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Abstract

This thesis will focus on hyperparameter optimisation of SRCNN on high resolution images.
SRCNN is an existing well-established upscaling neural network. In the thesis a pytorch
implementation of this network will be changed and for each change results will be put out.
The results are upscales of downscaled samples of an image set. These results will be compared
to the original, unaltered image set using image metrics. Lastly all the image metric results
from each change will be put into tables to compare. The results will be discussed and notable
observations will be pointed out.
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1 Introduction

This research is going to focus on hyperparameter optimisation of upscaling neural networks.
An existing upscaling network will be used and the parameters that build up the network will
be adjusted in our experiments. The goal will be to specifically improve the upscaling of higher
resolution images from this network. The research question of this paper is:
”Can the results of the neural network SRCNN be further improved by adjusting the hyperparame-
ters for different resolutions?”
We will start the paper by explaining the field of image upscaling, a few core image upscaling
techniques and outlining the image source and pytorch implementation we have used.
Image upscaling is stretching a lower resolution image over a display that is larger than said image.
[SAL20] With how many new upscaling techniques and papers that are being published regularly,
image upscaling is an evolving field of research.

1.1 Image upscaling techniques

It’s important to explain these basic upscaling algorithms as we use bicubic upscaling as comparison
later on. Some very basic standard upscaling algorithms are the following:

1.1.1 Nearest neighbour

The nearest neighbour upscaling algorithm in essence is based on finding the ’nearest neighbour’.
When interpolating a new pixel during upscaling, meaning that a new pixel inbetween the existing
pixels of a lower resolution image needs to be generated, the algorithm simply copies the value of
the nearest pixel. [OH12] This would be the nearest neighbouring pixel that originated from the
lower resolution source image, the image that is to be upscaled.

1.1.2 Bilinear

Bilinear upscaling doesn’t just simply copy the pixels from the source image, but actually uses a
linear equation to calculate the new interpolated pixels. Depending on how far the interpolated
pixel is relative to the original pixels, the upscaling algorithm will generate values for the new pixel
relative to the four closest original surrounding pixels using linear polynomials. It is called bilinear
because the operation has to be performed for both the pixel rows and the columns in a picture.
The equation for bilinear interpolation is:

H = L1(1 − ∆r)(1 − ∆c) + L2∆r(1 − ∆c) + L3(1 − ∆r)∆c+ L4∆r∆c

[Key81] [Ruk18]
The left hand-side of the equation, H, represents the high resolution output of the bilinear interpo-
lation. The right-hand side components L1, L2, L3, L4 represent the low pixel values of the image.
Delta r and Delta c are numerical variables for the distances between pixels. Each high resolution
interpolated pixel uses 4 low resolution pixels in it’s calculation. The interpolated pixels are pixels
positioned somewhere in-between the low resolution pixels.
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1.1.3 Bicubic

Bicubic is important for this research as the images will first be downsampled using bicubic upscaling.
The bicubic image will then be used as base to train the network. The image will also be used to
compare with the SRCNN upscaled image in the image metric comparison afterwards. In our case
bicubic produces better results than bilinear and is prefered over bilinear interpolation.
The equation for the interpolated surface from bicubic interpolation is the following third-order
polynomial:

3∑
i=0

3∑
j=0

aij × xixj [Key81]

Unlike bilinear, bicubic is uses the 16 nearest low resolution pixel values instead of the 4 nearest
pixel values to interpolate a new high resolution pixel.

1.2 Big Buck Bunny

The image set that will be used for the research will be frames from the Big Buck Bunny video.
(c) copyright 2008, Blender Foundation / www.bigbuckbunny.org
This video is openly licensed [Fou08] and it is free to remix, transform, and build upon the material
for any purpose as long as credit is given. We have cut this video into individual frames and we
will pick a small selection of these frames. The video is in 2160p.

1.3 Pytorch implementation

To start using the SRCNN network, we need to have an implementation that the computer will be
able to run. For this we have decided to use the implementation written in python by Jeffrey Yeo
on github. [Yeo19] The implementation uses the pytorch python machine learning framework. We
will adjust the SRCNN network by editing the code of this implementation.

1.4 Thesis overview

After this introduction the thesis will explain definitions that are vital to understand the the rest
of the paper. Following will be a section outlining some related work and their possible relevance,
after which the experiments will be explained and displayed. The The image metric results from
the experiments will prove quite similar across the different changes in the network implementation.
Visual comparisons will be shown alongside the experiments to put these results into perspective.
The results will be discussed afterwards and potential observations will be noted such as how
frames that are meant to be blurry by design more easily yield high image metric scores after being
upscaled by the network. Lastly the conclusion will end the thesis followed by an appendix with
additional visual results from the experiments.
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2 Definitions

Firstly it’s important to understand some of the definitions and concepts that are going to be used
in this research. Without knowing what certain terms entice it would be difficult to follow what’s
to come.
Starting with the basics, machine learning [Nie19b] is the broad field where machines are able to
improve themselves depending on the data they are fed. A computer is able to approach being able
to learn as it iteratively improves depending on the data. Deep learning is a subset of machine
learning where neural networks are used as learning tools.
[SS18]

2.1 Neural Networks

A neural network [RN] is a network of neurons where each neuron is a basic unit that can activate
depending on the weighed sum of their inputs and the activation function. Neural networks are
very roughly based on an analogy with the human brain.
The multilayered neural network [RN] is a neural network where all neurons are connected to the
neurons in the next and previous layer. In between the input and output layer are one or multiple
’hidden layers’ that connect the the layers to each other. All neurons are connected therefore there is
a very large amount of connections in multilayered neural networks. This makes it computationally
intensive to train this network. Because this type of neural network is rather inefficient in computer
vision we have opted not look at the standard multilayered neural network.

2.2 Convolutional Neural Networks

A special type of neural network is the convolutional network. Unlike a default neural network, a
convolutional neural network uses convolutional layers to apply a filter or kernel over the input.
The process where the kernel moves over the input is also called convoluting. The kernel is then
able to reduce the dimension of the input and filter out certain features from the input. The result
after the input has passed through a convolutional layer is called a feature map.

Convolutional neural networks are especially useful for appliances within computer vision, as images
consist of a grid of pixels where features can be found from how groups of pixels neighbour eachother.
In contrast to just inputting the pixel values of all the pixels in the image and letting the network
adjust it’s weights based on that. The kernel, for example a 3 by 3 matrix, can filter out edges
based on how pixels group together. Afterwards it’s then possible to pass the input through another
convolutional layer and get another feature map. Eventually it’s possible for feature maps to outline
very sophisticated features in an image like the face of a cat or even entire objects like cellphones.
[QYLC18]
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2.3 Foundation paper - SRCNN

”Image super resolution using deep convolutional neural networks” [DLHT16] is the paper where
the network we are using originates from. From now on, the paper will be abbreviated to SRCNN
and will be referenced as such.

The reason we choose this network is that it’s an established network known for its good performance
in many situations and with many sources. Additionally it’s a simple network so that makes it
more suited to change it and adjust its parameters.

2.4 Hyperparameters

Neural networks inherently adjust their models parameters during training to produce a more
desired outcome. In the context of this paper parameters will therefore equate to the models internal
parameters that are adjusted during the training using the Big Buck Bunny data. In of itself we
will not be touching any parameters directly for the research, we will only be training the network
so it can adjust its parameters to its best ability.
In contrast, hyperparameters are different. Hyperparameters are essentially variables that control
the training of the network. In other words, hyperparameters are the parameters that dictate how
the neural network adjusts its inherent parameters. The hyperparameters define the architecture of
the neural network itself rather than individual neurons. [Pan19]

2.4.1 Additional layer

When talking about additional layers in this paper, we are referring to additional convolutional
layers in the python implementation of SRCNN. We edited the architecture of SRCNN in python
such that only an additional convolutional layer is added.
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2.4.2 Activation functions

Activation functions [KO11] are used in a neural network to determine whether a neuron will fire
or not. The input of the neuron is summed up and using this weighted sum the function calculates
whether or not the it fires. It is common for activation functions to be differential and nonlinear.
This is because differential nonlinear activation function are able to learn more complex problems
than other activation functions.

• ReLU
By default, the python implementation uses the ReLU activation function. The Rectified
Linear Unit function has the following equation for input x:

ReLU (x) = max(0, x) [Ped18]

ReLU will output zero when the input x is negative, otherwise it will output x.

The graph for ReLU:

−4 −2 2 4
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Figure 1: ReLU shown in a graph. One of the activation functions used as hyperparemeter that is
consistently zero when x is negative and follows the function y=x when x is positive as depicted

• ELU
The ELU function is very similar to the ReLU function. However, unlike the rectified linear
unit, the exponential linear unit doesn’t output 0 when the input x is below 0. Instead the
output will be equal to:

α(ex − 1)
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Just like the ReLU function, the output will be equal to the input x when said input is not
below zero.
The equation for ELU is then:

ELU (x) =

{
x if x > 0

α(ex − 1) if x < 0
[Ped18]

The graph for ELU:
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Figure 2: ELU shown in a graph. One of the activation functions used as hyperparameter that is
equal α(ex − 1) when x is smaller than zero and is equal to y=x when x is bigger than zero.

• SIGM
The sigmoid function is a little different. The sigmoid function is a logistic function that has
an output between 0 and 1. The equation is:

sigmoid(x) = 1/(1 + e−x) [KO11]

The graph for sigmoid:

• TANH
The TANH function is similar to the sigmoid function and has a very similar shape. However,
unlike the sigmoid function it outputs a value between -1 and 1. The equation:
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Figure 3: Sigmoid shown in a graph. One of the activation that is used as hyperparameter. The
sigmoid activation function uses the same equation for all values of x

TANH (x) = (ex − e−x)/(ex + e−x) [KO11]

The graph for TANH:
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Figure 4: TANH shown in a graph. One of the activation functions used as hyperparameter. The
TANH activation function uses the same equation for all values of x.
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2.5 Image Metrics

For the the research we have decided it would be too arbitrary and unreliable to compare results
using the naked eye. Deciding whether an upscaled image looks better than another depending
solely on how good it looks at first glance leaves too much room for human error as well as being
inconsistent. This is where image metrics are useful. Image metrics are used to evaluate the quality
of an image. [HZ10] To produce consistent, measurable data, we have opted to use image metrics
to do comparisons in the experiments.
The image metrics are calculated over a reference image A where it is compared to a processed
image B to search for any noise and degradation in comparison to image A. The processed image
in our case will be the upscaled output images from the neural network.

2.5.1 PSNR

Peak signal to noise ratio is an image metric where noise between two images is calculated in dB.
PSNR compares image A and B of the same size by using the mean squared error MSE. The MSE
over A and B is defined as:

MSE (A,B) =
1

MN

M∑
i=1

N∑
j=1

(Aij −Bij)
2 [HZ10]

Using the MSE, the PSNR for 8-bit images is then calculated as:

PSNR(A,B) = 10 log10(
2552

MSE (A,B)
) [HZ10]

The higher the PSNR, the higher the quality of image B is in comparison to A. In our case this
means the higher the PSNR, the better the upscaled image approaches the original image. In
general, a PSNR of 40 or higher is regarded as being an almost unnoticable difference. [YTA09]

2.5.2 SSIM

SSIM, structural similarity index, is an image metric which uses 3 key features. Using these features,
the comparison between two images is made. These features are luminance, contrast and structure.
SSIM is defined as:

SSIM(A,B) = l(A,B)c(f, g)s(f, g) [HZ10]

Afterwards, a structure similarity index is calculated. This index is between -1 and 1, An index of
1 means the two pictures are very similar or even identical, while an index of -1 means the two
pictures are very different.
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2.6 Hardware

To get good results, we are going to have to utilize recent computer hardware. Computer hardware
is a complete field of study in of itself, but we are going to be using some terminology refering to
computer hardware. Following is an explanation of some useful terms for this research and machine
learning in general:

GPU: Graphics processing unit. [Sch15] Hardware device that is build for parallel processing.
The gpu is able to simultaneously perform simple computations on a lot of data. Because of this,
matrix multiplication and therefore convolutional neural networks work well with GPUs. The GPU
is an important tool to be able to train convolutional neural networks in reasonable time.

VRAM: Video random access memory. [TF09] Because we want to make use of the increased
performance of the gpu, we will have to make sure the network will fit within the VRAM capacity
during its training.

The specific GPU we will be using for this research is the gigabyte rtx 3070 windforce with
8 gigabytes of VRAM.

3 Related Work

3.1 SRCNN

As explained above, the research is based on a specific, well-established neural network from a
foundation paper. We use the abbreviation SRCNN. This will be the core related work as well as
the basis for the hyper-parameter optimization research.
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3.2 Other upscaling neural networks

It’s important to give a brief comparison of alternative deep-learning upscaling research that are
established in computer science research. At the start of the research the neural networks from
these were discussed and compared to SRCNN for potential hyper-parameter optimization research.
These networks could have been used as basis instead of SRCNN. Note that there are a lot of
upscaling neural networks in the field of computer science research and we will only discuss a
selection of these four.

1. Deep Learning for Image Super-resolution: A Survey

This paper [WCH20] gives a general overview of recent advances in image upscaling deep
learning. It describes common challenges deep learning super resolution faces and explains
some of the new trends in this field. In the paper various image metrics are explained including
PSNR and SSIM. It also mentions some public image upscaling benchmark datasets.

The paper references several super-resolution neural networks which could have been used as
basis for this hyperparameter optimisation research.

2. NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results

The second paper [LDT20] portrays an image upscaling challenge where participants compare
results after they have trained their neural networks on a given challenge dataset. Unlike this
paper, the images being used in this paper originate from the real world. In this paper our
images are frames from a computer animated video.

3. Accurate Image Super-Resolution Using Very Deep Convolutional Networks

In this research [KLL16] image upscaling is done with the focus on a very deep convo-
lutional neural network. For the neural network the training procedure utilizes extremely
high learning rates while the neural model itself is build with up to 20 weight layers.

4. On-the-Fly Machine Learning for Improving Image Resolution in Tomography
This research paper [HPP+19] addresses image upscaling in the field of tomography. Image
upscaling has useful applications in tomography because tomography is inherently limited
by the resolution of the detector. In the paper machine learning is used to improve the
resolution of tomographic reconstructions. A neural network is trained with complete and
partial tomographic reconstructions as its input. From the results the paper shows how they
were able to achieve improvements in the upscaling of tomographic reconstructions by using
machine learning.
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4 Experiments

In the research we are going to experiment by training the network and comparing the upscaled
results the trained network is going to put out. We are going to call one session of training the
network a ’training run’.
For the comparison we are going to use a python script metrics.py. The content of the script is the
following python code:

import argparse
import skimage . met r i c s as sm
import imageio

par s e r = argparse . ArgumentParser ( d e s c r i p t i o n=’Compute metr i c s between images . ’ )
pa r s e r . add argument ( ’ h i gh r e s ’ , type=str )
pa r s e r . add argument ( ’ upsca led ’ , type=str )
args = par s e r . p a r s e a r g s ( )

h i gh r e s = imageio . imread ( args . h i gh r e s )
upsca led = imageio . imread ( args . upsca led )

psnr = sm . p e a k s i g n a l n o i s e r a t i o ( h ighres , upsca led )
print ( ’PSNR: ’ , psnr )

ssim = sm . s t r u c t u r a l s i m i l a r i t y ( h ighres , upscaled , mult i channe l=True )
print ( ’SSIM : ’ , ss im )

This script is run 30 times with a different picture. The script will give a PSNR and SSIM value.
This is done over the pictures resulted from a training run that was trained with a tweaked
hyperparameter. The average over these 30 image metrics is then calculated to determine the score
of a training run. The average is then rounded to 3 decimals. (outdated, no longer 10)
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4.1 Initial training

For the initial training the network was trained without adjustment. This means we have used the
default values from the github repository to train the network. This training run will function as
the baseline for the following experiments. The output of this run will be compared to the output
of each hyperparameters corresponding run. After that a second series of experiments will involve
changing the source resolution and repeating the experiments for the hyperparameters on this
changed resolution. The aim of the experiments is to look where the output of the network can be
improved by adjusting the hyperparameters and the source resolution. For the evaluation of the
metrics we will use image 155 to 445. Image 155 is the 155th image we have extracted from the
Big Buck Bunny video. The image metrics PSNR and SSIM are calculated using with he python
language using a script metrics.py. After the network was trained with default parameters the
network was used to upscale image 155 to 445. Afterwards, the PSNR and SSIM for the images 155
to 445 is calculated. The average PSNR over these 30 images is then used as comparison.

4.2 Hyperparameters

For the first series of experiments the hyperparameters have been adjusted for a couple of training
runs. Subsequently the results are going to be compared using image metrics. Each of training runs
is ran by running train.py with the following arguments:

python3 train.py --train-file "./2160p_scene2.h5" --eval-file "./2160p_scene3.h5"
--outputs-dir "./Results/hyperparameter_name" --scale 2 --lr 1e-4 --batch-size 16
--num-epochs 40 --num-workers 8 --seed 123 --num-epochs 40 --num-workers 8 --seed 123

4.2.1 Additional convolutional layer

Adding into model.py an extra convolutional layer on top 64 channels led to out of memory
exceptions at first. This is when doubling the amount of channels produced by each convolution
so this is to be expected. To solve this issue the output channels were simply halved to 64. The
consequence of this is that the last feature map was reduced from 32 channels to 16 channels.
A slight improvement in PSNR with a small increase over the default model was gained. SSIM did
not significantly improve and stayed almost identical.

4.2.2 Alternative activation functions

Unlike the other activation functions, ELU was able to run without reducing the amount of channels.
The PSNR results were almost identical with only a small difference with ELU as activation func-
tion for the network instead of ReLU. SSIM did not significantly improve and stayed almost identical.

For sigmoid it was again necessary to reduce initial output layers to 32 because of VRAM constraints.
Sigmoid performed slightly worse with a lower PSNR and SSIM result.

For TANH it was once again necessary to reduce initial output layers to 32 because of VRAM
constraints. TanH performed slightly worse in both PSNR and SSIM.
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4.3 Comparison

For the initial experiments the network is trained to upscale from the resolution 1920 by 1080.
Important to note that for the following table the default parameter SRCNN network metrics
from the experiments are compared to each of the image metrics of the changed hyperparameter
results. Each row represents a different hyperparameter training run with its own image metrics for
comparison.

Hyperparameter PSNR SSIM

Default 42.910 0.985
Additional layer 43.095 0.985

Elu function 42.855 0.985
Sigmoid function 42.742 0.984
TANH function 42.769 0.984

It is important to note that for the sigmoid and tanh activation functions the initial output layers
were reduced to 32. To compensate for this in the comparison, a second default parameter training
run was done with 32 initial output layers. Next the image metrics from this training run are again
compared to the results from the sigmoid and tanh training runs to have a comparison with equal
initial output layers. This is done to rule out that any difference in the image metrics will not be
from a the different output layers, which were only changed due to not having enough vram. In the
comparison table the sigmoid and tanh results are exact copies from the last experiment, as the
goal is to compare these on a baseline with the same amount of input channels. The comparison
table for this is shown below:

Hyperparameter PSNR SSIM

Low channels 42.984 0.985
Sigmoid function 42.742 0.984
TANH function 42.769 0.984

4.4 Source resolution

For the second type of experiments we are going to change the source resolution of the image. In
the implementation of the network the images are scaled down before being fed to the network.
This means that when given a native full HD picture, the implementation will will first downscale
this depending on a scale value and will then use the downscaled image for training. With this in
mind the results of a series of training runs with each different scale values will be compared.
The goal of these experiments will be to investigate whether changing the hyperparameters when
upscaling from a different source resolution will affect the results. The same hyperparameters will
be adjusted to do the comparisons, only this time with a different source resolution. Each source
resolution will have its own comparison tables. Note that the table for the adjusted comparison in
regarding to the initial output channels is added as well for each source resolution.
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4.4.1 Scale 3

Not surprisingly, the image metrics get worse when the network is upscaling lower source resolution
pictures. This is because the lower the source resolution, the more data of the original image is
lost and this is data that the network needs to fill in. The difference in image metrics between the
hyperparameters is still very small. Here we scale from the source resolution 1280 by 720.

Hyperparameter PSNR SSIM

Default 40.832 0.970
Additional layer 40.783 0.970

Elu function 40.649 0.969
Sigmoid function 40.679 0.968
TANH function 40.485 0.968

Hyperparameter PSNR SSIM

Low channels 40.578 0.969
Sigmoid function 40.679 0.968
TANH function 40.485 0.968

4.4.2 Scale 4

Again a small difference, but this time we can see the additional layer perform the best like we did
at the first series of experiments. Here we scale from the source resolution 960 by 540.

Hyperparameter PSNR SSIM

Default 39.186 0.953
Additional layer 39.198 0.954

Elu function 39.191 0.952
Sigmoid function 39.013 0.951
TANH function 38.863 0.951

Hyperparameter PSNR SSIM

Low channels 39.071 0.952
Sigmoid function 39.013 0.951
TANH function 38.863 0.951

4.4.3 Scale 6

Image metrics dropping as expected, with small differences once again. Additional layer is performing
extremely close to the default training run, barely getting lower image metrics. Take note that
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SSIM and PSNR differ here. The additional layer performs worse PSNR-wise, whereas it performs
better SSIM-wise. Here we scale from the source resolution 640 by 360.

Hyperparameter PSNR SSIM

Default 36.856 0.921
Additional layer 36.850 0.922

Elu function 36.747 0.919
Sigmoid function 36.686 0.919
TANH function 36.576 0.918

Hyperparameter PSNR SSIM

Low channels 36.724 0.920
Sigmoid function 36.686 0.919
TANH function 36.576 0.918

4.4.4 Scale 8

Lastly the additional layer training run still performs the best. Aside from the additional layer, the
difference in SSIM have become indistinguishable with only 3 decimals. Here we scale from the
source resolution of 480 by 270.

Hyperparameter PSNR SSIM

Default 35.010 0.896
Additional layer 35.124 0.898

Elu function 34.980 0.896
Sigmoid function 34.847 0.896
TANH function 34.878 0.896

Hyperparameter PSNR SSIM

Low channels 35.059 0.896
Sigmoid function 34.847 0.896
TANH function 34.878 0.896

15



4.5 Visual Results

This section will bring some perspective by viewing tangible results. These concrete tangible images
result from the neural networks trained in the experiments. The images The images will be compared
to each other, the original high resolution image as well as the bicubic upscaled image.

4.5.1 Default SRCNN

The initial experiment used the scale 2 to upscale from 1920 by 1080 to 3840 by 2160. A zoomed in
picture of a squirells whiskers in the 155th image of Big Buck Bunny is used for comparison. This
squirell will be shown in the figures accompanying the experiments. In the appendix alternative
different zoomed-in croppings of different pictures from the results can be viewed later on.
Here we compare the original groundtruth image, the bicubic image and the default SRCNN models
image:

Figure 5: Comparison of the original image, the bicubic image and an image generated by the
network. From left to right: groundtruth, bicubic and default SRCNN

4.5.2 Tuned SRCNN

When changing and optimising the hyperparameters of the network, the results are not as visible
as the comparison above. In this section we will compare a cropped image of the squirrel for every
hyperparameter.
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Figure 6: Comparison of the bicubic upscaled image and the images generated by the network for each
hyperparameter. From left to right: groundtruth, bicubic and SRCNN with an extra convolutional
layer. On the second row first the ELU activation function, then the sigmoid activation function
and on the rightmost picture the TANH activation function.

Note that the visual differences seem very hard to spot. This is to be expected since the PSNR
values of these upscaled images are all above 40 and when above 40 PSNR it becomes almost
impossible to spot differences.

4.5.3 Tuned over resolution

Besides using the network to upscale the resolution 2 times over the source image, we have also
conducted experiments over upscaling 3, 4, 6 and 8 times. The upscaled output image is always
in 4k, but we have downscaled the image from Big Buck Bunny with the higher factor. In these
experiments we will look at how the end result in 4k compares to the best hyperparameter from
each series of experiments. The best scoring hyperparameter when it comes to image metrics is
consistently the extra convolutional layer and therefore each comparison is showing a picture of the
output with this hyperparametert next to a bicubic upscale of the same factor. The groundtruth
image has been left out as it naturally remains unchanged.
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Times 3 - 1280×720 to 3840×2160

Figure 7: Comparison of the default configuration of SRCNN to the bicubic upscaled image and the
images generated by the network when adding an extra convolutional layer. The scale of upscaling
is 3.

Times 4 - 960×540 to 3840×2160

Figure 8: Comparison of the default configuration of SRCNN to the bicubic upscaled image and the
images generated by the network when adding an extra convolutional layer. The scale of upscaling
is 4.

Times 6 - 640×360 to 3840×2160
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Figure 9: Comparison of the default configuration of SRCNN to the bicubic upscaled image and the
images generated by the network when adding an extra convolutional layer. The scale of upscaling
is 6.

Times 8 - 480×270 to 3840×2160

Figure 10: Comparison of the default configuration of SRCNN to the bicubic upscaled image and the
images generated by the network when adding an extra convolutional layer. The scale of upscaling
is 8.
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5 Discussion

5.1 Blurred frames and point of focus

Some frames are already inherently blurry. An intentionally blurry groundtruth image can be
thought of as an image where less upscaling has to be done to produce a desirable upscaled image.
The blurry frames in the image-set perform well in the network and have gotten a high PSNR
compared to the other images. This is notable because this likely means the network does not
oversharpen intentionally blurry images and does well in upscaling these to a higher resolution.

Some frames are blurry as a whole, while others are partially blurry with a sharper part of the
images in focus. These frames focus more on one point of interest, like an animal in the foreground.
In this case it the network has to performs differently on the animal and the blurry background,
where it has to produce a sharper image for the point of interest and a relatively unsharp section
for the background.

To visualize the difference in PSNR within one image, we have cut up a single image entirely in
cropped sections. Each cropped section will be evaluated for their PSNR with the image metric
script. These cropped sections will be color-coded to their respective PSNR. By doing this it will
become visible that the PSNR differs when the parts of the image gets blurry or out of focus.

Figure 11: Frame of the Big Buck Bunny video that has been separated in 115 different cropped
segments.
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Figure 12: Frame of the Big Buck Bunny video that has been separated in 115 different cropped
segments.

PSNR Col 0 Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8 Col 9 Col 10 Col 11

Row0 47.33 46.46 47.10 47.38 46.66 42.65 43.90 46.40 45.02 45.37 45.09 45.83
Row1 47.20 47.17 47.44 47.24 46.50 44.63 44.24 46.62 45.05 44.65 44.36 45.43
Row2 46.78 47.47 47.12 47.10 46.09 45.90 46.15 46.31 45.31 44.75 44.73 44.85
Row3 46.65 47.73 46.65 47.12 45.79 45.57 46.06 46.50 46.72 44.39 44.43 44.37
Row4 41.37 41.75 40.76 38.74 39.77 41.77 41.44 42.19 42.28 42.53 43.65 44.29
Row5 45.53 45.27 44.19 43.35 44.69 44.27 44.52 45.11 43.52 45.87 46.82 46.11

As you can see in figure 12, the cropped parts of the frame that are already sharp than the blurry
parts yield a lower PSNR when upscaled. Therefore the network performs better on parts that are
blurred by design before upscaling.
What was interesting to see is that the network performed very differently depending on the picture
that the network was given to upscale. This would imply quite a large margin of error on a picture
by picture basis. This could be explained by the blurryness in the pictures but there also could be
different reasons for why the network would upscale certain frames better over others.

5.2 Data bias

A consideration of interest in the research is that we have only used pictures from one video,
the Big Buck Bunny video, to train the neural network. This could a cause potential data bias
[KKK+19] where the upscaling network only performs well on these specific pictures. The risk
doesn’t necessarily stop there either, because it can also be considered that the network is only
performs well on pictures of similar animated content. The network might not work will with
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different content such as urban scenes or real life data. In other words, the training data has a data
bias on grasslands, forests and some of their wildlife. We have accepted this data bias as is. For
this research we have only examined changing the hyperparameters.

5.3 Overfitting

Overfitting [RN] might be a possible problem when it comes to training the network. What we
mean by this is that the network might have been overtrained and is trying to produce results too
similar to the training data. However, within the scope of this research we have considered this not
to be a problem.

6 Further Research and Conclusion

6.1 Further research

When taking the average of the image metrics we have taken the average over thirty images from
the video source. Thirty is not a large amount of images for this purpose and this might have
impacted the results slightly. To reduce the margin of error more images could be used in future
research to lessen this impact and compensate more for the margin of error. [Nie19a] Furthermore,
other than just taking the average, more elaborate statistical analysis can be performed on this
image set.

For future research more comparisons could be done on images with more varying content, such as
urban scenes. This might reduce the potential data bias of this trained network on the Big Buck
Bunny video. [KKK+19]

To further avoid overfitting and overlapping test sets, for future research k-fold crossvalidation
[Nie19a] might be a consideration. In this research we have not opted to use k-fold crossvalidation
because it would be very computationally expensive and take too long to train the network. In fact,
it would take k times as long. This is because when using k-fold crossvalidation, the data that is
used is split into k subsets. Afterwards, k times 1 of the subsets is taken as the testset while the
rest is used for training.
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6.2 Conclusion

The research in this paper has been based on the established upscaling network of SRCNN, standing
for Super-Resolution Convolutional Neural Network. In the paper we have first made steps to explain
some background information in the field of upscaling including relevant algorithms and definitions.
To start working and experimenting with the SRCNN network, we have used an implementation
of the network in pytorch. We then continued the research by producing experiments with the
neural network by tweaking various hyperparameters of the network, which included an additional
convolutional layer and trying out different activation functions within the implementation. For the
input of the implementation we have opted to use the Big Buck Bunny video [Fou08] cut up into
frames. The experiments produced upscaled images and we have compared the upscaled frames to
the original frames resulting in image metrics. These image metrics we have put into tables in both
PSNR and SSIM for different hyperparameters and starting resolutions.

When considering this pytorch implementation of SRCNN as representation of the neural network,
tweaking the hyperparameters from the default implementation still results in similar image metrics
over the image output. When upscaling from a lower resolution image to 3840 by 2160 pixels, the
network is expectantly performing worse in general. The network has to perform more work when
the image has to be upscaled from a lower resolution after all. However, the network architectures
with different hyperparameters still perform closely in the same regard as to when upscaling
from a relatively higher source resolution. SRCNN is therefore performing well consistently for
different hyperparameters over different resolutions. It is robust. Changing to a selection of different
activation functions doesn’t affect results much if at all. This likely means that the network already
has selected optimal hyperparameters that work well even to upscale to higher resolutions.
[Nie19a]
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.1 Appendix

In this appendix additional results from the experiments will be shown that were excluded from
the previous sections. More pictures can be added without bloating the paper by instead placing
them in this section.

25



Figure 13: Comparison of the original image, the bicubic image and an image generated by the
network. From left to right: groundtruth, bicubic and default SRCNN

Figure 14: Comparison of the bicubic image and the images generated by the network for each
hyperparameter. From left to right: groundtruth, bicubic and SRCNN with an extra convolutional
layer
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Figure 15: Whiskers scale 2 - Baseline : Bicubic : ExtraL : ELU : SIGM : TANH

27



Figure 16: Whiskers scale 3 - Baseline : Bicubic : ExtraL : ELU : SIGM : TANH
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Figure 17: Whiskers scale 4 - Baseline : Bicubic : ExtraL : ELU : SIGM : TANH
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Figure 18: Whiskers scale 6 - Baseline : Bicubic : ExtraL : ELU : SIGM : TANH
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Figure 19: Whiskers scale 8 - Baseline : Bicubic : ExtraL : ELU : SIGM : TANH
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Figure 20: Butterfly scale 2 - Baseline : Bicubic : ExtraL : ELU : SIGM : TANH
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Figure 21: Bird scale 2 - Baseline : Bicubic : ExtraL : ELU : SIGM : TANH
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Figure 22: Grassland scale 2 - Baseline : Bicubic : ExtraL : ELU : SIGM : TANH
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Figure 23: Squirrel tail scale 2 - Baseline : Bicubic : ExtraL : ELU : SIGM : TANH
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Figure 24: Leaves scale 2 - Baseline : Bicubic : ExtraL : ELU : SIGM : TANH

36


	Introduction
	Image upscaling techniques
	Nearest neighbour
	Bilinear
	Bicubic

	Big Buck Bunny
	Pytorch implementation
	Thesis overview

	Definitions
	Neural Networks
	Convolutional Neural Networks
	Foundation paper - SRCNN
	Hyperparameters
	Additional layer
	Activation functions

	Image Metrics
	PSNR
	SSIM

	Hardware

	Related Work
	SRCNN
	Other upscaling neural networks

	Experiments
	Initial training
	Hyperparameters
	Additional convolutional layer
	Alternative activation functions

	Comparison
	Source resolution
	Scale 3
	Scale 4
	Scale 6
	Scale 8

	Visual Results
	Default SRCNN
	Tuned SRCNN
	Tuned over resolution


	Discussion
	Blurred frames and point of focus
	Data bias
	Overfitting

	Further Research and Conclusion
	Further research
	Conclusion

	References
	Appendix


