

Master Computer Science

A Reinforcement Learning-based
Hierarchical Method for Route Planning

Name: Yuan Lin
Student ID: 2945142
Date: 20/07/2023

Specialisation: Computer Science: Data Science [

1st supervisor: Yingjie Fan
2nd supervisor: Mitra Baratchi
3rd supervisor: Thomas Bäck

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

The Travelling Salesman Problem (TSP), a well-known combinatorial challenge, has

broad applications across various fields, including the last-mile problem. In 2019,

Amazon launched a last-mile challenge, releasing a set of real-world data for public

exploration.

To address the issue at hand, we have used a hierarchical architecture in our work.

First of all, we use cutting-edge neural networks and reinforcement learning strategies

for high-level sequence prediction. This enables us to produce a starting series of

zones. The detailed sequence is then refined and generated at a lower level using a

traditional local search technique. By combining these methods, we are able to take

advantage of the benefits of neural networks and reinforcement learning for high-level

sequence prediction as well as the speed and precision of local search strategies for

adjusting the sub-level sequence creation.

Although the result obtained may not have met the originally anticipated quality

level, it is closely compared to the results obtained using OR-Tools. This suggests

that the proposed framework, with its robust features, shows potential for effectively

addressing the problem. Expanding on the work, it offers intriguing insights that could

contribute to future research efforts in this field.

KEYWORDS: Travelling Salesman Problem, Routing problem, Reinforcement learn-

ing, Pointer network

i

Contents

Abstract i

1 Introduction 1

2 Literate Review 3

2.1 Travelling Salesman Problems . 3

2.2 Pointer Network . 4

2.3 Local Search . 6

2.4 Technical Proceedings . 7

3 Amazon Last Mile Challenge 8

3.1 Dataset . 8

3.2 Evaluation . 9

3.3 Preliminary Setting . 10

4 Methodology 12

4.1 First Stage . 13

4.1.1 Pointer Network . 13

4.1.2 Actor-Critic . 19

4.2 Second Stage . 21

5 Experiment 24

5.1 Experiment Design . 24

5.2 Benchmark . 25

5.3 Result . 26

6 Conclusion 28

Bibliography 30

ii

Chapter 1

Introduction

The routing problem has been studied for a long time and is used in a variety of fields

such as logistics, supply chain management, transportation, and more. The logistics

industry has reached a phenomenal height in recent years, especially with the growth

of e-commerce. E-commerce revenue increased significantly over the past few years,

reaching 1.42 trillion USD in 2017, 3.26 trillion USD in 2021, and is expected to

reach 5.47 trillion USD by 2027(Statista). Walmart, Amazon, and Apple are the top

three significant market players, in that order. In 2021, they generated 1.43 trillion in

revenue collectively, which represents 43% of the market.

Without question, Amazon’s business relies significantly on retail, which also hap-

pens to be its primary source of income. The goal of Amazon’s 2021 Last Mile Routing

Research Challenge, which uses historical driver routing data, is to investigate efficient

methods for addressing real-world routing problems. Participants are given access to

the stop coordinate, travel time to other stops, and information about each route’s

packages through the dataset. This thesis aims to correctly anticipate the trajectory,

exploring to closely resemble the actual route taken by the driver. Instead of measuring

accuracy, the similarity is used to evaluate the predicted route’s quality.

The heuristic method is frequently employed for route planning as a combinatorial

optimization task. For the given task, it has been shown that Simulated Annealing,

Genetic Algorithms, LKH-3, and numerous other heuristic techniques perform effec-

tively. From a different perspective, it is possible to discover underlying patterns in

experienced drivers’ implicit knowledge by employing machine learning, more specifi-

cally the deep learning method.

This idea and the nature of the routing data then lead to the framework being

1

divided into two parts. An internal zone label, developed by Amazon based on the

physical planning area, is given to each stop along the route. To forecast the zone se-

quence, the high-level approach initially employs a neural network and reinforcement

learning framework. The zone predicted plays a crucial role in determining the out-

come. To balance the extensive computational labor in the first stage, a local search

strategy is used in the second stage of the process to optimize the sequence of stops

inside each zone, requiring less computational effort.

Therefore, the focus of our research is to determine whether the use of a hybrid

technique to assess the effectiveness of a particular framework could produce better

results. The outcome demonstrates that this framework might attain a quality that is

comparable to the Google solver, but there is still potential for improvement compared

to the method suggested by the team that placed tops in the competition.

The rest of the thesis is organized as follows. We discuss earlier research on this

subject in chapter 2 of the paper. Chapter 3 introduces the challenge provided by

Amazon. The structure of the project is shown in chapter 4. Results from the exper-

iment using the Amazon dataset are shown in chapter 5. The discussion of this work

and some suggestions for future work are included in chapter 6.

2

Chapter 2

Literate Review

Considering each route in the last mile task is assigned to a single driver, the problem

is referred to as a simplified Traveling Salesman Problem (TSP). In this section, we

cover the TSP problem and its relevant variations. The investigation of innovative

techniques in machine learning strategies will thereafter be the main topic, with a

particular focus on the Pointer Network. We will also talk about the traditional

heuristic technique known as local search.

The Pointer Network will be used for high-level zone prediction, utilizing its abil-

ities to perform higher-level sequence-generating tasks. On the other side, we will

employ the local search method to locate the best solutions within certain zones for

stop-level ordering.

2.1 Travelling Salesman Problems

The Traveling Salesman Problem (TSP) is a classic optimization problem. It involves

determining the best path for a salesman to take in order to visit each city exactly

once, return to the starting point, and visit all the cities. The goal of TSP is to reduce

the overall cost of the route, which is often determined by distance or time. TSP

is classified as an NP-hard issue, implying that it becomes harder to find an ideal

solution as the number of cities in the problem instance grows.

The TSP is a symmetric problem for calculating distance in the case of a 2D

Euclidean graph. However, in actual situations, when discussing how to calculate

travel times, variables like traffic, road conditions, weather, etc., can have a significant

effect on how long it takes to get from one place to another. As a result, the issue

3

Pointer Network

becomes an asymmetric TSP (ASTP). In a revolutionary methodology approach given

by Jonker and Volgenant (1983), the ATSP instance can be converted into a symmetric

TSP instance using a 2-node transformation.

Some TSP alterations add new restrictions that go beyond the scope of the initial

issue statement. One of the instances is the Vehicle Routing Problem (VRP), which

Dantzig and Ramser (1959) first proposed in 1959. Multiple vehicles are assigned to

a single route or location where they can refill without having to go back to the depot

when doing a VRP task.

Traveling Salesman Problem with Time Windows (TSPTW) is another extension

of TSP, which is sensitive to time constraints (Dumas et al. (1995)). The CTSP, or

Capacitated Traveling Salesman Problem, is another variant. This variation takes into

consideration additional capacity limits (Toth and Vigo (2014)). Just a few typical

TSP types are mentioned above. Numerous versions of the routing problem exist, each

with its own special considerations and strategy for the solution. An overview of these

variants and solution approaches can be found in the works of Matai et al. (2010) and

Applegate et al. (2011).

Meta-Heuristics and Machine Learning are the two main strategies that are fre-

quently used to address these TSP variants in broad terms. Meta-Heuristics are a

class of optimization algorithms that efficiently explore the search space to identify

approximations of solutions. Machine learning techniques, on the other hand, use

data-driven models to identify patterns and make forecasts or assessments based on

historical information.

2.2 Pointer Network

We begin by discussing some recent studies. Machine learning techniques have become

efficient ways to address combinatorial optimization problems (Bengio et al. (2021)).

These techniques provide the ability to use real-life data and learn from patterns and

trends to optimize solutions. It can increase the efficacy and efficiency of tackling com-

plicated optimization issues by reducing the reliance on expert heuristics and instead

relying on data-driven approaches.

The Pointer Network is a brand-new neural network architecture that Vinyals et al.

(2015) proposed as part of their innovative methodological approach to the topic. By

extending sequence-to-sequence models, this architecture improves their success in

Natural Language Processing (NLP) applications and uses them to solve the routing

issue. These tasks are fundamentally similar in that they both center on anticipating

4

Literate Review

sequential order.

The Pointer Network uses attention processes to handle sequential inputs and en-

ables the output selection of particular elements from the input sequence. Without the

requirement for padding, it can also manage outputs of varying lengths. By avoiding

artificial assumptions, this approach represents a significant advancement in the field

of neural networks. It provides a solid solution to sequential problems without relying

on fixed-length representations. Additionally, the ability of the Pointer Network to

use the attention mechanism as a pointer creates previously unimaginable options for

handling a variety of complex tasks.

Based on the work of Vinyals et al. (2015), Bello et al. (2016) propose a framework

to address TSP by employing the power of neural networks and reinforcement learning.

The suggested structure, which uses a recurrent neural network (RNN) and the policy

gradient method, produces encouraging results on 2D Euclidean graphs with up to

100 nodes. Without utilizing complex engineering or heuristics, the method produces

solutions that are close to optimal.

Kool et al. (2018) leverages reinforcement learning as well to address the routing

challenge. They present a model with attention layers that has benefits over the

Pointer Network. They show methods to train this model using the REINFORCE

algorithm and also show how to use a simple baseline that uses deterministic greedy

rollout.

As TSP was the focus of the earlier study, Nazari et al. (2018) presents a detailed

framework to address VRP as an extension of the Pointer Network. For difficult

problems where the system representation evolves dynamically over time, the pointer

network is constrictive. The proposed model directly uses the embedded inputs rather

than the RNN hidden states since in VRP, the input order is irrelevant. This method

uses a single policy model that has been trained to locate nearly optimum solutions for

numerous issue situations of comparable size. By paying attention to reward signals

and following the principles of feasibility, the model performs better than Google’s

OR-Tools optimization solver and heuristic techniques.

Mo et al. (2023) introduces a pair-wise attention-based pointer neural network,

in contrast to the earlier research, which is based on 2D Euclidean space. Using the

Amazon dataset, this network is intended to extract drivers’ tacit knowledge. Using

data from Amazon, this network is intended to capture drivers’ tacit knowledge. The

authors suggest a novel pair-wise attention-based pointer neural network in place of the

traditional encoder-decoder design. This network utilizes a specific neural network to

capture local pair-wise information for each pair of stops. The authors also present an

5

Local Search

iterative sequence-generating method that comes after model training. This method

identifies the first stop along a route with the lowest operational costs, increasing the

total efficiency of the route.

Numerous studies have examined and expanded the applications of graph neural

network and reinforcement learning methodologies in addition to the aforementioned

works, Deudon et al. (2018), Joshi et al. (2019), and Khalil et al. (2017).

2.3 Local Search

The core concept behind local search is an optimization technique that incrementally

enhances a given solution by investigating nearby solutions through minor adjust-

ments. To optimize a certain objective function, it focuses on locating a local optimum

inside the solution space. Local search is renowned for its effectiveness, simplicity, and

capacity to deal with complex optimization issues, but it does not guarantee the dis-

covery of the global optimum.

The 2-opt algorithm is a simple local search method to solve the TSP that is

commonly used in optimization (Flood (1956)). By switching pairs of edges in the

tour, the method reduces the overall distance and repeatedly improves a starting

solution. The 2-opt algorithm seeks to find a locally optimal solution for TSP by

experimenting with various combinations of edge swaps.

Expanding on this concept, Croes (1958) introduces the 3-opt algorithm. Similar

to the 2-opt technique, the 3-opt iteratively swaps three edges in the tour to improve

a starting solution. 3-opt gives more flexibility than 2-opt in terms of enhancing

the effectiveness of a solution to combinatorial optimization issues. The benefit of

employing the 3-opt algorithm is that it can explore a bigger solution space, possibly

accomplish better gains, get around local optima, and increase the refinement of a

TSP solution. However, it is crucial to keep in mind that the 3-opt algorithm incurs

a substantially higher computational cost than more straightforward strategies like

2-opt because it requires analyzing a larger number of alternative swaps.

The k-opt concept is proposed by Lin and Kernighan (1973) afterward. Other local

search methods included iterated local search (Lourenço et al. (2003)), stochastic local

search (Hoos and Stützle (2004)), and guided local search (Voudouris et al. (2010)).

6

Literate Review

2.4 Technical Proceedings

This section provides an overview of the top three methodologies and conclusions that

the Amazon Challenge prize winners reported in their proceedings papers (Winkenbach

et al. (2021)).

First, the winning team suggests a simple local-search method based on penalties

combined with learned routing constraints. They used the Concorde as the solver

after first applying a typical transformation of ATSP to TSP to start the solution pro-

cess. On top of this foundation, the zone limitation is introduced to produce a better

outcome. Following data exploration, three constraints are used for a penalty-based

local-search method to further capture the driver’s tacit knowledge. While retaining

the clustering of stops within each zone, the restrictions, including precedence, path,

and neighbor constraints, are at the inter-zone level.

The second-place team introduces a tailored cost matrix and a hierarchical frame-

work for improving TSP. The framework’s upper level is focused on figuring out the

ideal arrangement of zones, while the lower level is concerned with determining the op-

timal order of stops inside each zone. To start, they alter the route’s time matrix and

use it as an input to create an optimal zone sequence. The intra-zonal stop sequence is

then resolved using a path-based TSP strategy. Additionally, they observe that, in the

majority of situations, the driver makes all deliveries inside a particular zone before

moving on to stops in another zone. This insight emphasizes how important it is to

correctly determine the zone sequence because it is an essential factor in the process.

The authors acknowledge that they were unable to increase the accuracy of predicting

the first zone despite their proposed framework yielding encouraging findings. As a

result, they continue to run into the problem of route reversal, in which the real route

turns out to be the opposite of the estimated one.

Last but not least, the competitors who took third place used a strategy that

involved solving the TSP on a transformed graph. They make use of the zone label’s

significance and alter the amount of time it takes to move between node pairs. The

token ηij denotes the dissimilarity between the zone ids of the two given nodes i and

j.

They also incorporate three discouragement multipliers, denoted as a1, a2, and a3,

where a1 < a2 < a3. The parameter a1 is designed to discourage stops within the

same zone, a2 represents the multipliers between two stops (i and j) whose zone IDs

share three tokens, and a3 discourages all other pairs of stops that do not include the

depot.

7

Chapter 3

Amazon Last Mile Challenge

In this chapter, we discuss the competition that Amazon has raised as well as the

dataset’s details and the method for assessment used to rate the route’s quality. We

choose a two-stage structure to address the routing problem by utilizing the unique

features of this dataset. A thorough explanation of this framework will be given in

the next chapter.

3.1 Dataset

The Last Mile Challenge offers a valuable dataset comprising historical driver routes

from five major metropolitan areas in the United States during the year 2018. These

areas include Seattle, Los Angeles, Austin, Chicago, and Boston (Merchan et al.

(2022)).

The dataset is shown in Table 3.1 with data at the route, stop and package levels.

This extensive dataset offers valuable insights on the whole delivery process, including

the general routes traveled, the precise stops made, and exact details of individual

shipments. There are 6,112 routes that have been labeled overall and are divided into

low, medium and high quality. The dataset contains data for 17 depots in total. The

majority of the routes start in Los Angeles.

8

Amazon Last Mile Challenge

Data field Description

Route information

Route ID Unique and anonymized identifier of each route
Station code Unique identifier for a delivery station where routes begin

Date Date of route execution
Departure time Time when vehicle leaves the station

Executor capacity Volumetric capacity of vehicle
Stops Each stop on route

Observed sequence Sequence in which stops were visited
Route score Quality of the observed sequence

Stop information

Stop ID Unique identifier of each stop on a route
Latitude/Longitude Obfuscated coordinates of each stop

Type Type of stop
Zone ID Geographical planning area
Packages Packages delivered at each stop

Transit time Estimated transit time to every other stop on route

Package information

Package ID Unique and anonymized identifier of each package
Status Delivery status of package

Time window Start and end of time window, when applicable
Planned service time Time that serving the package is expected to require

Dimensions Length, width, and height of package

Table 3.1: High-Level Description of Data Fields Provided in the Research Challenge Data
Set (Merchan et al. (2022))

3.2 Evaluation

When determining the route quality, Amazon takes into account how closely the sub-

mitted route resembles the previous driver’s route (Amazon (2021)); this evaluation

function is represented by equation 3.1.

It determines how closely the machine-generated route and the experienced driver’s

delivery route match each other. Both Sequence Deviation and Edit Distance with

Real Penalty are used in the score function.

score =
SD(A,B) · ERPnorm(A,B)

ERPe(A,B)
(3.1)

where SD stands for Sequence Deviation of A with respect to B, along with A is the

9

Preliminary Setting

historically sequence and B is the prediction generated. ERPnorm denotes the Edit

Distance with Real Penalty which with normalized travel times. ERPe represents the

number of edits prescribed by the ERP algorithm.

A score of 0 is given to the predicted sequences that exactly match the real se-

quence. The scores rise when the predicted sequence deviates further from the real

sequence. Scores for completely random shuffles at each stop along the route taken by

the driver typically range from 0.8 to 1.2.

3.3 Preliminary Setting

After thoroughly analyzing the dataset, we made an intriguing discovery about the

significant influence of the zoneID label on the generation of sequences. Take routeID

00143bdd− 0a6b− 49ec− bb35− 36593d303e77, shown in Figure 3.1, as an example. It

has 119 stops in general and a depot located somewhat far from the client locations,

as shown in Figure 3.1a. An intriguing pattern may be seen in Figure 3.1b. The

driver appears to place more emphasis on finishing stops inside the same ZoneID than

precisely adhering to geographic closeness. The color of the stops makes this obvious.

(Although there is color repetition in the plot, adjacent zones may be distinguished

by their unique colors.)

We propose a hierarchical technique to deal with this impact. We first construct

the zone sequence, which is the order of the higher level. To develop a more efficient

and precise sequence creation approach, we then list the stop order independently

within each zone.

The problem would show itself as an asymmetric TSP at the stop level. However,

the scope of the problem can be significantly decreased by using a hierarchical strategy.

According to Figure 3.2, the number of zones is limited between 6 and 47, but the

stop ranges up to 250 stops.

In the higher level, the travel time within each zone pair is calculated as follows

the average time of all stop pairs between two zones. This problem trans-

forms into a symmetric TSP problem after the stops are grouped according to the

ZoneID label.

10

Amazon Last Mile Challenge

(a) Stops on a geographical map

(b) Stops group by ZoneID

Figure 3.1: RouteID00143bdd−0a6b−49ec−bb35−36593d303e77, with 119 stops, include
depot

(a) Stop Distribution (b) Zone Distribution

Figure 3.2: Distribution of the stop and zone, range from 23 to 250 and 6 to 47, respectively

11

Chapter 4

Methodology

We introduce a framework for handling the TSP task in this chapter. The technique

is divided into two parts to match the unique features of the Amazon dataset. Figure

4.1 displays a general framework flow diagram. We start with a set of arbitrary

stops, which are then divided into zones using their corresponding labels, ZoneID.

The first phase involves determining the zone sequence utilizing two methods, the

Pointer Network and the Actor-Critic method from Reinforcement Learning. A local

search strategy is then used to determine the stop sequence inside each zone. The

route sequence is generated after the conclusion of these two processing phases. More

information on the specifics of the many techniques used in the two stages will be

provided in the following sections.

Figure 4.1: The framework flow

12

Methodology

4.1 First Stage

The two main approaches we explore during the first phase are the Pointer Network

and the Actor-Critic technique, built from policy gradient reinforcement learning.

Additionally, the Pointer Network is categorized as a sequence-to-sequence model

that includes the Encoder and the Decoder as two essential parts. While the De-

coder uses two different RNN structures, LSTM and GRU, the Encoder contains an

embedding layer.

Lastly, in the context of the reinforcement learning approach, the reward signal

is established as the objective within the problem. Three distinct reward signals are

used and tested in this task to evaluate performance.

4.1.1 Pointer Network

We begin by constructing a sequence-to-sequence (seq2seq) model, consisting of two

main components: an encoder and a decoder. In the Amazon TSP scenario, the input

sequence has no impact on the outcome, thus the purpose of this model is to convert

the input data and generate a route sequence. The model structure is shown in Figure

4.2.

Figure 4.2: The structure of the neural network. (Nazari et al. (2018))

An input sequence is given to the encoder, an embedding layer in this case, and

it turns it into an intermediate vector ct that represents the input sequence. The

13

First Stage

decoder then uses the intermediate vector ct as input and decodes the data to produce

the output sequence.

In contrast to the traditional seq2seq model, the incorporation of the Attention

Mechanism dramatically enhances the performance of the Pointer Network, producing

outstanding results. The role of the Attention Mechanism in this context involves

combining or directly adding the encoder’s hidden state to the decoder’s hidden state,

based on specific weights at. This additional information helps to improve the overall

model’s prediction accuracy.

The optimal policy π∗ guarantees the generation of the optimal solution with a

probability of 1. Our objective is to make π converge to π∗ as closely as possible. To

achieve this, we employ the probability chain rule to break down the probability of

generating the sequence Y as follows:

P (Y |X0) =

t∏
T=0

π(yt+1|Yt, Xt) (4.1)

and

Xt+1 = f(yt+1, Xt) (4.2)

is a recursive update of the problem representation with the state transition function

f . Each component in the right-hand side of equation 4.1 is computed by the attention

mechanism,

π(·|Yt, Xt) = softmax(g(ht, Xt)) (4.3)

where g is an affine function that outputs an input-sized vector, and ht is the state

of the RNN decoder that summarizes the information of previously decoded steps

y0, ...yt.

In summary, the standard seq2seq model with an attention mechanism works as

follows: the input sequence is encoded using the encoder, the encoded vector is used

for attention, and finally, the input sequence is decoded using the decoder to obtain

the desired result. On the other hand, Pointer Networks produce a probability distri-

bution known as a pointer as their predictive output. Unlike the traditional seq2seq

model with attention, which provides a probability distribution for the output, Pointer

Networks provide a probability distribution for the input sequence.

The traditional attention method assigns weights to the components of the input

sequence, which is equivalent to highlighting certain spots in the sequence. By selecting

the input sequence entry with the highest weight, each projected element can be

14

Methodology

located.

Essentially, Pointer Networks use pointers to create a probability distribution for

the input text sequence, whereas the traditional attention mechanism of the standard

seq2seq model focuses on producing a distribution of this type for the output. The

two components that make up the Pointer Network will be thoroughly explained in

the following paragraphs.

Encoder: Embedding

First, arbitrary sequences rather than sequential series can be used as the input se-

quence. The inputs are converted into a high-dimensional vector space using the

embedding layer. Convolutional layer embedding is used to enhance training perfor-

mance. This could be attributed to the method’s success in resolving the initial high-

dimensional input representation and extracting relevant data (Nazari et al. (2018)).

At decoder step i, we utilize a context-based attention mechanism with a glimpse,

which extracts the relevant information from the inputs using a variable-length align-

ment vector at. In other words, at indicates the potential relevance of each input data

point for the upcoming decoding step t.

Here the greedy strategy is applied, that is to say, at every decoding step, the

node with the highest probability is selected as the next destination. Let x′
i be the

embedded input i, and ht ∈ RD be the memory state of the RNN cell at the decoding

step t. The alignment vector at is then computed as

at = at(x
′
t, ht) = softmax(ut) (4.4)

, where

ui
t = uT

a tanh(Wa[x
i
t

′
;ht]) (4.5)

The two vectors xi
t
′
and ht are concatenated in the equation. Then the conditional

probabilities by combining the context vector ct, computed as

ct =

M∑
i=1

aitx̄
i
t (4.6)

with the embedded inputs, and then normalizing the values with the softmax function,

as follows:

π(·|Yt, Xt) = softmax(ũt) (4.7)

15

First Stage

, where

ũi
t = vTc tanh(Wc[x

i
t

′
; ct]) (4.8)

In equations 4-8, va, vc,Wa, and Wc are trainable variables.

Decoder: LSTM

Long Short-Term Memory (LSTM) is a specialized type of RNN. The LSTM paper

was published in 1997 and was primarily designed to address the problems of vanishing

and exploding gradients during training of long sequences (Hochreiter and Schmidhu-

ber (1997)). From the name LSTM, it can be understood as a ’longer’ short-term

memory. In other words, LSTM improves upon the problem of short-term memory in

conventional RNNs, allowing it to retain information from earlier points in time. In

simple terms, compared to regular RNNs, LSTM exhibits superior performance when

handling longer sequences.

The main difference between LSTM and general RNN lies in the calculation process

of the model. The LSTMmodel performs more complex operations, as shown in Figure

4.3.

The original RNN had only one tanh operation, while LSTM has not only two

tanh operations, but also three sigmoid operations σ and a multitude of additions and

multiplications. It is precisely the alteration in the model’s architecture that brings

about changes in the computation process, allowing LSTM to have a longer memory

than a typical RNN.

Before delving into the detailed operational steps of the LSTM model, let’s first go

through its core mechanism - the Cell State. The Cell State stores the model’s current

state, which signifies what the model has remembered so far.

Neural networks of the RNN type exhibit a recurrent characteristic, where the

model’s output at a given time step serves as the input for the next time step.

During computation at this time step, the model takes the Cell State Ct−1 as input,

representing its current memory. Following this computation, the model’s Cell State

changes, giving rise to Ct. Ct also becomes the input for the next time step of the

model.

Ct−1 and Ct can be different or the same, determined entirely by the model itself

in terms of what information to retain and what to forget. We can observe that the

Cell State Ct−1 primarily undergoes two operations: multiplication and addition.

The inputs for the multiplication operation originate from two sources: the Cell

State and the output of the sigmoid operation, which can be seen if we concentrate

16

Methodology

on the multiplication section (depicted by the pink circle with x in the middle).

The sigmoid procedure usually yields a result of 0 or 1. Indicating whether the

information should be maintained or forgotten after being element-wise multiplied by

the Cell State, 0 implies that it should.

This mechanism determines what information in the Cell State should be forgotten

or retained, and is known as the Forget Gate, akin to a large gate that decides who

can pass through and who cannot.

In LSTM, there are three types of gates (Forget Gate, Input Gate, and Output

Gate), and through these three gates, LSTM extends its memory capacity beyond that

of a typical RNN.

Figure 4.3: The structure of LSTM (Olah). The yellow box represents the Neural Network
Layer, and the pink circle means the Pointwise Operation.

Decoder: GRU

To capture the information from the input data, the chosen RNN used in this task is

Gate Recurrent Unit (GRU) as the decoder (Cho et al. (2014)). GRU stands among the

RNNs and, when compared to LSTM, offers computational efficiency. The structure

of GRU is explained in the following section.

Firstly, Figure 4.4 illustrates the GRU structure. It is similar to the input and

output structures of standard RNNs. There is a current input xt, and the hidden state

passed down from the previous node, hidden state ht−1, this hidden state contains the

relevant information of the previous nodes. Combining xt and ht−1 will give the GRU

17

First Stage

access to the output of the node that is currently hidden node yt and the concealed

state that passed to the next node ht.

Figure 4.4: The structure of GRU (Olah).

Within GRU, the state of the previous transfer ht−1 and the input of the current

node xt get the two gating states.

r = σ(Wr[xt;ht−1]) (4.9)

z = σ(Wz[xt;ht−1]) (4.10)

, where r controlling the reset gate, z is an update gate for controlling updates. σ is

a sigmoid function, through which the data transform into a value in the range of 0-1

to act as a gating signal.

After receiving the gating signal, start using the reset gate to obtain the data

h′
t−1 = ht−1 ⊙ r (as a result of the reset operation). Next, combine h′

t−1 with the

input xt through splicing. Finally, apply a tanh activation function to scale the data

from range -1 to 1, as depicted in Equation 4.11.

h′ = tanh(W [xt;h
′
t−1]) (4.11)

here h′ mainly contains the current input xt data. targeted to h′ adding to the current

hidden state, which is equivalent to memorizing the state at the current moment.

Finally, we introduce the most critical step of GRU, which we can call the update

18

Methodology

memory stage. At this stage, we simultaneously completed the phases of forgetting

and remembering. We used the previously obtained update gate z.

ht = (1− z)⊙ ht−1 + z ⊙ h′ (4.12)

Here the gating signal z ranges from 0 to 1. As the gating signal approaches 1, more

data is retained, whereas as it approaches 0, more information is forgotten. One unique

aspect is the simultaneous control of the forget and choose memories with a single gate

z.

(1−z)⊙ht−1: Indicates the selective forgetting of the original hidden state. Here

1− z can be thought of as a forget gate, forget (ht−1) some unimportant information

in the dimension. z⊙h′: Indicates the information about the current node h′ selective

memory. Similar to above, here the (1− z) empathy will forget h′ some unimportant

information in the dimension. Or, here we should regard it as the right h′ dimensions

to select certain information. ht = (1− z)⊙ ht−1 + z ⊙ h′: Combined with the above,

the operation of this step is to forget to pass down some dimensional information in

ht−1, and add some dimensional information input by the current node.

Select (1− z) and forgetting here z are related. That is to say, we will selectively

forget the dimension information provided and to determine how much weight is for-

gotten (z), we will use the current input (h′). To keep the state consistent, adjust the

weights in (1− z) to match.

4.1.2 Actor-Critic

After implementing the Pointer Network, we utilize the classic policy gradient method

where the parameter θ represents the random strategy π. Usually, the policy gradient

algorithm consists of two networks: actor and critic. The former predicts the proba-

bility distribution of the next action at each decision step, while the latter estimates

the reward for a given state in any strength of the problem. The training target is the

travel time, given the training set s, defined as follows:

J(θ|s) = Eπ∼pθ(·|s)L(π|s) (4.13)

During training, the dataset is drawn from the distribution sampled. That is to

say, the overall training target is obtained from the sampled samples.

J(θ) = Es∼SJ(π|s) (4.14)

19

First Stage

We use the stochastic gradient descent method of policy gradient to optimize the model

parameters. b(s) represent baseline function, no dependent on π, is the estimation of

expected travel time. The goal is to minimize the variance. Use a parameterized

baseline to estimate the expected route length, Eπ, which can improve the effect of

the model.

Algorithm 1 actor critic training process (Bello et al. (2016))

Input/params: training set S, number of training steps T , batch size B
initialize: pointer network params θ, critic network params θv
for t = 1 to T do
si ∼ SAMPLEINPUT (S) for i ∈ {1, ..., B}
πi ∼ SAMPLESOLUTION(pθ(·|si)) for i ∈ {1, ..., B}
bi ← bθv (si) for i ∈ {1, ..., B}
gθ ← 1

B

∑B
i=1(L(πi|si)− bi)∇θlogpθ(πi|si)

Lv ← 1
B

∑B
i=1 ||bi − L(πi)||22

θ ← ADAM(θ, gθ)
θv ← ADAM(θv,∇θ,Lv)

end for
return θ

Reward signals

Three different reward signals are tested as part of the actor-critic approach imple-

mentation.

The first reward function is rather straightforward: it seeks to determine the

route with the least amount of time spent traveling.

The second reward signal revolves around a customized total travel time. Here,

the intention is to highlight the importance of the ZoneID label by adjusting the travel

time using a weight that reflects the distance between each pair of zones.

The labeling rule, which may be thought of as having a macro and micro compo-

nent, is used to compute the weight. Take one stop AD on routeID 00143bdd−0a6b−
49ec − bb35 − 36593d303e77 as an example, the stop information is shown in Table

4.1. The ZoneID of stop AD is P − 12.3C; the period is used as a separator, and

the prior P − 12 and later 3C represent the macro and micro parts, respectively. As

shown in Figure 4.5. If the two zone labels have a different alphabet letter, wmacro1

denotes 1, otherwise 0. The alphabet letter in the macro section represents a more

global representation of the geographical region. Additionally, form wmacro2 using the

variation in the number following the alphabet letter. The weight in macro is then

20

Methodology

determined using the formula wmacro = wmacro1 + wmacro2. When calculating the

micro weight wmicro = wmicro1 + wmicro2, first add up the difference of the integer

before the alphabetic character wmicro1, and then use the Unicode code point for

that character wmicro2 = ord(a)− ord(b). The weight is finally determined using the

formula w = wmacro + wmicro.

Field Info

lat 34.099611
lng -118.283062
type Dropoff

zone id P-12.3C

Table 4.1: Stop-level information for stop AD in routeID 00143bdd− 0a6b− 49ec− bb35−
36593d303e77

Figure 4.5: The naming structure of zoneID

The last one is the score function, which rates the level of quality of the route.

This is regarded as one of the objective functions because the main goal of the thesis is

to find a technique capable of producing a route that closely resembles actual driving

behavior. Equation 3.1 provides a detailed description of the calculations.

4.2 Second Stage

The second stage uses four distinct ways to decide the order of stops within each zone

after the zone sequence in the first stage is set. The final sequence for the complete

route is generated after the second stage of the process is performed.

2-opt

To begin with, we employ a straightforward local search technique known as the 2-opt

method. This method commences with a collection of zones and an initial random

sequence.

21

Second Stage

The algorithm employs iterative steps to perform local swaps, aiming to enhance

the tour. Each possible pair of edges undergoes a systematic assessment to determine

whether interchanging them would lead to a shorter total travel time. Refer to Figure

4.6b for a visual representation of the swap process.

Edges are swapped, and the tour is adjusted as required whenever such a swap

would genuinely decrease the overall duration. If this is not the case, the particular pair

of edges remains unaltered. This process is repeated until the termination condition is

satisfied. Edges are swapped and the tour is adjusted as required whenever such a swap

would genuinely decrease the overall duration. If this is not the case, the particular pair

of edges remains unaltered. This process is repeated until the termination condition

is satisfied.

3-opt

The second approach is an extension of the 2-opt, the 3-opt algorithm. It starts

with an initial sequence and calculates its cost, representing the total travel time. It

systematically explores all possible combinations of three edges in the tour. As shown

in Figure 4.6c, a 3-opt swap operation is carried out for each triplet to provide a new

candidate sequence.

The travel time of the new candidate is then assessed using the cost function. The

new candidate becomes the new best candidate if its trip time is less than that of

the previous best candidate. This process is repeated for all triplets until no further

improvements are made. Finally, the algorithm returns the best sequence and its

corresponding travel time, representing an optimized solution with a reduced travel

time.

(a) Route with six stop (b) 2-opt swap movement (c) 3-opt swap movement

Figure 4.6: Example of 2-opt and 3-opt

22

Methodology

Random order

In addition to the local search, we employ the random assignment method for stops

within the zone for comparison. The rationale behind this is exemplified by routeID

00143bdd− 0a6b− 49ec− bb35− 36593d303e77, where the number of stops in a zone

ranges from 1 to 7, with 3 stops being the most common count. Consequently, the

assumption is that the order of stops has a minimal impact on the final result since it

affects only a small number of stops.

Exhaustive search

The concept of brute force is straightforward. Given the relatively small scale of the

problem, employing the brute force approach becomes viable as it allows us to explore

all possible scenarios.

23

Chapter 5

Experiment

In this chapter, several experiments are carried out within the computational frame-

work using real-life examples. The two-stage architecture is implemented, and the

benchmarks are used to evaluate the model’s efficacy. The experiment code can be

found in GitHub 1

5.1 Experiment Design

We utilize a policy-based Actor-Critic technique in the first phase, with the embedding

layer as an encoder component of the neural network throughout. For the decoder part,

we experiment with two different types of RNNs: LSTM and GRU.

Out of the four methods considered for the second stage, contrary to expectations,

preliminary testing on a small dataset highlighted that even with limited scope, brute

force calculations could lead to significant computational explosiveness when applied

to stop-ordering in the second step. Both of the local search techniques significantly

outperformed random selection among the remaining three strategies. Based on the

explanation in the previous section and the experimental results, 3-opt demonstrated

a superior ability to overcome local optima compared to 2-opt. Consequently, the final

implementation of all second-stage operations utilized the 3-opt technique.

According to Figure 3.1a, the depot looks to be somewhat distant from consumers,

and neither the first stop nor the final stop is the closest to it. Because of this, the

depot was not taken into account while building the sequence; instead, we simply

looked at the client’s location.

1https://github.com/annalin25/Thesis.git

24

Experiment

As part of the experiment, we also look at the route’s quality label, the Route score

in Table 3.1’s Route-level information, which is denoted by a low, medium, or high

rating and is utilized as a weight for determining the reward. This characteristic is

left out of the final experiment because it barely affects the results.

At the close, the differences in the first stage - specifically, the pairings of LSTM,

GRU, and the three different reward signals - were the main focus of our comparison

research.

5.2 Benchmark

Three benchmarks are used for comparison to assess the model’s performance.

OR-Tools

The first one is OR-Tools, which is an open-source software developed by Google

for combinatorial optimization. It provides solvers for many problems, such as Vehicle

routing, Constraint programming, Linear and mixed-integer programming, and Graph

algorithms. We employ the vehicle routing solver in this project.

The outcome provides both the route and the associated time spent, utilizing the

cost matrix (depicting travel time between each pair of stops) and considering the

depot’s location. Subsequently, the route is passed through the scoring function to

assess its performance.

Label-based approach

As mentioned in the previous section, it is found that ZoneID significantly affects

the way people drive. The second criterion is hence the presumption that the label

naming requirements are strictly adhered to along the route. The driver will complete

the zone with the same macro sign as the micro group, as shown in the structure in

Figure 4.5. Within the relevant macro- and micro-groups, the visiting order can be

either ascending or descending.

Simplest form of the Two-stage Framework

Finally, we create the simplest form as a baseline using the same two-stage architecture.

The first step makes use of a Pointer Network, an embedding layer encoder, and an

LSTM cell as a decoder. The stops are randomly arranged in the second stage.

25

Result

5.3 Result

In this section, we present the results of combining the framework in various ways

with three benchmarks. We randomly select 4890 routes for model training and 1222

routes are used to evaluate performance. The parameters of the neural network are

shared by several combinations of models, with hidden sizes of 256, 2 layers, dropout

of 0.2, and batch size of 128. We train the model using the Adam optimizer with a

learning rate of 0.0001 and 30 training epochs.

In the training phase, we compare several settings in the first stage, using 3-opt for

the stop sequence in the second stage. We use the reinforcement learning approach in

the first step, which includes two Pointer Networks. Three reward signals are exam-

ined, and two RNN cells are employed in the Pointer Network’s Decoder component.

As shown in Figure 5.1a, LSTM + time denotes that the neural network employs

an LSTM cell and with the goal of reducing the overall routing time, the travel time

serves as a reward signal. GRU means the other use type of the RNN, time weight

stand for the second reward signal in Chapter 4.1.2, the travel time with customized

weight. score is the last reward function mentioned. In total, two RNN cells and

three reward signals generate six different combinations of the framework; these are

compared with Benckmark3, the simplest form of the two-stage method, while the

other two benchmarks do not require training progress, will be demonstrated in the

evaluation section only.

Following is the evaluation phase. There are still six model configurations and

three benchmarks, making a total of nine comparison methods. The two additional

benchmarks Benchmark1 and Benchmark2 in Figure 5.1b represent the OR-Tools

and the label-based approach, respectively.

Comparing the result, the performance in the training and testing phases exhibits

some differences. In the first, the combination of LSTM + score achieves the best

performance, while in the second, GRU together with cus time demonstrates the su-

perior performance. As expected, GRU outperforms LSTM and is relatively simpler in

terms of computation. Regarding the three different reward signals, they yield diverse

outcomes with different RNNs. However, among the six variants, GRU + time weight

delivers the best performance, closely resembling the results of Benchmark1, Google

OR-Tools. Although the results still fall short of matching the label-based approach,

it once again underscores the significance of label prediction. All six methods surpass

Benchmark3 and perform well even in the fundamental two-stage setup.

26

Experiment

(a) Train

(b) Evaluation

Figure 5.1: The result of train and evaluation on the models

27

Chapter 6

Conclusion

In this thesis, we present a two-stage framework that integrates machine learning and

heuristic methods for tackling the TSP. We utilize the Pointer Network to address the

sequence of higher-level zones, as defined by the zone label. Subsequently, at the stop

level, we employ a classical local search method known as 3-opt.

Two findings emerged from the model adjustments. First, contrary to previous

studies that employed LSTM, we found that GRU outperformed in this particular

task. The simplicity structure of GRU may be a contributing factor, making it well-

suited for handling simple inputs. Secondly, the evaluation function did not exhibit a

significant impact on the model adjustments. Initially, the assumption was that the

evaluation function would define the quality and guide the model’s learning. However,

in this scenario, the travel time emerged as the more crucial factor.

During the experiment, it was observed that the zone label remains the most

influential factor in determining driver behavior. Tacit knowledge, on the other hand,

appeared to be more of an outlier in the dataset. Furthermore, having close to 5,000

data points might still fall short in terms of training an effective model. The initial

assumption was to use the reward signal to teach the model to learn driver behavior

with a small amount of data.

Another potential reason for the model’s performance could be attributed to the

depot. Preliminary findings indicate that the depot is situated at a considerable

distance from all the stops and is not necessarily connected to the closest stop or

zone. As a result, it is excluded from the training process. However, this can lead

to a scenario where the sequence of zones is correctly formed into a close loop, but

the model incorrectly incorporates the depot as a connection to one of the zones.

28

Conclusion

Consequently, the final route sequence may end up being divided into two parts, with

the depot acting as a separation point between them.

In summary, the framework appears to possess substantial interpretability, given

that OR-Tools display a certain degree of instability, as depicted in Figure 5.1b.

Nonetheless, within the context of the two-stage framework, the poorest performance

would still be only less than 0.3, signifying relative robustness. Consequently, with

the identification of the suitable configuration, confidence is held in the framework’s

potential to deliver impressive results.

For further real-life TSP studies, explore multilayer approaches, designing architec-

tures with abstraction for complex routing patterns. Furthermore, combine heuristics

with neural networks or reinforcement learning for better solutions. Heuristics offer

initial efficiency, neural networks refine, combining for robust TSP outcomes.

29

Bibliography

Amazon. Amazon routing challenge scoring, 2021.

D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The traveling salesman
problem. In The Traveling Salesman Problem. Princeton university press, 2011.

I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

G. A. Croes. A method for solving traveling-salesman problems. Operations research,
6(6):791–812, 1958.

G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management science,
6(1):80–91, 1959.

M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L.-M. Rousseau. Learning
heuristics for the tsp by policy gradient. In Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research: 15th International Confer-
ence, CPAIOR 2018, Delft, The Netherlands, June 26–29, 2018, Proceedings 15,
pages 170–181. Springer, 2018.

Y. Dumas, J. Desrosiers, E. Gelinas, and M. M. Solomon. An optimal algorithm for the
traveling salesman problem with time windows. Operations research, 43(2):367–371,
1995.

M. M. Flood. The traveling-salesman problem. Operations research, 4(1):61–75, 1956.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

30

Bibliography

H. H. Hoos and T. Stützle. Stochastic local search: Foundations and applications.
Elsevier, 2004.

R. Jonker and T. Volgenant. Transforming asymmetric into symmetric traveling sales-
man problems. Operations Research Letters, 2(4):161–163, 1983.

C. K. Joshi, T. Laurent, and X. Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227,
2019.

E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimiza-
tion algorithms over graphs. Advances in neural information processing systems, 30,
2017.

W. Kool, H. Van Hoof, and M. Welling. Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475, 2018.

S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations research, 21(2):498–516, 1973.

H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In Handbook of
metaheuristics, pages 320–353. Springer, 2003.

R. Matai, S. P. Singh, and M. L. Mittal. Traveling salesman problem: an overview of
applications, formulations, and solution approaches. Traveling salesman problem,
theory and applications, 1, 2010.

D. Merchan, J. Arora, J. Pachon, K. Konduri, M. Winkenbach, S. Parks, and
J. Noszek. 2021 amazon last mile routing research challenge: Data set. Trans-
portation Science, 2022.

B. Mo, Q. Y. Wang, X. Guo, M. Winkenbach, and J. Zhao. Predicting drivers’ route
trajectories in last-mile delivery using a pair-wise attention-based pointer neural
network. arXiv preprint arXiv:2301.03802, 2023.

M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác. Reinforcement learning for solving
the vehicle routing problem. Advances in neural information processing systems, 31,
2018.

C. Olah. Understanding lstm networks. https://colah.github.io/posts/

2015-08-Understanding-LSTMs/. Accessed: 2015-08-27.

OR-Tools. L. perron, v. furnon, or-tools. https://developers.google.com/

optimization/.

Statista. statista - ecommerce (worldwide). https://www.statista.com/outlook/

dmo/ecommerce/worldwide/. Accessed: 2023-07.

P. Toth and D. Vigo. Vehicle routing: problems, methods, and applications. SIAM,
2014.

31

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://www.statista.com/outlook/dmo/ecommerce/worldwide/
https://www.statista.com/outlook/dmo/ecommerce/worldwide/

Bibliography

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. Advances in neural infor-
mation processing systems, 28, 2015.

C. Voudouris, E. P. Tsang, and A. Alsheddy. Guided local search. In Handbook of
metaheuristics, pages 321–361. Springer, 2010.

M. Winkenbach, S. Parks, and J. Noszek. Technical proceedings of the amazon last
mile routing research challenge. 2021.

32

	Abstract
	Introduction
	Literate Review
	Travelling Salesman Problems
	Pointer Network
	Local Search
	Technical Proceedings

	Amazon Last Mile Challenge
	Dataset
	Evaluation
	Preliminary Setting

	Methodology
	First Stage
	Pointer Network
	Actor-Critic

	Second Stage

	Experiment
	Experiment Design
	Benchmark
	Result

	Conclusion
	Bibliography

