
Master Computer Science

Detecting the switch time for informed one-shot
dynamic algorithm selection using the area under
the ECDF curve

Name: Yiqin Lei
Student ID: s2555069
Date: 28/11/2022

Specialisation: Computer Science: Data Science

1st supervisor: Furong Ye
2nd supervisor: Yingjie Fan

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

2

at

Abstract

Evolutionary Algorithms with di↵erent parameter configurations have di↵erent per-

formance on a given problem. In the applications of evolutionary algorithms, the most

important steps are configuring parameters and operators. A proper configuration of

an algorithm leads to good performance on the problem at hand. In order to figure

out which configuration may be the best suited of di↵erent stages of the optimization

process, we follow the previous investigation about dynamic algorithm selection.

We use one-shot setting for algorithm before the run, of which we obtained from

experimental data. We use area under the empirical distribution function curve as

an alternative performance measure which di↵ers from previous work that only used

expected running time. We apply a policy that switches from an algorithm to another

algorithm once on an optimization problem under the construction of a family of ge-

netic algorithms. In this work, we perform empirical analyse on how the area under

the curve can be used to infer the policy for dynamic algorithm selection schemes on

some specific optimization problems.

KEYWORDS:

Genetic algorithm, Dynamic algorithm selection, Area under the curve, Black-Box

Optimization, Evolutionary Computation

i

Contents

Abstract i

1 Introduction 1

1.1 Scope of the thesis . 1

1.2 Research Questions . 3

1.3 Outline . 4

2 Background 5

2.1 Genetic Algorithms . 5

2.2 Performance Measures . 6

2.2.1 Expected Running Time . 6

2.2.2 Area Under the ECDF Curve 7

2.2.3 A family of (µ+�) GA . 7

2.3 Algorithm Configuration/Selection . 9

2.3.1 Dynamic Algorithm Configuration/Selection 11

3 Experiment 12

3.1 Parameter settings of GA framework 12

3.2 Dynamic calculation in theory . 13

3.2.1 ERT for dynAS problem . 14

3.2.2 AUC for dynAS problem . 14

3.3 Settings of dynamic policies . 15

3.3.1 Methods for implementation of dynamic GA 15

3.3.2 Features of AUC . 16

3.3.3 Combination and selection method 17

ii

Contents

4 Results 20

4.1 Theoretical results . 20

4.2 Experimental results . 22

4.2.1 Earlier switch point can be beneficial 24

4.2.2 Adapting population size is challenging 28

5 Conclusions and Future Work 33

Bibliography 35

iii

Chapter 1

Introduction

1.1 Scope of the thesis

In the past decades, Evolutionary Algorithm (EA) has been highly developed with

di↵erent techs that di↵er in genetic representation and other implementation details

and the nature of the particular applied problem. This thesis focuses on Genetic

Algorithm (GA) which is the most basic type of EAs that is commonly used for

optimization problems.

GA seeks the solution of a problem by applying operators such as crossover and

mutation. It is important to select proper parameter settings and operators for GAs

to work e�ciently. With previous studies in parameter tuning [25], we decide to per-

form the GAs on IOHprofiler [7] platform. In terms of the black-box optimization

problems on IOHprofiler, di↵erent algorithms may be the best suited. Moreover,

the static optimal parameter settings may not be the optimal parameter setting in any

di↵erent optimization stage of a problem sometimes. In this way, the static optimal

parameter settings may prevent us from the best configuration. The question arises if

adequate settings can be found automatically during the process.

We review relevant studies about self-adaptation, which is given from evolution

strategies. Self-adaptation is the implicit search in the space of strategy parame-

ters [19]. The self-adaptive control of mutation strengths in evolution strategies was

exceptionally successful. A previous study [12] showed a bimodal function for which

the algorithm does not converge to the global optimizer with probability one if it

starts close to the local optimal solution. It also indicates that evolution strategies

with multi-recombinative self-adaptation strategies show sensitive behaviour concern-

1

Scope of the thesis

ing the learning rate, which results in not realizing optimal mutation strength. Under

simple fitness functions considered, conditions can be derived that ensure the conver-

gence of the EA to local optimal solutions. But for the black-box Pseudo-Boolean

Optimization (PBO) problems, we cannot ensure that the self-adaptation could solve

this issue because an e↵ective adaptive method also depends on the features of prob-

lems and their complex fitness functions.

Despite self-adaptation being unsuitable for our study, we take the concept of

changing algorithm configuration into consideration. With the significant development

in Machine Learning and in exploratory landscape analysis, it is possible that the

dynamic algorithm configuration can be solved by automatically trained configuration

schedules. Regarding using Machine Learning to tune the parameters in the process,

we consider that reinforcement learning could be a good method. But we don’t devise

a straightforward way to set up the reward function for reinforcement learning of

solving process.

Then, we focus on the configuration selection based on data. Aiming to find

the optimal parameter setting for each optimization stage of a problem during the

process, we follow the idea of selecting a best-suited algorithm called the dynamic

algorithm selection (dynAS) problem. Previous research [23] investigates the potential

improvement that can be achieved from switching between solvers. We apply the

dynAS on the same problems in [23] which are provided by IOHprofiler. The post

empirical analysis is also implemented on IOHprofiler.

In previous study, a way to analyze the computational complexity is the optimiza-

tion time, which is measured by means of the number of function evaluations. But it

is also demonstrated that counting function evaluations more precisely can lead to re-

sults contradicting actual run times [16]. We take the number of function evaluations

into consideration as a reference Information which is related to number of runs and

other stochastic factors such as initialization. Regarding dynAS problems, we evaluate

algorithms using expected running time (ERT). As ERT could be easily obtained from

IOHprofiler, we use it as an performance measure to analyze GAs. With previous

study about dynAS problems based on ERT, we consider that there could be another

performance measure which is more e�cient and informative. The new measure we

attempt to use is area under the ECDF curve (AUC). ECDF curve is the abbreviation

of Empirical Cumulative Distribution Function, which shows the proportion of the

runs that have found a solution of at least the required target value within the budget

given by the x-axis.

2

Outline

1.3 Outline

The thesis consists of five themed chapters. Chapter One is the introduction that

contains relevant studies and how we settle our aims. We review previous studies about

parameter configuration on genetic algorithms and dynamic configuration methods.

With those concepts in mind, we finally decide to use AUC as a performance measure

of dynamic algorithm selection framework to optimize the best configuration at all

stages.

Chapter 2 introduced the background of the genetic algorithm. Then it presents

the preliminaries of the thesis. It includes the definition of expected running time,

which is the key comparison data for algorithms or policies judgement. Then, we

introduce the definition of the area under the curve that we use as an index. Besides,

we present the essential algorithm framework of (µ+ �) Genetic Algorithm.

The third chapter concerns the methodology used for this thesis, including the

parameter settings set in our algorithms, the design of experiments, the calculation

method of dynamic indexes ERT and AUC, and the dynamic algorithm selection

policies. Chapter 4 analyzes both the theoretical and empirical results of experiments

and focus group discussions on the performance of policies. Lastly, we draw conclusions

based on our investigations.

Overall, we highlight the use of AUC as a measure for better dynamic algorithm

selection on the 25 IOHprofiler benchmark problems. In addition, we summarize

the e↵ect of the derivative of AUC on dynAS problems for parameter settings such

as population size and switch target. An inspiring conclusion we obtained is that

AUC could be used as a measure to perform better than ERT as a measure for many

problems. And future work should focus on the way of transformation on switching

algorithm and other methods for dynamic parameter selection to solve the limitation

of the AUC selection policy.

4

Chapter 2

Background

2.1 Genetic Algorithms

In the last century, scientists have been interested in the simulation on computers of

evolution. Starting in 1957, Nils Aall Barricelli published his artificial methods on

simulation of evolution processes [4]. Other scientists, such as Alex Fraser, published

a series of papers on the simulation of artificial selection of organisms [10]. From these

beginnings, computer simulation of evolution by biologists became more common in the

early 1960s, and the methods were described in books by Fraser and Burnell (1970)

and Crosby (1973) [9]. Of that book, the simulations included all of the essential

elements of modern genetic algorithms.

With grown up computer simulation, scientists have published a series of papers

that also adopted a population of solution to optimization problems, undergoing re-

combination, mutation, and selection. Regarding the algorithm in application, Barri-

celli had simulated the evolution of ability to play a simple game [3], leading to the

ideas of solving complex engineering problems.

Genetic algorithms in particular became popular through the work of John Holland

in the early 1970s, and particularly his book Adaptation in Natural and Artificial

Systems [13]. It introduced the well-known theory as Holland’s Schema Theorem for

predicting the quality of the next generation. Researches remained theoretical until

the mid-1980s have limitations. We got some criticism on Schema Theorem from

Thomas Bäck [1]:

• Most of Holland’s approximations are only true for very large numbers (trials

and population size)

5

Performance Measures

• Within finite populations, exponentially increasing the number of schema in-

stances leads to entirely filling the population

• Within finite populations, exponentially decreasing the number of schema in-

stances leads to complete elimination

• Not all schemata are represented in a typical population

• Schemata of large defining length are likely to be destroyed by crossover (even

highly fit ones)

Nowadays, the genetic algorithms is mature with a stable framework containing

Initialization, Selection, Genetic operators, Heuristics, and Termination [24].

Initialization provides the initial population randomly, allowing the entire range of

possible solutions. Selection is the process of choosing individuals with better perfor-

mance. Individuals with better performance are more likely to be selected as measured

by a fitness function. There are plenty of selection methods, such as the most popular

roulette wheel selection (also known as fitness proportionate selection), rank selection,

steady state selection, etc. To generate the second generation of solutions from those

selected, GA uses a combination of genetic operators: crossover and mutation. Heuris-

tics are designed to accelerate and robust the calculation. Heuristic penalizes crossover

between similar candidate solutions and helps prevent premature convergence to a lo-

cal optimal solution [22]. Last but not least, the genetic algorithm process will be

executed until the termination condition has been reached.

2.2 Performance Measures

In this section, we provide the definitions of two performance measures: expected

running time (ERT) and area under the ECDF curve (AUC), respectively. First of

all, we denote the algorithm set as A = {A1, A2, ..., An} which contains n algorithms

that may be used in our thesis.

2.2.1 Expected Running Time

The expected running time (ERT) shows the performance of an algorithm. The ERT

of an algorithm A hitting a target � on a problem P is given as below 2.1[25]:

ERT(A,P,�) =

Pr
i=1 min {ti(A,P,�), B}Pr
i=1 1 {ti(A,P,�) <1}

(2.1)

6

Background

where r is the number of runs of the algorithm A, and B is the maximal budget of

the algorithm A on the problem P . ti(A,P,�) is the running time of algorithm A on

problem P to get target �. Besides, the 1 we use to ensure the convergence in the

study indicates:

1{condition} =

8
<

:
1, if the condition is true

0, else
(2.2)

There comes the the best static algorithm (BSA) A⇤ for problem P with target � as

below. We use the BSA as a benchmark for comparing with the performance of ⇡ in

study.

A⇤ = argmin
A2A

ERT(A,P,�) (2.3)

2.2.2 Area Under the ECDF Curve

Area under the ECDF curve (AUC) can be calculated by di↵erent methods, of which

the integral method of finding the area is most popular. We follow the definition of

AUC [11] and transform it to fit our dynAS problem as follow.

AUC(A,P,�) =

Pr
i=1

Pm
j=1

Pz
h=1 1{fP (A,Bj , i) � �h}
r ·m · z (2.4)

Equation (2.4) indicates a way to calculate the AUC value for dynAS problem

where r is number of runs. m is the size of budget set B = {B1, B2, ..., Bm} where

max(B) = Bm, the largest used budget for problem P . z is the size of target set

� = {�1,�2, ...,�z} where max(�) = �z is the target maximization that we consider

in this thesis. And fP (A,Bj , i) is the function value of algorithm A on problem P

within budget Bj in i-th run.

We have the same definition about 1 as ERT as Equation (2.2). In this way, the

AUC value is restricted in (0, 1), which is fairly dependent on the budget set and target

set.

2.2.3 A family of (µ+�) GA

The algorithm framework in this thesis is a family of (µ + �) Genetic Algorithm,

where µ is the size of parent and � is the size of o↵spring. In addition, it has crossover

probability pc and mutation rate p. It is allowed for us to tune parameters and select

from a set of operators in the configurable GA framework. The pseudocode Algorithm

7

Performance Measures

1 describe the framework in detail.

Algorithm 1: A Family of (µ+ �) Genetic Algorithm

Input : Population sizes µ, �, crossover probability pc, mutation rate

p;

Termination: The optimum is found or the budget is used out;

1 Initialization: for i = 1, . . . , µ do

2 Sample x(i) 2 {0, 1}d uniformly at random (u.a.r.), and evaluate f(x(i));

3 end

4 Set P = {x(1), x(2), . . . , x(µ)};
5 Optimization: for t = 1, 2, 3, ... do

6 P 0 ;;
7 for i = 1, . . . ,� do

8 Sample r 2 [0, 1] u.a.r.;

9 if r  pc then

10 select two individuals x, y from P u.a.r. (with replacement);

11 z(i) Crossover(x, y);

12 if z(i) /2 {x, y} then

13 evaluate f(z(i));

14 else

15 infer f(z(i)) from parent;

16 end

17 else

18 select an individual x from P u.a.r.;

19 z(i) Mutation(x);

20 if z(i) 6= x then

21 evaluate f(z(i));

22 else

23 infer f(z(i)) from parent;

24 end

25 end

26 P 0 P 0 [{z(i)};
27 end

28 P is updated by the best µ individuals in P [P 0;

29 end

The algorithm initializes the population set P with µ individuals uniformly at

8

Background

random in {0, 1}d where d is the dimension of the dynAS problem. As we mentioned in

research questions, we use Crossover and Mutation operators in the algorithm. There

are three ways of crossover and two ways of mutation, which will be detailed in the

next chapter. � o↵spring is generated by either using crossover with probability pc or

using mutation with probability 1�pc. The best µ individuals of parent and o↵spring

will be selected as the parent for the next iteration. This algorithm terminates when

hitting the optimum of function or running out of the maximal budget of function

evaluations.

2.3 Algorithm Configuration/Selection

With the definitions of ERT, AUC, and the framework of (µ + �) GA in mind, the

definition of the problems we face in the thesis needs to be clarified. A common prob-

lem encountered with parametric algorithms is to find parameter configurations where

the empirical performance is optimized over a given set of problem instances like the

25 black-box problems. Formally, this algorithm configuration or parameter tuning

problem can be stated as follows [14]:

Given

• an algorithm A with parameters p1, . . . , pk that a↵ect its behavior,

• a space C, of configurations, where each configuration c 2 C specifies

values for A’s parameters s.t. A’s behaviour on a given instance is

completely specified,

• a set of problem instances I,

• a performance metric m that measures the performance of A on instance

set I for a given configuration c,

the algorithm configuration problem aims to find a configuration c⇤ 2 C that

results in optimal performance of A on I according to metric m.

The algorithm whose performance is to be optimised is often called the target

algorithm. Various types of parameters may occur depending on the given target

algorithm. With the clear definition of parameter tuning problem, we move steps to

the solutions of algorithm configuration problems.

D. Knuth said “Parameter optimization for general broad-spectrum use is a daunt-

9

Algorithm Configuration/Selection

ing task, not only because of significant di↵erences between species of SAT instances

but also because of the variability due to random choices when solving any specific

instance. It’s hard to know whether a change of parameter will be beneficial or harm-

ful...” in his book [17]. It is towards the Automatic Algorithm Configuration which

applies powerful search techniques to design algorithms, use computation power to

explore algorithm design spaces, and free human creativity for higher-level tasks.

Aiming to figure out the target algorithm, scientists came up with many mod-

els for Automatic Algorithm Configuration, such as irace, SMAC, ParamILS, and

Bayesian optimization, etc. Irace is a variant of I/F-Race (Iterated F-Race), which

is designed to sample a set of algorithm configurations by iterative refinement of a

sampling model [5] [2], with several extensions. The latest irace is proposed by López-

Ibáñez, Dubois-Lacoste and Stützl [18]. Irace is widely common for sequential statis-

tical testing. It samples new configurations according to a probability distribution,

then selects the best configurations from the newly sampled ones by means of racing,

and finally updates the probability distribution in order to bias the sampling towards

the best configurations.

Regarding Sequential model-based algorithm configuration (SMAC) [15], it grasps

the idea of using surrogate models to predict performance. SMAC extends surrogate

model-based configuration to complex algorithm configuration tasks and across mul-

tiple instances. ParamILS is an iterated local search method that operates within the

parameter space. It processes initialization by selecting the best configuration among

default and several random configurations, then manages a local search: 1-exchange

neighbourhood, where exactly one parameter changes a value at a time. Meanwhile,

the neighbourhood is searched in random order. After that, the perturbation: change

several randomly chosen parameters. The acceptance criterion is selecting the better

configuration.

Bayesian optimization, a sequential design strategy for global optimization of black-

box functions, is generally attributed to Jonas Mockus and his work [20]. It’s more

commonly used for statistic problems as the method treats a problem as a random

function and sets a prior on it. Priors capture beliefs about the behavior of func-

tions. After the collection of function evaluations processed as data, the previous is

updated to form the posterior distribution of the target function. Then the posterior

distribution will be used to construct an acquisition function that determines the next

function point. Frank Hutter, Holger Hoos, and Kevin Leyton-Brown also applied this

method for automatic algorithm configuration in paper [15]. Besides, J. Snoek and H.

Larochelle applied the method on parameter tuning for machine learning [21].

10

Background

2.3.1 Dynamic Algorithm Configuration/Selection

Regarding this thesis, we focus on the one-shot dynamic algorithm configuration/selection

(dynAS) problem that follows the statements from Holger H. Hoos [14] we mentioned

before. First, the genetic algorithm A has parameters µ,�, pc, p that a↵ect its behav-

ior. The space C of configurations, where each configuration c 2 C specifies values for

A will be detailed in the next chapter. We have a set of problem instances I. And last

but not least, we introduced two performance measures ERT and AUC that measure

the performance of A on instance set I for a given configuration c.

The one-shot dynamic selection policy is restricted to switching only once during

the process. The dynamic is reflected in our parameter settings, as we use multiple

configurations on an instance that will switch from one to another. It will be detailed

in the subsequent experiments chapter3.1. The issues we address in this thesis con-

tain the usage of di↵erent performance measures on dynamic configurations and the

optimization of instances by tuning the dynamic configuration.

11

Chapter 3

Experiment

In this chapter, we first present the parameter settings in experiments under the (µ+�)

GA framework as algorithm 2. Secondly, we explain the theoretical calculation of ERT

and AUC on dynAS problems. In this way, we are able to calculate the ERT and AUC

values of the dynAS problem with di↵erent policies. And we present our dynamic GA

design, including the pseudocode implementation, an instance of the feature of AUC,

which indicates the process of reaching the final target of an algorithm in ten runs,

and the method of combining algorithms.

3.1 Parameter settings of GA framework

In this study, we use crossover and mutation operator under the framework of the GA

family algorithm we introduced in Chapter 2.2.3. There are three di↵erent crossover

operators, including one-point crossover, two-point crossover, and uniform crossover.

Besides, the two mutation operators are standard bit mutation and fast mutation.

Regarding the standard bit mutation, we use a binomial distribution Bin>0(d, p) to

decide the number of bits ` which is called mutation strength to flip. d is the dimension

of the problem and p is fixed as 1/d in our experiment. ` bits are randomly chosen

from an individual.

For the fast mutation, the number ` is sampled from a power-law distribution

12

Experiment

suggestion [6] (� = 2) as follow:

Pr[X = ↵] =
⇣
C�

n/2

⌘�1
↵�� for all ↵ 2 [1, ..., n/2] (3.1)

C�
n/2 :=

n/2X

i=1

i�� (3.2)

The equation (3.1) defines a probability distribution with power-law factor C�
n/2,

which depends on the power-law parameter �. It also constraints that the maximum

number of mutation individuals is less than n/2 but at least one. The fast mutation

provides a higher probability for choosing more individuals for mutation comparing

with standard bit mutation. For instance, if we run fast mutation with the � = 2 and

standard mutation 2,000 times individually, the mutation strength ell of fast mutation

is 4.85 while the standard mutation is 1.56.

For population size, we choose � from {1, 10, 50, 100} and we test the o↵spring size

from the four schemata (�+1), (�+�/2), and (�+�) and (1+�). Then we have the

algorithm set A containing GAs with parameters listed below:

• 4 population size schemata: (�+1), (�+�/2), and (�+�) for � 2 {10, 50, 100},
and (1 + �) for � 2 {1, 10, 50, 100}.

• 2 mutation operators: standard bit mutation with p = 1/d and fast muatation

with � = 2.

• 3 crossover operators with pc 2 {0, 0.5}: one-point crossover, two-point crossover,
and uniform crossover

Crossover operators are only applied for (�+ 1), (�+ �/2), and (�+ �) with pc. The

other GAs are all mutation-only.

3.2 Dynamic calculation in theory

In terms of the dynAS problem, we follow the previous study[25] about one-shot

dynamic selection policy ⇡ = (A1, A2,�s), which is restricted to switch only once in

this work. In other words, the policy ⇡ allows the problem switch from using an

algorithm A1 to an algorithm A2 at the switch target �s 2 � where � is the target

set.

13

Dynamic calculation in theory

3.2.1 ERT for dynAS problem

The ERT of a policy ⇡ = (A1, A2,�s) in theory can be constructed as the combination

of two algorithms part. Then there comes up the predicted ERT performance of ⇡

hitting the final target �f on a problem P :

ERT (⇡, P,�f) = ERT (A1, P,�s) + ERT (A2, P,�f)� ERT (A2, P,�s) (3.3)

By using the definition of predicted performance on ERT above, the best dynamic

algorithm selection policy(BDA) ⇡⇤ under ERT is defined as Equation (3.4).

(A1, A2,�s)
⇤ = ⇡⇤ = argmin

⇡2(A⇥A⇥�)
ERT (⇡, P,�f) (3.4)

There are advantages using ERT definition to predict and measure a selection

policy ⇡ in dynAS problems. Firstly, the definition is straightforward to understand

its meaning, which calculates the expected running cost of a selection policy as below.

Then, the prediction of a combination of two algorithms is easy to calculate and verify.

However, the calculation of ERT depends on each run and will be a↵ected by

unsuccessful runs. For instance, if problem F1 could find optimum in 8 out of 10 runs,

the ERT will be too high to be meaningful. Secondly, ERT could only be produced

after a whole loop, which means we could not monitor it through the process of

resolving a problem.

3.2.2 AUC for dynAS problem

Correspondingly, we consider about the predicted AUC performance of ⇡ = (A1, A2,�s)

hitting the final target �f on problem P . We define the “theoretical” predicted AUC

value of a dynAS policy ⇡ to find a switch target �s of a given problem P.

AUC (⇡, P,�f) =

Pr
i=1

PsB
j=1

Pz
h=1 1{fP (A1, Bj , i) � �h}
r ·m · z

+

Pr
i=1

Pm
j=sB+1

Pz
h=1 1{fP (A2, Bj +�B�s

, i) � �h}
r ·m · z

(3.5)

�B�s
= B�s(A2)�B�s(A1) 2 [�Bm, Bm] (3.6)

� = {�1,�2, ...,�z} is a given set of targets of problem P and max(�) = �f . The

switch features are presented as B�s , which is the used budget of hitting target �s.

14

Experiment

B�s(A2) and B�s(A1) indicate the used budget of algorithm A2 and A1 respectively

for reaching target �s. So �B�s
is the di↵erence of B�s on algorithm A1 and algorithm

A2.

Budget set B = {B1, B2, ..., Bm} is also decided by problem P with maxB = Bm.

sB denotes the rank of B�s in B, which can be calculated in each run from settled

switching target �s. The fP (A1, Bj , i) is the maximum value of fitness function in run

r within budget Bj using algorithm A1.

By using the definition of predicted performance on AUC above, the best dynamic

algorithm selection policy ⇡⇤ under AUC is defined as Equation (3.7).

(A1, A2,�s)
⇤ = ⇡⇤ = argmin

⇡2(A⇥A⇥�)
AUC(⇡, P,�f) (3.7)

Selecting AUC value as a performance measure to reflect the performance of dy-

namic parameter settings has advantages. Firstly, it can be calculated after each

evaluation instead of a whole loop as ERT. Secondly, the derivative of AUC reflects

the trend of GAs which helps select policies. Besides, ERT values can be significantly

influenced by the number of unsuccessful runs, resulting in extremely large values.

However, we don’t have this problem using AUC as the performance measure.

On the other hand, we have to tune more settings for AUC, including a proper

budget set and a target set. The two sets have a significant impact on AUC value if

the two sets are small. Moreover, the di↵erence in AUC values between algorithms is

not large enough to recognize performance as they are all in [0, 1). So we combine the

two performance measures for dynAS problems in the following context.

3.3 Settings of dynamic policies

In this section, we present the details of the implementation of dynamic GA in our

experiment, including the pseudocode and the transformation from one parameter set-

ting to another. And we present the way of choosing the combinations of all parameter

settings.

3.3.1 Methods for implementation of dynamic GA

Similar to the GA framework in Sec. 2.2.3, our dynamic GA framework also have the

parameters, including 4 population size schemata, 2 kinds of mutation operators, and

3 crossover operators with pc 2 {0, 0.5}. The di↵erence is that the parameters are

15

Settings of dynamic policies

double as there are two GAs to be applied. The pseudocode Algorithm 2 describes

the framework in detail.

The transformation process in Algorithm 2 from lines 31 to 40 explains our method

of changing population size. On one hand, duplicating individuals from A1 guarantees

a lower bound which is equal to or bigger than �s. On the other hand, updating

half of P by mutation ensures population diversity. Otherwise, we only obtained the

same individuals from duplicating, which is meaningless to crossover. Correspondingly,

for the case that the population size of A2 is smaller than A1, we select the best µ

individuals from P as new parents. We implement di↵erent types of transformation

in an experiment, which is detailed in Chapter 4.

3.3.2 Features of AUC

As we introduced before, AUC value is related to the target set � and budget set

B. We are interested in the AUC and its feature on reflecting the extent to which

the target has been met. Assuming that we have a determined target set and budget

set in hand, we are allowed to calculate the AUC value during the process of solving

problems.

We calculate the AUC value of the 25 PBO problems from the IOHprofiler with

di↵erent parameter settings to check their similarities and di↵erence. We generate

the figures of the derivative of AUC with respect to the budget of those problems.

In terms of di↵erent parameter settings, the main category is their population size,

which we choose {1, 10, 50, 100} for analysis. Figure 3.1 contains two images about

the derivative of AUC from F6 and F16 of the IOHprofiler.

The reason for choosing F6 and F16 is that they are in di↵erent kinds of problems.

F6 and F16 present Neutrality and Fitness perturbation W-model transformations to

the OneMax and LeadingOnes respectively[8]. With these two functions, we have

a brief impression of the AUC features that it could suit to reflect the e�ciency of

di↵erent types of functions.

The lines in blue are the population size {µ = 1}, the lines in orange are {µ = 10},
the lines in green are {µ = 50}, and the lines in red are {µ = 100}. There’s a common

feature among the two images that the first peaks of the lines are early and overlapped,

which is related to the the initialization.

The second peak of each line depends on their population size: {µ = 1} comes

first, then followed by {µ = 10}, {µ = 50}, and {µ = 100}. The reason is that the

algorithms with smaller population sizes are easier to make progress at the beginning

16

Experiment

(a) AUC derivative of GAs on F6 (b) AUC derivative of GAs on F16

Figure 3.1: AUC derivative of GAs on F6 and F16 in dimension d = 100

stage.

But on the other hand, the algorithms with small population sizes could also fall

earlier. The decline indicates the speed of an algorithm making progress on a problem

is getting slower. The area under the lines indicates the AUC value, which we aim

to maximize, could not be compared directly. In this way, the dynAS policy should

be selected in a numerical way which is presented in the following section. With

this feature we summarize from the figures, we focus on the combination of di↵erent

parameter settings, aiming to get a higher AUC value using less budget.

3.3.3 Combination and selection method

With the features of AUC in mind, we take more functions into consideration. We

select 10 proper policies for each problem ⇡ among all possible combinations of algo-

rithms. Assuming that we have 20 potential switch targets for each problem, there

are
�80
2

�
⇥ 20 = 126400 combinations for each problem as we have 80 GA algorithms.

With the target set � and budget set B for calculating the AUC values reflecting

the e↵ect of parameter settings for each problem, we expect to gain improvement

from the second algorithm A2 building on the previous algorithm A1. By using the

definition of dynamic AUC (Equation 3.5), we calculate the dynamic AUC in theory,

of which the result is presented in Sec. 4.1.

For the implementation of AUC calculation, we first pick a pair of algorithms

among all combinations. Then we pick the potential switch targets one by one to form

a policy ⇡ = (A1, A2,�s). On the one hand, Regarding 25 problems from IOHprofiler

respectively, the 80 algorithms cannot guarantee to find the optimum target in each

17

Settings of dynamic policies

run. On the other hand, the enumeration method for combination is not e�cient

enough to save running time.

So we add a filter to drop the algorithms which could not find optimum within the

budget Bm of BSA. Because we want an improvement based on BSA using dynamic

policy. With the sorted results by AUC and budget from the combination process,

we obtain the top 10 selection policy ⇡i, i = 1, ..., 10 in theory. And the best result

for each problem in theory, is detailed in Sec. 4.1. To validate the theoretical values,

we use the dynamic GA 2 to run the top 10 policies from AUC calculation for each

problem.

18

Experiment

Algorithm 2: Dynamic GA for policy ⇡ = (A1, A2,�s)

Input : Population sizes µ(1), �(1), crossover probability p(1)c for algorithm
A1; Population sizes µ(2), �(2), crossover probability p(2)c for
algorithm A2; mutation rate p, switch target �s;

Termination: The optimum is found or the budget is used out;
1 Initialization: for i = 1, . . . , µ(1)

do

2 Sample x(i) 2 {0, 1}d uniformly at random (u.a.r.), and evaluate f(x(i));
3 end

4 Set P = {x(1), x(2), . . . , x(µ)};
5 Set fopt = �1, pc = p(1)c ,� = �(1);
6 Optimization: for t = 1, 2, 3, ... do
7 P 0 ;;
8 for i = 1, . . . ,� do

9 Sample r 2 [0, 1] u.a.r.;
10 if r  pc then

11 select two individuals x, y from P u.a.r. (with replacement);

12 z(i) Crossover(x, y);

13 if z(i) /2 {x, y} then

14 evaluate f(z(i));
15 else

16 infer f(z(i)) from parent;
17 end

18 else

19 select an individual x from P u.a.r.;

20 z(i) Mutation(x);

21 if z(i) 6= x then

22 evaluate f(z(i));
23 else

24 infer f(z(i)) from parent;
25 end

26 end

27 P 0 P 0 [{z(i)};
28 Transformation(fopt,�s, P);

29 end

30 P is updated by the best µ individuals in P [P 0;
31 fopt is updated by the biggest function value in P ;
32 Transformation: if fopt < �s then

33 break;
34 else

35 pc = p(2)c , µ = µ(2),� = �(2);

36 if µ(2) � µ(1)
then

37 Enlarge P by duplicating µ(1) individuals of P to size µ(2);

38 Update µ(2)/2 individuals of P by mutation randomly;

39 else

40 P is updated by the best µ(2) individuals in P ;
41 end

42 end

43 end

19

Chapter 4

Results

This chapter aims to present the results of our study, including the theoretical results

and empirical results. To distinguish between the policies which are generated with

AUC as a performance measure and the BSA under standard (µ+ �) GA framework,

we run the experiments. First of all, we calculated the theoretical AUC values to

decide the policies for each problem. Then, we used those policies to solve the 25

problems and got the empirical results.

In addition, we also aim to find out the di↵erence between policies with ERT

and AUC as performance measures. Regarding the policies, we refer to the previous

study [25] where ERT was used as a measure for comparison. Considering the dif-

ference between the two types of selection policy, we notice that the presented result

di↵ers on the switch target and the algorithms involved.

Table 4.1 indicates the theoretical results of ERT selection policy that we make

comparisons to. funcId is the column of ids of problems from IOHprofiler, fTarget

indicates the final targets of di↵erent functions. sTarget is the switch target that the

algorithm will change once it is reached. Lastly, dERT is the dynamic ERT value in

theory, calculated based on the equation 3.3 and 3.4.

4.1 Theoretical results

As the target set � is di↵erent but has the same size for each problem, so we use

{0, 1, ..., 19} to denote the position of switch target �s in �. Table 4.2 indicates the

policies with the biggest AUC value for each function where s(�s) is the position of

switch target �s in � we mentioned. There are 25 policies in this table but we actually

20

Results

funcId fTarget A1 A2 sTarget dERT
1 100 (1+1)EA>0 (10+10)-uniform-GA 96 638
2 100 (1+1)fastGA (1+1)EA>0 21 5 186
3 5 050 (100+1)-two-point-fGA (1+1)EA>0 2 899 693
4 50 (1+1)EA>0 (1+10)EA>0 49 379
5 90 (1+1)fastGA (1+1)EA>0 55 559
6 33 (100+100)EA>0 (1+1)EA>0 20 255
7 100 (100+100)-two-point-GA (100+50)EA>0 95 182 271
8 51 (10+10)-uniform-GA [50+50)-uniform-GA 50 1 441
9 100 (50+1)-uniform-fGA (100+100)-uniform-fGA 96 2 255
10 100 (50+25)-uniform-fGA (100+100)-uniform-fGA 94 16 956
11 50 (1+1)fastGA (1+1)EA>0 17 1 818
12 90 (1+1)fastGA (1+1)EA>0 19 4 535
13 33 (1+1)fastGA (1+1)EA>0 14 929
14 7 (100+50)-one-point-GA (50+25)-uniform-fGA 5 145
15 51 (1+1)fastGA (1+1)EA>0 10 6 200
16 100 (1+1)fastGA (1+1)EA>0 21 9 455
17 100 (1+1)fastGA (1+1)EA>0 21 40 350
18 4.22 (10+10)EA>0 (50+50)fastGA 3.57 14 468
19 98 (1+1)fastGA (1+1)EA>0 60 10 044
20 180 (1+1)EA>0 (1+10)EA>0 178 1 482
21 260 (1+1)EA>0 (1+10)EA>0 258 1 041
22 42 (1+10)EA>0 (100+1)-two-point-GA 39 1 092
23 9 (1+1)EA>0 (10+1)EA>0 8 1 648
24 17.20 (1+1)EA>0 100+100)-two-point-fGA 15.81 1 607
25 -0.30 (1+1)fastGA (100+100)-uniform-fGA -0.32 11 151

Table 4.1: The theoretical selection policies with lowest ERT value for problems

in dimension d = 100.

take 10 policies in consideration for a problem because the top 10 policies have AUC

values that are not much di↵erent.

The names of algorithms in A1 and A2 columns represent the parameters and

operators used therein: ‘EA>0’ denotes the mutation-only GAs using p = 1/d, ‘fastGA’

denotes the mutation-only GAs using fast mutation. ‘(µ + �)-crossover operator -

GA/fGA’ denotes that the GAs run with pc = 0.5, population size µ, and o↵spring

size �, of which GA means standard mutation operator using p = 1/d while fGA

indicates the fast mutation operator with � = 2.

As we know that the AUC value will not exceed 1 based on equation (2.4), a

higher AUC value indicates a faster process of policy ⇡ to find the optimal target.

Table 4.2 indicates that all the problems could find �max within less budget than the

present BSA. Otherwise, the AUC value will not be calculated. Because the budget

set is limited with an upper bound as Bm, which is the used budget of BSA. On the

one hand, the range of AUC values for di↵erent problems is also di↵erent. Such as

F11, F12, and F13, there are functions that find optimum at a late position of the

budget set, which leads to a smaller AUC value. F16 has the lowest AUC value 0.6169,

which means that the policy ⇡ = ((1+1)fastGA, (1+1)EA>0, 27.1) takes more time to

21

Experimental results

funcId A1 A2 �s AUC
1 (50+1)-uniform-fGA (1+1)EA>0 55.8 0.8437
2 (1+1)fastGA (1+1)EA>0 31.62 0.6288
3 (100+1)-one-point-GA (1+1)EA>0 2930 0.8628
4 (100+100)-one-point-fGA (1+1)fastGA 27.12 0.8229
5 (10+5)-uniform-GA (1+1)EA>0 50.56 0.8128
6 (10+5)-two-point-GA (1+1)EA>0 20 0.8234
7 (100+50)-one-point-GA (50+50)EA>0 93.44 0.9376
8 (1+1)EA>0 (10+1)-uniform-GA 42.66 0.8365
9 (10+1)-uniform-fGA (50+50)-uniform-GA 86.2 0.8655

10 (50+1)-uniform-fGA (100+1)-uniform-fGA 93.31 0.9681
11 (1+10)fastGA (1+50)EA>0 23.76 0.6411
12 (1+1)fastGA (1+1)EA>0 47.4 0.6654
13 (100+50)-uniform-fGA (1+1)EA>0 5.22 0.6347
14 (100+1)fastGA (100+1)-two-point-fGA 4.07 0.7095
15 (1+10)fastGA (1+1)EA>0 11.56 0.6385
16 (1+1)fastGA (1+1)EA>0 27.1 0.6169
17 (1+1)fastGA (1+1)EA>0 37.54 0.6545
18 (10+10)-two-point-GA (50+50)EA>0 3.63 0.9156
19 (1+1)EA>0 (1+10)EA>0 88.32 0.9265
20 (100+1)-one-point-GA (1+1)EA>0 108.96 0.8583
21 (100+100)-one-point-GA (1+1)EA>0 165.7 0.8522
22 (10+1)-uniform-GA (1+1)fastGA -2530.8 0.9993
23 (10+1)-two-point-fGA (1+1)EA>0 -1259 0.9622
24 (1+1)EA>0 (100+100)-one-point-fGA 15.78 0.9529
25 (1+1)EA>0 (10+5)EA>0 -0.32 0.9483

Table 4.2: The theoretical selection policies with biggest AUC value for problems

in dimension d = 100.

converge to the optimal target.

On the other hand, F22 has the highest AUC value 0.9993 from the table, which

means it could find the optimum within a few budget using the policy ⇡, where A1 =

(10+1)-uniform-GA, A2 = (1+1)fastGA. But as we mentioned above, we also take

other policies with smaller AUC value in consideration. Then, we aim to get the

experimental performance of the policies that are not shown in the table with dynamic

GA in the next section.

4.2 Experimental results

Based on the theoretical results above, we apply those policies on the 25 problems

from IOHprofiler respectively and got the empirical results. Table 4.3 indicates the

best policy ⇡⇤ = (A1, A2,�s) from top 10 theoretical results of each problem and its

22

Results

improvement as ratio(%).

Following previous study [25], we also use ERTs to compare the empirical results

because ERTs will not be impacted by the target set and budget set, which would be

changed during the experiments. In addition, the policies that generated with ERT

as a measure are also used, helping to make clear and direct comparisons.

fTarget lists the final target used to calculate ERTs. sERT lists the static ERTs

from BSA which is also listed in the table. A1, A2 and sTarget list the three kinds of

parameters from policies ⇡. dERT lists the ERTs with dynamic algorithm policy ⇡,

and ratio(%) lists the di↵erence ratio between dERT and sERT.

ratio(%) =
dERT � sERT

dERT
⇥ 100% (4.1)

As previously stated, the best policy may not be the top from theoretical results

such as F1, which use (50+1)fastGA instead of (50+1)-uniform-fGA as A1. In addi-

tion, From the table, we notice that the ratios of the results are not all positive: F9,

F10, F14, F18, F24, and F25 even have much worse dynamic ERT comparing with

static ERT of BSA. So we analyze the results to find out the reasons behind.

funcId fTarget BSA sERT A1 A2 sTarget dERT ratio(%)
1 100 (1+1)EA>0 729 (50+1)fastGA (1+1)EA>0 55.8 624 14.4
2 100 (1+1)EA>0 5629 (10+10)fastGA (1+1)EA>0 10.5 5093 9.5
3 5050 (1+1)EA>0 659 (1+1)fastGA (1+1)EA>0 3082 674 -2.3
4 50 (1+1)EA>0 414 (1+1)fastGA (1+1)EA>0 28.6 401 3.1
5 90 (1+1)EA>0 593 (50+1)-two-point-fGA (1+1)EA>0 50.5 538 9.3
6 33 (1+1)EA>0 239 (10+5)-two-point-fGA (1+1)EA>0 20 264 -10.5
7 100 (50+50)EA>0 143567 (100+50)-one-point-GA (50+50)EA>0 93.4 108574 24.4
8 51 (10+1)-uniform-GA 1083 (1+1)fastGA (10+1)-uniform-GA 37.5 867 19.9
9 100 (50+50)-uniform-GA 2268 (50+1)-uniform-fGA (50+50)-uniform-GA 89.6 4144 -82.7
10 100 (100+50)-uniform-fGA 69638 (50+25)-uniform-fGA (100+1)-uniform-fGA 76.1 154298 -121.6
11 50 (1+1)fastGA 2096 (1+10)fastGA (1+10)EA>0 23.6 1632 22.1
12 90 (1+10)EA>0 4823 (1+1)fastGA (1+10)EA>0 47.4 4737 1.8
13 33 (1+1)EA>0 1056 (100+50)-uniform-fGA (1+1)EA>0 5.2 806 23.7
14 7 (100+1)-one-point-fGA 55 (100+1)EA>0 (100+1)-one-point-GA 5.1 112 -103.6
15 51 (1+1)EA>0 6413 (100+50)-two-point-fGA (1+1)EA>0 3.6 6573 -2.5
16 100 (1+1)EA>0 9313 (100+50)-one-point-fGA (1+1)EA>0 6.2 9025 3.1
17 100 (1+1)EA>0 41953 (50+25)-two-point-fGA (1+1)EA>0 6.2 35309 15.8
18 4.22 (50+50)EA>0 10432 (10+1)EA>0 (100+1)EA>0 3.5 12026 -15.3
19 98 (1+1)EA>0 7916 (50+1)-two-point-fGA (1+1)EA>0 55.6 8811 -11.3
20 180 (1+1)EA>0 1343 (100+1)-one-point-GA (1+1)EA>0 108.9 803 40.2
21 260 (1+1)EA>0 1129 (50+50)-one-point-GA (1+1)EA>0 165.7 731 35.3
22 42 (50+25)-uniform-GA 2694 (10+1)-uniform-GA (1+1)fastGA -2530.8 651 75.8
23 9 (1+10)EA>0 2505 (10+1)-two-point-fGA (1+1)EA>0 -1259 2485 0.8
24 17.2 (100+1)-two-point-fGA 3394 (1+1)EA>0 (100+1)-two-point-fGA 15.7 500000 -14631.9
25 -0.3 (10+10)-one-point-fGA 6556 (1+1)EA>0 (10+1)EA>0 -0.32 13031 -98.8

Table 4.3: The experiment ERT results with BSA and dynamic policies ⇡ =
(A1, A2,�s) for 25 problems in dimension d = 100.

23

Experimental results

4.2.1 Earlier switch point can be beneficial

From the empirical experiment data, it represent that some policies are improved

relative to BSA as the ratio is positive. Not only the BSA and AUC selection policy

we make comparisons, but the ERT selection policy from previous work. Under the

same performance measure ERT, the AUC selection policy and ERT selection policy

could have a distinguished image. To make the contrast more varied, we select 4

problems with di↵erent levels: F23(0.8%), F1(14.4%), F20(40%), and F22(75.8%).

(a) Fixed-target ERT of GAs on F23 (b) Fixed-target ERT of GAs on F1

Figure 4.1: Fixed-target ERTs of GAs on F23 and F1 in dimension d = 100.
The dynamicAUC in figure 4.1a switches from the (10 + 1)-two-point-fGA to the

(1 + 1)EA>0 at the target �s = �1259. The dynamicAUC in figure 4.1b switches

from the (1 + 1)fastGA to the (1 + 1)EA>0 at the target �s = 55.8.

Figure 4.1a and 4.1b present the ERT curves of F23 and F1 respectively. The

label dynamicAUC and dynamicERT indicate the policies that are chosen based on

formula (3.4) and (3.7), considering AUC and ERT as cost metric respectively. And

the lines in blue stand for the BSAs of the two functions, including (1+10)EA>0 and

(1+1)EA>0. The x-axis represents the best function value that has been reached so

far, and the y-axis represents the evaluation times of the function during the process.

Regarding F23, we notice that the performances of the two dynamic policies are

similar. DynamicERT and dynamicAUC are more e�cient than the BSA as the two

lines are under the blue one before f(x) = 0. With the same best-so-far f(x) value, the

evaluation of dynamicAUC is less than BSA the whole way through before f(x) = 0.

Interestingly, dynamicAUC and dynamicERT show almost identical curve trends. It

indicates that BSA is not the algorithm that performs the best through the whole pro-

24

Results

cess. DynamicAUC switches at �s = �1259 from (10+1)two-point-fGA to (1+1)EA>0

while dynamicERT switches at �s = 8 from (1+1)EA>0 to (10+1)EA>0.

For F1, which has a 14.4% improvement, we also compare it with the perfor-

mance of BSA. DynamicERT and BSA present similar convergence process before the

switch target, while dynamicAUC is not more e�cient as it is above the other two

lines until the function reaches about 95. DynamicAUC switches at �s = 55.8 from

(50+1)fastGA to (1+1)EA>0 while dynamicERT switches at �s = 96 from (1+1)EA>0

to (10+10)-uniform-fGA. With a random initialization, dynamicAUC can get about

50 at an early stage. A possible reason for the small improvement is that the BSA

(1+1)EA>0 is good enough for this OneMax problem.

(a) Fixed-target ERT of GAs on F20 (b) Fixed-target ERT of GAs on F22

Figure 4.2: Fixed-target ERTs of GAs on F20 and F22 in dimension d = 100.
The dynamicAUC in figure 4.2a switches from the (100 + 1)-one-point-GA to the

(1 + 1)EA>0 at the target �s = 108.9. The dynamicAUC in figure 4.2b switches

from the (10 + 1)-uniform-GA to the (1 + 1)fastGA at the target �s = �2530.8.

Then we focus on the other two functions. Figure 4.2a and 4.2b present the ERT

lines of F20 and F22 respectively. The labels are similar to the ERT figures above,

including dynamicAUC, dynamicERT and their BSAs.

For F20, dynamicAUC has a 40.2% improvement ratio, while dynamicERT has a

better performance before its switch target but fails to get an improvement. Dynam-

icAUC has a point of change close to f(x) = 120 in gradient, after which the curve

is more e�cient than the others. The change point is close to the �s, after which

the policy uses A2 to solve the function, demonstrating the e↵ectiveness of dynam-

icAUC policy. DynamicAUC switches at �s = 108.9 from (100+1)-one-point-GA

to (1+1)EA>0 while dynamicERT switches at �s = 178 from (10+1)-uniform-GA to

25

Experimental results

(1+1)fastGA.

For F22 with a 75.8% improvement, we also compare it with the performance of

BSA. We notice that dynamicAUC performs better than dynamicERT in the whole

process because dynamicAUC use fewer evaluations under the same f(x) value. BSA of

F22 performs well at first but became harder to make progress gradually. DynamicERT

on F22 has a good performance compared with BSA but fails before reaching the final

function value target 42, which is related to the late switch. DynamicAUC switches at

�s = �2530.8 from (10+1)-uniform-GA to (1+1)fastGA while dynamicERT switches

at �s = 39 from (1+10)EA>0 to (100+1)-two-point-GA.

We consider that dynamicAUC policy succeeds in obtaining smaller ERT compared

with dynamicERT policy and BSA from the figures above. Not only may the two

algorithms in a policy be di↵erent, but also dynamicAUC would switch to A2 earlier

than dynamicERT.

With the images of ERTs in mind, we focus on the changes in AUC values during

the process. We calculate the derivative of AUC on F23 and F1 to check their AUC

value trend. Figure 4.3a and 4.3b present the AUC derivative of AUC on F23 and

F1 respectively. The curves’ colours are similar to ERT figures, where blue is for

BSA, orange is for dynamicAUC, and green is for dynamicERT. The x-axis is the used

budget during the process with a log operator and the y-axis is the value of derivative

AUC.

Regarding F23, figure 4.3a indicates that the increments in AUC value of the three

GAs are similar, which validates the 0.8% improvement and the similar trend in ERT

figure 4.1a above.

(a) AUC derivative of GAs on F23 (b) AUC derivative of GAs on F1

Figure 4.3: AUC derivative of GAS on F23 and F1 in dimension d = 100.

26

Results

Di↵erent from F23, dynamicAUC on F1 is lower than the other two algorithms

during about 1 to 1.8 of the x-axis, which reflects a sooner rise of ERT in figure 4.1b.

It is caused by the fact that a lower AUC derivative reflects a higher consumption

of budget or evaluations. But dynamicAUC becomes higher on the AUC derivative

from about 101.9 = 79.4 evaluations to 102.9 = 794.3 evaluations, presenting a lower

gradient in the ERT figure of F1. Besides, in the outperform period of dynamicAUC,

the best-so-far f(x) value increases from 92 to 100, leading to a 14.4% improvement

finally.

(a) AUC derivative of GAs on F20 (b) AUC derivative of GAs on F22

Figure 4.4: AUC derivative of GAS on F20 and F22 in dimension d = 100.

Then, we take the AUC derivative of F20 and F22 into consideration. We find

that the AUC derivative of dynmaicAUC on F20 surpasses the other two GAs from

evaluation 102.18 = 151 in figure 4.4a, which matches the point that the dynamicAUC

on figure 4.2a changes to a low gradient. It can be seen that the �s of dynamicERT

is too late to progress on e�ciency.

In contrast, figure 4.4b presents the AUC derivative of F22. It indicates that

dynamicAUC has a higher derivative at the beginning, leading to a lower gradient

in figure 4.2b. Finally, dynamicAUC reaches 75.8% improvement ratio on F22 with

target f(x) = 42. Combining with the �s of dynamicERT, we notice that the cor-

responding evaluation is about 650 = 102.81, where the AUC derivative declines to a

local minimum. It indicates that the transformation of dynamicERT to A2 make little

progress in reaching higher targets. While dynamicAUC switch to its A2 at about

evaluation 40 = 101.6, where is the local maximum of the AUC derivative, indicating

progress in reaching higher targets.

27

Experimental results

Summary We find that comparing with dynamicERT and BSA, dynamicAUC has

an earlier switch point �s which helps it combine the advantages of A1 and A2 to get a

smaller ERT value. Besides, the derivative of AUC reflects the e�ciency of algorithms

reaching targets. The figures of AUC derivatives also validate the changes in ERT

figures, that AUC selection policies make the process e�cient after their switches.

4.2.2 Adapting population size is challenging

On the one hand, we obtain some good performances above. On the other hand, we

also obtain some bad performances as follows. We select four problems with di↵erent

levels for various contrast: F6(-10.5%), F9(-82.7%), F14(-103.6%), and F24(not met

final target). Not only the BSA and AUC selection policy we make comparisons, but

the ERT selection policy from previous work mentioned before.

(a) Fixed-target ERT of GAs on F6 (b) Fixed-target ERT of GAs on F9

Figure 4.5: Fixed-target ERTs of GAs on F6 and F9 in dimension d = 100.
The dynamicAUC in figure 4.5a switches from the (10 + 5)-two-point-fGA to the

(1 + 1)EA>0 at the target �s = 20. The dynamicAUC in figure 4.5b switches from

the (50 + 1)-uniform-fGA to the (50 + 50)-uniform-GA at the target �s = 89.6.

Figure 4.5a indicates the two dynamic GAs on F6 that have di↵erent performances.

DynamicAUC switches at �s = 20 from (10+5)-two-point-fGA to (1+1)EA>0 while

dynamicERT switches at �s = 20 from (100+100)-one-point-GA to (1+1)EA>0. We

notice that dynamicAUC has a similar convergence process to BSA while dynamicERT

does not, which is related to the di↵erent A1 parameter settings. Besides, it could be

the reason that dynamicERT takes more evaluations to adapt to (1+1)EA>0.

Regarding F9, figure 4.5b displays that the e�ciency of dynamicAUC overtakes the

28

Results

other two before reaching the target f(x) = 98. The di↵erence is that dynamicERT

switch at �s = 96 from (50+1)-uniform-fGA to (100+100)-uniform-fGA while dy-

namicAUC switch at �s = 89.6 from (50+1)-uniform-fGA to (50+50)-uniform-fGA.

The function evaluations of dynamic GAs have a sudden rise after its switch while the

BSA doesn’t. We also test for dynamicERT switching to (50+50)-uniform-fGA at

�s = 96 which performs worse than before. Under the condition that dynamicERT

and dynamicAUC have similar ERT, we consider that (50+50)-uniform-GA is not

suitable on F9 even it’s the best theoretical result from table 4.2.

(a) Fixed-target ERT of GAs on F14 (b) Fixed-target ERT of GAs on F24

Figure 4.6: Fixed-target ERTs of GAs on F14 and F24 in dimension d = 100.
The dynamicAUC in figure 4.6a switches from the (100+ 1)EA>0 to the (100+ 1)-
one-point-GA at the target �s = 5.1. The dynamicAUC in figure 4.6b switches

from the (1 + 1)EA>0 to the (100 + 1)-two-point-fGA at the target �s = 15.7.

Figure 4.6a presents the ERT curves of two dynamic policies and the BSA of F14.

We expect dynamicAUC could perform better than BSA. But unlike F6 or F9, dynam-

icAUC and dynamicERT perform worse than the BSA for almost the entire process.

DynamicAUC switches at �s = 5.1 from (100+1)EA>0 to (100+1)-one-point-GA. Dy-

namicERT switches at �s = 5 from (100+50)-one-point-GA to (50+25)-uniform-fGA.

F14 presents a W-model transformation to the LeadingOnes (F2) problem, which

formulates the step function curve. But as it can be solved early, we need to consider

other problems about the impact of population size adaption.

Regarding F24, the worst performance of dynamicAUC, figure 4.6b displays the

ERT with an almost vertical ascent after the switch. F24 could not reach the fi-

nal target due to the vertical rises of dynamicAUC and dynamicERT, and then we

set the maximum budget of 500000 as dERT. Before the switch, the two dynamic

29

Experimental results

GAs performs much better than BSA. DynamicAUC switches at �s = 15.7 from

(1+1)EA>0 to (100+1)-two-point-fGA while dynamicERT switches at �s = 15.81

from (1+1)fastGA to (100+100)-uniform-fGA. We consider that the extreme cost

after the switch is related to the local optima which brings di�culties to conver-

gence [25].

In our scenario, the dynamic policy could combine the excellent e�ciency of the

two algorithms at di↵erent times to obtain a superior dynamic algorithm at the whole

process. But F24, the concatenated Trap (CT) problem, is defined by partitioning a

length n bit-string into segments of length k and concatenatingm = n/k trap functions

that take each segment as input. With the complex input, it’s hard to make progress

with random initialized individuals in the GA solving process. We notice that the

point at which the dynamic GAs become particularly ine�cient is the switch point.

It indicates that the scenario we want is not achieved.

Based on the ERT policy from table 4.1, we noticed that dynamicERT also per-

forms not well as expected. DynamicERT gets ERT value 371 instead of 255 on F6,

and 4731 instead 2255 on F9. Besides, though dynamicAUC performs worse than BSA

on these two functions, it has a lower ERT value compared with dynamicERT on F6,

F9, and F14. Regarding F14 and F24, we notice the same situation: BSA is better

than dynamicAUC, which is better than dynamicERT.

(a) AUC derivative of GAs on F6 (b) AUC derivative of GAs on F9

Figure 4.7: AUC derivative of GAS on F6 and F9 in dimension d = 100.

Taking AUC derivative into consideration helps us to find out the reasons about

their bad performance. From figure 4.7a we notice that dynamicERT has lower deriva-

tive before 102.36 = 229 evaluations, which is the time that dynamicERT reach � = 26

in figure 4.5a. After that, dynamicERT presents an e�cient period with high deriva-

30

Results

tive in AUC and low gradient on ERT. Regarding dynamicAUC, it doesn’t di↵er much

from BSA and makes no significant progress on ERT. We find that the ERTs corre-

sponding to the switch target �s are 10 and 17.7, which are presented as 1 and 1.24

in AUC derivative curves. From the AUC curves, dynamicAUC has a small increase

after switch but dynamicERT has a decrease.

For F9, we notice from figure 4.7b that the three GAs have similar derivative curves

and ERT, except BSA performs better from 2.98 to 3.6 of x-axis period with higher

derivative and lower ERT. Considering about the switch points of two dynamic GAs,

we find that they are about 2.97 and 3.19 of x-axis respectively. The figure indicates

that the switch doesn’t perform as expected. One reason could be that dynamic GAs

transformed to similar parameter settings.

(a) AUC derivative of GAs on F14 (b) AUC derivative of GAs on F24

Figure 4.8: AUC derivative of GAS on F25 and F24 in dimension d = 100.

Aiming to know the details about dynamic GAs on F14 and F24, we also plot

the AUC derivative figures in figure 4.8. For F14, figure 4.8a presents the interesting

curves that BSA performs best before 0.9, then is surpassed by dynamicERT, which

is also exceeded by dynamicAUC after 1.2. We take the corresponding switch targets

into considerations, finding that the two switch points have less impact on the solving

process comparing with other functions above. The reason could be the same as we

mentioned about F9.

Figure 4.8b indicates a significant di↵erence between BSA and dynamic GAs.

Derivative of BSA is under the other two algorithms before 102.79 = 616 evaluations.

But after the intersection, BSA gets the high derivative which reflects the e�cient low

gradient in ERT figure 4.6b. In contrast, the AUC derivatives of two dynamic GAs

decrease too much, leading to a vertical ascent in ERT. We notice that the ascent in

31

Experimental results

ERT appears when the function value is about 16, which matches the switching target

of dynamicAUC. We consider that it is related to the transformation of policy form

A1 to A2 for adapting population size.

Transformation strategies As we mentioned in Alg 2, we apply the transformation

process for adapting population size from A1 to A2. For instance, dynamic GAs that

transform from 1 population size to 100 population size, enlarge by duplicating at first.

But the same individuals in a population would be meaningless for crossover operator.

Besides, the loss of cumulative mutation due to transformation takes more time to solve

the problems. In this way, we try di↵erent strategies of switching transformation.

• Half by copy, half by initialization

• Half by copy, half by mutation randomly

• Half by copy, half by mutation once

It is di↵erent between mutation randomly and mutation once. The number of

mutated individuals depends on the mutation strength if we do mutation randomly,

while all the rest individuals would be mutated once if we use the latter strategy. We

run those experiments with all the strategies above. Regarding half of initialization,

we notice that it destroy the e↵orts from previous operations, including cumulative

mutation and some competitive individuals. We gain slight improvement with half by

mutation randomly because the mutation strength L we set is small for the rest half

of the individuals.

We apply the the third strategy in our experiment and the presented data are based

on it. This strategy provide a baseline by duplicating and a potential improvement

with the rest half of individuals. But it is obvious that the unexpected performance

on F24 and other functions that need enlargement transformation hasn’t been solved.

Future work can concentrate on the way for adapting population size transformation.

Summary We tried di↵erent transformation strategies to improve the performance

of dynamic GAs on di↵erent functions, but the results are not ideal. The theoretically

good results of the two types of dynamic policies are under-performed in practice due

to the population size expansion. Despite this challenge, we detect that even under

this situation, dynamicAUC policy performs better than dynamicERT.

32

Chapter 5

Conclusions and Future Work

The purpose of the current project is to explore how AUC could be an e↵ective per-

formance measure in helping resolve dynAS problems. The second aim of this project

is to investigate the e↵ects of di↵erent switch targets which are obtained by ERT and

AUC respectively. We calculate the theoretical AUC results on 25 di↵erent black-

box optimization problems with di↵erent policies in order to make comparisons with

empirical results.

Firstly, the investigation of AUC shows that it is an e↵ective performance measure

for dynAS problems in many problems, i.e. F1, F2, F4, F5, etc. Comparing with

ERT, the switch target �(AUC)
s which obtained via AUC value is smaller than �(ERT)

s .

With an earlier switch target, the performance of AUC selection policy surpassed those

detected from ERT. We consider that ERT can be obtained after a whole run while

AUC can be calculated after each evaluation. The lag in the ERT calculation causes it

to have the same lag as a performance measure, whereas the AUC does not have this

drawback. But AUC needs more settings including budget set and target set. If the

budget sets of two involved algorithms are di↵erent, the AUC selection policies would

not be applied to the algorithms. And if the target set is not suitable, for instance,

too small, the value of AUC could be too high to distinguish policies.

On the one hand, we obtain good responses from AUC selection policies. On the

other hand, the results indicate that a proper population transformation strategy is

necessary for the dynAS problems since we observe the worse performance of the poli-

cies that switch between di↵erent population sizes compared to BSA. In detail, the

transformation from a small population to a large population leads to that. We try dif-

ferent strategies, from copying and mixing with mutations, but the two strategies show

33

similar performance and do not the solve the problem. Similar issues were detected

from the study of ERT selection policy which we refer to. Despite its limitations, the

study certainly adds to our understanding of the dynAS problems via AUC.

The previous unexpected results on F24 and F25 indicate that the best policy in

theory is not reliable in some problem. A bigger set of algorithms A may help. In

fact, we add constraints on the set of algorithms while we choose to use one-shot GA

with preset parameters. It hides the potentially optimal policies as they may not use

the preset parameters.

Our results revealed that the static AUC results might lead to a lousy policy due to

the small AUC range of values. The limitation of the target set may cause a one-side

solution such as F24, in which we could not find a better dynamic policy than BSA.

We should also consider the self-adaptive parameter selection based on AUC, as

the derivative of AUC provides the trend of GAs. AUC seems to be a good measure

reflecting convergence that can be used in machine learning. Reinforcement learning

(RL) can be a metric for algorithm selection problems because the self-adaptive process

can be regarded as a simple process of RL with an inner reward fitness function. Future

work can focus on constructing a reward function to distinguish di↵erent policies as

known as agents in RL theory.

Besides, the issue of strategies for selecting parameters of ⇡ is intriguing and could

be usefully explored in further research. And we can focus on better strategies for

adapting population size to resolve the problem caused by too much variation in

population size. Moreover, customising fitness functions for problems su↵ering from

local optima could be combined with the transformation issue. As we are using the

basic fitness function of 25 PBO problems, well constructed fitness function may benefit

the process of solving problems and avoid local minima.

34

Bibliography

[1] Thomas Back. Evolutionary algorithms in theory and practice: evolution strate-

gies, evolutionary programming, genetic algorithms. Oxford university press, 1996.

[2] Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle. Improvement
strategies for the f-race algorithm: Sampling design and iterative refinement. In
International workshop on hybrid metaheuristics, pages 108–122. Springer, 2007.

[3] Nils Aall Baricelli. Numerical testing of evolution theories, part ii preliminary
tests of performance. Symbiogenesis and terrestrial life, Acta Biotheoretica, 16:99–
126, 1962.

[4] Nils Aall Barricelli. Symbiogenetic evolution processes realized by artificial meth-

ods. 1957.

[5] William Jay Conover. Practical nonparametric statistics, volume 350. john wiley
& sons, 1999.

[6] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast
genetic algorithms. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 777–784, 2017.

[7] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. IOH-
profiler: A Benchmarking and Profiling Tool for Iterative Optimization Heuristics.
arXiv e-prints:1810.05281, October 2018.

[8] Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, and Thomas
Bäck. Benchmarking discrete optimization heuristics with iohprofiler. Appl. Soft
Comput., 88:106027, 2020.

[9] Alex Fraser, Donald Burnell, et al. Computer models in genetics. Computer

models in genetics., 1970.

[10] Alex S Fraser. Simulation of genetic systems by automatic digital computers i.
introduction. Australian journal of biological sciences, 10(4):484–491, 1957.

[11] David J Hand and Robert J Till. A simple generalisation of the area under the roc
curve for multiple class classification problems. Machine learning, 45(2):171–186,
2001.

35

Bibliography

[12] William E Hart and John M DeLaurentis. Convergence of a discretized self-
adapative evolutionary algorithm on multi-dimensional problems. Technical re-
port, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore,
CA . . . , 2003.

[13] John H Holland. Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence. MIT press,
1992.

[14] Holger H Hoos. Automated algorithm configuration and parameter tuning. In
Autonomous search, pages 37–71. Springer, 2011.

[15] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In International conference on

learning and intelligent optimization, pages 507–523. Springer, 2011.

[16] Thomas Jansen and Christine Zarges. Analysis of evolutionary algorithms: From
computational complexity analysis to algorithm engineering. In Proceedings of

the 11th workshop proceedings on Foundations of genetic algorithms, pages 1–14,
2011.

[17] Donald E Knuth. Computer programming as an art. In ACM Turing award

lectures, page 1974. 2007.

[18] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Bi-
rattari, and Thomas Stützle. The irace package: Iterated racing for automatic
algorithm configuration. Operations Research Perspectives, 3:43–58, 2016.

[19] Silja Meyer-Nieberg and Hans-Georg Beyer. Self-adaptation in evolutionary algo-
rithms. In Parameter setting in evolutionary algorithms, pages 47–75. Springer,
2007.

[20] Jonas Močkus. On bayesian methods for seeking the extremum. In Optimization

techniques IFIP technical conference, pages 400–404. Springer, 1975.

[21] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimiza-
tion of machine learning algorithms. Advances in neural information processing

systems, 25, 2012.

[22] Chuan-Kang Ting. On the mean convergence time of multi-parent genetic al-
gorithms without selection. In European Conference on Artificial Life, pages
403–412. Springer, 2005.

[23] Diederick Vermetten, Hao Wang, Thomas Bäck, and Carola Doerr. Towards
dynamic algorithm selection for numerical black-box optimization: investigating
bbob as a use case. In Proceedings of the 2020 Genetic and Evolutionary Com-

putation Conference, pages 654–662, 2020.

36

Bibliography

[24] Wikipedia contributors. Genetic algorithm — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&
oldid=1115108091, 2022. [Online; accessed 16-November-2022].

[25] Furong Ye, Carola Doerr, and Thomas Bäck. Leveraging benchmarking data for
informed one-shot dynamic algorithm selection. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion, pages 245–246, 2021.

37

https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&oldid=1115108091
https://en.wikipedia.org/w/index.php?title=Genetic_algorithm&oldid=1115108091

	Abstract
	Introduction
	Scope of the thesis
	Research Questions
	Outline

	Background
	Genetic Algorithms
	Performance Measures
	Expected Running Time
	Area Under the ECDF Curve
	A family of GA

	Algorithm Configuration/Selection
	Dynamic Algorithm Configuration/Selection

	Experiment
	Parameter settings of GA framework
	Dynamic calculation in theory
	ERT for dynAS problem
	AUC for dynAS problem

	Settings of dynamic policies
	Methods for implementation of dynamic GA
	Features of AUC
	Combination and selection method

	Results
	Theoretical results
	Experimental results
	Earlier switch point can be beneficial
	Adapting population size is challenging

	Conclusions and Future Work
	Bibliography

