matrices. As these matrices have their eigenvalues on
the diagonal, looking at the diagonal of the matrices suffices to compute the energy. We can now
only assign one of the two eigenvalues from the diagonal to each Z matrix, which is equivalent to
assigning one of the two configurations to each σ is in the classical model. We can now also easily
reason about what the lowest energy state would be. The Z matrices have eigenvalues 1 and -1. As
we are looking at neighbouring sites, their product with J must yield the lowest energy. If we know
that J is positive, then the configuration of 1 for Zi and -1 for Zj or -1 for Zi and 1 for Zj will
both yield −J as the energy. This means that the ground states of this system are those states in
which the spins are opposite to each other in an alternating fashion, see Figure 5.

2.3 Graph Theory

In order to compute the k shortest paths more efficiently we make use of several data structures. As we
implement Eppstein’s algorithm, many of the definitions that we use to explain the implementation
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Figure 5: A one-dimensional spin systems in one of the ground states.

come naturally from his paper [Epp98].
Let us first define a directed graph or digraph G = (V,E) to be a pair, where V is a set of vertices
and E a set of ordered pairs of distinct vertices. Henceforth, n will denote the number of vertices
|V | and m the number of edges |E|. If (u, v) is a directed edge e from u to v, then tail(e) = u and
head(e) = v. The weight of an edge is denoted by ℓ(e). We define a path p to be a set of edges that
connect two vertices. Note that the path from a vertex s to a vertex t will be a different set of
edges than the path from t to s (if such a path exists), this is because an edge from vertex u to
v cannot be used to go from v to u. The weight of a path ℓ(p) is then defined as the sum of the
weights of the edges in the path. Let distance d(s, t) denote the weight of the shortest path of all
paths from vertex s to vertex t. Note that for the same reason the paths between s and t consist of
different edge sets, d(s, t) is not necessarily equal to d(t, s) as the paths may consist of differently
weighted edges or even a different number of edges.
To implement Eppstein’s algorithm we use a lot of heap-like data structures. By heap we mean a
binary tree where the children of each vertex are larger or equal to the parent, also known as a
min-heap. A D-heap will denote a tree with the same weight-ordering property as the heap where
each vertex has out-degree D. In balanced heaps, any set of values can be placed into the heap
in linear time using the heapify operation and a new value can be inserted, or pushed onto the
heap in logarithmic time [Epp98]. The operation of removing the smallest element from the heap
or popping from the heap is also performed in logarithmic time, this is because the top element can
be retrieved in O(1), but if we remove the top element the heap needs to be restructured.
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3 Methods

Previously, finding the k shortest paths between the first and last layer of the graph, corresponding
to the k lowest energy states of the system, was implemented by iterating over all combinations
of start and end nodes in the first and last layer respectively and performing either a variant
of Dijkstra’s algorithm or performing Waterman’s [WB85] algorithm for each combination. The
methods described in this thesis aim to improve upon this approach in two ways. The methods
consist of changing the approach graph theoretically, by augmenting the graph, and an attempt
to improve the run time by implementing an algorithm with a better time complexity, Eppstein’s
algorithm for the k shortest paths [Epp98].

3.1 Graph Augmentation

The run time of the calculations can be improved by augmenting the graph with two vertices.
These vertices, which we will name s and t, will be added before and after the first and last layer
respectively. Directed edges with weight 0 are added from s to all of the nodes in the first layer
and from all the nodes in the last layer to t, see Figure 6. In the methods used on the original
graph, different start and end node pairs were considered and the same algorithm was run for each
pair. The result of this was that the information about paths in the graphs was lost in-between
consecutive algorithm runs. The changes that we make to the graph have no physical interpretation.
However, they allow us to keep the path information that previously was lost in-between consecutive
algorithm runs applied to the original start and end node pairs. This allows us to speed up the run
time without the need to modify existing k shortest path algorithms by applying a k shortest path
algorithm with as starting vertex s and target vertex t.

s t

0

0

0

0

0

0

0

0

0

0

0

0

Figure 6: The modified example graph. Edges connected to verteces s and t have weight 0, the rest
of the graph remains the same.

9



3.1.1 Time complexity

Assuming all sites have an equal number of q states to consider, (and thus an equal number of
vertices for each layer in the graph), this method will provide a speedup of q2. Let us see how this
works when we consider the variant of Dijkstra’s algorithm to find the k shortest paths which runs
in O(m+ kn log n) [Epp98].
If ℓ denotes the number of layers in the original unadjusted graph, then the number of vertices will
be n = ℓq and the number of edges in the graph will be m = (ℓ− 1)q2. The only change that is
made when augmenting the graph is an addition of a constant number of 2 vertices and an addition
of 2q edges. So after this modification we have n = ℓq + 2 vertices and m = (ℓ− 1)q2 + 2q edges.
Plugging in these values for n and m we find for the original graph

O(m+ kn log n) = (14)

O((ℓ− 1)q2 + k(ℓq) log(ℓq)) (15)

and for the graph after modification

O(m+ kn log n) = (16)

O(2q + (ℓ− 1)q2 + k(ℓq + 2) log(ℓq + 2)) = (17)

O((ℓ− 1)q2 + k(ℓq) log(ℓq)) (18)

Looking at the time complexity for the graph after modification in formula 17, we see that the
2’s in the number of nodes are constants and their addition can be upper bound by ℓq and for
the edges the term 2q scales less than (ℓ− 1)q2 due to the higher power in the second term and
thus can be upper bound by (ℓ − 1)q2. Therefore, a run on the augmented graph has the same
asymptotic time complexity as a single run on the original graph. However, for the original graph,
the algorithm had to be run q2 times whereas with the augmented graph only once. This is why
the augmented graph method is quadratically faster than the original method.

3.2 Eppstein’s algorithm

Another attempt at improving the run time of finding the k shortest paths lies in improving the
time complexity by implementing a different algorithm. If m and n denote edges and vertices, then
applying the variant of Dijkstra’s algorithm to find the k shortest paths will take O(m+ kn log n)
[Epp98]. Waterman’s algorithm which finds all paths in some range of p% above the minimal path
weight has a complexity of O(Rn+kR

√
n), where R denotes the average number of edges emanating

from each vertex and each path contains
√
n vertices [WB85]. Eppstein’s algorithm in general has

an asymptotic time complexity of O(m + n log n + k). However, in DAG’s O(m + k) is possible
[Epp98]. We aimed to write an implementation of Eppstein’s algorithm in Python. Specifically, we
wanted to write it in such a way that the algorithm could take as input a DAG from the networkx
library.
Eppstein’s algorithm for finding the k shortest paths between a source and target vertex makes use
of a shortest path tree, this is a sub-graph of the input graph that consists of the shortest paths
from each vertex in the graph to the target vertex. It is tree structured with the target vertex as
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root. This algorithm does not take into account multiple paths that have the same weights but have
different edges in the shortest path tree and assumes that the k shortest paths that use distinct
non-shortest path tree edges are the k shortest paths (in practice this often corresponds to the
k distinctly weighted shortest paths). As so, we provide a slight modification to the algorithm
such that it will also consider the paths of the same weight with same non-shortest path edges.
These paths will thus be longer than the shortest path but shorter than the next shortest path of
additional weight.
Even though Eppstein’s algorithm can achieve O(m+ k), this involves many additional complex
steps. We here aim to implement and explain the base algorithm that runs in O(m+n log n+k log k)
as described in his paper [Epp98]. This is already better in terms of time complexity than the
variant of Dijkstra’s algorithm since instead of a multiplication of the factor n log n with k we
only add a term of k log k. Due to a shortage of time we were unable to implement the complete
version but the base algorithm can serve as a basis for the complete version. As we only consider
the layered graphs which are DAG’s, we will not cover the treatment of cycles, the details on how
cycles are handled can be found in [Epp98].
Eppstein’s algorithm consists of six major steps in order to find the k shortest paths from source
node s to target node t which involve so-called “sidetrack edges” with “sidetrack costs”, these
terms are further explained in 3.2.2. The six steps are listed below:

1. Finding the shortest path tree

2. Calculating sidetrack costs

3. Creating a heap of sidetrack edges on the shortest path from v to t for each vertex v

4. Forming a directed acyclic graph of the heaps created in step 3

5. Modification of the newly created graph

6. Heap creation from the modified graph

An explanation of the algorithm as well as notes on the implementation and additions to the
original algorithm to account for multiple shortest paths of the same weight that use the same
non-shortest path tree edges are described in the following six sections. The seventh section will
describe how the heap that results from the sixth step can be used to obtain the paths of the graph.
To aid the explanation we make use of an example graph shown in Figure 7, it is also a DAG.

3.2.1 Shortest path tree

The first step of the algorithm is to find the shortest path tree T from target node t, i.e. the shortest
path from each vertex in the graph to t. This can be done by inverting the edges of the graph
and performing Dijkstra’s algorithm starting at t to find the minimal distance to each vertex in
O(m+ n log n). In DAG’s this is reduced to O(m+ n) because when the vertices are traversed in
topological order it is guaranteed that all incoming edges of a vertex have already been processed
since there are no cycles. This means that each edge and each vertex are visited only once. Figure
8 shows the example graph from Figure 7 with the shortest path tree and the minimum distance
from each vertex to t.
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Figure 7: Example of a graph to aid the expla-
nation of Eppstein’s algorithm where we are
interested in the k shortest paths from s to t.
It is a directed acyclic graph. Numbers in the
nodes are node labels and the numbers along
the edges mark the edge weights.
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Figure 8: Example of shortest path tree with
root t marked by dashed red edges. The shortest
path distance from each node to t is underlined
red.

3.2.2 Sidetrack costs

All edges that are not in the shortest path tree, i.e. all edges in G− T , are called “sidetrack edges”.
Given an edge e, the “sidetrack cost” δ(e) is the additional distance traveled when being “sidetracked”
along e instead of taking a shortest path to t. It can be expressed as

δ(e) = ℓ(e) + d(head(e), t)− d(tail(e), t). (19)

Figure 9 shows the previous example graph with sidetrack costs. Note that in a graph where all
paths from s to t have unique weights, a sequence of sidetrack edges uniquely corresponds to a
path from s to t, as the rest of the path is defined by the edges in T . Also note that a sequence of
sidetrack edges may not correspond to any s-t path if a pair of sidetrack edges in the sequence
cannot be connected through any path in T . The path weight that corresponds to the path in G
described by a sequence of sidetrack edges can be obtained by adding the sum of all sidetrack costs
of the edges in the sequence to the shortest path distance.
As an example, consider the sidetrack edge sequence {(s, 5), (3, 2)}. Starting from s we follow the
sidetrack edge with additional cost 6 to vertex 5. From vertex 5 we follow the shortest path until
the vertex that we visit corresponds to the tail of the next sidetrack edge in the sequence. We then
follow the sidetrack edge that has additional cost 8. Finally, we again follow the shortest path until
we arrive at t. The additional cost corresponding to this path is the sum of sidetrack costs of edges
(s, 5) and (3, 2), which is 6+8=14. The total cost of the path in G that this sequence of sidetrack
edges corresponds to is then the sum of the shortest path weight from s and the additional cost,
which is 20+14 = 34.
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Figure 9: Example of graph with sidetrack cost on the sidetrack edges. Dashed edges mark the
shortest path tree from t.

3.2.3 Sidetrack edge heaps for v

In the fourth step we create a heap HG(v) for each vertex v of all sidetrack edges with tails on the
shortest path from v to t, ordered by sidetrack cost. These heaps will be used in the next step to
create the directed acyclic graph. When finally traversing the graph they will represent possible
options of sidetrack edges.
The first step in finding these heaps for each vertex v is creating a binary heap Hout(v) of the
sidetrack edges emanating from v, with the added restriction that the root only has one child,
this is shown for the example graph in Table 2. Next, these heaps will be merged by applying a
breadth first search (BFS) on the shortest path tree starting from t. If we look at HG as a binary
heap of Hout heaps maintained by the value of their root, then the merging is done by pushing the
Hout heap of subsequent vertex onto the HG heap of the current vertex to form the HG heap of
the subsequent vertex in the BFS. For the start node t we set HG to be equal to Hout. For our
example graph, the weight of the roots of the Hout heaps are 8, 2 and 3, so the HG heaps will be
maintained by these sidetrack edges. Additionally, each node on a path from the root of the HG

heap that is the root of an Hout heap that is updated by the insertion of a new Hout heap gets a
unique identifier such that HG is built in a persistent manner, this is important for the next step.
The creation of the HG heaps is shown in Table 3, the updating of nodes (and thus assignment of a
unique identifier) is indicated with an asterisk.
An addition that was made to this procedure was the following: If there are multiple shortest paths
leading to vertex v, say one coming from vertex u and one coming from w, then HG(v) will need to
contain both HG(u) and HG(w). It can however not be obtained by applying the previous procedure
once for u and once for w as HG(v) obtained from w would then simply overwrite HG(v) obtained
from u which causes the nodes that are in HG(u) but not in HG(w) to be missing in HG(v). To
make up for this problem, the heaps are merged by first applying the procedure as usual for vertex
u and v and then popping each node from HG(w) and subsequently pushing it onto HG(v). If sw
and sv denote the sizes of HG(w) and HG(v) (after merging with HG(u)) then this procedure is
done in O(sw log sw + sw log (sv + sw)).
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Hout(t) = {}
Hout(2) = {}
Hout(3) = {(3,2), 8}
Hout(s) =

{(s,2), 2}

{(s,5), 6}

Hout(5) = {}
Hout(6) = {(6,t), 3}

Table 2: Hout heaps of all the vertices in the
example graph. (u, v) denotes the edge and
is followed by its sidetrack cost. {} marks an
empty heap.

HG(t) = {}
HG(2) = {}
HG(3) = {(3,2), 8}
HG(s) =

{(s,2), 2}*

{(3, 2), 8}* {(s,5), 6}

HG(6) =

{(6,2), 3}*

{(3,2), 8}*

HG(5) =

{(6,2), 3}

{(3,2), 8}

Table 3:HG heaps in visiting order of the BFS
from top to bottom. An asterisk marks nodes
on paths from the root that are updated by
the last insertion of an Hout heap.
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3.2.4 Graph creation

Now using the HG heaps of the previous section and the path tree from t from section 3.2.1 a
graph from which a bounded-degree heap can be found can be constructed. Note that HG can
be interpreted as heap with at most degree 3, where the root nodes of the Hout heaps have two
pointers to other Hout heaps, and one pointer to its only child which connects it to the rest of the
Hout heap. This is the reason that the Hout heaps had the added restriction that their root could
only have one child. Let us now construct a directed acyclic graph D(G) by finding all those heaps
HG(v) that have v as head of the last sidetrack edge in a sequence of sidetrack edges. The vertices
and edges in the graph are those of the found HG heaps where the unique identifier of nodes is also
taken into account such that unique nodes will be created when several HG heaps contain nodes
denoting the same sidetrack edge and it is necessary to distinguish them. See Figure 10, from here
on we will denote the sidetrack edges by their sidetrack cost as all sidetrack edges in our example
have unique sidetrack costs. This makes it easier to distinguish the different edges and visualise
them.

2

8 6 3

8

Figure 10: D(G), a graph where each node has at most out degree 3. Essentially displaying HG(s)
and HG(5). They are the corresponding heaps to the head of the last sidetrack edge of the empty
sequence, which is just s and of sidetrack edge 6. The HG heaps of the heads of sidetrack edges 8, 2
and 3 are empty.

The current implementation adds the HG heaps of all the vertices in G to D(G) by iterating over
the vertices. This will not matter for the correctness as these will become unreachable or duplicate
components of the graph later on but this implementation can be improved upon for maximum
space efficiency. There was no opportunity to adjust this in due time.

3.2.5 Graph modification

From D(G) we find the path graph P (G), (Figure 11). P (G) will contain the same vertices and
edges as D(G), its vertices are unweighted but edge weights are added. The weight of each edge e is
δ(head(e))− δ(tail(e)), these edges are called heap edges. Furthermore, edges are added from each
node v in P (G) to the node in P (G) that corresponds to the root of HG(w) when w is the head of
v in G− T , these edges are called cross edges. For our example graph, the edge with sidetrack cost
6 points to vertex 5, so in P (G) we add a cross edge from node 6 to the root of HG(5) which is
(6,2) with sidetrack cost 3. Sidetrack edges with sidetrack cost 2, 8 and 3 all point to vertices that
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have empty HG heaps, so for those no cross edges are added. The cross edges are given the weight
equal to the sidetrack cost of the sidetrack edge that they point to. Lastly, a root r is added with
edge pointing to the node that corresponds to the root of HG(s), this edge is weighted the same
way as the cross edges.
P (G) is now a DAG in which each vertex has at most out-degree four. Each path in P (G) rooted at
r corresponds to a sequence of sidetrack edges and as such to an s-t path in G. The weight of each
such path in P (G) rooted at r corresponds to the extra distance traveled on top of the shortest
path.

{}

2

2

8

6

6

4

3
3

8

5

Figure 11: Path graph P (G). The nodes represent sidetrack edges, the root represents no sidetrack
edge. The edges have the difference of the sidetrack edge cost of their head and tail as weight. The
edge from 6 to 3 is a cross edge and has weight equal to the head of the cross edge.

3.2.6 Heap creation

The next step is to create a heap from the paths in P (G), each path in P (G) will form a node in the
path heap H(G). To obtain a 4-heap H(G) from P (G) in which the nodes implicitly represent paths
in G through their sidetrack edge sequence, we perform a BFS starting at root node r. Throughout
the BFS we keep track of a sequence of sidetrack edge nodes and the total weight of the path over
which we have traveled so far. r corresponds to the empty sequence and thus the shortest path.
When we travel over a cross edge we add the tail of the cross edge to the sequence. When we visit
a vertex v in P (G), we add a node to H(G) with v added to the sequence and the total distance
traveled from r to v, though the sequence used in the BFS stays unchanged. When adding this
node to H(G), we can place it as child of its predecessor in the BFS, see Figure 12.
From H(G) an ith shortest path that has unique sidetrack edges can be obtained in O(log i), k
such shortest paths can be found in O(k log k).
As this does not account for the k shortest paths when some of the k shortest paths have the same
sidetrack edges (thus also the same weight), another adjustments was made to the algorithm. After
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having popped from H(G), all paths of same weight for the just obtained sequence are found. This
is done by iterating over the sequence. For each path in T found between a pair of sidetrack edges
in the sequence we find all the paths in-between the subsequent pair of sidetrack edges. Note that
this will take exponential time. When we take this into account, the original time complexity will
be violated. The worst case for the layered graphs that we work with will arise when all edges have
the same weight. In that case all paths will be found from s to t which will take O(2n) or more
precisely O(qℓ) in terms of ℓ layers and p points per layer.

({}, 0)

({2}, 2)

({8}, 8) ({6}, 6)

({6,3}, 9)

({6,8}, 14)

Figure 12: The final heap for our example graph with a bounded degree of at most 4. Each node is
a pair of a sidetrack edge sequence and additional weight with respect to the shortest path.

3.2.7 Obtaining the paths from the heap

Finally, to obtain the k paths in G from the 4-heap H(G), we pop k times from H(G). Each node
that we pop contains a sequence of sidetrack edges, which is an implicit representation of a path
in G. Because of the heap structure of H(G) the weight of the path represented by every node
that is popped next will be larger or equal to the path weight of the nodes that have already been
popped. Each node will also contain an additional sidetrack cost and the total weight of the path
can be computed in constant time by adding the additional sidetrack cost to d(s, t), (the shortest
path distance). The edges that the path consists of explicitly can be found in time proportional to
the number of edges by starting a traversal at the source vertex s and following the edges in the
shortest path tree T and edges in the sidetrack edge sequence, as explained in section 3.2.2.
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4 Results

To test these methods, six benchmarks were run that can be divided into two categories. The
first category benchmarks the graph augmentation method. The second category benchmarks our
implementation of Eppstein’s algorithm. In all of the benchmarks we are interested in the run time
of the different methods for different graph configurations. Because run times may vary depending
on the computer hardware that is used, we list the hardware for our experiments in the appendix.
Specifically, the processor that is used and the amount of available memory and its speed will
influence the speed at which calculations can be performed. We will refer to the used hardware
in each experiment, this way it is easier to make comparisons with experiments that are run on
different hardware in the future.

4.1 Graph Augmentation

To test the graph augmentation method, two benchmarks were run. For both benchmarks we made
use of the variant of Dijkstra’s algorithm for the k shortest paths. Both benchmarks compare the
original method of iterating over all start and end node pairs with the method of running the
algorithm once on the augmented graph. For the first experiment we use a fixed number of points
for each site and vary the number of sites, see Figure 13a. For the second experiment we choose a
fixed number of sites and vary the number of points per site, see Figure 13b. The benchmarks time
the run time of the algorithm for all of the different graph configurations.
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(a) All graphs had 100 points per site.
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(b) All graphs had 100 sites for each number of points.

Figure 13: Comparison of original and augmented graph method showing the run time of the variant
of Dijkstra’s algorithm for the k shortest paths. For each data point, 5 randomly weighted graphs
were timed to get an average run time. For most data points, the error bars are smaller than the
symbol size.

In Figure 13a we see two trends that curve in roughly the same way. We see that the difference in
runtime grows when we increase the number of sites in the graph and keep the number of points the
same. Figure 13b shows two trends on log scale and we can see how the trends for the original and
augmented graph slowly diverge, this represents the quadratic speedup of q2 as we now increase
the number of points q and keep the number of sites the same.
All benchmarks for Graph Augmentation were run on the same machine A.1.
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4.2 Eppstein’s algorithm

To test the performance of our implementation of Eppstein’s algorithm we ran four more benchmarks,
these can also be divided into two categories. Two of the benchmarks were run on graphs with random
weights, and the two others were run on graphs with weights defined by the Ising Hamiltonian. In
the last category, small random perturbations were added to the weights such that the k shortest
paths would be distinctly weighted and thus uniquely defined by sidetrack edge sequences. This
was done so that the algorithm would still run in the time complexity of Eppstein’s algorithm
and we would not see an effect of the exponential time needed to calculate paths with same
sidetrack edge sequence. By doing this we could in the future also test the algorithm on the graphs
without perturbation and see how much time is spent on calculating paths with same sidetrack
edge sequences. All of the four tests compare Eppstein’s algorithm to Waterman’s algorithm in
terms of run time. The random weights and perturbations were seeded such that both algorithms
ran on the same random graphs.

4.2.1 Randomly weighted graphs

For the randomly weighted graphs two tests were run. One uses a fixed number of 9 points for each
site and varies the number of sites, see Figure 14a. The other uses a fixed number of sites and varies
the number of points per site, see Figure 14b. We used a number of 9 points per site in 14a because
during the testing we found out that the implementation of Waterman’s algorithm can not handle
larger graphs as it reaches the maximum recursion depth in Python. Waterman’s algorithm could
be rewritten in a non-recursive fashion to run tests for a higher number of points, there was no
time for this however. In 14a we also see that the data point for Eppstein at 8 sites is missing, this
is because the algorithm was running for over 12 hours for the 5 repetitions it performs, meaning
that each run was roughly taking over 2.4 hours or over 8500 seconds.
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(b) All graphs had 5 sites for each number of points.

Figure 14: Comparison of Eppstein’s and waterman’s algorithm on graphs with randomly initialised
edge weights. 5 repetitions were done for each execution and the average and standard deviation
are plotted. For most data points the error bars are smaller than the symbol size.
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4.2.2 Slightly perturbed graphs

For the graphs in which the weights are defined by the Hamiltonian the same set of tests was
performed as for the randomly weighted graphs. One uses a fixed number of points for each site
and varies the number of sites, see Figure 15a. The other uses a fixed number of sites and varies
the number of points per site, see Figure 15b. In Figure 15a we use a fixed number of 9 points and
have 1 missing point for Eppstein for the same reason as in the previous section.
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Figure 15: Comparison of Eppstein’s and Waterman’s algorithm on graphs with randomly perturbed
edge weights. 5 repetitions were done for each execution and the average and standard deviation
are plotted. For most data points the error bars are smaller than the symbol size.

All benchmarks for Eppstein’s algorithm were run on the same machine A.2.

4.2.3 Eppstein analysis

The trends for the similar experiments of section 4.2.1 and 4.2.2 look the same, so we will cover
their analysis in the same section. We can see that in the experiments that vary the number of
sites, figures 14a and 15a, Eppstein’s algorithm seems to scale super-linearly on logarithmic scale.
In the figures 14b and 15b we also see how our implementation of Eppstein seems to scale linearly
on logarithmic scale which means it scales as a constant to the power of the number of points. This
is not what we would expect given the time complexity of Eppstein’s algorithm. After running the
experiments, we timed all major steps of our implementation of Eppsteins algorithm and found
out that there was still a mistake in the implementation. The function that was responsible for
translating the path graph to a 4-heap as described in section 3.2.6 was implemented with a BFS
that does not mark the nodes. This way the function explores all possible paths in the path graph
which scales exponentially in the number of nodes of the path graph (O(2n)). After addressing this
mistake, we tested the code again but found that the implementation did not always provide us
with the correct result anymore, which leads us to believe there must be a mistake earlier in the
implementation. We have not been able to investigate this issue further.
What we would expect from a correct implementation of Eppstein’s algorithm is that it scales
better than Waterman’s or Dijkstra’s algorithm but that it might start off higher due to a large
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prefactor. Eppstein’s algorithm involves the manipulation of complex data structures and due to
this, as noted by [AHN+15] as well, there is a large constant factor hidden in its O-notation.

5 Conclusion

We explored two possibilities of improving the run time of the new iterative method by J. Tura and
P. Emonts for finding the product state approximations of ground states and their corresponding
energy. The possible improvements were tested on randomly weighted graphs and graphs defined by
the Ising Hamiltonian with small perturbations and compared to previous methods. The method
that makes use of augmented graphs performs better than the method that iterates over all start
and end node pairs. We were unable to find conclusive evidence on whether Eppstein’s algorithm
will provide a better run time on the graphs of interest due to the mistakes that remained in our
implementation of his algorithm. In the future, it would be interesting to benchmark a correct
implementation of the algorithm again against other existing algorithms to find where the crossover
point lies and to see at what graph sizes the complexity of Eppstein’s algorithm takes over and
performs better than the other algorithms.
Further research may be done in improving the additions that were made to the algorithm to
account for multiple paths of the same weight. The first addition was the merging of HG heaps
when multiple shortest paths lead to the same vertex from section 3.2.3. It might be possible to
improve the complexity of this to O(sv + sw) by implementing a heapify operation. The second
addition was finding all paths for a given sequence of sidetrack edges whilst popping from the final
heap of paths from section 3.2.6. We might improve this method by implementing a DFS that
returns at most k paths for a sequence rather than all of them.
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A Computer Hardware

Hardware used in the experiments for reference.

A.1 Computer A

• CPU: i7-8750H @3.9 GHz

• RAM: 16GB @2666 MHz

A.2 Computer B

• CPU: Ryzen 7 5800H @4.2 GHz

• RAM: 24GB @3200 MHz
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