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Abstract

Volcán de Colima is an active volcano that is located on the Ring of Fire

and it is reported that hundreds of eruptions occur here each year. It brings a

lot of hazardous The eruptions introduce numerous dangerous substances into

the local ecosystem, which is detrimental to the native vegetation and local

economy. However, the transitional volcanic eruption forecasting ways require

related domain knowledge and extensive human work, and are somewhat slug-

gish. Compared to this circumstance, Automated machine learning can address

the issue more quickly with less human labor and subject expertise.

In this thesis, we aim to tackle the challenge of volcanic eruption forecast-

ing using time series data as well as the Automated machine learning pipelines

from previous work. First of all, we post preprocessing methods on data col-

lected from Volcán de Colima: we filled in the missing data, and applied a filter

to extract fixed frequency from the raw data. Additionally, We also use the

downsampling technique to downsample the rate, which helps to save time in

future steps. Then, the sliding window algorithm was applied to split the con-

tinuous signal into separated time windows. Subsequently, we extract features

from the sliding windows by generating massive statistic features. And we apply

three feature selection methods to remove the features with the low contribution

to the prediction: FRESH algorithm, Variance Threshold, and Boruta. Further-

more, to balance the dataset, we compare three Imbalanced learning techniques:

Randomly dropping, Synthetic Minority Oversampling Technique(SMOTE), and

Four Types of Samples. And we choose the latter two and add them to our

pipeline before Modeling and Hyperparameter Optimization step. Finally, we

compared the performance of two Modeling and Hyperparameter Optimization

methods: Tree-Based Pipeline Optimization Tool(TPOT) and Automated tuned

Random forest, and choose the latter one. To conclude, in this work, we mainly
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applied previous work and techniques to tackle the challenge of volcanic erup-

tion forecasting based on the data collected from Volcán de Colima.

KEYWORDS: Automated Machine Learning, Imbalanced Learning, Time Se-

ries Classification, Volcanic Eruptions, Forecasting
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1 Introduction

Volcanic eruptions forecasting is challenging because volcanoes are complex and stochas-

tic systems. And the eruptions are controlled by many different non-linear processes.

Therefore, it is hard to give a detailed description of them at a certain time. The con-

ventional method of explosion prediction heavily relies on handheld devices or aircraft

to collect data from the ground or the air, and they are thought to be dangerous,

labor-intensive, and uneconomical. Nevertheless, manual input and analysis of these

methods are required to predict explosions, which is time-consuming, while a quick

result is needed sometimes for an upcoming eruption.

Volcanologists have traditionally focused focus on a small range of frequencies called

tremor(0.5-15 Hz) which proved to be the most crucial range for eruption precur-

sor recognition [1]. A tremor is continuous seismic energy and contains precursors of

eruptions and other volcanic activities.

Volcanologists employ a variety of graphical tools to visualize and analyze the seis-

mic signals collected from sensors when focusing on the tremor. Real-time Seismic-

Amplitude Measurement (RSAM) and Seismic Spectral Amplitude(SSAM) are impor-

tant and commonly used tools to extract useful information from signals, and they can

obviously show the peak of signals which indicate the highest energy from the volcano.

The peak values show the volcanoes may be active. Additionally, SSAM can help vol-

canists to recognize the source of the signal. And other tools can also tell important

information as well. The graph Mean of Dominant Frequency shows the domain and

highest frequencies and the outliers in a given period. And Frequency Index shows the

ratio of the average value of one part in valid frequencies to another part and helps

the volcanists to discover the outliers. Volcanologists rely on these tools to analyze

the tremor and predict volcanic eruptions. But each of the graphic tools requires the

corresponding domain knowledge of volcanology and is also labor-intensive. So, it is
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not very convenient for people who do not major in this field.

Therefore easy-to-use and quick methods should be introduced to solve the challenge.

And researchers try to dig out information from big data and find patterns that can

predict volcanic eruptions without analyzing the figures every time. A lot of machine

learning methods are developed to help [2] [3] [4] [5]. They applied different Machine

learning models and algorithms, such as Convolutional Neural Networks (CNN), K-

means clustering, and Random Forest, to solve the problem and make some success.

Machine learning reduces receptive human labor, for once a model is trained, future

prediction can be done by the model without human intervention, and it requires less

subject expertise in volcanology. Even though researchers use different Machine learn-

ing techniques to solve the problem of volcanic eruption forecasting, which are proven

to be feasible in this field, there are still some human interventions needed, for ex-

ample, model selection, and parameter tuning. They are strange to researchers from

other fields, and they require both experience and domain expertise as well. Therefore,

researchers need to learn a lot of relevant Machine learning knowledge to tackle the

problem. However, Automated machine learning (AML) can help to solve this problem

because it requires less domain knowledge and fewer human interventions. AML can

automatically construct the pipeline with the best-performed model, algorithms, and

hyperparameters.

Researchers can use Automated machine learning techniques to explore many practical

methods requiring less domain knowledge. And it only needs researchers to preprocess

the data, which only needs limited domain knowledge in both the domain field, for

example, volcanology, and the machine learning field. Researchers just put the pre-

processed data in the constructed machine learning pipeline and the result. And there
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are already many successful automated machine learning applications on time-series

data in many fields, and machine learning also performs relatively well on the volcano

dataset [6] [7] [8] [9]. For example, M Kefalas [7] put up with an Automated machine

learning pipeline on the aircraft field to predict the Remaining Useful Life (RUL) of

engines. And D. E. Dempsey [6] proposed a machine learning pipeline to forecast the

probability of explosion for the volcano Whakaari in New Zealand. But their dataset

only contains no more than 10 explosions.

Based on the previous work [10], we applied an Automated machine learning (AML)

pipeline on our dataset which has a large number of eruptions collected from Volcán de

Colima. This pipeline originally was used to solve the problem of vehicle on-board. Then

it also proves to be effective on EEG (electroencephalogram) data to recognize the

cognitive function of Parkinson’s disease patients. We adjusted it and combined it with

other Imbalanced learning techniques, such as the Synthetic Minority Oversampling

Technique(SMOTE) and Four Types of Samples [11]:

• We posted preprocessing methods on our dataset: We used an interpolation tech-

nique to fill in the missing data throughout the day by computing the average

value of the remaining data on that day. We aggregated data of a single sensor

from different geographic directions, while sensors collect data from three differ-

ent directions. Then, we adopted a Bandpass filter to remove the high-frequency

signals and low-frequency signals. Next, we used the downsampling technique to

reduce the sampling rate, which decreases the consumption time for future steps,

such as feature selection. we also applied the Sliding window algorithm to split

data into small time windows, and each window contains a piece of continuous

data. Additionally, we test out the suitable parameters for the time windows and

sampling rate.
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• We applied the feature extraction methods which generate abundant statistical

features based on data in time windows from pre-defined mathematical formulas.

Then, in order to remove the redundant generated features, we applied three

feature selection methods: FRESH algorithm, Variance Threshold, and Boruta.

And find that when the sampling rate is relatively small, all of them are needed

to remove redundant features. When the sampling rate is large, the FRESH

algorithm and Variance Threshold are able to remove redundant features. But

in this circumstance, the influence of Boruta is limited to the feature selection

result.

• Based on the fact that our data are imbalanced, we tested three imbalanced

learning techniques on our dataset: Randomly dropping, Synthetic Minority Over-

sampling Technique(SMOTE), and Four Types of Samples. we first adjusted

Four Types of Samples and made it available on multi-class problems, and we

prove that it can improve the performance of our models based on experiments.

Additionally, we find the combination of Four Types of Samples and SMOTE

performed much better in processing the problem of the imbalanced dataset

than the combination of Four Types of Samples and Randomly dropping. How-

ever, Randomly dropping and SMOTE can not be used together because one

will generate synthetic data and another one will delete data from the dataset.

Also, we find the performance of variants of SMOTE is relatively close based on

experiments.

• We finally compared the performance of two Modeling and Hyperparameter Op-

timization methods: Tree-Based Pipeline Optimization Tool(TPOT) and Au-

tomated tuned Random forest. And find their performance is very close, and

Automated tuned Random forest costs less time than TPOT. Furthermore, Au-

tomated tuned Random forest is better for future development because of its
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fixed model.

The remaining parts of the paper are structured as follows: Section 2 lists some relevant

work in volcanic eruption prediction, AML, and techniques for imbalanced learning,

Section 3 provides a detailed task definition and describes the dataset’s source and

collection method. In Section 4, we provide the methods used in the thesis. In addition,

the construction of the AML pipeline is described in depth. In Section 5, we list the

experimental design, outcomes, and interpretations. Finally, Section 6 ends with a brief

conclusion.
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2 Related work

2.1 Volcanic eruption forecasting with machine learning

There are already a lot of works about volcanic eruption forecasting in the field of ma-

chine learning [2] - [6]. CX Ren [2] applies the Spectral clustering technique which is

an unsupervised learning method to the data of Piton de la Fournaise. And supervised

learning methods like Random Forest [6], SVM (support vector machine) [4] [5], are also

applied in the field of volcanoes to detect eruption. Furthermore, some researchers use

Convolutional Neural Networks, CNN for the prediction [3]. In conclusion, researchers

try to solve the challenge of volcanic eruption forecasting with different kinds of ma-

chine learning techniques. And there is also a lot of work based on automated machine

learning (AML) as well.

2.2 Automated machine learning pipeline

Aiming to solve the machine learning problem without human effort, AML is an efficient

technique to generate optimal machine learning framework from a given search space,

optimizer, and objective function [12]. AML pipeline mainly aims to solve the problem

of CASH(combined algorithm selection and hyperparameter optimization) where the

model tries to find out suitable algorithms, preprocessing methods, and hyperparame-

ters. This can help future users who may have little domain expertise in machine learn-

ing because the hyperparameter and algorithm setting requires both domain knowledge

and experience in machine learning. And in recent years, automated machine learning

has been well developed in many different areas, for example, defect detection [8] in

industrial applications and disease recognition in the healthcare field [9]. And typically,

an AML pipeline consists of Preprocessing, Feature extraction, Feature selection, Mod-
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eling, Hyperparameter optimization, and Evaluation.

2.3 Imbalance learning

Oversampling tries to solve the problem of imbalanced data distribution. And there

are a lot of methods for addressing this problem, for example, creating minority class

data and dropping some majority class data to make the dataset balanced. The mi-

nority class is the label with the least amount of data, while the majority class is the

opposite. Randomly dropping is the commonest way for the imbalanced datasets [13],

and it always works well in many circumstances, while it is simple and intuitive. Then,

The synthetic minority oversampling technique (SMOTE) [14] and its variants solve

the problem of oversampling by creating synthetic minority class data. And there are

many variant SOMTE algorithms for solving the problem. SMOTE is the most famous

method in the resampling field. Based on the K-nearest neighbors and randomly cho-

sen minority data, SMOTE can generate enough minority data to make the dataset

balanced. And more variants are developed based on SMOTE, for example, the adap-

tive synthetic (ADASYN) [15]. Compared to SMOTE, ADASYN mainly gives higher

weight to the data which is difficult to learn, and reuse them more often than the

normal data. And there are other variants as well, for example, BorderlineSMOTE.

BorderlineSMOTE is also based on SMOTE, but it first divides the minority data into

3 types based on labels of their neighbors: Safe, Danger, and Noise. And it just focuses

more on the data near the boundary. So, most of the new data is generated based on

Danger data which is near the boundary.

In Kong’s work [11], the authors put up with methods to create additional attributes

for binary classification based on Anomaly detection, named Four Types of Samples.
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Anomaly detection aims to detect rare items in datasets and is used in many differ-

ent fields, for example, healthcare, machine vision, and so on. And researchers define

the anomaly in different ways. For example, data that does not follow the normally

confirmed definition and the pattern is thought to be an anomaly [16]. Or anomaly

can also be defined as a point that is out of its cluster. Four Types of Samples com-

putes the ratio of the given point’s minority neighbors to the number of K-neighbors.

Then, based on the value, the points are divided into 4 types: Safe(S), Borderline(B),

Rare(R), and Outerlier(O). The smaller value the point has, the more likely it is an

outlier. They want to solve the problem of imbalanced data by recognizing outliers in

a given dataset.
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3 Dataset and Problem Statement

3.1 Data collection

The raw seismic data contains 19 sensors located around the volcano, and each sen-

sor collects signals from 3 geographical directions (east-west, north-south, and vertical

directions). From 2013 to 2017, there are a total of 11569 small, 565 middle, and 23

large eruptions by manual records (the detail of labeling will be given in Section 4.1).

Even though the signals of sensors are different because of the distance from the sen-

sors to the volcano, the terrain influence, or different noises. They share the statistics

of eruptions, which means they share the same labels.

The data is provided by Universidad de Colima. There are 4 short-period vertical seis-

mometers, and 6 Broadband seismic stations collecting data ranging from 0.033Hz (30

Seconds) to 50 Hz. The working sensors collect signals every 0.01 seconds (100 Hz),

864,000 data in total every day for a single sensor. Furthermore, these signals contain

the tremor, the frequency from 0.5-15 Hz, and is proven to provide the most important

information for volcano explosions.

However, only a small part of sensors are used throughout time. And because of some

technical error, sensors fail to work at the same time. So, it is better to pick a sensor

and use its data for prediction. As shown in Figure 1, SOMA, WEST, and INCA are

the closest sensors to the volcano. Based on the tracks, the sensor WEST has more

records from 2013 to 2017 than any other sensor. So, we use the data from WEST for

the volcano explosion prediction through all the experiments.
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Figure 1: The distribution of sensors around the volcano

Formally, for a single sensor, the data within a day t is denoted as a track st, and st

is denoted as:

st =< st HHE, st HHN , st HHZ > (1)

where st HHE, st HHN and st HHZ are signals in different directions (east-west direc-

tion, north-south direction, and vertical direction separately) because sensors collect

signals from different directions.

And there are two types of missing data for a single sensor. The data distribution of

WEST is shown in table 1, and we can find there more than half of the days are missing

for 2013 and 2017. And in 2015, around a sixth of the data is missing. Except for the

data loss throughout the day, there is also some data missing within a day.
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Sequence number of date Start date End date

2013 [134, 134] 2013-05-14 2013-05-14

[141, 365] 2013-05-21 2013-12-31

2014 [1, 365] 2014-01-01 2014-12-31

2015 [1, 171] 2015-01-01 2015-06-20

[182, 283] 2015-07-01 2015-10-10

2016 [19, 366] 2013-01-19 2016-12-31

2017 [1, 15] 2017-01-01 2017-01-15

[41, 151] 2017-02-10 2015-05-31

Table 1: The data distribution of sensor WEST from 2013-2017

3.2 Problem Statement

Volcanic eruption forecasting is crucial for protecting the local environment and econ-

omy around the volcano area. However, it is not an easy task because of the complex

data collected from the volcano which usually contains a lot of noise and is always

imbalanced. There may be too many eruptions for an active volcano, while too few

records for an inactive one. In our work, we use the current few hours of data to predict

the degree of the eruption in six hours for an active volcano. The degree of the eruption

is determined by the strength of the signal picked up by the sensors. When the value

of the signal is large, it suggests there is a large explosion, while a small value means

a small explosion or no explosion in the feature.

However, there are some problems that make the dataset complex, such as a large

explosion that may be hard to recognize if it only lasts for a short time. Or, small

explosions and large explosions appear in an adjacent time period, and it is hard to

distinguish them. Also, we need to test and determine suitable techniques for prepro-

cessing the raw data which is not feasible as the input of the pipeline. Then, we also
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should find suitable methods to solve the problem of imbalanced data for the active

volcano where there are too many explosions. So, in the next sections, we aim to find

an AML pipeline to solve these problems.
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4 Methods

4.1 Automated machine learning pipeline

In this thesis, the pipeline we tested and used is based on AML applications in differ-

ent application fields. For example, Kefalas, M, etc. [7] put up with an AML pipeline

to solve a regression problem of predicting the remaining life of an engine based on

the time series recordings of engines. And M.Kefalas, etc. [17] developed an industrial

AML pipeline and solved the classification problem of disease prediction. And we com-

bined the techniques they used. Then, we modified the details and make them also

feasible in multi-class classification problems because some of their tasks are binary-

class classification problems. Besides, we also compare the performance of Imbalanced

learning techniques: Randomly dropping, Synthetic Minority Oversampling Technique

(SMOTE), and Four Types of Samples. And the pipeline consists of the following parts:

• Preprocessing: generate labels, filter and downsample raw data, generate time

windows by sliding window algorithm, and fill in the missing data.

• Feature Extraction: with time series data.

• Feature Selection: in several algorithms: FRESH algorithm, Variance Threshold,

and Boruta.

• Imbalanced learning: Randomly dropping, SMOTE, and an additional attribute

technique, called Four Types of Samples.

• Modeling and Hyperparameter Optimization: by Tree-Based Pipeline Optimiza-

tion Tool (TPOT) and Automated tuned Random forest.

First of all, we draw the pipeline we use to solve the problem of volcanic explosion

forecasting in Figure 2: Preprocessing techniques, Algorithm for feature engineering,
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Imbalanced learning techniques, and Modeling and hyperparameter optimization tech-

niques.

Figure 2: Pipeline overview

4.2 Preprocessing

Data preprocessing in time series mainly aims to turn the raw data into a machine-

understandable format because the raw data can not be used directly in most cases.

Furthermore, researchers also interpolate or drop data in this step to make sure the

quality of the data before the next step. And in the time series field, there are many

commonly used techniques in the step, for example, downsampling and sliding window

algorithm.

For data preprocessing in our dataset, the first step is to preprocess the raw signal. We

need to adjust the format of the signal, such as keeping a fixed frequency signal and

downsampling. Then, we applied the Sliding window algorithm to split the continuous

signal. Finally, we filled in the missing data, and generate labels for corresponding win-

dows.
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Volcanologists mainly focus on a fixed range of frequencies called tremor (0.5-15 Hz)

which contains important information for the prediction. And the signals out of bounds

are thought to have noise as well. The bandpass filter is always used to restrain the

range of frequency. First of all, in order to preprocess the raw data, we added a bandpass

filter that can remove both low-frequency and high-frequency signals. In the bandpass,

Fast Fourier Transform(FFT) is the core algorithm that turns the signal from the time

domain to the frequency domain. Then, it removes frequencies that are out of range.

And for us, we keep the frequency from 0.5Hz to 15Hz, and remove signals out of

bounds. However, in our experiment, we also set up a normal group that does not re-

move low-frequency and high-frequency signals. By this, we aim to verify the influence

of noise in the Machine learning field.

After filtering the signal, there is also another challenge that the size of the signal is not

feasible for the next steps, such as, Sliding window algorithm and Feature extraction,

because the sampling rate is too large and it costs too much for subsequent steps.

To overcome this, we applied the technique, Downsampling. And there are mainly two

kinds of downsampling methods: Downsampling by an integer factor, or by a rational

factor. If the integer reduction rate is M, The former method will keep every Mth data

from the original signal, and a lowpass filter is added to remove the high-frequency

signal before this [18]. Then for the latter one, when the sampling rate is M
N

it first

resamples the signal by a factor N and by the methods upsampling. Then keep every

Mth data from the original signal. And in this way, information from given data can

be saved maximally, while the size can be reduced.

And, in our experiments, we applied downsampling because of the large data size.
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Otherwise, it will cost too much for the feature step. We used downsampling by an

integer factor which regularly extracts features from the original signal with a fixed

interval. However, it is hard to say which value is suitable for our experiment. So, we

set a group of sampling rates, R ∈ {0.5, 0.01, 0.1}, and test them in our experiments.

In conclusion, downsampling reduces the size and maximally keeps the original infor-

mation.

After applying the bandpass filter and downsampling technique, we get a processed

signal track with a fixed frequency and with a smaller size. Then, the next step is to

split the continuous track into separate blocks, because a long track is not feasible

to be the input of the model because there is only one track and a lot of labels,

and they can not be matched well. Therefore, we need to manually turn it into a

machine-understandable format. In order to split the track, we apply the Sliding window

algorithm. Sliding window is a practical and commonly used algorithm in the machine

learning field for time-series datasets. Starting with a beginning time point, it picks

up data from the raw signal in a fixed interval, and each piece of extracted data is

called a time window [19]. For example, in a long track st with d days(see Figure

3, 11 days for example) in our dataset, we can extract a set of time series windows

T = {T0, T1...Tn}, where

n = (d ∗ 24− L)/S (2)

Ti is the i − th window in this long track. L is the length (L hours) of the windows.

and S is the interval, called step (S hours) between two windows. For example, for

a given window Ti, the start time point is ti (h). If L = 4, it suggests the length of

a time window is 4, and the end time point is ti + 4. And the data within the four

hours belong to the window Ti. Therefore, the length of the time window Ti is 4 hours,

from ti to ti + 4. In addition, if S = 1, it suggests the start time point of a window
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is an hour before the start time point of its next window. For example, the next time

window for Ti is Ti+1, and the start time point of the next window is ti + 1 which is

1 hour behind the start time point of Ti. We say the interval between the start time

points of Ti+1 and Ti is called step S. However, just like the sampling rate, it is hard to

determine the value for step S and length L. So, in the experiment, we test different

settings where S ∈ {1, 2, 3, 4} and length L ∈ {1, ..., 12}.

Figure 3: Raw signal in INCA sensor from 01-02-2012 to 11-02-2012

And as we mentioned in Section 3.1, a single long track st =< st HHE, st HHN , st HHZ >

where st HHE, st HHN and st HHZ are signals in different directions (east-west direc-

tion, north-south direction, and vertical direction separately). So, for a single track, we

need to combine the signal from different directions. And the time windows are also

denoted as:

Ti =< Ti HHE, Ti HHN , Ti HHZ> (3)

Ti HHE, Ti HHN , Ti HHZ are windows from different geographic directions. Therefore,

Ti is the combination of three time windows, and all the windows have the same

amount of data. In conclusion, Sliding window algorithm is usually applied to time

series data because it splits the continuous data into windows of identical length which
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is feasible to be the input of the next step.

However, during the step where we apply the Sliding window algorithm, we find that

except for the data missing throughout the day, some data is also missing within a

day. For the former situation, we just ignore the missing day and split the period into

two parts. And we apply the Sliding window algorithm in each part. And the latter

situation will influence the application of the Sliding window algorithm. For example, if

there are five minutes of missing data in a time point, all windows after the time point

will use data from the next window in order to make all windows the same length. We

check the dataset, and find that the missing data is always at the beginning or the end

of a day. And for this situation, we fill the missing data with the average value of the

remaining data in the day.

After generating the time windows, we also need to generate corresponding labels for

them. For a given window Ti, we will get its corresponding features Fi by feature

extraction algorithm in the next step. Then, we denote these features Fi by Xi which

is the input of the model. So, the corresponding label is denoted by:

yi = Max(Dt+6, Dt+7...Dt+12) (4)

where Dt is the eruption degree at time t. t is the start time of the window Ti.

And the default Dt is 0 in the dataset. And if the maximal energy captured is less

than 10,000,000 between time t to t + 1, Dt should be labeled with 1 which means

small eruption. And Dt is 2 which means middle eruption while its energy is between

10,000,000 and 100,000,000. The label is 3 when energy is more than 100,000,000, and

3 indicates a large eruption. Finally, We aim to apply an automated machine learning

pipeline by the input feature Fi to predict the scale yi at time t. From 2013 to 2017,

there are a total of 11569 small, 565 middle, and 23 large eruptions.
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4.3 Feature Extraction

After preprocessing, a lot of separated windows are generated. However, signals in

windows are still not efficient and interpretable in the future. Feature extraction in

time series tries to extract features from the raw data [20]. It removes redundancies in

the dataset and makes it more informational. Besides, the new statistical features are

proven to be more interpretable [21]. And many feature extraction algorithms in time

series are proposed, for example, Shapelet Transform [22] is a shapelet-based algorithm

where shapelet describes a subset of given time series data. It is based on the distance

between a shapelet and all the shapelets from the same time series data.

And in our experiments, we adopt the method of extracting massive statistical features

from the time series data by pre-defined formulas. By generating a large number of

features, we are able to deal with most of the time series scenarios. In our project,

we define the feature extraction function as f . And for a given time window Ti at

time t, the function will generate a k-dimensional feature vector ft with the recorded

signals at time t as the input. And there are already published packages implementing

our feature extraction method, such as tsfresh. tsfresh is a python package that can

automatically extract time series features from the raw data by statistical formulas.

And these features are pre-defined in tsfresh. It uses k=794 different statistic formulas

to extract features for a single time window. And features are extracted from different

properties, for example, in the aspect of distribution: mean, standard deviation, in the

aspect of correlation: FFT and power spectral density, in the method of linear regres-

sion: gradient and standard error, and so on. In our data, a time window is denoted as

Ti = Ti HHE + Ti HHN + Ti HHZ , which means there are three separate windows and

3*k features generated in the end. Then, for a single time window, Ti, we combine the

features extracted from all the separate windows together as the result of the Feature
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extraction. However, some features may contribute less to the prediction. So, we need

to filter them in the next step, Feature selection.

4.4 Feature Selection

Feature Selection aims to remove irrelevant, unimportant, and redundant information

from the features in the dataset while keeping the information unchanged [23]. And

there are 3 kinds of feature selection algorithms: wrappers, filters and embedded meth-

ods [24]. The wrapper algorithm evaluates the features by scoring the subset of the

features, for example, the error rate. And Filter methods choose another quickly cal-

culable measure to evaluate the features, for example, mutual information [24]. Then,

embedded methods put the feature selection in a part of model construction. Some

features are repetitive or contribute little to the prediction. So, it is necessary to remove

them from the originally extracted features to prevent the overfitting problem. After

this step, theoretically, features are qualified to be the input of the machine learning

model. In our dataset, 3*k=2382 features denoted F , are generated for a single time

window by our feature extraction method (by tsfresh), which may contain too many

redundant features or features that contribute less to the prediction. In addition, too

many features may not be beneficial to the prediction, because they may cause the

problem of overfitting and decrease the scores of objective functions on the test set.

So, it is necessary to filter them, and keep some relevant features. In our thesis, the

generated features pass through three steps orderly to remove the redundancy:

• 1. Apply FRESH (Feature Extraction and Scalable Hypothesis testing) algorithm

which evaluates the importance of features, to select features in F , and generate

a feature set F ′: F → F ′.
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• 2. Apply VarianceThreshold to remove features in F ′ with low variance, and

generate another new feature set F ′′: F ′ → F ′′

• 3. Based on the feature set F ′′, apply Boruta, a model-based algorithm to get

the final feature set, FΛ

Initially, we apply the Importance evaluation method called FRESH algorithm [25]. It

evaluates the importance of features, called p-value which is evaluated by the Ben-

jamini Hochberg procedure [26]. Benjamini Hochberg procedure is a multiple testing

procedure and can be used to evaluate the dependency between a feature and the

target, and it will generate a relevance table for the feature matrix to the label. Finally,

features with higher p-value remain as the input of the model. However, we find that

even though we apply FRESH to select relevant features, there are still hundreds of

features kept. And we think there the number of the features, |F ′|, is still too large to

be the input of the model, which means the features should be selected again.

Then we introduced another feature selection method called VarianceThreshold which

is intuitive and powerful. Variancethreshold removes features with a variance lower than

1, and low variance means that different tracks share almost the same value in a column

(in the same feature). By applying VarianceThreshold after FRESH, the number of re-

maining features decreases to tens when the sampling rate is low. For example, when

the sampling rate is 0.1, we can decrease the number of features, |F ′|, from more than

700 hundred to |F ′′| = 84. However, it works slightly poorly when the sampling rate is

high, for example, 0.5. In this situation, the number of features decreases from more

than 700 hundred to around 500 hundred. But this is understandable. Higher sampling

means more data in a time window, and also means more relevant information. There,

more features are more likely to be relevant to the label with less redundancy when the
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sampling rate is large. Subsequently, we also try just apply VarianceThreshold without

FRESH, and we find the result is even worse. More than 800 hundred features remain.

By far, the feature selection methods work relatively well when the sampling rate is

low. And we explore more, and try to reduce the dimension of the features when the

sampling rate is large. And apply another feature selection method called Boruta after

the two methods.

Boruta is a model-based technique and a wrapper algorithm that uses a Random For-

est model to select features. It iteratively evaluates the importance, called Z-scores,

of each feature by creating shadow features based on real features. Z-scores are the

indicators that show the importance of shadow features [27] and will be updated every

iteration. Boruta applies the random shuffling algorithm to the real feature vectors and

generates shadow features. The corresponding real features will be retained or dropped

based on Z-scores. The Z-score also measures the Euclidean distance for a number

from the mean of the data point. By iteratively updating, Boruta makes sure of the

statistically significant meaning of the procedure of evaluation.

In our dataset, Boruta helps to remove around half of the features when the sampling

is relatively high, for example, 0.5. The number of features decreases from |F ′| = 485

to |FΛ| = 227 after applying Boruta. It also removes some irrelevant features when the

sampling rate is small, for example, 0.1. And the number of features decreases from

|F ′| = 84 to |FΛ| = 70. This helps to further reduce the chance of overfitting. In addi-

tion, we also find we can just use Boruta without Variance Threshold and FRESH, and

we still get similar results for the Feature selection step. However, it is too slow to se-

lect features because it is a model-based technique where a complex, high-dimensional

dataset means a slow training process. So, we decide to keep Variance Threshold and
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FRESH before applying Boruta, which can speed up the process of feature selection by

Boruta. Variance Threshold and FRESH help quickly sort out the irrelevant features

because they rely on computation instead of training models, and computation is quick

than training models for the same dataset.

In summary, in this section, after extracting features by tsfresh, we get massive features

while some of them are irrelevant to labels. Therefore, we introduce 3 feature selection

techniques to remove irrelevant features: FRESH algorithm, Variance Threshold, and

Boruta. We put the generated features as the input, and let them go through the

three techniques orderly. Finally, we get the filtered features that are feasible as the

input of the model. However, this is still another problem to be solved, the dataset is

unbalanced. And we compare 3 techniques to solve this problem: Randomly dropping,

SMOTE, and Four types of samples.

4.5 Imbalanced Learning

The goal of Imbalanced Learning is to solve the problem of imbalanced data distri-

bution. As we mentioned in Section 4.1, our dataset has a total of 11569 small, 565

middle, and 23 large eruptions from 2013 to 2017. In this step, we process the features

by the technique of adding an additional feature, and we compare the technique of

generating and dropping data tracks. There are many techniques for help, and here we

mainly implement 2 methods to overcome the problem of imbalance: generating syn-

thetic data by Synthetic Minority Oversampling Technique(SMOTE) and its variants,

and adding additional features by Four Types of Samples (safe, borderline, rare, and

outlier). Then we compare SMOTE with the randomly dropping technique to show its

effectiveness.
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There are two intuitive but conflicting methods when solving the problem of imbal-

ance: generating and dropping data tracks. And we compare their performance in the

experiments. Randomly dropping is a commonly used, intuitive, and simple method to

solve the problem, and it performs relatively well in binary classification problems to

make the dataset more balanced [13]. However, in our case, it is hard to get the same

effect as the binary problem does because the difference between the maximum and the

minimum is too wide, and our dataset is quite complex with high-dimensional features.

So, we set it as a control group to show the effectiveness of SMOTE. In our dataset,

we discard the most numerous labels, so that it has the same number of labels as the

second most numerous labels. For example, when Step S=1 and Length L=4, there are

20316 non-explosion data(labeled 0), 10084 small explosions(labeled 1), 1593 middle

explosions (labeled 2) and 67 large explosions(labeled 3). In this scenario, we will drop

10232 non-explosion data. So, the number of non-explosion and small explosions are

the same and are 10084. However, there still remains a problem that the model can

not learn the statistical patterns of middle and large explosion data because they are

only a very small part of the data.

Compared to Randomly dropping, SMOTE and its variant may suit our dataset more.

SMOTE will generate data to make the number of all labels equal. So, models have

more chances to learn the statistical patterns of middle and large explosion data.

Based on the minority class in the dataset, SMOTE randomly chooses minority points,

measures the Euclidean distance between a selected point and its k-nearest minority

neighbors (5 in our experiments), and creates synthetic data. Then, based on SMOTE,

many different versions are proposed. For example, ADASYN is another good choice

for data oversampling. Compared to SMOTE, ADASYN will give higher weights to the

points which are hard to learn and reuse them more frequently. BorderlineSMOTE is
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also based on SMOTE, but it first divides the minority data into 3 types based on

labels of their neighbors: Safe, Danger, and Noise. Safe is the data whose neighbors

are the same as it. Noise is the data whose neighbors are all different from it. Dan-

ger is between them. And BorderlineSMOTE mainly focuses on the Danger data, and

generates synthetic based on it. And it is hard to determine which variant to be used

in our experiment through theoretical analysis. So, we set a group of experiments later

to compare their performance in our pipeline and determine which variant to use.

In addition, in Section 4.4, when we apply the Boruta algorithm to generate the fea-

ture set FΛ in step 3, we also apply SMOTE to produce samples to make the dataset

balanced. Because Boruta is a model-based technique to filter the features, the filtered

features are only feasible in a biased model if using the original unbalanced dataset

as its input. Therefore, we apply SMOTE to automatically generate data to make the

dataset balanced. Then, the balanced dataset is feasible to be used in Boruta for fea-

ture selection.

Apart from changing the number of data, we also introduce another way to solve

the problem of imbalance: adding an additional attribute to distinguish outliers. The

technique is called Four types of samples. The technique is developed to solve the

problem of binary classification and tries to recognize rare items or outliers in the

dataset. However, our project is a multi-classification problem. It divides the samples

into 4 categories: Safe(S), Borderline(B), Rare(R), and Outerlier(O). Originally, based

on the number of rare items in K-neighbors, we decide what category of a point is.

For example, when the K is set to 5, the category is Safe if the number of minorities is

more than 3, and the point is thought to be Outerlier if there is no minority. Based on

this, we expanded the rule to the multi-class problem, we decide what category of a
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point is by counting the number of neighbors with the same label. In our experiments,

the number of neighborhoods is set to a fixed size of k=5. And the details of the rule

are shown in the table below.

Types Safe(S) Borderline (B) Rare (R) Outlier (O)

Rule k+1
2k

< R same
all

≤ 1 k−1
2k

≤ R same
all

≤ k+1
2k

0 < R same
all

< k−1
2k

R same
all

= 0

E.G. when the size k=5

Rule 3
5
< R same

all
≤ 1 2

5
≤ R same

all
≤ 3

5
0 < R same

all
< 2

5
R same

all
= 0

R same
all

shows the ratio of data with the same label in total neighbors. And k is the

number of neighbors.

In summary, in this section, in order to solve the problem of the imbalanced dataset,

we add two techniques called Four types of samples and SMOTE after the Feature

selection step and before Modeling and Hyperparameter Optimization. And in the

experiment part, we set up a group of experiments to test the performance of variants

of SMOTE and determine which one to be used. And we set a group of experiments

to verify the effectiveness of SMOTE by comparing it with Randomly dropping as well.

Then, till now, we finish the generation of new features and labels. And the next step

is to find a good-performed model, algorithms, and hyperparameter settings.

4.6 Modeling and Hyperparameter Optimization

Modeling and Hyperparameter Optimization are the core of the CASH problem (com-

bined algorithm se- lection and hyperparameter optimization) which is also the goal

of Automated machine learning [28]. Modeling and hyperparameter optimization in

the automated machine learning field means finding a good-performed model, corre-

31



sponding algorithms, and parameter settings from a specified search domain that can

be pre-defined. And it is conducted by an optimizer, for example, Bayesian Optimizer,

that selects from a range of algorithms and hyperparameters [12]. Then based on the

evaluation metrics, also called objective functions, the optimizer discovers the best

combination. Formally, Hyperparameter Optimization aims to search for the optimal

setup of hyperparameters. And there are many Hyperparameter Optimization meth-

ods, for example, Grid Search, Random search, Bayesian optimization, Evolutionary

optimization, and so on. Grid Search is an intuitive and classic Hyperparameter Op-

timization method. It conducts an exhaustive searching on the given hyperparameter

searching space for learning algorithms, and the searching space should be set man-

ually [29]. Then, Grid Search should be guided by an evaluation metric, and usually

cross-validation as well. Cross-validation on the training estimates its generalization

performance. However, Grid Search also suffers from the problem of the curse of di-

mensionality and is in high dimensional. So, it may cost too much time when the

dataset is complex and large. Inspired by Grid Search, Random search conduct a ran-

dom selection on the searching space instead of exhaustive searching, which helps

to decrease the dimensionality of the optimization problem. Also, researchers find it

outperforms Grid Search when there are only a few crucial variables influencing the

result [30].

In our project, we compare two kinds of Modeling and Hyperparameter Optimization

techniques: Tree-Based Pipeline Optimization Tool(TPOT) and Automated tuned Ran-

dom forest. The former searches for both models and hyperparameters in a pre-defined

search space(see Table 2). And the latter uses a fixed model and literately searches for

hyperparameters based on the provided dataset. We also design a group of experiments

to verify their performance on our dataset in next section and decide which technique
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to be used in our pipeline.

TPOT is tree-based and uses genetic programming to find a well-performed pipeline

as the model and the corresponding hyperparameters from more than 1,000 potential

pipelines in several or dozens of generations. And in every generation, the parame-

ters of well-performed models will be passed to the next generation. It will end its

search when it reaches the maximal generation or when the evaluation score exceeds

the threshold. It is easy enough even for a beginner to use, and the users do not need

to know knowledge of the parameter and model in machine learning. However, it is

out of explicable and is hard for further development. According to the description of

the authours [31], the hyperparameter optimization method is stochastic and uses a

random search method to search in the possible space. Therefore, the authors believe

different pipelines will be generated from different runs if the dataset is theoretically

complex. Unfortunately, our dataset is both large and complex as we explained. And

we run TPOT for testing several times, and get several different pipelines as the au-

thors said. We will also tell the details of these pipelines in our experiments part. In

our dataset, we set the population to 20 and the generation to 30. Population size

describes the number of individuals in every generation. Then, the evaluation metric

we choose is F1-weighted because it will give different weights to labels according to

their proportion.

Many works have proven that Random Forest is always a good choice with low variance

and less chance of overfitting [32]. It is an ensemble learning method and a combina-

tion of several decision trees, and uses the output predicted by most of the trees as the

final result [33]. And it is also effective and simple enough for both the classification

and regression problems in different domains and can get relatively good performance.
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In our thesis, we use Automated tuned Random forest [17]. It was originally used to

process the vehicle dataset, and was developed to solve the problem of cognitive func-

tion recognization of Parkinson’s disease patients. Automated tuned Random forest

uses the Mixed-integer Parallel Efficient Global Optimization (MIP-EGO) as the hy-

perparameter optimization algorithm. Efficient Global Optimization(EGO) is a global

search strategy for expensive black-box functions. MIP-EGO uses a surrogate model to

learn and it changes the Gaussian Process Regression in standard EGO into Random

forests [34], while Random forest is feasible to handle the mixed integer data. Therefore,

MIP-EGO works relatively well in the hyperparameter optimization problem where the

hyperparameters are mixed-integer categorical variables [34]. And in our experiments,

the search space also contains both numerical values and categorical values (See Table

2). Automated Random Forest uses 10-fold cross-validation after splitting the dataset

into the training and test set. And in each fold, the training dataset is used to train the

model, and the test dataset is for evaluation. Also, another 10-fold cross-validation is

introduced in the training process in each epoch to adjust and optimize the hyperpa-

rameter by Bayesian Optimization. Through Automated tuned Random forest, we can

get the best-performed hyperparameters for Random forest on our dataset. Also, we

use F1-weighted as the evaluation metric.

Parameter Range

Maximal depth in an individual tree {None, 2, 4 . . . , 100}

Population of trees {1, 2, . . . , 100}

The number of features when splitting {auto, sqrt, log2}

Minimal number of samples required to split a node {2, 3, . . . , 20}

Minimal number of samples required in the leaf node {1, 2, . . . , 10}

Whether use bootstrap or not during the training {True, False}

Table 2: The search space for the automated tuned Random forest
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In the next section, we set up experiments and aim to find the suitable values of

window length L, window step S, and sampling rate Q. Then, we also want to find

the best-perform variant of SMOTE on our dataset, and compare the variants with

the technique, Randomly dropping. Finally, we set another group of experiments to

compare the performance of TPOT and Automated tuned Random Forest on our

dataset.
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5 Experiment setup and Result

Here we divide the experiments into 3 parts. In the first part, we mainly aim to search

for the best-performed preprocessing parameters: The step S of the time series window,

the length L, and also the sampling rate Q. Then, to verify the effectiveness of the

technique, Four types of samples, we also add it in this part because we have more

comparisons in this step. If it can improve the performance of most experiments, it

proves to be effective. And the range of frequency is also taken into consideration

in this part. In the second part, we compare the performance of SMOTE and its

variants and decide which one should be used in our pipeline. In the third part, we

want to compare the performance of Automated tuned Random Forest and Tree-

Based Pipeline Optimization Tool (TPOT). First of all, we will introduce a technique,

called technique Design of Experiment, and the adoptive objective functions, called

the evaluation metrics, in our experiments.

5.1 Design of Experiment

We decide to use both Sliding window and Downsampling techniques for the purpose

of preprocessing. However, it is hard to determine the window Length L, window Step

S, and the sampling rate Q. Because, for different datasets, the values may be different

to make models perform well. However, there are too many applicable combinations of

Length L and Step S for Sliding window algorithm. And it is impossible to try them

out because prepossessing is a time-consuming procedure that costs really long time,

especially for a high sampling rate Q.

So, we also apply the technique Design of Experiment(DOE) [35] which helps to narrow

the search space. And here we adopt the method of Latin Hypercube design [36] which
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divides the possible values into many possible small cells. Each cell has a group of

values. and it chooses only a single sample from every small cell. In this way, we do not

need to test all the combinations and can still get the effect as exhaustive searching

does.

5.2 Objective Functions

In our paper, we mainly use 2 kinds of evaluation metrics to evaluate the model after

training: F1-weighted score and accuracy. Accuracy is the most commonly used metric

in many machine learning fields.

ACC =
TP + TN

TP + FP + TN + FN

Where TP, TN, FP, FN are short of True Positive, False Positive, True Negative,

and False Negative. However, in our dataset, the data is biased, and there are too

many small eruptions. So, a high accuracy score does not mean a good model, for

it may mistake any incoming data as a small eruption. Even though, it can still get

a high score. So, we need to analyze the result with both accuracy and F1-score. F1

score takes both precision and recall score into consideration, so it is a relatively good

metric to judge a model:

Precision(P ) =
TP

TP + FP

Recall(R) =
TP

TP + FN

F1 =
2 ∗ P ∗R
P +R

5.3 Experiment Setup

A. Preprocessing Parameters and Four types of samples
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In the data preprocessing step, we want to find out the best-performed parameter setup

for the Sliding window algorithm, verify the influence of signal frequency, and the per-

formance of the additional attributes technique, Four types of samples. The resulting

scores are based on a 10-fold cross-validation (CV). The dataset is randomly split into

10 folds. And every iteration(10 iterations in total), a fold is chosen to be the test set,

and the remaining parts are used as the training set. For one of the Feature selection

methods, VarianceThreshold, we set the threshold to 1. We use BorderlinesSMOTE in

the first experiment and we set the k of k-neighbors to 5. Also, we apply k=5 in Four

types of samples as well. And we use Automated tuned Random Forest for Modeling

and Hyperparameter Optimization.

We first want to find out the best-performed groups of tuples (step S, length L, sam-

pling rate Q). We set the value of the sampling rate Q to {0.5, 0.1, 0.01}. When the

sampling rate is more than 0.5, it will cost too much time to extract features. There

are little data remaining when the sampling rate is less than 0.01. Then the length of

time windows is {2,4,6,8,12} which has common divisors with 24 hours. Then the step

length is set in the range from 1 to 4, {1,2,3,4}, and it should not exceed the length of

time windows because no data should be wasted. And as we mentioned before, we use

the DOE technique to find a subset (6 groups) from the whole possible parameters.

So, when the sampling rate is 0.5, 0.1, or 0.01 we conduct experiments with the length

L and step S shown in table 3:

step 1 2 2 4 4 4

length 2 4 6 8 10 12

Table 3: The value of step S and length Q generated from DOE for experiments
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We also want to verify the influence of the frequency filter and see if the noise can make

the result unchanged or not. With given step S, length L, and sampling rate Q, we

apply and test two filters for comparison. One frequency filter aims to extract tremor

(0.5-15 Hz) is proven to be a useful range for volcano prediction as we mentioned in

Section 1. And we apply another frequency filter ranging from 0.5-30 Hz which will

bring the noise.

Finally, we compare the performance of the model with and without the additional at-

tributes technique, Four types of samples. It means that for a model with a given group

of sampling rate Q, step S, length L, and frequency, we initially train and evaluate

the model without the additional attributes technique. Then, we add the additional

attribute and use the same setting again, and record the result.

B. Variants of SMOTE

In the first experiment, we select out 5 groups of the best-performed tuples (step S,

length L, sampling rate Q). And we also decide which frequency filter to use, 0.5-15

Hz or 0.5-30Hz. Then, we also verify the effectiveness of the Imbalance learning tech-

nique, Four types of samples. Based on the result of the first experiment, we are going

to conduct experiments on variants of SMOTE, and compare them with the randomly

dropping technique. We still set the threshold of VarianceThreshold to 1. The k of

k-neighbors keeps unchanged and k=5 in Four types of samples. And we also use And

we use Automated tuned Random Forest.

In this part, we mainly focus on three types of synthetic minority oversampling variants:

SMOTE, ADASYN, and BorderlineSMOTE. And in the groups of randomly dropping,
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we randomly discard the highest number of labels so that they are the same as the

second highest number of labels. For example, when the step and length are 2 and 6,

there are 10,461 small explosions and 4,300 non-explosion data. Here, we randomly

drop 6,161 data with label 1 to make them the same number. We test these techniques

on 5 groups of the best-performed tuples (S, L, Q).

C. Modelling and Hyperparameter Optimization Techniques

Based on the second experiment, we select out the best-performed variant of SMOTE

on our dataset. In this part, we want to compare the performance of Modelling and Hy-

perparameter optimization techniques: Automated tuned Random Forest and TPOT.

We test their performance on 5 groups of the best-performed tuples (S, L, Q) from

the first experiment, and on the best-performed variant of SMOTE. We still set the

threshold of VarianceThreshold to 1. The k of k-neighbors keeps unchanged and k=5

in Four types of samples.

5.4 Result

A. Preprocessing Parameters and Four types of samples results

a. Summary of the result

We give our results in 3 tables (Table 4, 5, 6 in the end of the part). In each table, we

give the evaluation scores on different steps and lengths. And in the left part, we mainly

focus on the frequency between 0.5 to 15 Hz, while the right is about the frequency of

0.5-30 Hz. Then, the upper part is about how the model performs when the additional

attribute technique is added, and the lower part is reversed. Subsequently, we will list

our findings with some figures for illustration.
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b. The impact of additional attribute technique

The Imbalanced learning technique, Four types of samples, helps to improve

the performance of models. From the three tables, we can see the bold data is

the best-performed one among the 72 groups. It shows when the sampling rate is 0.5,

step and length are 1 and 4, frequency is 0.5-30 Hz and the model does not use the

additional attribute technique, we get the best score for both accuracy and F1 score.

However, it does means that the technique is useless. Instead, it is the only group where

the model without the technique outperforms the model with this technique. We also

draw two figures (Figure 4 and 5) to show the differences between experiments with

and without the technique. It is not hard to see that in both frequencies, the additional

attribute technique contributes a lot to improving the score for any given S, L, and

Q. And the lower the sampling rate is, the more improvement the technique can bring,

for the gap between the blue line and green line (accuracy), or between the orange line

and red line (F1 score) narrows with the increase of the sampling rate. And when the

sampling rate is 0.01, the left part of the graph improves by at least 15 % for each

point with the additional attribute technique.
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Figure 4: When the frequency is in [0.5-15 Hz], the score of models on given steps

and lengths with or without the additional attribute technique

Figure 5: When the frequency is in [0.5-30 Hz], the score of models on given steps

and lengths with or without the additional attribute technique

c. The impact of frequency

Subsequently, we can also make a conclusion that the frequency of the filter does

not affect the performance too much, and the model shows close results with dif-

ferent settings of frequency. We can see from the tables that the differences between

groups in frequency from 0.5-15 Hz and in 0.5-30 Hz are really small. Based on the
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data in the tables, we can also find that the accuracy and F1 score are very close. So,

in Figure 6, we mainly focus on the F1 score to analyze the influence of frequencies and

the trend of different lengths on different sampling rates. Also, for each line, we use

the additional attribute technique, for it always improves the result in our experiments.

Then, as shown in Figure 6, it supports the idea that for a given length and sampling

rate, different filters do not affect the results too much because models always get

close results with different filters, and there is no trend to show one filter is much

better than another one. And we decide to fix the frequency to 0.5-15 Hz in the rest

parts of the experiments.

Figure 6: F1 scores on different filters
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d. The impact of hyperparameters in Sliding window

Also, from the table, we can draw another conclusion: when the tuple (step S,

length L, sampling rate Q) is {1, 2, 4}, we get the highest score in any other

conditions, but models with length 1 perform relatively well and is less sen-

sitive to the sampling rate than the model with length 4. The models get the

highest scores when the tuple is {1, 2, 4}, and models get very close results when the

length is 2 and the step is 1. When the length is 4, models are very sensitive to the

sampling rate, and when the sampling rate is 0.01, models perform even worse than

the model with length 6.

However, the table is not an intuitive representation of their differences. From Figure 7,

we can find a few points that can not be seen from the table as well. In this Figure, we

use the additional attribute technique, and fix the frequency to 0.5-15 Hz. Focusing on

the performance of the models on different steps and lengths, we can find the graph

is actually divided into two parts by length L: 2-6 and 8-12. While there is a huge

decrease from L = 6 to L = 8. Therefore, the scores in the left part are always higher

than the ones in the right part. Furthermore, From the Figure, we can easily find that

when the sampling rate is 0.5 and the window length is 4, the model performs best,

and is slightly better than the model with length 2. However, as we mentioned before,

the models with length 4 actually perform unstably. There is a large gap between every

two experiments when the length is 4. While models with length 2 always get F1 scores

ranging from 0.81 to 0.83 for different sampling rates. In addition, when the length is

larger than 8, the performance of models is close even with different window lengths,

and a higher sampling rate makes models perform worse.
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Figure 7: Bar graph of F1 scores

45



Sampling rate=0.5

Frequncy 0.5-15 Hz 0.5-30 Hz

step,length 1,2 1,4 2,6 4,8 4,10 4,12 1,2 1,4 2,6 4,8 4,10 4,12

With additional attribute With additional attribute

Accuracy 0.833 0.867 0.774 0.593 0.575 0.569 0.830 0.865 0.789 0.593 0.568 0.570

F1-weighted 0.835 0.868 0.771 0.590 0.567 0.568 0.831 0.866 0.784 0.593 0.560 0.570

Without additional attribute Without additional attribute

Accuracy 0.759 0.865 0.732 0.475 0.543 0.524 0.752 0.871 0.739 0.485 0.546 0.539

F1-weighted 0.751 0.863 0.719 0.474 0.532 0.514 0.743 0.870 0.727 0.479 0.536 0.530

Table 4: When sampling rate=0.5, the performance of the model on different steps

and lengths with or without the additional attribute technique, using different

frequency filters

Sampling rate=0.1

Frequncy 0.5-15 Hz 0.5-30 Hz

step,length 1,2 1,4 2,6 4,8 4,10 4,12 1,2 1,4 2,6 4,8 4,10 4,12

With additional attribute With additional attribute

Accuracy 0.817 0.798 0.778 0.614 0.606 0.590 0.833 0.795 0.786 0.616 0.609 0.588

F1-weighted 0.813 0.796 0.775 0.608 0.586 0.579 0.827 0.791 0.784 0.611 0.596 0.579

Without additional attribute Without additional attribute

Accuracy 0.688 0.731 0.698 0.579 0.561 0.569 0.687 0.672 0.696 0.590 0.553 0.561

F1-weighted 0.669 0.714 0.688 0.563 0.543 0.549 0.665 0.701 0.673 0.573 0.536 0.540

Table 5: When sampling rate=0.1, the performance of the model on different steps

and lengths, with or without the additional attribute technique, using different

frequency filters
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Sampling rate=0.01

Frequncy 0.5-15 Hz 0.5-30 Hz

step,length 1,2 1,4 2,6 4,8 4,10 4,12 1,2 1,4 2,6 4,8 4,10 4,12

With additional attribute With additional attribute

Accuracy 0.809 0.738 0.776 0.615 0.607 0.596 0.821 0.735 0.783 0.646 0.624 0.604

F1-weighted 0.813 0.731 0.775 0.607 0.589 0.584 0.809 0.722 0.785 0.637 0.605 0.592

Without additional attribute Without additional attribute

Accuracy 0.620 0.627 0.623 0.559 0.563 0.560 0.678 0.628 0.632 0.574 0.553 0.558

F1-weighted 0.595 0.602 0.596 0.538 0.540 0.538 0.625 0.599 0.607 0.550 0.531 0.536

Table 6: When sampling rate=0.01, the performance of the model on different steps

and lengths with or without the additional attribute technique, using different

frequency filters

Summary

In this part the influence of step S, length L, sampling rate Q, frequency range, and

the technique, Four types of samples. And we find that the frequency range does not

influence too much, and Four types of samples helps to improve the performance.

Then, based on the result, we can find the performances of 5 groups of tuples (step,

length, sampling rate) are acceptable, shown in Table 7.

Step/Length Sampling rate

1/2 0.5

1/2 0.1

1/2 0.01

1/4 0.5

2/6 0.5

Table 7: 5 best-performed groups of {S, L, and Q} in the first part of experiments
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B. Variants of SMOTE results

In this part of the experiment, we want to compare the performance of different Im-

balanced learning techniques: Variants of SMOTE and Randomly dropping. We adopt

Four types of samples, and set the frequency to 0.5-15 Hz, all called the tremor. And

we conduct our experiments based on the data in Table 7.

As shown in Table 8, the performance of SMOTE and its variants get relatively

close results. And randomly dropping labels makes the performance of models worse

than the synthetic minority oversampling techniques. However, the bold data shows

that ADASYN gets the highest score so far. And compared to BorderlineSMOTE, it

improves by around 1 % with the same step, length, and sampling rate. And it gets

relatively good performance on other groups as well. So, we decide to use ADASYN

in the next part of the experiments.

Step/Length Sampling rate BorderlineSMOTE SMOTE ADASYN Drop

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

1/2 0.5 0.833 0.835 0.868 0.849 0.844 0.847 0.720 0.699

1/2 0.1 0.817 0.813 0.812 0.810 0.813 0.814 0.590 0.570

1/2 0.01 0.809 0.813 0.810 0.815 0.807 0.812 0.502 0.489

1/4 0.5 0.867 0.868 0.870 0.870 0.874 0.875 0.798 0.780

2/6 0.5 0.774 0.771 0.810 0.807 0.794 0.794 0.615 0.581

Table 8: The performance of the different Imbalanced learning techniques on dif-

ferent steps, lengths, and sampling rate

C. Modelling and Hyperparameter Optimization Techniques results

In this part of the experiment, We want to compare the performance of different Mod-

elling and hyperparameter optimization techniques: Automated tuned Random Forest

and TPOT. We adopt Four types of samples, and set the frequency to 0.5-15 Hz, and
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use ADASYN for generating synthetic data. And we conduct our experiments based

on the data in Table 7.

As shown in Table 8, the performance of Automated tuned Random Forest is

always better than TPOT on our dataset, especially when the sampling rate is

small or the step and length are large. And there is an obvious benefit for Automated

tuned Random Forest, the fixed model. And we find that the modeling step generates

too many different combinations of models and algorithms in TPOT, which will prevent

developers from future development. And developers are hard to design a common way

to improve the performance of a flexible pipeline. So, in both of aspects, Automated

tuned Random Forest is better than TPOT on our dataset.
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Step/Length Sampling rate Random Forest Hyperparameter Optimazation TPOT

Accuracy F1 Score Modeling Accuracy F1 Score Modeling

1/2 0.5 0.844 0.847 Random Forest 0.840 0.845

StackingEstimator

OneHotEncoder

LogisticRegression

1/2 0.1 0.813 0.814 Random Forest 0.775 0.772

Normalizer

RBFSampler

StackingEstimator

KNeighborsClassifier

1/2 0.01 0.807 0.812 Random Forest 0.772 0.762

Normalizer

OneHotEncoder

RBFSampler

StackingEstimator

GaussianNB

1/4 0.5 0.874 0.875 Random Forest 0.872 0.873

MaxAbsScaler

StackingEstimator

PCA

KNeighborsClassifier

2/6 0.5 0.794 0.794 Random Forest 0.722 0.717

StandardScaler

PCA

StandardScaler

MLPClassifier

Table 9: The performance of the different Hyperparameter Optimization Tech-

niques
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6 Conclusion

In this thesis, we apply the automated machine learning pipeline, for example, TPOT

and Automated Tuned Random Forest on time series volcanic data. Based on Au-

tomated Tuned Random Forest, we explore the influence of hyperparameters in the

Sliding window algorithm, and the impact of the techniques, for example, SMOTE,

the additional attribute technique, called Four types of samples. First of all, we test

out the best-performed hyperparameters for the preprocessing step for both the Slid-

ing window algorithm and Downsampling. And find when tuple (step S, length L,

sampling rate Q) is {1, 2, 4}, we get the highest score for any other situation, while

models perform stably when L=2. In addition, when L is too large (more than 6), the

resulting scores are far less than the ones of smaller L. Furthermore, we also verify the

effectiveness of tremors which is an important precursor of explosions on our dataset.

And find that tremors are not crucial to the prediction in our experiments, and models

can work with noise as well. Subsequently, based on the situation where our dataset is

imbalanced, we adopt two Imbalanced learning techniques before the Modeling step:

ADASYN for generating synthetic data, and Four types of samples to add the addi-

tional attribute. However, we find that the performances of variants of SMOTE are

very close, and the choice of the variant will not influence the result too much. But,

the additional attribute technique, Four types of samples, can improve the performance

of models especially when the sampling rate Q is small or length L is large. In addi-

tion, we compare the performance of the Automated Tuned Random Forest technique

with TPOT. And we find that it performs better than TPOT on our dataset in our

experiment, while it can show the correlation of features as well. In conclusion, based

on those findings, we get the best-performed pipeline with 87.4 % accuracy and 0.875

F1-score on the tuple {1, 2, 4}.
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