
Opleiding Informatica

Achieving the

maximal score in Azul

Sara Kooistra

Supervisor:
Dr. Rudy van Vliet

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 08/07/2023

www.liacs.leidenuniv.nl

Abstract

Azul is a strategic board game where players tile a mosaic wall, with various game elements
affecting their scores. This study aims to determine the theoretically optimal score achievable
in the game and explore how this score can be achieved. We conduct an analysis of mosaic
wall tiling and its symmetries, followed by the practical implementation of these findings in a
game simulation. The research establishes that the maximum attainable score is 240 points,
including 95 bonus points. To reach this score, two key considerations must be taken into
account: 1) Placing five tiles in separate rows and columns without touching other tiles, and 2)
Ensuring all remaining tiles are placed horizontally and vertically adjacent to already placed
tiles. Furthermore, we investigate when incomplete permutations of an n× n board can still
lead to an optimal score. The implementation of our findings into a simulation and its results
suggest that these tiling considerations may not have significant practical value in game play,
as other factors strongly influence both score and win rate.

Contents

1 Introduction 1

2 Azul Game Rules 2

3 Analysis 4
3.1 Highest possible score . 4

3.1.1 Determining highest score . 4
3.1.2 Configuration of five loose tiles . 7
3.1.3 Total number of possible orders . 11

3.2 Lowest possible score for tiled wall . 14
3.2.1 Expected lowest possible score . 14
3.2.2 Checking lowest possible score . 15

3.3 Symmetries . 16

4 Algorithms 19
4.1 Greedy algorithm . 19
4.2 Smart algorithm . 20
4.3 Strategic algorithm . 21
4.4 Experiments and Motivation . 22

4.4.1 Results . 22

5 Conclusion and Further Research 24

References 25

1 Introduction

Azul is a strategic board game, released in 2017, as the first of a series of five [Gee]. In this game
players tile a mosaic wall of a Portuguese palace. They do so by taking turns picking tiles from the
table and later placing these tiles onto their wall. Tiling the mosaic wall gives the players points,
and the player with the highest score wins the game. Figure 1 shows a (two-player) game of Azul
in progress.

Figure 1: Azul game overview

Research has been done on many popular board games already, to find complexities, algorithms or
most-profitable strategies. Examples are Scrabble [LMS15], Chess [FL81] and Rummikub [vRTV16].
Although Azul is an award winning board game [Sch18], and its luck factor is relatively low, no
research has yet been done on its most profitable strategy.
Scoring points is a relatively simple aspect of the Azul game. It is, however, not obvious what the
highest possible score is or how to get to it. In this thesis we therefore research what the highest
possible score is, how this score can be achieved and what we can deduce from this knowledge
considering a best playing strategy. To do so, we start with an overview of the game and its rules in
section 2. Next, in section 3, the game and in particular the scoring system is thoroughly analysed
by determining the highest possible score, lowest possible score, symmetrical patterns and possible
tiling orders. The obtained theoretical knowledge will then be used in practice in a simulation of
the game, where several algorithms play against each other. The algorithms and the results of
the simulations are described in section 4. In section 5 of this thesis, we give our conclusion and
describe potential further work.

1

2 Azul Game Rules

Azul is a game that can be played with a maximum of four players. In this thesis we will focus
on the 2-player game, of which the set-up is as follows: There is a bag on the table with 100 tiles
in it, 20 tiles each of five different colours. On the table between the two players there are 5 tile
repositories called factory displays. Additionally, there is a single white tile with the number one on
it. Every player has its own player board with a score line, pattern lines, mosaic wall and floor line.
The player board together with the factory displays can be seen in Figure 2. As can be seen in this
figure, the mosaic wall is a 5 × 5 grid where every row and column contains all five tile colours.

Figure 2: Azul playing field

The game is played over multiple rounds,
and ends when a player has covered a hor-
izontal line of his mosaic wall with tiles.
At the start of every round, the five fac-
tory displays will each be covered with four
random tiles from the bag. Every round
consists of two phases:
1. Getting tiles from the factory
2. Tiling the mosaic wall

Phase 1: Getting tiles from the factory

In phase 1, players take turns picking tiles
from the factory displays/table. They can
choose to:

1. Pick all tiles of one colour from a fac-
tory display, and move all the remain-
ing tiles from that factory display to
the table.

2. Pick all tiles of one colour from the
table. If the white tile with a 1 on it
is still in the field, take it and put it
on your floor line.

The tile(s) that the player picks must be
put on one of their pattern lines. Tiles can
only be put on a pattern line when there is
not a different colour on that pattern line
and the same colour is not already put on
that line of the mosaic wall. Tiles that do
not fit in the chosen pattern line must be
put on the floor line, filling it up from left
to right. In the sporadic case that the floor line is already completely covered, the tile can be put
aside to be put back in the bag later.
This phase ends when all tiles are picked from the factory displays as well as from the table.

2

Phase 2: Tiling the mosaic wall

For all pattern lines that are completely filled, players now shift one tile to the corresponding
colour on the row of the mosaic wall. This must be done from top to bottom. The other tiles on
the pattern line are put aside and will be put back into the bag when the bag is empty.

Scoring system

Every new tile on the mosaic wall gives a score directly when it is shifted on there. The scoring of
a new tile is as follows:

• +1 point for the new tile

• +1 point for every tile that is in the same row or column as the new tile and connected to it
directly or through other tiles in that row or column.

• +1 point if there are tiles both horizontally and vertically connected to the new tile.

An example of partially tiling the wall with the corresponding scores can be seen in Figure 3.

Figure 3: Example of tile scoring. Blue tiles are on the wall already, yellow tiles are newly added
tiles with the number in it being the score they yield.

The scored points are added to the players score line. Tiles on the floor line count as negative points,
where the first two are −1 point each, the next three are 2 points and the last two are 3 points
(as marked above the cells of the floor line). The points on the floor line are added up and then
subtracted from the score on the score line. A player’s score can, however, never become negative.
The game ends at the end of the round in which at least one player has a horizontal line filled on
their mosaic wall. Players then get bonuspoints:

• per completed horizontal line, +2

• per completed vertical line, +7

• per completed colour, +10

3

3 Analysis

3.1 Highest possible score

To answer the research question, we will determine the theoretical maximum score attainable
in Azul. Additionally, we will determine how this score can be achieved and what possible tile
orders can be used for that purpose. In our analysis we focus on completely tiling the mosaic wall.
We mostly ignore the fact that the game ends after the round where the player has filled a first
horizontal line, which occur before a complete tiling of the wall.

3.1.1 Determining highest score

To determine the highest possible score, we focus on the second phase of the game, tiling the mosaic
wall. Since points are scored solely in this phase, the highest possible score depends only indirectly
on the first phase. The order in which the wall is tiled determines the score the tiled wall yields.
Tiling a cell that leads to the highest score for that tile, does not always lead to the highest total
end score. An example of two identical coverings, a covered 2x2 square, can be seen in Figure 4.
Although in order A each individual tile scores the most points possible for that tile, order B leads
to a higher total score.

Figure 4: Different order leads to different score

Since each new tile on the wall provides extra points, the highest possible score is logically achieved
with a fully tiled wall. As has been explained in section 2, points are achieved for a new tile on
the board, all horizontally connected tiles, all vertically connected tiles, and an additional point if
there are both horizontally and vertically connected tiles. We can break the score of a new tile into

4

a horizontal and a vertical component. A formula for the tile score could then be:

scorex = 1 + number of horizontal adjacents

scorey = 1 + number of vertical adjacents

score =


scorex if scorey = 1

scorey if scorex = 1

scorex + scorey otherwise

(1)

If we take a look at completely filling one horizontal line on an empty wall, we achieve the maximum
number of points if all new tiles are horizontally adjacent to all present. The score achieved would
then be 1 + 2 + 3 + 4 + 5 = 15. The same holds for a vertical line on the wall. Figure 5 shows how
these points add up. There are, of course, other possible orders to fill up a line that will lead to the
same maximum score.

Figure 5: Maximal scores for parts of mosaic wall

If we completely fill up the board, we have five rows and five columns, which would mean a
maximum of (5 + 5) ∗ 15 = 150 points. This would be the case if all tiles placed on the field are
counted in two directions. However, not all tiles can be placed adjacent to tiles in both directions.
Thus not all tiles can gain points in two directions and thus the score of 150 points is not achievable.
This is because a tile that is placed in an empty row or column, can never be adjacent to both a
tile in the same row and a tile in the same column. In other words: such a tile only yields scorex or
scorey, not scorex + scorey in equation 1. For example, if we tile the 5x5 grid from left to right
and from top to bottom, we gain points as illustrated in Figure 6, which leads to 141 points.

5

(a) Simple tiling order (b) Horizontal and vertical score

Figure 6: Score components for simple tiling order, yielding a score of 141 points

To lose as few points as possible we want to minimize the number of ”new tiles” on the board, i.e.
tiles that do not yield points in two directions. At least every row and every column will need one
”first” tile, which is always a tile that does not yield points in two directions. Therefore we will
place all new tiles in both a new row and a new column, for example by creating a diagonal line of
new tiles. This leads to five tiles not yielding points in two directions, and thus to a maximum score
of 145 points. We must make sure that all tiles apart from these five are tiled adjacent to a tile
both in horizontal and in vertical direction. This will automatically lead to all rows and columns
being filled up from out one of these five existing tiles, since every new tile must be adjacent to
two existing tiles, and every row and column starts with only one tile in it. An example of a tiling
pattern that leads to the highest score with its vertical and horizontal components split up can be
seen in Figure 7.

(a) Tiling order for highest score (b) Horizontal and vertical score

Figure 7: Score components for optimal tiling order

The bonus points still need to be added to this score to get to the highest possible total score. We add
2 points for every completed horizontal line, 7 points for every completed vertical line, and 10 for ev-
ery completed colour. Since the board is totally covered we get 145+2×5+7×5+10×5 = 240 points.

6

Figure 8: Example of how we can fill up a 5-tile wall configuration to achieve the maximum score

3.1.2 Configuration of five loose tiles

The five tiles that are put on the wall in a new row and column, can be tiled in many different
orders and configurations. The exact order in which these five tiles are placed has no influence on
gaining or not gaining the highest possible score. The positions of these tiles, however, do matter,
since not every configuration with every tile in a separate row and column can eventually lead
to the highest possible score. In this section, we investigate which configurations can lead to the
highest score, and which cannot. Figure 8 shows an example of a five tile configuration that can
lead to the maximal score. It also shows how we can fill up the wall by only putting tiles on cells
that are both horizontally and vertically adjacent to a covered cell.
Figure 9a shows a configuration of the board with five tiles that cannot lead to the maximal score,
since no empty cell is in both directions adjacent to a covered cell.

(a) (b)

Figure 9: Two wall configurations that cannot lead to the maximum score

Not only with five tiles on the board, but also with fewer tiles placed, it is possible that an optimal
score has already become unattainable. An example is the configuration in Figure 9b.
We now want to find out when a configuration can still lead to the earlier determined highest score,
and when it cannot. To provide a more comprehensive understanding of the game dynamics, and
to increase the likelihood of discovering patterns within the configurations, we will generalize this

7

to an n× n board. The maximum score can be defined by n ∗ (n + 1) times n columns minus n
points, being n3 + n2 − n points.

We define the following problem:
OptimalAzulTiling: Given an n× n board containing k ≤ n tiles, each having both a unique row
and a unique column. Is it possible to tile the complete board in an order that yields an Azulscore
of n3 + n2 − n points excluding bonus points?
Figure 8 shows a yes-instance to this problem, Figure 9a and 9b show no-instances to this problem.
We recall that, to achieve the highest score on an n× n board, our tiling pattern should meet the
following conditions:

• n tiles are placed in a new (meaning currently empty) row and a new column.

• At the time of tiling, the other n(n−1) tiles must be adjacent both horizontally and vertically
to other tiles present on the board.

To check if an instance is a yes-instance to the problem, we can test all possible ways of expanding
the current configuration to n tiles (all in unique rows and columns) and after that cover all cells
with both horizontal and vertical adjacents until there are no empty cells left with both horizontal
and vertical adjacents. The second part can be done by repeatedly iterating over all cells of the
board and adding tiles to empty cells that are both vertically and horizontally adjacent to a tiled
cell. We will stop when all cells are tiled or when no tiles are added to the wall after iterating over
all cells. In the worst case we add one tile every time we have checked all n2 cells of the board,
which means we need to check all n2 cells n2 times. This can thus be done in ∈ O(n4) with n being
the board size. The first part, however, trying all possible configurations of one tile per row and
per column, has a higher time complexity. With k tiles already placed on the board, the number of
possible configurations is (n− k)!. The worst case complexity of this algorithm is thus in O(n!).
Given a configuration with k ≤ n tiles, a solution to the problem can be guessed and verified in
polynomial time. This proves that the decision problem is in NP.
Can we generalise the yes- and no-instance to a form so that we can find a more efficient algorithm?
Or could this decision problem be NP-complete? We can denote a wall configuration as an array
of numbers, where an element’s index is the row number and its value the column number. The
permutation from Figure 8 would then be written as (3, 1, 2, 5, 4), Figure 9a would be (2, 4, 1, 3, 5)
and Figure 9b would be (2, 5, 1,⊔,⊔). The permutation (2,4,1,3,5) contains the subpermutation
(2, 4, 1, 3). This subpermutation represents four tiles (w, x, y, z) that vertically appear in exactly
that order, but whose horizontal positions are ordered as y < w < z < x. A subpermutation with
this property is called a permutation pattern (2, 4, 1, 3). The other permutation that is a no-instance
to our decision problem, (2, 5, 1,⊔,⊔) can only be completed in two ways, which are (2, 5, 1, 3, 4)
and (2, 5, 1, 4, 3). Both of these contain the permutation pattern (2, 4, 1, 3) as described.

8

Figure 10: Interlocked boxes for a (2,4,1,3) permutation

Permutations with the pattern (2,4,1,3) lead to a situation where the four tiles are interlocked by
each other and can in no way be connected anymore. The same holds for the mirrored image of
this pattern, (3,1,4,2). Figure 10 shows how a (2,4,1,3)-pattern creates interlocked boxes. The light
and dark grey squares on the board represent the rows and columns where a tile has already been
placed, and therefore no unconnected tile can currently be placed to achieve an optimal score. The
white cells are cells where the (n − k) ”first” tiles can still be placed. The boxes surrounded by
dotted lines may still be filled up following the two conditions stated above. The four tiles that were
already placed, however, create borders between the boxes, which makes it impossible to connect
them following the conditions for an optimal score. For example, tile 2 and its surrounded dotted
area is locked away from tile 1 by tile 4, from tile 4 by tile 3, and from tile 3 by tiles 1 and 4.

We will now have a closer look at complete permutations where k = n. Permutations containing
neither the pattern (3,1,4,2) nor the pattern (2,4,1,3) are called separable permutations [BBL98].
Separable permutations are permutations that can be represented by a separating tree. This is
a tree where the elements of the permutation are represented by the leaves of the tree, and all
nodes are either positive nodes or negative nodes. In positive nodes, all descendants on the left are
smaller than the ones on the right and in negative nodes it is the other way round. An example of
a separable permutation with its separating tree can be seen in Figure 11.

9

+

-

+

2 3

1

-

5 4

Figure 11: Separable permutation (3,1,2,5,4) with its separating tree

Julian West showed that the number of separable permutations of length n is equal to the
(n− 1)th Schröder number [Wes95]. We have already seen that the non-separable permutations
are no-instances to our decision problem. This means that if the number of yes-instances of all
configurations with n tiles on an n× n board is equal to the (n− 1)th Schröder number, then all
separable permutations should be yes-instances to our decision problem.
We have written a simple program in C++ where all permutations of n tiles are checked. The
program calculates how many of these permutations are yes-instances to our decision problem. The
results for n = 1 to n = 11 can be found in Table 1.
The number of yes-instances indeed match the (n−1)th Schröder number. This proves that for n = 1
to n = 11 the only n-tile configurations that can not lead to the highest score are configurations
with the pattern (2, 4, 1, 3) or (3, 1, 4, 2). This leads to the following conjecture for general n ≥ 1:
”An instance of AzulOptimalTiling for n ≥ 1 is a yes-instance, if and only if it is a complete
permutation without (2, 4, 1, 3)- and (3, 1, 4, 2)-patterns, or it is an incomplete permutation that
can be completed without creating these patterns” .
Assuming that our conjecture is correct, the only thing we need to do to decide if a(n incomplete)
permutation is a yes-instance to our problem, is check if it does not contain the above patterns and
can be completed without creating the patterns. It has been proven already that when only looking
at separable permutations, the problem to decide if a general pattern ϕ (not necessarily of length 4)
can be found in a permutation ρ is NP-complete [NRV16]. On the other hand, we have found that

10

n number of yes-instances n number of yes-instances
1 1 7 1,806
2 2 8 8,558
3 6 9 41,586
4 22 10 206,098
5 90 11 1,037,718
6 394

Table 1: Number of yes-instances for n = 1 to n = 11

deciding if the permutation pattern (3, 1, 4, 2) or (2, 4, 1, 3) occurs in a complete permutation is a
polynomial problem. It is still open whether or not it is possible to decide in polynomial time if an
incomplete permutation can be completed without creating the patterns (3, 1, 4, 2) and (2, 4, 1, 3).
Perhaps, this problem is NP-complete. This thesis does not delve further into this question. It
would be interesting to pursue further research on this topic.

3.1.3 Total number of possible orders

We have determined that the highest achievable score for the original game (with n = 5) is 240
points, and we have also found a way to get to this highest possible score. However, if we mirror
this tiling pattern over a vertical or horizontal axis, we also get a tiling pattern with a score of
240 points. How many sequences are there that lead to this optimal score? To determine this, a
program was written in C++. The program was also used to determine the lowest possible score
with 25 tiles on the board, which we will discuss in Section 3.2.1.
We now explain how our program computes the number of sequences leading to the maximal
score. In the explanation, we use the term “picture” for (partial) tilings of the board. We have
implemented bottom up dynamic programming, based on the different possible pictures. This way,
we do not need to examine all 25! sequences. In our program, all 225 = 33.55 million pictures are
represented by binary numbers. Every digit here stands for a cell of the 5 × 5 grid. The cells are
numbered from left to right and from top to bottom. Every covered cell is represented by a 1,
every empty cell is represented by a 0. As an example, in Figure 12 the picture corresponding to
[0010011000010000000101010] is shown.

Figure 12: Covering corresponding to [0010011000010000000101010]

11

We define objects for all possible pictures, containing i.a. their corresponding bitstring and an
integer variable score, which is set to 0 at the start of the program. Now, from n = 1 to n = 25, the
program iterates over all pictures with n tiles and determines the maximal score that it can be
tiled for. To do so, it walks over all pictures with n− 1 tiles that can precede the current picture,
adds up their score and the score of the new tile, and checks if it is larger than the score of the
current picture. If so, the score is updated to this new highest score.
To find the number of possible patterns the wall can be tiled in to get to the highest score, every
object has a counter variable. When a score is found that is larger than the current score, the
counter is set equal to the counter of the preceding picture. If a score is found that is equal to the
current score, the counter is incremented with the counter of the preceding picture.
An example of this process with a 2 × 2 mosaic wall can be seen in Figure 13. The orange lines
represent routes that lead to an optimal score.

Figure 13: Illustration of determining number of most-profitable tiling patterns

12

Pseudocode
The pseudocode of the program to calculate the number of routes to the maximum score is as
follows:

1: for i=0; i≤ n2; i++ do
2: for j=0; j<number of possible pictures with i tiles; j++ do
3: currentCovering = find covering[i][j] in allCoverings;
4: currentCovering.score = 0;
5: currentCovering.numberOfRoutes = 1;
6: for k=0; k< n2; k++ do
7: if bit k of currentCovering is set then
8: // define lastCovering as currentCovering with bit k unset
9: lastCovering = index of currentCovering −2n2−1−k;
10: score = lastCovering.score + tilescore(lastCovering);
11: if score ≥ currentCovering.score then
12: if score > currentCovering.score then
13: currentCovering.score = score;
14: currentCovering.bestPrevious = lastCovering;
15: currentCovering.numberOfRoutes = 0;

16: currentCovering.numberOfRoutes += lastCovering.numberOfRoutes;

17: return currentCovering.numberOfRoutes;

Results
To find the number of possible sequences in which the wall can be tiled to get to 240 points, we look
at the picture with 25 tiles. The score at this picture is 145 points as expected, and the number of
routes is 1.57× 1014. The total number of sequences of tiling the complete board is 25! = 1.55 ∗ 1025.
This means that around 1 ∗ 10−9% of all tiling patterns leads to the highest possible score.

13

3.2 Lowest possible score for tiled wall

3.2.1 Expected lowest possible score

To get a better image of the range of scores we will also determine the lowest possible score that
can be achieved with a fully covered mosaic wall.
For the lowest possible score, we again look at the possible score for a single row on the wall. The
tree in Figure 14 shows all possible sequences of scores when we put five tiles in a row or column.
The first tile will always add one point to the score, the last tile five. The smallest number of points
that can be achieved is 11.

Figure 14: Possible points per tile in single row or column

One possible order to get to eleven points can be seen in Figure 15. In this order, tiles are placed in
detached cells as long as possible, before choosing cells that are adjacent to a covered cell.

Figure 15: Possible order for least points in row: 1 + 1 + 1 + 3 + 5 = 11

When we use this pattern to fill up the whole wall in both dimensions, we get the tiling order
shown in Figure 16. This order leads to a total score of 89 without bonus points. To check if this is
actually the lowest score we can get to with 25 tiles on the wall, we will alter and use the program
that was described in section 3.1.3.

14

(a) Tiling order for highest score (b) Horizontal and vertical score

Figure 16: Score components for lowest possible score

3.2.2 Checking lowest possible score

To find the minimum score with 25 tiles we initialise the score of covering 0 (the empty grid) to 0
and alter the algorithm from Section 3.1.3 as follows, with modifications in red:

1: for i=1; i≤ boardSize2; i++ do
2: for j=0; j<number of possible pictures with i tiles; j++ do
3: currentCovering = find covering[i][j] in allCoverings;
4: currentCovering.score = 1000; ▷ Initialise higher than maximum possible score
5: for k=0; k< boardSize2; k++ do
6: if bit k of currentCovering is set then
7: \\ define lastCovering as currentCovering with bit k unset
8: lastCovering = index of currentCovering - 2boardSize2−1−k;
9: score = lastCovering.score + tilescore(lastCovering);
10: if score ≤ currentCovering.score then
11: if score < currentCovering.score then
12: currentCovering.score = score;
13: currentCovering.bestPrevious = lastCovering;
14: currentCovering.numberOfRoutes = 0;

15: currentCovering.numberOfRoutes += lastCovering.numberOfRoutes;

16: return currentCovering.score;

The program for the minimum possible score with 25 tiles returns 89. This result confirms the
expectation that was described in Section 3.2.1. The tiling pattern in Figure 16 is thus indeed a
pattern to achieve the lowest possible score with 25 tiles.

15

3.3 Symmetries

The Azul mosaic wall is a 5×5 grid. There are in total 25 cells which may be tiled or untiled, and
thus 225 = 33, 554, 432 possible board coverings, i.e. pictures.
We can divide all pictures into groups defined by the number of tiles needed for the picture, like we
did in our algorithms. With 0 tiles there is only one possible picture, which is the empty board.
Likewise, there is one possible picture with 25 tiles, which is the full board. In general, the number
of pictures with k tiles and n cells is C(n, k) =

(
n
k

)
= n!

k!(n−k)!
. The distribution of the number of

pictures per number of tiles for a 5×5 board can be seen in Figure 17.

0 5 10 15 20 25
0

5.3

·106

Number of tiles

N
u

m
b

er
of

p
ic

tu
re

s

Figure 17: Distribution of pictures over number of tiles

When we put a tile the top left cell of an empty 5×5 wall, we have a similar situation as when we
put a tile on the bottom left cell of the empty wall. You only need to rotate the second board with
90 degrees or flip it over horizontally to find the first one. Rotating or mirroring a board has no
influence on the score that can be achieved (disregarding the bonus points). The resulting boards
are called symmetric. An example of a picture and its vertically mirrored picture can be seen in
Figure 18.
The set of symmetries that are applicable is the following: reflection symmetry - horizontal, vertical,
diagonal left, diagonal right; rotational symmetry - 0 ◦, 90 ◦, 180 ◦, 270 ◦. This set of symmetries
forms a group, meaning that applying multiple symmetries will always lead to one of these eight
original symmetries. We define an object as a picture and all pictures we can find by using the
group of symmetries described above. If all pictures would have seven symmetrical pictures, that
would mean that there are only 225

8
= 4, 194, 304 unique objects, meaning symmetrically distinct

coverings. However, there are also pictures that do not change when they are for example flipped
horizontally. There are even pictures that are symmetric both rotational and reflective, meaning
they do not have any symmetrical picture, e.g. the empty grid.

16

(a) (b)

Figure 18: Vertically mirrored pictures

Burnside’s lemma

Burnside’s lemma is a theorem in group theory that can be used to count distinct objects of a
set taking symmetry into account [Jin18]. These distinct objects are called orbits. We can use
Burnside’s lemma to calculate how many orbits there are in our game. To put it differently, we can
calculate the number of unique configurations of the field, being in no way symmetrical to each
other.
Burnside’s lemma states [Ol20] that the number of objects = sum of symmetrical pictures

number of symmetries
. To find the

number of objects we should thus first find the sum of symmetrical pictures. To do so, for every
symmetry we need to determine the number of pictures being symmetrical over that symmetry line
or angle. We determine the number of fixed elements/cells for all eight symmetries, i.e. the cells of
which the state is fixed by other cells. This can be seen in Figure 19.

Figure 19: Fixed elements per symmetry (white cells) with the corresponding number of invariant
pictures

17

The number of objects (so the number of unique pictures) is then given by the following formula:

objects =
sum of symmetrical pictures

number of symmetries

=
225 + 27 + 213 + 27 + 215 + 215 + 215 + 215

8
= 4, 211, 744 objects

So there are 4.2 ∗ 106 objects, which is a little more than 1
8

of the total number of pictures.
Since symmetric pictures can lead to equal scores, we could alter our algorithms in Section 3.1 and
3.2. We could restrict our previously described algorithms to one picture per orbit. However, this
would only speed up our algorithm by less than a factor 8, and combined with the time required
to determine the orbits, it would not make a significant difference. Therefore, we decided not to
pursue this approach.

18

4 Algorithms

In the theoretical analysis described in Section 3, we mainly determined how to achieve the highest
score in a perfect game. However, Azul contains many game elements that affect the ability to
play the “perfect” game. For example, available tile colours are randomized, there is an opponent
that will make moves taking away tiles and there is a tile in the middle which is a negative point
and should always be picked by one of the two players. The main conclusions from our theoretical
analysis are that it is beneficial to have five “loose tiles” in separate rows and columns, and to
place all other tiles on a cell that is adjacent both a horizontal and a vertical cell that is already
tiled. To research if, despite the fact that there are many game components, our findings have a
positive effect on a player’s win percentage, a simulator of the game was written in C++. The
player can select its move by three different algorithms, a Greedy algorithm, a “smarter” algorithm
and a strategic algorithm. Players with different algorithms will play games against each other. The
different algorithms are described below.

4.1 Greedy algorithm

The greedy player is a player that is focused on picking the largest number of tiles it can fully put
onto a pattern line. If this is not possible, the algorithm chooses a move that leads to the fewest
tiles on the players floorline (negative points). The pseudocode for the greedy algorithm is as follows.

for int i=0 to number of possible moves do
for int j=0 to number of pattern lines do

if tiles of move can fully be put in patternline then
if numberOfTiles > largest then

largest = numberOfTiles;
bestMove = move i in j;
least = 0;

else
if least != 0 then

tilesTooMany = abs(patternLine space - numberOfTiles);
if tilesTooMany < least then

least = tilesTooMany;
bestMove = i in j;

return bestMove;

19

4.2 Smart algorithm

The smart player is a player that is focussed on making a move which will fill up pattern lines as
much as possible, i.e. leaves the least untiled cells on its patternline. In case of a tie, it prefers a
move where the tile on the mosaic wall will be put adjacent to another tile. The pseudocode for the
smart algorithm is as follows:

for i=0 to number of possible moves do
for j=0 to number of pattern lines do

if tiles of move can fully be put in patternline then
movefound = true;
whitespace = patternLine space - numberOfTiles;
if whitespace <= least whitespace then

if whitespace < least whitespace then
least whitespace = whitespace;
one adjacent move = false;
most tiles = 0;

if !one adjacent move then
checkAdjacents();
if horizontal adjacent || vertical adjacent then

one adjacent move = true;
bestMove = currentMove;

else
if currentMove.size > most tiles then

bestMove = currentMove;
most tiles = currentMove.size;

else
if !movefound then

tilesTooMany = abs(patternLine space - numberOfTiles);
if tilesTooMany < least remaining then

bestMove = currentMove;
least remaining = tilesTooMany;

return bestMove;

20

4.3 Strategic algorithm

The strategic algorithm works similar to the smart algorithm, apart from two things. The algorithm
prefers tiles in the diagonal line of the mosaic board in the first round. Also, it prefers moves where
the tile will end up with two adjacent tiles above one adjacent tile.

for i=0 to number of possible moves do
for j=0 to boardSize do

if tiles of move can fully be put in patternline then
movefound = true;
whitespace = patternLine space - numberOfTiles;
if whitespace <= least whitespace then

if whitespace < least whitespace then
least whitespace = whitespace;
diagonal move = false;
one adjacent move = false;
two adjacent move = false;
most tiles = 0;

if !diagonal move && firstround then
if moveInDiagonal() then

bestMove = currentMove;
diagonal move = true;

if !diagonal move && !two adjacent move then
checkAdjacents();
if horizontal adjacent && vertical adjacent then

bestMove = currentMove;
two adjacent move = true;

if !diagonal move && !two adjacent move && !one adjacent move then
checkAdjacents();
if horizontal adjacent || vertical adjacent then

one adjacent move = true;
bestMove = currentMove;

else
if currentMove.size > most tiles then

bestMove = currentMove;
most tiles = currentMove.size;

else
if !movefound then

tilesTooMany = abs(patternLine space - numberOfTiles);
if tilesTooMany < least remaining then

bestMove = currentMove;
least remaining = tilesTooMany;

return bestMove;

21

4.4 Experiments and Motivation

Several experiments have been conducted to test the algorithms and thus the previously established
principles in practice. On every run, two algorithms were chosen to play against each other. To
ensure the validity of the results, and minimise the potential for bias, every test was done by playing
ten series of 1000 games. Also, both the starting player and the order of tiles in the bag/on the
factory tiles were randomly selected every single game.
Since there is a factor of ”luck” in the game, we must perform a sufficient number of simulations
to draw reliable conclusions about the influence of a particular algorithm on the win percentage
and scores. We start with doing 1000 simulations where the two players are playing with the same
algorithm. This way we can check if 1000 simulations is enough to eliminate the influence of luck
from our results.
To check the two main points we took from our theoretical analysis, i.e. focus on the diagonal line
and on adjacent tiles, we simulate the game with a strategic algorithm versus the smart algorithm.
We run three tests with the following preferences for the strategic algorithm:

1. Both diagonal line and two adjacents

2. Only the diagonal line

3. Only the two adjacents

This way, we can check both the impact of the two focal points together and their individual effects.
After this, we will also test the win percentage of the smart algorithm against the greedy algorithm,
and the strategic algorithm against the greedy algorithm.

4.4.1 Results

We start with the greedy algorithm playing against itself, to check how many runs are needed to
draw reliable conclusions. Figure 20 shows the average deviation from 50% for 10 to 10,000 runs. At
1000 runs, the deviation is around 1%. This means that one player won around 51% of the games.
This deviation can be caused by the luck factor present in the game. The influence of this luck
factor is largely, but not completely, averaged out by doing 1000 runs. To avoid making the number
of runs too large while still obtaining reliable results, we will therefore work in batches of 1000 runs.

Figure 20: Influence number of runs on average win percentage

22

Series Diagonal and two adjacents Diagonal Two adjacents
1 52% 50% 55%
2 52.6% 47.7% 54.8%
3 53.4% 50.2% 52%
4 51.4% 51.3% 51.4%
5 53.4% 49.4% 52.7%

Average 52.56% 49.72% 53.18%

Table 2: Percentage of wins for strategic algorithm against smart

Now we let the smart algorithm play against the three variants of the strategic algorithm. We
perform five series of 1000 runs for each experiment. We do multiple series of 1000 runs for error
reduction and to increase the reliability of the results. The results of 5 × 1000 runs can be found in
Table 2
We can see that, on average, the strategic algorithm wins more often over the smart algorithm than
the other way around. However, when we remove the preference for two adjacent tiles and use only
the diagonal as a preference, the smart algorithm wins 0.56% more often than the strategic. This is
a negligible difference. Conversely, when we forget about the diagonal and give preference only to
the two adjacents, the strategic algorithm wins 53.18% of the time. From this, we can conclude
that preferring two adjacents above one adjacents leads to a higher percentage of wins. Preferring
the diagonal however, does not have the positive effect we had expected it to have.
Finally, we let both the strategic (diagonal and two adjacents variant) algorithm and the smart
algorithm play against the greedy algorithm. The results can be found in Table 3.

Series Smart Strategic
1 95.4% 96%
2 95.3% 96.3%
3 95.1% 95.2%
4 94.9% 94.9%
5 95.6% 96.1%

Average 95.26% 95.7%

Table 3: Percentage of wins for smart and strategic algorithm against greedy

Both algorithms have a remarkably high win rate compared to the greedy algorithm. There
is however no significant difference between the win percentage of the smart and the strategic
algorithm.

23

5 Conclusion and Further Research

Azul is a board game with a variety of game elements. In this research, we mainly focused on the
mosaic wall and implemented our most important findings into a simulation of the game. The
highest score that can be obtained by tiling the mosaic wall turns out to be 145 points. By adding
the bonus points that a player would get for a fully covered wall, a player can reach a maximum
of 240 points. To achieve this score, the wall should be tiled in a specific way, where five tiles
that are placed in an at that moment untiled row and column. It is also important that there is
no (2,4,1,3)- or (3,1,4,2) pattern in the permutation of these five tiles. It is suspected that the
problem to determine if this pattern can still be prevented in incomplete permutations for gen-
eral board sizes n is NP-complete. Future research could be done to prove (or refute) this hypothesis.

Apart from the five tiles described above, other tiles can be put in different orders. Important is
that all these tiles are placed both horizontally and vertically adjacent to an already covered cell.
In total, there are 1.57 ∗ 1014 possible routes the 5 × 5 wall can be covered in to achieve an optimal
score.
We examined if we could minimise the number of instances of the board by only looking at one
picture of every orbit. Burnside’s lemma was used to determine the number of distinct configurations
of the board, keeping symmetry into account. It was found that this number was a little more
than 1/8 of the total number of pictures. We could speed up our algorithms by less than a factor
8 by only looking at the distinct objects. This would require extra time since we would have to
determine the different orbits. It was therefore not found beneficial enough to have our program
only look at one picture per orbit.

After the analysis, a simulator of the game was written in C++ to test our findings by hav-
ing different algorithms play against each other. Several experiments have been done with the
simulator to check the influence of the wall tiling order. It was found that focusing on the di-
agonal line and adjacent tiles did not have a significant positive impact on the win-rate of the
player. Although this strategy is needed to theoretically be able to achieve the optimal score, it
turns out to not provide a significant advantage when actually playing the game against an opponent.

In conclusion, our research primarily addressed the theoretically highest possible score in Azul.
We acknowledge that the findings may not directly translate into practical value for playing the
actual game. Further research could explore more profitable game strategies, such as analyzing tile
selection from the factory and optimizing pattern line filling. Also, the impact of the −1 tile could
be examined and determining the optimal moment to prioritise completing a horizontal line on the
mosaic wall could provide valuable insights for enhancing gameplay strategies.

24

References

[BBL98] P. Bose, J.F. Buss, and A. Lubiw. Pattern matching for permutations. Information
Processing Letters, 65:277–283, 1998.

[FL81] A.S. Fraenkel and D. Lichtenstein. Computing a perfect strategy for nxn chess requires
time exponential in n. Journal of Combinatorial Theory, Series A, 31(2):199–214, 1981.

[Gee] Board Game Geek. Azul. https://boardgamegeek.com/boardgame/230802/
azul. Accessed: 2023-08-13.

[Jin18] Jenny Jin. Analysis and applications of Burnside’s Lemma, 2018.

[LMS15] M. Lampis, V. Mitsou, and K. So ltys. Scrabble is PSPACE-Complete. Journal of
Information Processing, 23(3):284 – 292, 2015.

[NRV16] B.E. Neou, R. Rizzi, and S. Vialette. Pattern matching for separable permutations.
SPIRE, pages 260–272, 2016.

[Ol20] Miroslav Oľsák. Burnside’s lemma: counting up to symmetries. https:
//www.youtube.com/watch?v=D0d9bYZ_qDY&ab_channel=MiroslavOl%
C5%A1%C3%A1k, 2020.

[Sch18] H. Schrapers. Award winning games 2018. Spiel des Jahres, pages 4–5, 2018.

[vRTV16] J.N. van Rijn, F.W. Takes, and J.K. Vis. The Complexity of Rummikub Problems.
CoRR, abs/1604.07553, 2016.

[Wes95] J. West. Generating trees and the Catalan and Schröder numbers. Discrete Mathematics,
146(1):247–262, 1995.

25

https://boardgamegeek.com/boardgame/230802/azul
https://boardgamegeek.com/boardgame/230802/azul
https://www.youtube.com/watch?v=D0d9bYZ_qDY&ab_channel=MiroslavOl%C5%A1%C3%A1k
https://www.youtube.com/watch?v=D0d9bYZ_qDY&ab_channel=MiroslavOl%C5%A1%C3%A1k
https://www.youtube.com/watch?v=D0d9bYZ_qDY&ab_channel=MiroslavOl%C5%A1%C3%A1k

	Introduction
	Azul Game Rules
	Analysis
	Highest possible score
	Determining highest score
	Configuration of five loose tiles
	Total number of possible orders

	Lowest possible score for tiled wall
	Expected lowest possible score
	Checking lowest possible score

	Symmetries

	Algorithms
	Greedy algorithm
	Smart algorithm
	Strategic algorithm
	Experiments and Motivation
	Results

	Conclusion and Further Research
	References

