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Abstract

In the field of computer vision, recent deep learning techniques aimed
at extracting, without supervision, structured representations centered
around objects from raw perceptual data. Disentangling factors of varia-
tion in these object-centric representations can enhance the robustness of
latent features, enabling more efficient and effective learning of multiple
downstream tasks. Despite previous literature in representation learn-
ing focused on this aspect, to the best of our knowledge, no approaches
dealt with the explicit separation of shape and texture factors within
the context of object-centric learning. In this thesis, we propose a novel
architectural design that biases object-centric models toward encoding
texture and shape information into two non-overlapping subsets of the
latent space dimensions that are known a priori. Additionally, this de-
sign allows the introduction of a self-supervised loss that, along with the
traditional reconstruction loss, helps to achieve our goal by encouraging
accurate transfer and adaptation of textures between entities presenting
distinct shapes. After extending the architecture of Slot Attention to fol-
low our design, we managed to obtain the desired disentanglement, while
also improving the performance of the original model. Consequently, our
models display the capability of composing new entities by transferring,
interpolating, noising, or sampling textures and shapes of the objects in
a scene. These results demonstrate a step forward in the direction of
more robust and interpretable object-centric representations in the field
of computer vision.
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1 Introduction

Learning to represent data in such ways that are convenient to be leveraged by a
multitude of tasks is one of the most important problems in deep learning. It be-
comes particularly complex when approached in unsupervised or self-supervised
settings, although opens the possibility of exploiting large unlabeled datasets.
In the context of computer vision, recent literature [1H10] focused on represent-
ing, without supervision, visual scenes composed of multiple objects as sets of
object-centered latent vectors. This strategy allows for more structured rep-
resentations compared to single flat vectors encoding complete images. In the
latter, in fact, objects can be separated into distinct latent components, with the
downside of not sharing features, even if related to common properties such as
the position. Instead, with object-centric vectors, each visual entity is encoded
in the same space, improving generalization and interpretability since they are
clearly divided and described by the same features. Our work is based on this
topic, which is often referred to as object-centric representation learning.

Disentanglement is considered one of the most important properties for learn-
ing robust representations of complex and structured visual scenes |11]. The
term refers to the encoding of different factors of variation in the data into
separate dimensions of the latent space. This property, other than enabling an
easier interpretation of the learned features, leads to representations that can be
meaningful even outside the data distribution. As a consequence, the disentan-
glement should help the learning of relevant but unknown downstream tasks,
for instance in the context of reinforcement learning. Prior work in object-
centric representation learning [1L[2] exploited VAEs [12] and spatial broadcast
decoders [13] to help the disentanglement of the features. Biza et al. [10] pro-
posed instead an extension of the popular Slot Attention architecture aimed
at learning object representations invariant to position, orientation, and scale,
allowing for the disentanglement of those three factors. However, to the best
of our knowledge, no research has been carried out on the explicit disentangle-
ment of texture and shape dimensions in object-centric learning, especially with
non-probabilistic models. By the term explicit, we refer to the process of choos-
ing (and thus knowing a priori) which latent components will be responsible
for encoding certain factors. One possible benefit of explicit disentanglement is
the more reliable modeling of structured latent spaces. Moreover, it offers the
possibility of designing objectives that exploit this prior knowledge from the
beginning, removing the need to analyze and interpret the latent components
during or after the training process.

Our work focuses on biasing object-centric models toward explicit disentangle-
ment, thus in a known a priori structure, of the features responsible for encoding
shape and texture information. We achieve this with a novel architectural design
that takes advantage of the separate prediction of mask and texture typically
present in object-centric models. The idea is to employ two encoder-decoder
pairs, one encoding shape information and decoding object masks and the other
representing and predicting object textures. Additionally, either a fixed filter
(e.g. Sobel filter) or a learned bottleneck filter is used to remove texture infor-
mation from the input image. The resulting filtered image represents the input
of the shape encoder, which helps prevent texture information from flowing into
shape-related latent components. This design can be adapted to suit different
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existent architectures, such as Slot Attention [5], IODINE [2], and MONet [1].
Furthermore, as anticipated, the a priori knowledge of which latent space com-
ponents will encode texture and shape information allows for the introduction
of novel objectives to support the learning of object-centric representations. We
provide an example by proposing Latent Compositionality Loss (LCL), a self-
supervised objective that, paired with the usual reconstruction loss, explicitly
pushes the model to learn accurate transfer and adaptation of textures between
entities presenting different shapes, helping to obtain the desired disentangle-
ment property.

To evaluate our work, we extend the architecture of Slot Attention following
the proposed design and denominate it Disentangled Invariant Slot Attention
(DISA). The term invariant refers to the use of slot-centric reference frames
introduced by Biza et al. [10] with Invariant Slot Attention (ISA). Our exper-
iments demonstrate the introduction of the desired disentanglement property
in the learned representations, while also obtaining an improvement over the
performance of the original model on three well-known synthetic datasets.

In the following two sections, we cover the necessary background information to
understand this thesis (Section, other than presenting work that is related to
ours (Section[3). Our methodology is detailed in Section [4] while Section [5] and
Section [6] present our experiments and results. Finally, we conclude the thesis
in Section [7] with a discussion of our proposals and findings, as well as potential
directions for future research.
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2 Background

This section introduces key concepts essential for the complete understanding
of our work. We begin with the attention mechanism in Section [2.1} a compo-
nent at the core of Slot Attention (Section and, therefore, of DISA. Then,
we present the slot-centric reference frames (Section , the key to inducing
the disentanglement of position and scale in the object-centric representations
learned by Slot Attention. Lastly, we introduce the Sobel filter (Section ,
employed in our methodology to detect the edges of objects in an image.

2.1 Attention Mechanism

Consider three sets of vectors called queries, keys, and wvalues, represented re-
spectively by the matrices Q € RMaxdk K € RNoXdr and V € RN»*dv Keys
and values are paired, in the sense that the i-th key K; is associated with the
i-th value V;. For each query Q;, the attention mechanism outputs a vector A;
computed as a convex combination of the values, thus

N, N,
A; = ZwijVj with Z’wij =1. (1)
j=1 j=1

The weights, which can be seen as a probability distribution over both keys and
values, are obtained through a normalized similarity function between the given
query and all the keys. This function is commonly the dot product, defined as

dy,
Qi K;j=> QuKj = ||Qill IIK]| cosa, (2)

=1

where « is the angle between Q; and K;, taking therefore into account the
magnitudes of the two vectors and the angle between them. To normalize the
similarities, the softmax function is frequently employed, allowing us to finally
define the weight w;; as

eQiK;

w;; = softmax(Q,K"); = R
=1

3)

Usually, each dot product in Equation s scaled by ﬁ in order to prevent it
from getting too large in magnitude for high values of dj, which could result in
extremely small gradients during training [14]. In a more compact formulation,

the complete attention mechanism can be written as

A(Q,K,V) = softmax (QKT> V € RNaxdo (4)
Vd,

where the softmax is individually applied to each row of the matrix % €

RNaxNo, Figureshows a scheme of the aforementioned computations involved

in the attention mechanism.

It is now left to understand how Q, K, and V are actually obtained. There are
two main strategies, one called self-attention and the other cross-attention. In
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self-attention, Q, K, and V originate from the same source, such as a sequence
of text embeddings, in the context of Natural Language Processing (NLP),
or a sequence of patch embeddings, in the context of Computer Vision (CV).
Intuitively, each vector in the input sequence is able to attend to every element
in that same sequence and compute as output a vector that relates all the
sequence information. Figure illustrates a simple example of self-attention
in CV inspired by the Vision Transformer (ViT) . An image is divided
into N, patches, all of which are first flattened and then projected in a dj-
dimensional space through three linear transformations Q = PWQ, K = PWK,
and V. = PWV, where P € RM»*% represents the matrix of flattened patches,
WQ WK ¢ R¥>d and WV € R%*% are respectively the queries, keys, and
values parameters matrices. After the projections, Q, K, and V are processed as
in Equation yielding a vector (embedding) A; for each patch (A € RM»xdv),

Q
i
A 1
— A2
Self-
Attention
module
A
- A16

Figure 1: (a) Scheme of the attention mechanism. Q € RN«*%: represents the
queries, K € RN+ the keys, and V € RM X9 the values. The output is
a Ny x d, matrix. (b) Example of self-attention on N, = 16 image patches
inspired by the Vision Transformer (ViT). The patches P are flattened and
projected as queries, keys, and values. The attention mechanism outputs an
embedding A; for each patch P;.

In cross-attention, instead, the queries derive from a different source than keys
and values. Figure [2] presents an example of cross-attention inspired by the
DEtection TRansformer (DETR) . Suppose that we want to detect a max
of N, objects within an image (i.e. inferring their bounding boxes and class
labels) by using cross-attention. A simple strategy could be to divide the image
into patches, flatten them, and then project them as keys and values, but not
as queries. Q is instead a set of learned vectors, called object queries in this
example, that is directly fed to the cross-attention module. As output, IV,
vectors (one per object query) are returned as a matrix A and finally passed
through a shared feed-forward network (FFN) predicting bounding boxes and
class labels. The queries can therefore learn to look, e.g., for some specific
patterns or in various specific positions inside the image and, when nothing is
found, should predict the absence of an object.
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Figure 2: Example of cross-attention with N, = 4 object queries inspired by the
DEtection TRansformer (DETR). The patches P are flattened and projected as
keys and values. The queries are 4 learned vectors. The attention mechanism
outputs a vector A; for each object query Q;, which is then passed through a
shared FFN that predicts bounding box and class label of a potential object.

In the last two examples, the presence of positional encodings (or embeddings)
has been neglected. However, the attention mechanism is invariant with respect
to the order of keys and values, meaning that permuting the rows of K and V (in
the same way) would produce an equivalent output. If the queries are instead
permuted, the output is permuted accordingly. Consequentially, considering
again the examples in Figures[Ibland[2] we should augment the flattened patches
with information regarding their relative or absolute position in the image, so
that the model is able to reliably know and exploit their locations. In the next
subsection, a practical example involving positional embeddings in computer
vision will be covered more in detail.

2.2 Slot Attention

The Slot Attention (SA) module is an architectural component proposed by
Locatello et al. [5] in 2020 and it is based on the concept of cross-attention. Its
aim is to bind a set of latent vectors called slots to different objects, seen as
parts of the input perceptual representations through multiple iterations of a
competitive attention mechanism. The set of N, slots S € R¥:*4s is initialized
by independently sampling each from a Gaussian distribution with shared and
learnable parameters j, 0 € R%, which allows Slot Attention to generalize the
number of slots at test time. In the paper, the N, input representations X €
RN=*dz are feature vectors at the output of a CNN backbone augmented with
positional embeddings. These inputs are normalized over both dimensions using
layer normalization (LayerNorm) , then finally projected as keys and values
K,V € RN+X4 of a3 common dimension d through the linear transformations
kv : R% — R? At each of the T iterations, the slots from the previous
round are (independently) normalized, mapped as queries by ¢ : R% — R9,
and then refined. Figure [3 illustrates a single refinement step t of the Slot
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Figure 3: Illustration of the computations inside the Slot Attention module for
a given iteration ¢.

Attention mechanism. As shown, the previous slots S'~! (where S° are the
sampled ones) are mapped as queries and fed to the competitive cross-attention
module, which yields one vector U; for each Q;, referred to as update. The
updates are then passed as inputs to a shared Gated Recurrent Unit (GRU)
18], while the associated slot vectors from S!~! are set as hidden states. The
outputs, which are the updated hidden states, are transformed by a shared
MLP with a residual connection 7 resulting in the new slot vectors St. The
competition between slots for explaining part of the input is induced by an
additional normalization in the cross-attention mechanism, performed by using
the softmax function over the queries before linearly normalizing over the keys.
Formally, the attention coefficients are computed as
M T

Wij = — " Where M= QK € RN=xNe

SHaPe Vi | ®)

producing a probability distribution over the slots for each input vector. After
that, the update vectors U; are calculated as in Equation

- E Ve wi - )
Ui = ijV] with Wij = =N, . (6)
j=1 1=1 Wil
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where the weights are normalized over the inputs so that Zj\f:zl w;; = 1.

Regarding the positional embeddings, the authors employ a grid with shape
H x W x 4, where H and W are respectively the height and the width of the
feature maps at the output of the CNN backbone (note that H x W = N,). As
shown in Figure [4] the four channels of the grid represent linear gradients from
0 to 1 pointing in the four cardinal directions, so that every point on the grid
is encoded by its normalized distances from the four borders. After flattening

-1.0
-0.8
-0.6
-0.4
-0.2
0.0

Figure 4: Visualization of the four channels of the positional grid used by Slot
Attention. Here the grid has shape 10 x 10 x 4. Each channel represents a
linear gradient [0, 1] pointing in one of the four cardinal directions. From the
left: downward, right, upward, and left.

the grid as G € [0,1]V+*4 each 4-dimensional vector is linearly mapped to
dimension d, through g : [0,1]* — R% and summed to its corresponding feature
vector:

X =X+¢(@), (7)

where X € RN=%ds denotes the feature maps from the CNN with flattened
height and width dimensions.

It is possible to exploit Slot Attention (coupled with a backbone) as a structured
encoder in an autoencoder architecture, such as the one in Figure[}] The model
is trained end-to-end to represent an input image as a set of latent vectors that
are decoded back to the original image. A shared spatial broadcast decoder
is used to decode the slots individually: each is repeated in a H x W
grid, augmented with positional embeddings, and passed through a series of
convolutional layers. The output is an H x W x 4 tensor, where the first three
channels correspond to RGB components, while the last one is the alpha mask
of the decoded object. The reconstructed image is computed as the sum of the
RGB predictions weighted by the alpha masks. At training time, the model
parameters are optimized to minimize the mean squared error (MSE), that is
the sum of the squared differences between the reconstructed and target (input)
pixels, divided by the number of pixels.

2.3 Slot-Centric Reference Frames

With Invariant Slot Attention (ISA), Biza et al. presented a mechanism for
introducing per-object invariances to pose transformations in the latent repre-
sentations. To achieve this, slot-centric relative grids are produced by trans-
lating, scaling, and rotating the absolute positional encodings, with the aim
of processing the feature vectors in canonical reference frames. The rotation
invariance is not covered in this section as it is not employed in our method.
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Figure 5: Slot Attention architecture.

At the first iteration of Slot Attention, translation and scaling factors S!, and
S,

. ale associated with the slot S; can be randomly sampled or learned. The
relative grid is then computed as

. G-8
Gl = T (®)
scale
and its projection is summed to the feature vectors X to obtain per-object
inputs: o ‘
X' =X+g(G") . (9)

These are mapped as keys and values and processed by competitive cross-
attention with the query derived from S;, yielding an update vector and the
attention weights w;. During the next iteration, w; is used to extract the new
translation and scaling factors as

3 ZN:II wiqu:'
Spos = JTJ (10)
Zj:l Wij
and
; S0y (wig + (G = Sy)?
scale — . N 2 E 3 (11)

Zj:l (wij +¢€)

which are again employed to calculate the relative grid of the i-th object. Note
that, differently from SA, in ISA the grids have two dimensions (horizontal and
vertical) instead of four, with values in the range [—1, 1].

Since the slots vectors returned by ISA do not encode information about the
position, scale, and rotation of the objects, it is necessary to use relative grids
even during the decoding phase. In this case, the last translation and scaling
factors are exploited to compute the grids as in Equation [§] and added to the
broadcasted slots.
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2.4 Sobel Filter

The Sobel filter , or Sobel-Feldman operator, was presented in 1968 by Irwin
Sobel and Gary Feldman during a talk at the Stanford Artificial Intelligence
Laboratory. This operator uses two 3 x 3 filters to approximate the horizontal
and vertical derivatives of an image:

+1 0 -1 +1 +2 +1
Ki=1|+2 0 —-2| and K,=| 0 0 0. (12)
+1 0 -1 -1 -2 -1

A 2-dimensional convolution operation with K, and K, is applied on the in-
put image X', producing two maps of the approximated horizontal and vertical
derivatives at each pixel, respectively G, = K, * & and G, = K, x X'. Figure
@ shows an example of the resulting G, and G, of the grayscale image @
To obtain the final filtered input containing the detected edges, the maps are

aggregated as
G=./02+G2. (13)

The filtered image associated with the previous example is shown in figure [6¢

RN R

Figure 6: Example of the Sobel filter applied to a simple grayscale image. (a)
Input image X. (b) Maps of the approximated horizontal (G, left) and vertical
(Gy, right) derivatives of X" at each pixel. (c) Filtered input image G computed
combining G, and G, following Equation

When dealing with RGB images, there are two possible approaches. The first is
to simply convert the image to grayscale before applying the Sobel filter. The
second, which we employ in our method, consists in applying the filter indepen-
dently to each channel, then averaging the three resulting filtered images.
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3 Related Work

Object-centric representation learning The architectural design we pro-
pose is aimed at models learning object-centric representations of visual scenes
in an unsupervised or self-supervised manner, which are recently capturing more
attention in the fields of computer vision and deep learning. A first line of work
heading toward this direction is defined by AIR [21], which performs probabilis-
tic inference employing a recurrent neural network (RNN) that attends and pro-
cesses one object in a scene at a time. Subsequent literature extended this idea
in order to solve some of its limitations, such as SQAIR [22], SuPAIR [23], and
others [24-26]. Further advancements in object-centric representation learning
include Tagger [27], Multi-Entity Variational Autoencoder (MVAE) [28], and
Neural Expectation Maximization (N-EM) [29] with its extension R-NEM [30].
More recently, MONet [1], IODINE |[2], and GENESIS [3,/4] achieved mean-
ingful decomposition of non-trivial scenes characterized by a non-fixed number
of objects, e.g. in the CLEVR dataset [31]. Finally, Slot Attention [5], along
with various extensions [6-10]), introduces its iterative mechanism, emerging
for being faster to train and more memory efficient than its predecessors, while
matching or even outperforming the other methods.

Disentanglement in object-centric learning Within the object-centric
representation learning literature, works such as [1,[2}/10}/32,33] study and aim to
achieve the disentanglement of different factors of variation. In particular, Biza
et al. [10] propose an extension of Slot Attention (i.e. ISA) that learns object
representations invariant to changes in position, scale, and rotation with the
use of slot-centric reference frames, allowing for the explicit disentanglement of
those three factors. We exploit the concept of slot-centric reference frames in our
work to avoid position and scale information to flow into texture-related latent
components. Furthermore, as in ISA, we possess a priori knowledge of which
of the latent dimensions are associated with a disentangled factor, differently
from, for instance, MONet [1] and IODINE |[2]|, where this knowledge can only
emerge after training. However, to the best of our knowledge, no research dealt
with the explicit disentanglement of texture and shape factors in object-centric
learning. The goal of our work is to address this last problem.

Texture and shape disentanglement Outside the scope of object-centric
learning, approaches including [34H36| attempt to disentangle shape and texture
in the domain of single-object images. Deforming Autoencoders [34] employs
a pair of decoders, of which one synthesizes appearance in a deformation-free
coordinate system, while the other estimates a deformation field that warps
the texture into the input image. One aspect that aligns with our work is the
adoption of two separate decoders for texture and shape synthesis. Lorenz et
al. [35] aim, without supervision, to disentangle appearance and shape in the
representations of multiple parts of a single object class. To do so, they set
into the reconstruction task three invariance and equivariance constraints by
exploiting texture and shape transformations of an input image. Differently,
TSD-GAN [36] uses an adversarial framework to learn to both reconstruct the
item in an input image and mix it with the item from another sample. These
last two works share some similarities with our latent compositionality loss.
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4 Methodology

The primary aim of our work is to induce object-centric models to learn repre-
sentations characterized by the explicit, and thus known a priori, separation of
features encoding texture and shape information. To allow for this, we propose
an architectural design that can be adapted to suit different existent architec-
tures, such as Slot Attention, IODINE, and MONet.

Consider a generic architecture for unsupervised object discovery, encoding an
image into a set of latent representations (slots) and decoding them back as
pairs of mask and texture reconstructions, schematized in Figure [/} We want

Predicted Textures

Siot#3

Reconstructed Input

Predicted Masks

Figure 7: High-level architecture of a generic object-centric autoencoder for
unsupervised object discovery. An input image is encoded into a set of latent
vectors, which are then decoded back as pairs of mask and texture reconstruc-
tions.

the latent vectors to have a subset of their components encoding only texture
information (e.g. material and color), and the remaining dimensions encoding
only shape information. In order to enforce this disentanglement, a possible
strategy is to encode the two mentioned subsets starting from different sources:
the texture-related part from the original image, and the shape-related from
a filtered version of it containing the borders of the objects. The architecture
would therefore assume the structure presented in Figure [§] where we refer to
these parts as texture slots and mask slots. However, directly decoding the entire
vectors into the aforementioned pairs provides a low guarantee that the texture
slots will not also include shape information (present in the input image), or
that the mask slots will be even exploited by the decoder. Instead, following the
architectural design illustrated in Figure[d] the masks can be inferred exclusively
based on the shape-related components, ensuring that these will include the
necessary shape information. Then, the complete representations are decoded
into texture reconstructions. Since the shape already has to be encoded in one
subset of the components, there is now a higher guarantee that the decoder will
learn to exploit their information, leading the texture-related components not
to encode it too. Information about scale and position can be either included
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Predicted Textures

[Texture Slot #2, | Mask Slot #2 I’
<
o s \

Reconstructed Input

Filtered Input Predicted Masks

Figure 8: High-level architecture of an object-centric autoencoder for unsuper-
vised object discovery. Each object is represented by a latent vector, of which
one part (texture slot) should contain texture information extracted from the
input image, while the second part (mask slot) shape information extracted
from the filtered image. A single decoder maps the latent vectors into mask
and texture reconstructions. This architectural design provides a low guarantee
that the texture slots will not also include shape information, or that the mask
slots will be even exploited by the decoder.

in the shape-related parts of the vectors or disentangled such as in ISA.

To filter the input image two strategies are followed. The first uses the previ-
ously introduced Sobel filter, producing a map of the edges in the image, while
the other involves a learned bottleneck between the image and the object-centric
encoder. The latter projects the RGB image into a single channel that is sup-
posed to act as an edge (or border) detector. Further details are presented in
the following subsection.

We evaluate our idea by applying it to Slot Attention and denote the resulting
architecture as Disentangled Invariant Slot Attention (DISA), covered in detail
in Section
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Figure 9: Proposed architectural design of an object-centric autoencoder for
unsupervised object discovery. Each object is represented by a latent vector, of
which one part (texture slot) should contain texture information extracted from
the input image, while the second part (mask slot) shape information extracted
from the filtered image. There are two decoders, one predicting the masks from
the mask slots and the other decoding the complete latent vectors into texture
reconstructions. This design provides a better guarantee, compared to the one
in Figure 8] that the shape information will be encoded exclusively in the mask
slots.
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4.1 Bottleneck Filter

As mentioned, we want to avoid encoding texture-related information in the
mask slots by filtering it out from the input image. This could be achieved with
an ideal filter able to produce segmentation masks such as the one in Figures
and [0] which would simply not provide that information to the encoder of
the mask slots. We ignore models pre-trained with supervised learning on this
task as we assume the complete absence of labels. While the Sobel filter can
be helpful, it does have a drawback in that it takes into account all the edges,
including the ones of objects’ textures. An alternative strategy is to learn a
single-channel bottleneck that would act as the filter. The bottleneck is trained
with the rest of the model using the reconstruction loss and is pushed to consider
all the edges necessary to allow the identification of the entities in the scene.
Figure [I0]shows the architecture of the bottleneck filter. An RGB image passes
through the first 2d convolutional layer yielding a set of feature maps that are
fed to the second convolutional layer. This computes another set of feature
maps that are finally passed through the last layer having one kernel and thus
producing the filtered single-channel image. Every layer has SAME padding,
hence the input resolution is maintained, and its output is activated by the
Leaky ReLU function. Moreover, at the second and third layers, the image is
concatenated to the feature maps along the depth (channel) dimension. The
middle layer can be repeated multiple times in order to allow for additional
processing before the final convolution.

RGB Image (3 channels)

Feature Maps
(32 channels)

Feature Maps

(32 channels) Filtered Image (1 channel)

_________ \ | Conv2d
) Layer

/| save padsng)

Concat along channel dimension

Figure 10: Architecture of the bottleneck filter. An RGB image passes through
the first conv2d layer and yields a set of, e.g., 32 feature maps. These are fed to
the second conv2d layer that computes the second set of feature maps, finally
passed through the last layer having one kernel and thus producing the filtered
single-channel image. Every layer has SAME padding and, at the second and
third layers, the image is concatenated to the feature maps along the depth
dimension. The middle layer can be repeated multiple times in order to allow
for additional processing before the final convolution.
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4.2 Disentangled Invariant Slot Attention

Disentangled Invariant Slot Attention (DISA) is an object-centric architecture
that follows the design presented in Figure [J] and leverages both the Slot At-
tention mechanism and the slot-centric reference frames of ISA. DISA (shown
in Figure is composed of two CNN encoders extracting two sets of feature
vectors, one from the input image and the other from its filtered version. The
SA module serves to identify the objects from the second set of feature vectors,
producing an attention mask and a mask slot for each of them. Since the fea-
ture vectors #2 are augmented with absolute positional embeddings, the mask
slots are supposed to encode shape, position, and scale information. With the
attention masks, we can compute position and scaling factors such as in Sec-
tion that allow us to obtain the objects’ relative grids used to augment the
feature vectors #1. Following Equation [0} the texture slots are produced by
projecting the augmented feature vectors as values and aggregating them with
the normalized attention masks as weights. Therefore, the texture slots should
encode texture information according to the attention masks, while ignoring
absolute position and scale due to the use of relative frames. Finally, a pair of
decoders is used to reconstruct the image: the mask slots are fed to decoder #2
that infers the set of masks, while the complete slot vectors (concatenation of
mask and texture slots) are given as input to decoder #1 in order to predict
the textures coherently with the shape of the objects. As in Slot Attention, the
final predicted image is the combination of texture reconstructions weighted by
the masks.

4.3 Latent Compositionality Loss

Since there is still no strong guarantee that a model designed following Figure
[0 will learn representations characterized by the disentanglement of features
encoding texture and shape information, we propose a self-supervised loss that
can be paired with the usual reconstruction loss to explicitly push the model
to learn such representations. The idea is to encode an image, permute the
textures of the objects in it while maintaining their shapes, positions, and sizes
fixed, then decode these permuted vectors back. To allow for this permutation,
the representations should be object-centric, with their components related to
texture information known a priori as, for instance, in our proposed architectural
design. If we had a target image associated with these permuted vectors, we
could simply optimize the model with an additional MSE term between the
(permuted) reconstructed and target images. However, given that we have no
access to that information, an alternative approach is to work in the latent
space. In fact, it is possible to encode the reconstructed image and constrain
the obtained latent object vectors to be as close as possible to the initially
permuted representations. An illustration of this strategy, which we refer to
as Latent Compositionality Loss (LCL) can be found in Figure Intuitively,
the model should learn to reconstruct the switched textures well enough for the
encoder #1 to recognize them again, but also to adapt them to the assigned
shapes in such a way that the encoder #2 can still detect them. Note that we
use the Ly loss in our experiments, but the Lo loss would also be suited for the
task.
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Figure 11: Architecture of Disentangled Invariant Slot Attention (DISA). Each
object is represented by a latent vector, of which one part (texture slot) should
contain texture information extracted from the input image (encoder #1), while
the second part (mask slot) shape information extracted from the filtered image
(encoder #2). Specifically, the mask slots are obtained from the feature vectors
extracted by encoder #2, augmented with absolute positional embeddings, and
fed as keys and values to the Slot Attention module. The texture slots arise
from the combination of the attention masks extracted from the last iteration
of the SA module and the feature vectors from the encoder #1, augmented with
relative positional embeddings. There are two decoders, one predicting the
masks from the mask slots (decoder #2) and the other decoding the complete
latent vectors into texture reconstructions (decoder #1).
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Figure 12: Illustration of the proposed latent compositionality loss (LCL). First,
an input image is encoded into a set of object-centric representations, in which
the components related to texture and shape information are known a priori.
Then, the texture-related parts of these object vectors are randomly permuted,
and the new set of permuted representations is decoded into an image that, ide-
ally, should depict the input image with the object textures swapped accordingly
to the sampled permutation. This image is finally encoded with the same ini-
tial encoder (or encoders), and the extracted representations are paired through
the Hungarian matching algorithm with those earlier permuted. Precisely, we
match the slots using the cosine similarity of their mask-related components. A
mean absolute error (MAE) is employed as loss function to minimize the dis-
tance between these pairs of object vectors. Note that, as this loss is used along
with the reconstruction loss, the first (non-permuted) set of representations is
additionally decoded into the reconstructed input image: in this case a mean
squared error (MSE) between input and reconstructed images can be utilized
as loss function.
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5 Experimental Setup

We first evaluate DISA on the task of unsupervised object discovery to em-
pirically demonstrate its competitiveness with the baseline model, namely Slot
Attention. The Adjusted Rand Index, or ARI [37,38], is used in this case to
measure the scene decomposition ability based on the predicted masks, while the
quality of the reconstructions is assessed with the mean squared error (MSE).
Subsequently, we present different quantitative and qualitative results that allow
us to gain knowledge about the degree of disentanglement between dimensions
encoding texture and shape information in its latent space. These represent the
core experiments of this work, as they investigate the property we aim to induce
in the representations learned by our models. We additionally conduct a brief
analysis of the OOD capabilities of the bottleneck filter.

In this section, we present the datasets and training setups used in our experi-
ments. The results are reported in Section [6]

5.1 Datasets

We evaluate DISA on three multi-object synthetic datasets [39]: Tetrominoes,
Multi-dSprites, and CLEVR.

Tetrominoes consists of 35 x 35 RGB images presenting 3 “Tetris”-like blocks
and a black background. The blocks are characterized by one of 6 possible
colors (red, green, blue, yellow, magenta, cyan) and a shape and orientation
within 19 possible. Figure [13|shows a few examples extracted from the dataset.
The tetrominoes can appear anywhere in the image, but cannot overlap with
each other. Furthermore, multiple shapes/orientations/colors of the same kind
can be included in a single sample. We employ a total of 60K samples for the
training set and 320 for the test set, in line with [2,/5].

Figure 13: Samples extracted from both train and test partitions of the
Tetrominoes dataset.

Multi-dSprites is a dataset based on dSprites [40], where three types of shapes,
namely oval, heart, and square, are represented over a plain background. Both
the sprites and the background are colored with randomly sampled RGB val-
ues. The number of entities in the image can vary from 1 to 4 excluding the
background, and partial occlusion can be present. Each image has a resolution
of 64 x 64. Examples from the Multi-dSprites dataset are visualized in Figure
Again, we employ a total of 60K samples for the training set and 320 for
the test set, as in [2,5].
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CLEVR, introduced by Johnson et al. , is a collection of 240 x 320 images of
3D scenes containing a number of objects ranging from 3 to 10 (excluding the
background). There are three types of shapes, i.e. cube, sphere, and cylinder,
two possible sizes (small and large), eight colors (gray, red, blue, green, brown,
purple, cyan, and yellow), and two materials (shiny “metal” and matte “rub-
ber”). We also employ a filtered version of this dataset, called CLEVRG, that
has a maximum of 6 entities in the scenes, background excluded. The number
of training samples, in this case, is 70K, while the test samples are 15K. In all
our experiments, a center crop of 192 x 192 is applied, followed by a resize to a
resolution of 128 x 128.

Figure 14: Samples extracted from both train and test partitions of the
Multi-dSprites dataset.

Figure 15: Samples extracted from both train and test partitions of the CLEVR
dataset.

5.2 Training Setup

Object discovery SA and DISA are trained as autoencoders on the three
datasets mentioned above for an equal number of steps. In the case of CLEVR,
we use the version filtered to a maximum of 6 objects, i.e. CLEVR6. To take
into account the stochastic nature of the experiments, we run three repetitions
for each configuration. As already mentioned, the goal of this work is not to
obtain state-of-the-art results in unsupervised object discovery, but to induce
a specific property in the model while maintaining the performances of the
baseline. Therefore, compared to previous work @ﬂ, we train for a
reduced number of steps to save computations and thus energy consumption.
On Tetrominoes, we perform roughly 100K steps (107 epochs x 938 batches),
on Multi-dSprites around 250K (267 epochs x 938 batches), and on CLEVR6
nearly 150K (274 epochs x 547 batches). A batch size of 64 and a learning rate of
4x107* (using Adam as optimizer ) are employed on all datasets. An initial
warm-up and an exponential decay schedule are applied to the learning rate. As
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in SA, we use the mean squared error as the reconstruction loss function. The
number of iterations in the Slot Attention mechanism is fixed to 3, while the
number of slots is set to 4 in Tetrominoes, 6 in Multi-dSprites, and 7 in CLEVR6.
Moreover, the slots are initially sampled from a learned distribution, hence we
do not directly learn them. We set the dimensionality of the slot vectors to
64 and, in DISA, we define the texture slot as the first half and the mask slot
as the second half (32 components each) of a representation. Apart from the
number of steps, these hyperparameters are equal to the ones used in [5] for the
object discovery task. Note that, due to memory limitations, on CLEVR6 we
train on two NVIDIA GeForce RTX 2080 Ti GPUs with 11GB of RAM (data
parallelism) instead of a single one. The results of the object-discovery task are
presented in Section [6.1

When employing the LCL along with the reconstruction loss on Tetrominoes, we
use learned initial slot vectors instead of sampled ones in order to improve the
consistency between the permuted original representations and those encoded
from the reconstructed permuted image.

Property prediction We train simple MLPs to predict the shapes and tex-
tures (i.e. color and material) of the objects in a scene by exploiting their repre-
sentations extracted using DISA (pre-trained for object discovery). Specifically,
for each property, we train an MLP having a single hidden layer of 256 nodes
(activated with ReLU). The input layer has 32 nodes because only the first
(texture slot) or second (mask slot) half of a representation is used to predict
an object property. On every dataset, we perform about 10k steps with a batch
size of 64 and a learning rate set to 3 x 10~* (the optimizer is again Adam).
Since we deal with categorical variables, the cross-entropy loss is employed with
all the properties. The only exception is the color in the dataset Multi-dSprites,
which can assume any value in the RGB space, and therefore has to be tackled
as a regression problem. We decide to use the MSE as the loss function in this
case. In Section the results of the property prediction task are shown.
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6 Results

6.1 Object Discovery

These evaluations aim to investigate whether DISA is competitive with the base-
line (Slot Attention) on the task of unsupervised object discovery. The results
are averaged over the three trained repetitions of each configuration. Addi-
tionally, each test image is evaluated 5 times to better deal with stochasticity.
DISA-SB and DISA-BN refer to, respectively, DISA with Sobel filter and with
bottleneck filter, while DISA-SB-LCL indicates DISA-SB trained with the ad-
ditional latent compositionally loss. The application of the LCL is limited to
DISA-SB on Tetrominoes in this work, with no necessity observed for its in-
tegration on Multi-dSprites, as evidenced by the findings presented in Section
Conversely, its application on CLEVR remains to be addressed in future
research. Table [If summarizes the ARI scores computed for the foreground ob-
jects. It is clear that, on the considered datasets, our model matches and even
surpasses Slot Attention at decomposing the images into objects. In fact, in all
four cases, either the Sobel or bottleneck configuration of DISA is able to reach
higher ARI scores than SA. Note that, in Multi-dSprites, the poor results (of
both SA and DISA) are mainly caused by the tendency to divide some entities
into two or more slots when the number of objects in the scene is lower than the
one of slots. However, the results in [5] suggest that, even on Multi-dSprites,
more extensive training most probably leads to more stable decompositions. In
Table 2] the mean squared error between the input and reconstructed test im-
ages is reported in order to measure the ability of DISA to decode the images.
Even in this case, DISA achieves better performances than the baseline on all
the experimented datasets.

Tetrominoes Multi-dSprites CLEVR6 CLEVR

SA 98.4 +0.6 55.9 + 26.1 92.2 +0.3 92.5+1.3
DISA-SB 98.1 +0.8 59.3 +2.2 95.7+1.9 94.0 + 1.1
DISA-BN 98.6 +0.2 60.5 +3.2 80.9+175 79.23+185

DISA-SB-LCL 99.2+03

Table 1: Adjusted Rand Index (ARI) score (1) for the task of unsupervised
object discovery. The values are averaged over 3 repetitions and represented as
percentages, in the format mean + stddev. As in [IH3}/5], the results exclude the
background and only consider the foreground objects. DISA models augment
the input images with a random plain noise during training, while SA does not.
The performances of SA do not improve with noise addition on the considered
datasets. More details on this can be found in the last paragraph of Section [6.1
Note that the LCL is only applied to DISA-SB on Tetrominoes.

Plain noise trick On Tetrominoes and CLEVR, DISA presents an issue in
that it frequently tends to learn masks that, instead of precisely segmenting an
object, select areas of arbitrary shape around the entities. Despite maintaining
good decomposition capabilities as the objects get correctly divided into sep-
arate slots (foreground ARI score of 98.2 £ 0.5), this behavior can hinder the
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Tetrominoes Multi-dSprites CLEVR6 CLEVR

SA 6.77 £ 2.01 22.97 +19.06 5.90+050 10.20 +0.29
DISA-SB 9.07 +3.72 8.33 L 0.68 3.27 +0.09 7.30 £ 2.83
DISA-BN 4.03 +0.58 9.07 +0.21 4.30+1.31 6.83+1.93

DISA-SB-LCL  6.50+1.72

Table 2: MSE ({) for the task of unsupervised object discovery. The values
are averaged over 3 repetitions and represented in the format mean + stddev.
All the numbers in the table are scaled by 10*. DISA models augment the
input images with a random plain noise during training, while SA does not.
The performances of SA do not improve with noise addition on the considered
datasets. More details on this are included in the last paragraph of Section [6.1
Note that the LCL is only applied to DISA-SB on Tetrominoes.

shape information from being encoded in the mask slots. Consequently, the
texture slots would have to include shape information, leading therefore to an
incorrect disentanglement. We can notice that the issue seems to arise when a
dataset is characterized by a fixed background, but not with a dynamic one as
in Multi-dSprites. The simple introduction of random plain noise added to the
input images (Figure can avoid this problem: in fact, the intuition behind
the solution is to induce slight changes in the background texture, so that it is
no longer fixed, while however not heavily altering the foreground objects. We
hence adopt this augmentation trick when training our DISA models, and also
evaluate its effect on the original Slot Attention. Regarding SA, we find that
it does not improve its performance and, since SA is not affected by the above
problem, there is no need for the augmentation trick to be used. Additional ex-
periments are required to gain more insights on this, for instance, to understand
whether fixed non-plain backgrounds are as affected as fixed plain ones.

+

Figure 16: Example of the plain noise augmentation applied on an image from
Tetrominoes. The augmentation induces slight changes in the color of a fixed
background, turning it dynamic and helping the model avoid suboptimal solu-
tions.

6.2 Disentanglement Analysis

In order to study the effectiveness of DISA in constraining the texture infor-
mation in the first half of the object vectors and the shape information in the
second half, we exploit the task of property prediction in two ways. Firstly
we train multiple MLPs, each predicting one property describing textures or
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shapes of the objects based on the respective components, such as the shape
of a tetromino given its mask slot. This task is schematized in Figure It
is expected from this configuration to achieve very good results, as we leverage
the halves of the representations that correspond to the properties we aim to
infer. Instead, if we switched the parts and tried to predict, e.g., the color of
an object from its mask slot, we would ideally expect to obtain poor results.
An “inverse” property prediction task is carried out to gain insight into this
aspect (Figure . We analyze each of the three repetitions independently
and report in this section only the results related to the first repetition. In line
with previous literature [2/42,43], we measure the performances using the accu-
racy for categorical variables and the coefficient of determination (R? score) for
numerical variables (i.e. only the color in Multi-dSprites). To take into account
the stochasticity introduced by the sampling of the initial slots, we report the
mean and standard deviation of accuracy/R? computed over ten repetitions on
the test set. Note that, since the objects can be represented in any order, the
ground truth labels must be associated with the correct predicted slots. This is
done by computing cosine similarities between the target and predicted masks,
then coupling each ground truth label with the output of its most similar slot.

—=—==13 Blue
»

(a) Property prediction (b) Inverse property prediction

|1

—=—=—=3 Blue

Input Input

Figure 17: This figure illustrates the two property prediction tasks we propose
to quantitatively study the degree of texture and shape disentanglement in the
representations of DISA. (a) Prediction of an object property based on the
associated components. For instance, the color from the texture-related latent
features. (a) Inverse property prediction task, where properties are predicted
based on the “wrong” part of the object representation, e.g., the color from the
shape-related components.

Tetrominoes A visualization of these experiments on Tetrominoes is reported
in Figure Here we can see that, as expected, all three DISA models reach
near-perfect accuracy on both shape and color prediction when exploiting the
correct halves. When inverting them, instead, we notice that the shape pre-
diction accuracy is not affected, while the color accuracy drops to the score
of a random guess. Therefore, on one hand, shape information is incorrectly
included in the texture slots while, on the other hand, the color information is
successfully restricted from flowing to the mask slots. By contrast, training with
reconstruction and latent compositionality loss leads DISA to correctly encode
texture and shape information in not intersecting dimensions of its latent space,
achieving thus the goal of this work on Tetrominoes. This is empirically proved
by the fact that, in the inverse property prediction task, the accuracy of both
shape and color is approximately identical to that of a random guess.
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Figure 18: Quantitative results of DISA (first training repetition) on the normal
and inverse property prediction tasks (Figure conducted on Tetrominoes.
We report the measurements for DISA with Sobel filter (left), learned bottleneck
(center), and Sobel filter along with LCL (right). The predicted properties are
shape and color, both categorical, for which we show the prediction accuracy (in
%) on the two tasks. A random guess is used as a baseline for comparison. The
color information is consistently constrained in the correct latent components,
while for the shape it only occurs when the LCL is employed.

Multi-dSprites Differently from Tetrominoes, on Multi-dSprites (Figure [19)
we find that DISA is able to disentangle shape and texture dimensions without
the help of a more explicit loss such as the LCL. In fact, in this case, the inverse
shape prediction accuracy of Sobel and bottleneck models are close to that of
a random choice. Again, the texture information is correctly constrained in the
first half of the latent components, as the negative R? scores indicate that the
inverse color predictions are notably worse than those of a model constantly
inferring the mean target value.

CLEVR6 On CLEVRG6 (Figure we see results similar to those on Tetro-
minoes without LCL: the accuracy of the inverse shape predictions is close to
the normal one, while the accuracy of inverse color and material predictions are
near those of random guesses.
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Figure 19: Quantitative results of DISA (first training repetition) on the normal
and inverse property prediction tasks (Figure conducted on Tetrominoes.
We report the measurements for DISA with Sobel (left) and bottleneck (center)
filter. The predicted properties are shape (categorical) and color (numerical).
For the shape, the prediction accuracy (in %) on the two tasks is used and
compared with a baseline random guess. With the color, we show the R? score.
Both models are able to disentangle color and shape components correctly.
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Figure 20: Quantitative results of DISA (first training repetition) on the normal
and inverse property prediction tasks (Figure conducted on Tetrominoes.
We report the measurements for DISA with Sobel (left) and bottleneck (center)
filter. The predicted properties are shape, color, and material, all categorical,
for which we report the prediction accuracy (in %) on the two tasks. A random
guess is used as a baseline for comparison. The color and material information
is consistently constrained in the correct latent components, while it does not
occur for the shape.
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6.3 Compositionality Capabilities

In this section, the compositionality capabilities of DISA are explored through
a series of qualitative results. Precisely, for a given image from the test set, we
take the representations of the objects, randomly permute their texture slots,
and decode the permuted representations. Ideally, the model would output a re-
construction where the shapes, positions, and sizes of the entities are preserved,
while their textures are different but adapted to fit the same masks. We expect
this experiment to back the results presented in Section Furthermore, we
show that these capabilities extend to the generation of new objects by trans-
ferring, interpolating, noising, or sampling textures and shapes of the objects in
a scene.

Final Recon. Recon. Slot 1 Recon. Slot 2 Recon. Slot 3 Recon. Slot 4 Final Recon. Recon. Slot 1 Recon. Slot 2 Recon. Slot 3 Recon. Slot 4
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Permutatlon applied to the texture slots: 4-1-3-2. Permutation applied to the texture slots: 1-4-2-3.

Figure 21: Examples showing the compositionality capabilities of DISA models trained on Tetrominoes. The center
row contains the input image and the predicted object masks. We set the number of slots as the number of entities
in the image, i.e. four included the background. At the top, the combined reconstruction and the individual
textures associated with each slot are shown, while the bottom row presents the reconstructions after permuting
the texture slots. (a) DISA with Sobel filter resulting from the first training repetition. The two remaining
repetitions and all three runs of DISA with bottleneck filter display equal behavior, thus are not included here.
(b) DISA with Sobel filter and latent compositionality loss obtained from the first repetition. Both the other two
repetitions exhibit similar behavior.

Tetrominoes Figure reports the results on an image extracted from the
test set of Tetrominoes. On the left (Figure is shown the model resulting
from the first repetition of DISA with Sobel filter, which displays equal behav-
ior to the two remaining repetitions and all three runs of DISA with bottleneck
filter. Here, transferring the texture slot of one object to another translates into
passing both color and shape, coherently with Figure as shape information
is also encoded into the first half of the representations and the color only in
the second half. Furthermore, the position is correctly determined by the mask
slots, meaning that the relative reference frames are working as intended. Ex-
plicitly inducing the disentanglement through the LCL, on the contrary, allows
DISA to achieve perfect compositionality capabilities . This result is con-
sistent in all three repetitions, despite the decoding of slightly different masks
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and textures with respect to the ones in this figure. As visible, the colors are
in fact transferred between objects without affecting the starting shapes. To
accomplish this, the learned strategy is to decode textures that circumscribe
the predicted shapes with rectangles, which permits the use of the same texture
for all the tetrominoes that share an equal circumscribed (again, by rectangles)
area. However, this behavior is not required as the texture decoder is also con-
ditioned by the mask slots, implying that it is allowed to reconstruct textures
already characterized by the correct shape. This is observable in the second and
third repetitions.

Figure[22]shows the ability of DISA to generate new objects by altering the tex-
ture and shape of an object in the given input image. In Figure we change
the green square by interpolating its texture with that of the blue s-shaped
tetromino. The obtained texture maintains the original structure, perfectly fit-
ting the associated shape, but switches the color to a combination of green and
light blue. Instead, by noising the mask slot encoding the shape of the green
square, we can represent new shapes such as the one in Figure[22b In this case,
it is also interesting to notice that the decoded texture correctly changes size
according to the new shape.

Final Recon. Recon. Slot 2 Mask 2 Final Recon. Recon. Slot 2 Mask 2

(a) (b)

Figure 22: Examples of DISA’s capability to generate objects with new textures
and shapes on Tetrominoes. The top row contains the reconstruction of the
input image, the predicted texture associated with the green square, and its
predicted mask. At the bottom, the same visualization is presented after
altering the texture or shape of the green square. DISA with Sobel filter and
latent compositionality loss obtained from the first training repetition is used in
both figures. (a) Replace the texture of the green square with the interpolation
between its texture slot and the one of the blue s-shaped tetromino. (b) Add
random noise to the mask slot of the green square.

Multi-dSprites In five runs out of six, DISA develops an interesting and
effective strategy allowed by the presence of exclusively plain textures in the
Multi-dSprites dataset. In fact, as shown in Figure the models learn to de-
code an object texture as a (nearly) constant color, hence ignoring both shape
and position information from the second half of its representation. As a conse-
quence, the areas defined by the predicted masks are always fully covered by the
color in their corresponding texture reconstructions. Therefore, the shapes of
the entities completely rely on the masks, allowing for perfect compositionality
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Figure 23: Examples showing the compositionality capabilities of DISA models trained on Multi-dSprites. We
set the number of slots as the number of entities in the image, i.e. four included the background. The center
row contains the input image and the predicted object masks. At the top, the combined reconstruction and the
individual textures associated with each slot are shown, while the bottom row presents the reconstructions after
permuting the texture slots. (a) DISA with Sobel filter resulting from the first training repetition. The two
remaining repetitions and the first two runs of DISA with bottleneck filter display equal behavior, thus are not
included here. (b) DISA with bottleneck filter obtained from the third repetition.

capabilities. For what concerns the one different run of the six, specifically the
third repetition of DISA with bottleneck filter, an example of its behavior can
be found in Figure 23D] Here, the texture reconstructions present the correct
colors only in the zones nearby the objects, leaving more room for errors when
switching object textures (e.g. slots 1 and 4 of the figure).

In Figure differently from Tetrominoes, we try to replace the texture of
the pink square in the image with a randomly sampled one. Coherently with
the behavior learned by the model, the sampled texture is a simple plain color
covering the whole image. When noising the mask slot encoding the shape of the
pink square, we obtain a novel shape not contained in the dataset, visualized
in Figure This shape resembles a right triangle with, however, rounded
corners and not perfectly defined lines (especially the hypotenuse).

CLEVR6 From Figure[20] we saw that DISA encodes shape information both
in the texture and mask slots. Interestingly, qualitative results (Figures and
show that five out of the six models are able to frequently display good
compositionality capabilities. Colors and materials are indeed correctly trans-
ferred through the texture slots between objects while being shaped, scaled, and
positioned accordingly to the masks. However, this is not always the case, as in
both Figures [25a] and 25b] where the texture of the metal-yellow sphere is passed
to the former rubber-cyan cube. Even if the object gets decoded with the right
material, color, position, and scale, it is clear that the texture is still not shaped
to perfectly fit the mask. Additionally, it can be noted that the first repetition
of DISA with Sobel filter divides the background across all the slots, contrary
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Final Recon. Recon. Slot 3 Mask 3 Final Recon. Recon. Slot 3 Mask 3

(a) (b)
Figure 24: Examples of DISA’s capability to generate objects with new textures
and shapes on Multi-dSprites. The top row contains the reconstruction of the
input image, the predicted texture associated with the pink square, and its
predicted mask. At the bottom, the same visualization is presented after altering
the texture or shape of the pink square. DISA with Sobel filter obtained from the

first training repetition is used in both figures. (a) Randomly sample the texture
of the pink square. (b) Add random noise to the mask slot of the pink square.

to all the remaining runs of our architecture on this dataset. Nevertheless, it
is the model producing the most robust compositionality results, rarely suffer-
ing from errors such as incorrect scaling of the textures when adapting them
to new masks. This type of mistake is visible in the metal-green cylinder and
the metal-red sphere (third row of Figure , where the objects are slightly
smaller than they are supposed to be. Finally, Figure displays a result of
the only model failing to decompose CLEVR scenes. In this case, the predicted
masks are constant for all the inputs, leading to incorrect segmentation of the
objects and consequent inability to disentangle shape and texture dimensions.

Figure [26] shows the generation of new entities on CLEVRG. Similarly to Tetro-
minoes, in Figure we replace the texture of the green sphere with the one
obtained by interpolating that of the pink sphere and of the gray cylinder. The
resulting texture presents a combination of pink and gray colors, while the ma-
terial is neither clearly defined as metal nor rubber. Finally, we noise the mask
slot encoding the shape of the green sphere and display the resulting object in
Figure Here, we can notice again that the decoded texture successfully
changes size according to the new shape. However, on this dataset, this hap-
pens less frequently than with the first two, and the produced shapes are mostly
close to the original ones. This limitation can probably be due to the imperfect
disentanglement of shape and texture.
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(c) DISA with bottleneck filter (rep. 3/3)
Permutation applied to the texture slots: 3-6-1-2-5-4.

Figure 25: Examples showing the compositionality capabilities of DISA models trained on CLEVR6. We set the
number of slots as the number of entities in the image, i.e. six included the background. The center row contains
the input image and the predicted object masks. At the top, the combined reconstruction and the individual
textures associated with each slot are shown, while the bottom row presents the reconstructions after permuting
the texture slots. (a) DISA with Sobel filter resulting from the first training repetition. Out of the six runs of
both DISA-SB and DISA-BN, this is the only one producing masks where the background is divided across all
the slots. (b) DISA with Sobel filter obtained from the third repetition. The second repetition and the first two
runs of DISA with bottleneck filter exhibit equal behavior, thus are not included here. (¢) DISA with bottleneck
filter from the third training repetition. Out of the six runs of both DISA-SB and DISA-BN, this is the only one
constantly producing the same masks, leading to frequently failing at decomposing scenes into objects.
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(a) (b)
Figure 26: Examples of DISA’s capability to generate objects with new textures
and shapes on CLEVR6. The top row contains the reconstruction of the input
image, the predicted texture associated with the green sphere, and its predicted
mask. At the bottom, the same visualization is presented after altering the tex-
ture or shape of the green sphere. DISA with Sobel filter obtained from the first
training repetition is used in both figures. (a) Replace the texture of the green

sphere with the interpolation between the texture slots of the purple sphere and
the gray cylinder. (b) Add random noise to the mask slot of the green sphere.
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6.4 Bottleneck Filter Generalization

A brief qualitative experiment is conducted to study the segmentation capabili-
ties of our bottleneck filter. Specifically, for each of the nine runs of DISA-BN (3
datasets times 3 repetitions), we visualize the output generated by the learned
filter on a test image sampled from all the datasets we trained on. An additional
image from 102-Flower is considered in order to analyze the behavior of the
filters on a real-world picture with a more complex background and edges. Since
the datasets are characterized by various resolutions, we resize the images ap-
propriately for each model. In Figure [27] the first columns present the (resized)
input images, while the second, third, and fourth columns show the outputs of
the filters for, respectively, the first, second, and third repetitions. On Tetromi-
noes (Figure , a highly precise segmentation is not required to identify an
object: it is sufficient for the bottleneck to provide information about position
and shape, as the foreground objects are non-overlapping and of fixed size. This
is visible in the first row and leads to learning less general filters, as it is clear
from the imprecise segmentation in the remaining three rows. A positive note
is that the texture-related edges inside the entities can be ignored by the filter.
Instead, when DISA is trained on Multi-dSprites (Figure and CLEVRG6
(Figure [27d), the bottleneck filters learn to capture more general borders. This
is especially true when trained on CLEVRG6. Finally, it is important to highlight
that the filtering strategies learned by DISA can largely vary between different
runs, even on the same dataset.

iitered Image.

Figure 27: Output of the learned bottleneck filter on test images from Tetro-
minoes (first row), Multi-dSprites (second row), CLEVRG (third row), and 102-
Flower (fourth row). The first column displays the input image, while the re-
maining ones present the output from the filters learned by the three repetitions
of DISA-BN trained on a Tetrominoes (a), Multi-dSprites (b), and CLEVRG (c).
The behavior of the filter varies across different datasets and repetitions, while
consistently showing good generalization capabilities (especially in (b) and (c)).
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7 Discussion and Conclusion

This work introduced a novel architectural design for inducing the disentangle-
ment of texture and shape factors in object-centric models. We evaluated on
three well-known synthetic datasets (Tetrominoes, Multi-dSprites, and CLEVR)
the architecture resulting from applying our proposed design to Slot Attention,
which we referred to as Disentangled Invariant Slot Attention (DISA). Specif-
ically, after training DISA in an unsupervised fashion by reconstructing the
input images, the ARI score of the foreground objects and the MSE were mea-
sured and compared with those of the original Slot Attention. Furthermore,
we investigated whether our models successfully constrained shape and texture
information in the latent components we set a priori. We achieved this through
the training of two MLPs for each object property (e.g. color), one to predict
the given property starting from its related components, and the other from the
unrelated ones. Qualitative results showing the capabilities of DISA in trans-
ferring and adapting textures across distinct objects were also reported.

Foreground ARI score (Table and reconstruction MSE (Table demon-
strated that our method does not negatively impact the performance of SA
and, on the contrary, it leads to a slight improvement in sample efficiency.
However, the quantitative results concerning the disentanglement were less con-
sistent across the considered datasets and thus more complex to interpret. While
Multi-dSprites (Figure showed that our design alone can prevent shape in-
formation from being encoded in the texture slots, the success of this outcome
is likely dependent on dataset characteristics such as the plain textures of the
objects. Conversely, with both Tetrominoes (left and center bars of Figure [18)
and CLEVR (Figure , DISA could not manage to obtain correct separations
by itself. Despite this limitation, qualitative experiments on CLEVR (Figure
suggested that the texture decoder tends to ignore the shape information
wrongly included in the texture slots, while it focuses instead on the one present
in the appropriate part of the representations. With more extensive training,
this could potentially lead to the gradual disappearance of shape information
from the first half of the latent vectors, as the texture encoder no longer re-
quires it. Regarding the texture information, our proposed design consistently
succeeded in preventing it from being encoded within the shape-related compo-
nents across all the experiments.

When introducing the self-supervised LCL during the training of DISA with
Sobel filter on Tetrominoes (right bars of Figure , we observed that it is pos-
sible to correctly divide the shape and texture information as intended, solving
thus the previously mentioned issue and achieving the purpose of this work.
In fact, since the model has to learn to accurately combine the mask slot of
an entity with the texture slot transferred from a distinct object, it is induced
to encode the shape information exclusively in the second half of the repre-
sentations. Without this behavior, shape information would also be transferred
across objects and the compositionality capabilities measured by the LCL would
be negatively affected.

Finally, we analyzed the OOD behavior of the bottleneck filter (Figure and
found that, when trained on Multi-dSprites and CLEVR, it is able to learn
generic segmentation abilities, while however presenting distinct strategies on
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each run. On Tetrominoes, given the strictly limited variability of the data in
terms of textures and shapes, the learned bottleneck struggles to correctly adapt
to distribution shifts.

Future Work Extending the proposed architectural design to increase the
guarantee of shape information not flowing into texture-related components
would be a promising future step. Achieving this goal without relying on auxil-
iary self-supervised losses, e.g. LCL, could represent a significant improvement
over our work, as it would remove both the additional computational cost and
tuning brought by the second objective.

A further potential direction could also be the development of new self-supervised
losses such as the LCL. These losses should leverage the a priori knowledge about
the disentangled latent space with the aim of introducing new properties into
the model or biasing it toward some desired direction.

Finally, it is worth exploring the integration of state-of-the-art extensions of Slot
Attention to achieve a SOTA explicitly disentangled object-centric model, able
to effectively separate texture, shape, position, and scale factors in the currently
most effective and efficient way.
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A Additional Results

A.1 Robustness Under Color and Texture Variations

Plain Plain-BG Stripes Stripes-BG ~ Color  Color-BG

SA 24.3+9.0 73.7+59 31.3+09.1 72.74+38.3 1.0+05 702+75
SA-NOISE 325+57 582+70 20.9+43 56.2+108 0.1+07 580+5.1
DISA-SB 76.1+11.7 79.2+104 33.0+144 65.0+5.4 0.0+056 6.2+2.1
DISA-BN 24.3+72 62.6 65 18.2+82 67.1+50 0.1+04 65.5+6.9

DISA-SB-LCL 63.8+116 685+109 244427 82.9+19 0.0+02 4.7+009

Table 3: Decrease in the Adjusted Rand Index (ARI) score ({) under texture variations on Tetrominoes.
Each row reports the distances between the corresponding mean ARI score on the original test set (Table
and the means on six variations of it. As in |[IH3l/5], the results exclude the background and only
consider the foreground objects. SA-NOISE and DISA models augment the input images with a random
plain noise during training, while SA does not.
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