

Leiden University

ICT in Business and
the Public Sector

Resource Allocation Optimization Through
Process Mining Within a Business

Environment

Name: Kolenbrander, Marcel
Student-no: 1653415
Date: 31st of October, 2022
1st supervisor: Dr. Y. Fan
2nd supervisor: Prof. Dr. T. H. W. Bäck
Data and Code repository: https://github.com/MarcelKolen/process-

mining-resource-allocation-optimizer

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1 – 2333 CA Leiden – The Netherlands

Marcel Kolenbrander – 31 October 2022 2 - 128

Abstract
This thesis introduces a novel multi-objective resource allocation optimization framework using a divide
and conquer approach operating on a zero-knowledge basis (meaning that the optimizer gets no
additional input other than a process log). The multi-objective optimization method uses process mining
as part of its mathematical optimization model construction element to gather all its insights to perform
resource allocation optimizations from a log. The primary goal of this optimizer is to offer end-users
optimized resource allocation suggestions on a multi-objective Pareto optimum front, based on historical
process event data logs, and to offer future researchers a framework to expand on to test new
optimization objectives, process constraints and external behaviour model variables. The optimizer
should work within the confines of an event data log and should not require any prior knowledge about
a process or the (cost) behaviour of its resources, nor any other external inputs other than the event data
log, henceforth the zero-knowledge basis. Optimized resource allocation suggestions can help advance
the performance of a process and is therefore an important and relevant field of in the practise of process
management. Not only can this resource allocation optimization method be used for business processes,
but it can also be used for supply chain processes. Whilst there are other resource allocation techniques,
these techniques either only optimize parts of a process, require prior knowledge about the behaviour of
resources, are limited to using linear models only, or require the construction of a stochastic optimization
model. This method differentiates itself with its whole process approach, its expandable dynamic
resource cost modelling capabilities (including non-linear scenarios), and its deterministic
characteristics.

KEYWORDS: Resource allocation, Optimization, Minimization, Pareto optimum front, Process mining,
Inductive mining, Business processes, Supply chain processes, Process simulation, Zero-knowledge,
Divide and conquer

Marcel Kolenbrander – 31 October 2022 3 - 128

Table of Contents
Abstract .. 2

1 Introduction ... 8

1.1 Problem Statement & Project Definition .. 8
1.1.1 Optimization definition ... 8
1.1.2 Process definition .. 9
1.1.3 Whole process optimization .. 9
1.1.4 Problem Statement ... 10

1.2 Research Objectives ... 10

1.3 Thesis & Project Structure .. 10

2 Literature review & Existing Theories ... 12

2.1 Existing theories on process mining ... 12

2.2 Importance of process management and process mining ... 12

2.3 Current resource-activity allocation optimization methods ... 13
2.3.1 Review: Role based allocation optimization .. 13
2.3.2 Review: Resource allocation preference-based optimization ... 13
2.3.3 Review: Reinforcement learning based Markov decision process optimization 14
2.3.4 Knowledge gap .. 14

3 Method & Design ... 16

3.1 Optimization routine .. 16
3.1.1 Data ingesting .. 17
3.1.2 Data labelling ... 17
3.1.3 Process Tree Generator ... 17
3.1.4 Determine process variants ... 17
3.1.5 Determine legal resource-activity allocations ... 19
3.1.6 Find resource cost figures .. 20
3.1.7 Prune process trees ... 21
3.1.8 Perform variant optimizations ... 22

3.1.8.1 Objective Functions .. 23
3.1.8.2 Input variables .. 25
3.1.8.3 Constraints .. 25
3.1.8.4 Problem Type .. 26
3.1.8.5 Solver types ... 29

3.1.9 Merge variant optimizations ... 30

3.2 Cost Figure Variants ... 31
3.2.1 Linear regression ... 31
3.2.2 Polynomial regression ... 32

3.2.2.1 Degree fitting .. 33
3.2.2.2 Multiple Model Issue .. 34

3.2.3 Exhaustive fit on best model ... 34

3.3 Variants to optimize selections .. 35
3.3.1 All selection ... 35
3.3.2 Minimum requirement selection ... 35
3.3.3 Minimum requirement selection non repeating ... 35

Marcel Kolenbrander – 31 October 2022 4 - 128

3.4 Merge variant optimizations techniques ... 36
3.4.1 Highest count merging .. 37
3.4.2 Weighted average merging ... 37
3.4.3 “Pareto” merging ... 38

3.5 Multi-objective optimization .. 39
3.5.1 Multi-objective optimization applicability ... 40
3.5.2 Multi-objective optimization techniques .. 42

3.5.2.1 Weighted Sum .. 43
3.5.2.2 e-Constraint .. 43
3.5.2.3 Weighted Metric ... 44

3.5.3 Implementation of the e-constraint method ... 45

4 Data Requirements ... 48

4.1 Optimizer data requirement .. 48
4.1.1 Process miner data requirements ... 48
4.1.2 Process optimizer base data requirements ... 49
4.1.3 Objective function data requirements .. 49

4.2 Data quantity requirements ... 50
4.2.1 Process miner data quantity requirements ... 50
4.2.2 Objective function modeller data quantity requirements ... 50

5 Experiment Setup ... 51
5.1 Experiment Data .. 51

5.1.1 Process trees ... 51
5.1.1.1 Loops only ... 52
5.1.1.2 Parallel branches only ... 52
5.1.1.3 XOR-branches only .. 53
5.1.1.4 Small, combined tree .. 53
5.1.1.5 Large, combined tree .. 54

5.1.2 Simulation values ... 54
5.1.2.1 Loop simulation values ... 55
5.1.2.2 XOR-Choice simulation values .. 55
5.1.2.3 Simulation tree format ... 55

5.1.3 Activity simulation values .. 56
5.1.3.1 Throughput time functions ... 57
5.1.3.2 Cost functions ... 57

5.1.4 Resource simulation values ... 57
5.1.4.1 Base settings: average resources without random throughput time modifiers 58
5.1.4.2 Base settings: average resources with random throughput time modifiers 59
5.1.4.3 Base settings: throughput time specialized resources ... 59
5.1.4.4 Base settings: cost specialized resources ... 60

5.1.5 Case counts & Dataset Combinations ... 60
5.1.5.1 Play out the simulation tree ... 60
5.1.5.2 Attach resources ... 61
5.1.5.3 Generate traces .. 61

5.2 Experiments ... 62
5.2.1 Cost modelling methods Analyses ... 63

5.2.1.1 Comparison metrics .. 63
5.2.1.2 Base settings of components .. 63

5.2.2 Variant selection and merge methods comparison ... 64
5.2.2.1 Comparison metrics .. 64

Marcel Kolenbrander – 31 October 2022 5 - 128

5.2.2.2 Base settings of components .. 65
5.2.3 Optimization improvement & behaviour .. 65

5.2.3.1 Comparison metrics .. 66
5.2.3.2 Base settings of components .. 66

5.3 Runtime environment .. 67
5.3.1 Hardware ... 67
5.3.2 Runtime environment ... 67
5.3.3 Software and library versions .. 67

6 Results .. 69

6.1 Cost modelling methods Analyses .. 69
6.1.1 R2 & RMSE mean average and standard deviation model accuracy comparison 69

6.1.1.1 Overall data ... 70
6.1.1.2 Exclusively with vs without random events .. 71

6.1.2 Modelling time mean average and standard deviation comparison ... 72
6.1.3 Results discussion .. 73

6.2 Variant selection and merge methods results .. 73
6.2.1 Variant and merge combined performance comparison .. 74
6.2.2 Variant selection method performance comparison .. 75
6.2.3 Optimization results merge methods performance comparison .. 76

6.3 Optimization improvement & behaviour results .. 76
6.3.1 Difference against baseline performance .. 77

6.3.1.1 Only average resources .. 77
6.3.1.2 Average and specialized resources ... 78
6.3.1.3 Results discussion ... 78

6.3.2 Allocation behaviour ... 79
6.3.2.1 Only average resources .. 79
6.3.2.2 Average and specialized resources ... 80
6.3.2.3 Results discussion ... 80

7 Discussion: Limitations and opportunities .. 82

7.1.1 Experiment data .. 82
7.1.2 Multi-objective optimizations & Genetic Algorithms .. 82
7.1.3 Optimizer framework choice, techniques & Algorithms ... 82
7.1.4 Cost Modelling ... 83
7.1.5 Objective function expansion .. 83
7.1.6 Optimizer comparison ... 83
7.1.7 Divide and conquer ... 84

8 Conclusions .. 85

9 References ... 88

10 Appendices ... 91

10.1 Process model example 0, represented in a BPMN schema ... 91

10.2 Process model example 1, represented in a BPMN schema ... 92

10.3 Process model example 1, complete example event-data trace 1 ... 93

10.4 Process model example 1, complete resource-activity allocation map for complete example event-
data trace 1 ... 94

Marcel Kolenbrander – 31 October 2022 6 - 128

10.5 Process model example 1, complete resource allocation limit for complete example event-data trace
1 95

10.6 Linearization of a multi-element Max component ... 96

10.7 Pareto Front Multi Objective Problem Space Setup ... 97
10.7.1 Process tree setup ... 97
10.7.2 Simulation tree setup .. 97
10.7.3 Activity simulation values .. 97
10.7.4 Resource simulation values ... 98

10.7.4.1 Base settings: Average performance resources ... 98
10.7.4.2 Base settings: throughput time specialized resources ... 99
10.7.4.3 Base settings: cost specialized resources ... 99
10.7.4.4 Resources setup ... 99

10.7.5 Case count ... 100

10.8 Pareto solution space visualisation .. 101

10.9 Tmin Tmax solution space visualisation ... 102

10.10 Epsilon constrained problem space visualisation .. 103
10.11 Process trace generator: Simulation tree results ... 104

10.11.1 Loops only ... 104
10.11.2 Parallel branches only ... 105
10.11.3 XOR-branches only .. 105
10.11.4 Small, combined tree .. 106
10.11.5 Large, combined tree .. 107

10.12 Process trace generator: Activity sets results .. 110
10.12.1 Loops only ... 110
10.12.2 Parallel branches only ... 110
10.12.3 XOR-branches only .. 111
10.12.4 Small. combined tree .. 111
10.12.5 Large. combined tree .. 112

10.13 Process trace generator: Resource sets results .. 114
10.13.1 Loops only ... 114

10.13.1.1 Average resources without random events ... 114
10.13.1.2 Average resources with random events ... 115
10.13.1.3 Average resources without random events and with specialized resources 115
10.13.1.4 Average resources with random events and with specialized resources 116

10.13.2 Parallel branches only ... 116
10.13.2.1 Average resources without random events ... 116
10.13.2.2 Average resources with random events ... 117
10.13.2.3 Average resources without random events and with specialized resources 118
10.13.2.4 Average resources with random events and with specialized resources 119

10.13.3 XOR-branches only .. 119
10.13.3.1 Average resources without random events ... 119
10.13.3.2 Average resources with random events ... 120
10.13.3.3 Average resources without random events and with specialized resources 120
10.13.3.4 Average resources with random events and with specialized resources 122

10.13.4 Small, combined tree .. 122
10.13.4.1 Average resources without random events ... 122
10.13.4.2 Average resources with random events ... 123
10.13.4.3 Average resources without random events and with specialized resources 123
10.13.4.4 Average resources with random events and with specialized resources 124

Marcel Kolenbrander – 31 October 2022 7 - 128

10.13.5 Large, combined tree .. 124
10.13.5.1 Average resources without random events ... 124
10.13.5.2 Average resources with random events ... 126
10.13.5.3 Average resources without random events and with specialized resources 126
10.13.5.4 Average resources with random events and with specialized resources 127

Marcel Kolenbrander – 31 October 2022 8 - 128

1 Introduction
In modern business environments and technology and data driven supply chains, process mining can
play an instrumental role in understanding the integral parts of actual work being done. Process mining
is driven by business and/or supply chain event data, essentially logs of activities [1]–[3]. When process
mining is used, every triggered or activated event within a business process or a supply chain is recorded
in a logging system.

Traditionally, the event data is used to generate insight into existing processes by representing these
processes into process-maps and runtime insights [1], [2]. However, in a rapidly digitalizing world,
where business environments are increasingly more driven by decisions-by-data [4], one could wonder
whether process mining can be used with more goals, such as business process management, in mind.

1.1 Problem Statement & Project Definition
The next step above simple process discovery and visualization, is business process management in the
form of process optimization through the analyses of process event data. In the field of process mining,
there already exist several techniques for identifying bottlenecks [5]–[7] in a process. By knowing where
a bottleneck occurs, efforts and resources can be allocated to alleviate this bottleneck. A reasonable
assumption could also be made that through process mining, and the analysis of event data, alleviation
suggestions could be generated for said bottlenecks.

However, this initial approach of alleviating a bottleneck is flawed because of the definition of a
bottleneck. According to the definition of a bottleneck there can only be one bottleneck in a process [8].
By extension, alleviating one bottleneck simply creates another bottleneck. Moreover, solving one
bottleneck might create a worse bottleneck elsewhere in a process.

Instead of searching for and alleviating bottlenecks in a process, it is perhaps a better approach to
optimize for an entire process. This requires converting a process into a mathematical model which can
be subject to optimization by means of one (1) or more input parameters.

As a process is transformed into a mathematical model which can be optimized by tuning input
parameters, lastly the input parameters need to be determined. A process could have a variety of different
parameters interacting with one and another which all impact the outcome of a process. However, two
(2) of the main elements in a process which interact with one (1) and another are activities and resources
[1], [3]. With these two (2) elements being the most prominent in a process, this thesis will focus on
developing an optimization method whereby the allocation of resources to activities is optimized.

The next few subsections will be devoted to further formulating the definitions required to develop a
process optimization framework.

1.1.1 Optimization definition
The term optimization has been used several times now, however, a clear and restricted definition of
optimization has not yet been determined. There are several ways, or key performance indicators (KPIs),
by which to optimize a process. Throughout this thesis, optimization is determined to be optimization
by means to better the following three (3) KPIs, or, later known as, objective functions:

• THROUGHPUT TIME how long, in terms of time, does a step in a process, or the entire process
take, to complete;

• WAIT TIME how much time exists between the end and start of steps in a process;
• COST how much does it cost, in terms of monetary amounts, to execute a step in a process, or

the entire process.

Optimizing these specific KPIs translates to the reduction of these KPIs, for example reducing cost, as
compared to a baseline. This baseline could for example be a found average across a dataset. For other

Marcel Kolenbrander – 31 October 2022 9 - 128

KPIs optimization might mean increasing the KPI value above a certain baseline. Depending on the KPI,
the optimization problem essentially becomes a minimization or a maximization exercise.

These three (3) KPIs partially serve an illustrative role in this thesis. By no means should these three (3)
KPIs be seen as exhaustive. Any other KPI, or objective, which can be mathematically described could
be applied.

1.1.2 Process definition
Besides the definition of optimization, another definition which has been and will be used more
frequently is a process. The question then arises, what is the definition of a process?

In this thesis, a process is defined as: “A set of activities, which interact with one and another, and which
may be performed in a various, but consistent, set of ways to achieve a certain goal”. This definition is
derived from the ISO 9001 definition of a process: “A process: set of interrelated or interacting
activities that use inputs to deliver an intended result” [9].

However, as this thesis focusses on the allocation optimization of resources to activities, this definition
is will be further extended by introducing resources into the process definition. This creates the
following definition for a process: “A set of activities, which interact with one and another, and which
may be performed by a set of resources in a various, but consistent, set of combinations to achieve a
certain goal”.

An example of a process, in the form of a Business Process Model and Notation (BPMN) diagram, is
provided in Figure 1.

Figure 1 – Process model example 0, represented in a BPMN schema. Process based on a dataset example curtesy of PM4PY
[10], [11]. Please refer to 10.1 for a larger version.

1.1.3 Whole process optimization
As said before, instead of optimizing by focusing on solving one (1) bottleneck at a time, or optimizing
sub-processes, it might make more sense to look at how to optimize a process as a whole. In the previous
two (2) subsections definitions were given for what is to be optimized for, the KPIs, or rather objective
functions, and what we can optimize on, a process, more specifically the allocation of resources in that
process. There are now only two (2) last parts remaining, which are, how are these objective functions
formulated and should a process be converted into a mathematical model?

The answers of these two (2) questions go hand in hand with on and another when trying to answer them
to finalize the optimization strategy which will be used to optimize resource allocations in this thesis.
The result of an objective function over a process should essentially be a (complex) sum of activity
behaviours. These activity behaviours are dependent on their respective resource allocations. These
behaviours of resources on activities have to be formulated using modelling strategies, such as for
example regression modelling, based on the available process data log.

As the objective functions are to be approached as sums of activity behaviours, a definition of how this
sum is to be formulated should be given. This is precisely related to how a process is to be
mathematically modelled. There are essentially two (2) main approaches. The first approach, which will
also be covered in Current resource-activity allocation optimization methods is to convert the
process into a single large stochastic mathematical model. There the components of the process are
approached using probabilistic elements. This stochastic model is optimized once, and the result of the

Marcel Kolenbrander – 31 October 2022 10 - 128

single optimization is the final result. A different, novel, method, which will be the method used in this
thesis, is a divide and conquer approach where a process is divided up in multiple simpler, pruned, and
deterministic models. These multiple models are then individually optimized, and their individual results
are merged into one (1) generalistic result.

1.1.4 Problem Statement
The previous subsections were used to introduce several components and definitions regarding process
optimization. An outline of the strategy for the process optimization which will be used in this thesis
has been outlined as well. Here the different components are brought together and summarized as one
(1) large problem/strategy statement.

In this thesis process optimization will be done by means of resource allocation optimization. It will use
a divide and conquer approach where processes are divided up in multiple simpler, pruned, and
deterministic models. The optimizer works on a minimization or a maximization basis, based on the
chosen KPI/objective function. Objective functions are depended on the behaviour or activity-resource
combinations, which in turn will be modelled using the input event-data using regression strategies. The
expected outcome is a set of optimal combinations of resource and activities.

1.2 Research Objectives
With the problem statement defined, the research objectives and questions can be defined. As stated
before, this thesis aims to develop a divide and conquer style process optimizer which optimizes by
trying to find a most optimal resource-activity allocation, using process event data analysis. However,
in order to be able to perform proper process analysis, activity-resource behaviour, and finally process
optimization, suitable data is required.

With this, the first research question can be defined as follows:

“What are the (minimum) data requirements, in terms of format, contents, and
quantity, in order to allow an optimizer to perform resource-activity allocation

optimizations?”

With the question of data set out, the next question can be developed. This next question and objective
revolve around putting the available data to use and find an optimal resource-activity combination.
Through process mining, an event-based dataset should be transformed into a process map. This process
map is then to be divided into simpler deterministic process variants, and in these pruned process maps,
the optimizer should try to find combinations of resources and activities which can give the best average
result in terms of throughput time, wait time, and cost. With this in mind, the second research question
can be formulated:

“How can process mining be used to optimize the allocation of resources to
activities, using a divided and conquer approach?”

1.3 Thesis & Project Structure
With objectives and research questions defined, the method of answering these questions can be set out.
The two (2) research questions are fairly interwoven, and by answering one (1) question, the other
question can be partially answered as well.

The question of how process mining can be used in order to optimize for resource allocation, is primarily
answered by designing the process optimizer. This thesis will therefor follow a research by design
approach. As there could be several proposals for how to implement the divide and conquer approach,
these approaches have to be experimented on and evaluated. This research question will therefore be
primarily approached in the design, experimentation, results and discussion section.

Marcel Kolenbrander – 31 October 2022 11 - 128

The question on the data requirements is partially answered by gathering the requirements during the
optimizer design phase. Whilst the design phase should primarily grasp the data type requirements, other
questions such as quantity and variety remain to be answered. A separate section on data setup will
devoted to answering the remaining data questions.

As said above, to evaluate the decisions in the research by design track, several experiments must be set
up and executed. Note that experiment datasets might be too large to feasibly fit in the appendix, so
these resource will be hosted remotely, but they should remain accessible to everyone.

With the method of answering the two (2) research questions explained above, the document structure
can be setup. The document will follow the following structure. First the problem statement and several
preliminary definitions will be set out, and the research objectives and questions will be set out in
Introduction, along with the project and thesis structure definition.

In the introduction a reference to existing optimization methods was already made. These existing
methods, along with theories on process mining and the added value of process mining in (automated)
business process management will be reviewed in Literature review & Existing Theories. This review
serves two (2) purposes, the first being a review on the fundamental bases of this thesis, and the second
being a review on how this thesis aims to make a (novel) academic contribution.

After the theoretical review has been performed, the design, and its various design options, will be
presented. The design, the differing options, and the methodology will be laid out in Method.

The design section should provide answers to both research questions, but it is not exhaustive enough
to cover all aspects of the research question related to data requirements. A full overview of the data
requirements, and a review of other sources, will be provided in Data in order to further answer the
data question.

The experiment setup will be performed in Experiment Setup. This section is split up in two (2) parts.
The first part will cover precisely how the experiment data is to be setup, complete with parameter
recordings, using a purpose-built data generator. This section will be used to develop an algorithm for
the aforementioned experiment data generator, which will be instrumental to develop the experiments
to test the different optimization designs proposed in this thesis. This data generator will construct data
according to the data requirements found prior. The second part will be dedicated to explaining what
will be experimented on and how the experiments are setup. The comparison metrics and several
expectations will also be provided.

With the experiment-setup defined, experiments can be run, and results can be gathered. The results of
the experiments, together with an interpretation discussion and an implication discussion, are gathered
and presented in

Marcel Kolenbrander – 31 October 2022 12 - 128

Results.

In Discussion a discussion will outlie the shortfalls of this thesis and the research done, and it will
provide opportunities brought forth from this thesis.

Closing off this research project and finalizing the thesis, the discussion should be concluded. The
conclusion of this thesis research project is provided in the final section, Conclusions. The conclusion
section should provide definitive answers to the two (2) research questions. The first question will be
answered with qualitative and quantitative data requirements, and the second question will be answered
by providing a process optimizer prototype base on the aforementioned principles. The conclusion will
also offer a set of implications which follow the results from this overall research project.

Marcel Kolenbrander – 31 October 2022 13 - 128

2 Literature review & Existing Theories
In writing and developing this thesis, several theories on topics such as process mining, process
management and datamining will be used. Before diving into the development of the optimization
method which will be proposed in this thesis, it’s important to understand and grasp the existing theories.
This section will be devoted to introducing and reviewing the (to be) used theories in this thesis.

Besides reviewing existing theories which will be used, it’s also important to understand how the
proposed optimization method in this thesis will be positioned besides other optimization techniques.
To that extend, other optimization methods will be reviewed and compared against the operational
concepts of this thesis. Note that this thesis is not a review thesis in and of itself, so the performance of
the optimizer resulting from this thesis will not be compared and tested against possible competing
methods.

2.1 Existing theories on process mining
Process mining itself is not a new research field. Several well developed and studied algorithms already
exist within the field of process mining. As can be seen later on in this thesis the practice of process
mining has matured enough for there to be successful programs and libraries for process mining [10],
[11].

Process mining the practice of constructing a process model, rather a process tree, complete with process
variants, based on some set of event-data logs [1], [3]. There are several existing process mining
algorithms such as for example the a-algorithm, which was one of the first viable process mining
algorithms as it is able to successfully and satisfiably deal with process concurrency [1], [12]. Another
example is the Heuristic process miner, which works by taking variance frequency into account and
leaving out infrequent variants/occurrences in order to simplify and generalize a model [13]. A third
example is the Inductive miner, which is regarded as one of the most forward and leading process mining
and discovery methods due to its accuracy, satisfiability and flexibility [14], [15].

The inductive process miner will be the process miner of choice as it is both one of the more accurate
and satisfiable miners, and it does not disregard less prevalent process variants unlike the heuristic
process miner. As the process optimizer proposed in this thesis will work on a divide and conquer basis
with a selected variant subset, it is important for the selection possibilities that all variants, even the
smaller ones, are available.

The process optimizer of this thesis should also work regardless of the process map format or the
underlying objective value structures. This is yet another reason why the inductive miner is chosen over
the other methods, as the inductive miner is known to be able to model more complex process tree
structures such as concurrent sub-processes. This specific process discovery algorithm will be
implemented using the existing libraries provided by the PM4PY library [11].

2.2 Importance of process management and process mining
The field of process mining has been developed to get a better understanding from business and supply
chain processes. This is done by analysing business generated data such as event logs. Businesses can
improve their business processes using business process management techniques such as process
analysis, process mining and process optimization. This is especially becoming relevant with the
paradigm of big-process-data where businesses and supply chains start to record and monitor the
individual activities in processes more and more [16], [17].

One element of (business) process management is allocating the required resources to activities within
a process [18]. This is an important step because the mismanagement of resource allocation could lead
to inefficient combinations of activities and resources in a process, and therefore an inefficient process.
This thesis will propose a process optimization technique which focusses on the resource allocation

Marcel Kolenbrander – 31 October 2022 14 - 128

aspect of process management. This potentially makes this thesis a strong addition to the field of process
management.

2.3 Current resource-activity allocation optimization methods
Resource allocation optimization is not a new concept, and several methods, frameworks and algorithms
have already been developed to attempt (automated) resource allocation optimizations. This subsection
will review several methods, frameworks and algorithms for process resource allocation optimizations,
and compare them to the optimization strategy which will be proposed in this thesis.

2.3.1 Review: Role based allocation optimization
Each of the methods discussed bring a different approach and different novelty to the field of resource
allocation optimizations. The first method worth reviewing is the method proposed by Arias Et. Al. [19].
This optimization method applies two (2) novel concepts to solve the resource allocation problem. The
first interesting concept they offer is the idea of a role of a resource. In this role of a resource concept,
the optimizer takes into account the type of activity and which role category fits most appropriately. A
basic example, in for example a medical environment, would be that a nurse is most fit to provide
medical care to people, but they might not be suited to repair medical devices, whereas a technician is
more fit to repair medical devices, but in turn is not best fit to provide medical care. The optimizer tries
to link the available roles of resource to the required roles of activities as best as it can.

Another element of this optimizer is that it does not optimize on a complete process or an activity level,
but rather at a sub-process level. This sub-process level optimization concept goes hand in hand with
the resource role concept, as the main idea is to determine an appropriate role at a sub-process level,
instead of at an activity level, with the assumption that activities in a sub-process share the same role.

Whilst the idea of role-depended allocation is an interesting concept, it does however have one (1) major
disadvantage compared to the method proposed in this thesis. This approach requires prior knowledge
about the role behaviours of resources and role requirements of activities. This constraint either makes
for more complex data requirements from the trace-data log in order to determine roles, or it requires a
static process/model for which resources and activities are predefined and do not change. In contrast the
method proposed in this thesis operates on a zero-knowledge basis, so it does not require knowledge
about the role requirements and behaviour characteristics of activities, and role characteristics and
behaviour characteristics of resources. Instead, the optimizer in this thesis is designed to extract
behaviour characteristics from process traces on its own.

2.3.2 Review: Resource allocation preference-based optimization
The idea of resource role fit, or in the case of the next method, resource preferences, is an idea shared
by other papers as well, as can be seen in the paper by Zhao Et. Al. [20]. In this paper resource
preference, and the related performance to resource preference, are used as one of the main allocation
constraints. The idea is that a resource can perform different activities with differing preferences and
with different levels of efficiency. However, this again either complicates requirements for the datasets
where preference metrics must be recorded in one way or another, or it requires a static model where
resource preferences are pre-determined. This paper relates resource preference to resource
performance, but in a way, this is also happens dynamically and again with a zero-knowledge basis in
the method proposed in this thesis. The method in this thesis constructs a performance model, later
named a cost model, for each resource-activity combination. If performance is then related to
preferences, then the method in this thesis essentially extracts preferences by simply looking at the best
and worst performing discovered cost models.

Marcel Kolenbrander – 31 October 2022 15 - 128

2.3.3 Review: Reinforcement learning based Markov decision process
optimization

The a-priori resource or activity knowledge approach seems to be a common trend in several methods,
as it is again repeated in the paper by Huang Et. Al. [21]. This paper also uses resource on activity
behaviour as one of its key aspects, but rather than developing models for each resource, it uses
reinforcement learning to determine a best fit. Something else this paper brings up is the optimization
level depth. Where the previous two (2) papers optimize on a sub-process level and an activity level,
this paper optimizes on a process level. This is similar to the concept proposed in this thesis, as it is
argued that processes are interdependent on their own activities and sub-processes, meaning, optimizing
one part of a process might improve the performance for that part, but for the entire process it could
decrease the performance. However, where this paper differs with the method proposed in this thesis is
in how they approach whole process optimization. This paper approaches whole process optimization
by converting a process into a Markov Decision Process where the process is converted into a
mathematical stochastic model with component level probabilities. This stochastic complete model is
then used to perform probability friendly optimizations. This thesis proposes a divided and conquer
approach where a process is pruned into simpler deterministic process-variants (so without any
probabilities) which are then optimized, and the optimization results are merged. Each method has their
own benefits and drawbacks.

The Markov Decision Process conversion method has as its two (2) main benefits that only one (1)
optimization run has to be performed as there is only one (1) model. The second benefit is that there are
no separate steps required to merge optimization results into a final result. However, the main drawback
is that the stochastic model is a more complex model to construct, to model, and to optimize for.

The divide and conquer approach has the primary benefit that the process variants are simpler to model
for and easier to optimize for. When pruning the process into simpler variants, variants can also be left
out if they are deemed unnecessary for the primary business goals. The main drawback is the need to
perform multiple optimizations, as there are multiple models, and to merge these optimization outcomes.

Another difference between the method proposed in this thesis, and the methods found in the other
papers, is the use of less flexible, but simpler linear models, as opposed to using polynomial models
resource behaviour models. One example of a method similar in optimization approach is the method
proposed by Korhonen P. and Syrjänen M. [22]. This paper attempts to convert its problem in a multi-
objective linear programming problem. It is similar in that it attempts to convert the process optimization
problem in a mathematical programming problem, just like the method in this thesis will do. But where
it, and other papers as well, differ from this thesis is the exclusion of the, in theory, more flexible
polynomial modelling approach.

2.3.4 Knowledge gap
To summarize, there are several methods already existing for resource allocation strategies, however
there are a few large differences between these known methods and the method proposed in this thesis.
The resource allocation method in this thesis will serve as a complete and expandable framework, where
resource and activity behaviour and cost models are discovered using available data. The other methods
use a more a-priori approach where the behaviour of resource and needs of activities have to be known
beforehand. This thesis proposes a divide and conquer approach for whole process resource allocation
optimization, where other methods optimize on an activity, or sub-process level, or use a stochastic
modelling approach. And finally, the last major difference, the method proposed in this thesis should
also support polynomial cost and behaviour modelling, as compared to other methods which are limited
to linear modelling in order to simplify the optimization step. From this, three (3) gaps in previous
knowledge can be defined which this thesis aims to fill:

Marcel Kolenbrander – 31 October 2022 16 - 128

• DIVIDE AND CONQUER WHOLE PROCESS OPTIMIZATION Other methods focus on activity
level, sub process level optimization as opposed to whole process optimization, or they
optimize for the entire process using a single complex stochastic model instead of using
multiple smaller simpler deterministic models in a divide and conquer approach;

• DYNAMIC COST MODEL DEVELOPMENT Instead of relying on an a-priori approach of
predefining cost models, this thesis will explore whether model can be dynamically generated
and then applied to an optimization model;

• POLYNOMIAL COST MODEL APPLICATION Existing research seems to mostly rely on linear
models instead of more flexible polynomial models for resource allocation optimization. This
thesis will explore whether polynomial cost models are feasible for application.

The first two (2) gaps in knowledge serve a primary focus in this thesis, whereas the last knowledge gap
is an extension to the dynamic cost model component.

Marcel Kolenbrander – 31 October 2022 17 - 128

3 Method & Design
The introduction in Introduction of this thesis that the process optimizer will focuss on resource
allocation optimizations. This optimizer works on the principles of process mining where an event-log
is analysed to create insight in a business. However, in this thesis, a design will be proposed to add an
additional insight besides process visualization: an optimal combination of resource-activity allocations,
based on event data, using a divide and conquer optimization approach with a flexible cost model setup.

In the introduction, specifically in Problem Statement & Project Definition, several important
definitions for this project have been laid out, which will be leading for the design of the optimizer.
First, the optimizer will focus on optimizing the following objectives:

• THROUGHPUT TIME how long, in terms of time, does a step in a process, or the entire process
take, to complete;

• WAIT TIME how much time exists between the end and start of steps in a process;
• COST how much does it cost, in terms of monetary amounts, to execute a step in a process, or

the entire process.

Secondly, the optimizer will be NON-INTRUSIVE, meaning it does not change a given process, but rather
change the parameters, in this case the allocation of resources within this process, of a given process. It
will do this in a divide and conquer style by simplifying a (stochastic) (business/supply-chain) process
into multiple simpler deterministic processes. These two (2) constraints and objectives will be leading
in the design and development of the optimization method.

The full implementation of the prototype based on the described algorithm in this section will be made
available in a repository related to this thesis. This repository is accessible through
“https://github.com/MarcelKolen/process-mining-resource-allocation-optimizer”.

3.1 Optimization routine
The resource-activity allocation optimizer will follow a set of steps, or rather sub-routines, to perform
resource allocation optimization. These steps as follows:

1. DATA INGESTING a given dataset, of varying file format, is imported into the optimizer;
2. DATA LABELLING key columns of the dataset are labelled according to the data requirements;
3. PROCESS TREE GENERATOR from a given dataset, construct a process tree representing the

process which created the dataset using process mining tactics;
4. DETERMINE PROCESS VARIANTS a process might consist of several variants which should be

distinguished from one and another. These variants play a key role in the divide and conquer
approach of this optimization method;

5. DETERMINE LEGAL RESOURCE-ACTIVITY ALLOCATIONS within a process, only a limited
set of combinations of activities and resources exist, the optimizer should find all legal
combinations;

6. FIND RESOURCE COST FIGURES for every legal resource-activity combination, a cost model,
in both wait time and throughput time, and monetary values, should be constructed;

7. PRUNE PROCESS TREES for every variant of the found process, construct a pruned process tree,
representing the variant in a simplified and deterministic process tree, based on the original
process tree;

8. PERFORM VARIANT OPTIMIZATIONS for every variant, run the optimization algorithm
finding the optimum combination of resources and activities for that particular variant;

9. MERGE VARIANT OPTIMIZATIONS every variant of the process has an optimal version of the
allocations. These versions must be merged into a global optimum allocation set, optionally
taking into regard variant precedence. This is the closing step of the divide and conquer
approach.

Marcel Kolenbrander – 31 October 2022 18 - 128

Every step in the routine above will be further elaborated on in more detail in the following
(sub)sections.

3.1.1 Data ingesting
The step of data ingesting converts the input data, from a variety of possible input files into a format
which is understandable by the optimizer. The format used within the prototype for this thesis will be a
Pandas DataFrame from the Pandas Python library [23], [24]. The input files could be among the
following, but in theory not limited to, common file formats: .CSV, .JSON, .XML, .XES, .XLS, .XLSX,
.XLSM, .XLSB.

3.1.2 Data labelling
In the data labelling step, the optimizer is told by the user which columns contain what specific data.
The user will indicate to the optimizer which column corresponds to which data-type. Working with the
three (3) objective functions, this thesis defines the data columns requirements as follows:

• CASE IDENTIFIER;
• ACTIVITY IDENTIFIERS;
• START TIMESTAMP;
• RESOURCE IDENTIFIERS;
• ACTIVITY EXECUTION DURATION TIME;
• ACTIVITY WAIT TIME;
• (Optional) END TIMESTAMP;
• ACTIVITY EXECUTION COST.

3.1.3 Process Tree Generator
Using the labelled data, the optimizer should be able to construct a process tree using the concepts of
process mining. The prototype for this thesis will utilize the PM4PY Python library [10], [11], which
contains several process mining routines build in.

The PM4PY Python library offers several process discovery methods. These methods have been
reviewed, compared and discussed in Existing theories on process mining. As was stated in that
review, the inductive process miner seems to be the best fitting process discovery algorithm for the
optimization method covered in this thesis.

The discovery and construction of a process tree from process data is required because the optimizer
will later use the process discoveries to construct pruned process tree variants, which are in turn used
for optimizations in a divide and conquer style approach.

3.1.4 Determine process variants
As stated earlier in the routine description, the process tree is going to be pruned into a set of process
variants as part of its divide and conquer approach. The pruning step is performed to simplify the
complex, and stochastic process model into multiple smaller, simplified, and deterministic models for
the optimization step. In order to perform the pruning step, the different variants of a process need to be
extracted from the process data log.

As with the process tree generation step, the finding of process variants will be performed by build in
functionalities of the PM4PY Python library [10], [11]. This particular functionality in the PM4PY
library which will be used for the prototype, gives both a list of different variants, and for every variant
an occurrence count.

The occurrence count for every variant is an important metric to record. If a variant occurs more often,
than others, it could indicate that this variant is more important to optimize for. Further on in this thesis,

Marcel Kolenbrander – 31 October 2022 19 - 128

different merging techniques for variant optimums are discussed in Merge variant optimizations. Here,
in the different merging techniques, the occurrence count of a variant is used to order variants by
precedence.

Note that a variant should be determined by the activities executed in a process, and their respective
order in time. A process could for example have:

• PARALLEL SUB-PROCESSES these are sub-processes for which multiple branches could run
concurrently, but do not necessarily have to start at the same time. However all branches do
have to finish before the next activity after the parallel sub-process can be started;

• XOR- SUB-PROCESSES which are sub-processes where for a particular process case, only one
of the available (two (2) or more) sub-processes may be executed;

• XOR-LOOPS in which the first element of a loop is always executed at least once, but the other
components of the loop do not have to be executed. However, if the other components, or rather
activities of an XOR-loop are executed, the first element must also be executed once more. Note
that both the first element and the looping component can both be larger sub-processes
consisting of multiple activities.

Taking these components into regard, a variant is then determined by the particular branches it follows
in an XOR-sub-process, and how often it performs a loop. It is however not determined by the order in
which it executes its parallel branches.

To help visualize the description of variant-distinction above, consider the following process.

Figure 2 – Process model example 1, represented in a BPMN schema. Please refer to 10.2 for a larger version.

This process contains a parallel component, an XOR-loop, and at the end an XOR component. In this
specific process, the differing variants can occur in either the XOR-loop and/or the XOR-sub-process.
Consider the following three process logs to see the different distinguishes between variants.

Table 1 – Process Model Example 1, Trace 0

Activity Resource Cost Start Timestamp End Timestamp
Customer places order - 0 17:00:00 17:00:10
Collect package in distribution center Jim 82 17:00:10 17:09:32
Payment is checked Erik 11 17:00:10 17:02:22
Order fulfilled and ready for hand out Ingrid 27 17:09:32 17:13:23
Transfer package to in store pick up service Jim 20,5 17:13:23 17:15:43
Customer picks up package from store - 10 17:15:43 17:35:43

Table 2 – Process Model Example 1, Trace 1

Activity Resource Cost Start Timestamp End Timestamp
Customer places order - 0 16:00:00 16:00:10
Payment is checked Shenna 9.5 16:00:10 16:01:58
Collect package in distribution center Jim 82 16:00:10 16:09:32
Order fulfilled and ready for hand out Ingrid 27 16:09:32 16:13:23
Transfer package to in store pick up service Jim 20.5 16:13:23 16:15:43
Customer picks up package from store - 10 16:15:43 16:35:43

Marcel Kolenbrander – 31 October 2022 20 - 128

Table 3 – Process Model Example 1, Trace 2

Activity Resource Cost Start Timestamp End Timestamp
Customer places order - 0 08:00:00 08:00:10
Payment is checked Shenna 9.5 08:00:10 08:01:58
Collect package in distribution center Jim 90 08:00:10 08:08:34
Request payment from customer Erik 55 08:01:58 08:12:58
Payment is checked Shenna 9.5 08:12:58 08:14:46
Order fulfilled and ready for hand out Pete 33 08:14:46 08:17:55
Transfer package to delivery service Tim 22.5 08:17:55 08:21:20
Deliver service delivers package Tim 60 08:21:20 08:44:08

The three (3) tables above represent two (2) variants. The first variant is represented by both Table 1
and Table 2. Note that rows TWO (2) and THREE (3) (with a row count starting from one (1) as the first
row) between Table 1 and Table 2 are different. The two (2) rows are swapped between the two (2)
process traces. However, as indicated by Figure 2, these two (2) activities are executed in parallel. Even
though the order in time is different, for the definition of variants in this thesis, they are still the same
variant because order in time is not taken into regard with parallel branches.

However, when comparing Table 3 to Table 1 and Table 2, a clear difference in variants can be
observed. First, the XOR-loop in the process is initiated, and a different XOR-branch is picked. Either
one of these two (2) differences would constitute a different variant, this trace happens to show both
differences.

As a FINAL IMPORTANT NOTE on finding the different process variants: a process tree might have
more variant options than is extractable from the available event data. However, in this thesis, and for
the optimizer developed in this thesis, only the variants exhibited in the event data are taken into regards.

3.1.5 Determine legal resource-activity allocations
Determining which resource-activity allocation combinations are legal will be vital for constructing the
process models and running optimizations. In this thesis, the legality of a resource-activity allocation is
simply determined by analysing which combinations occur in the event data.

For every distinct resource which is found in the event data, all activities to which they were allocated
have to be found. Only the found combinations will be considered legal. Given an event data set, it could
occur that certain resources are able to perform multiple activities. At the same time, an activity might
be executable by multiple resources. These two (2) possibilities allow for the construction of a
RESOURCE-ACTIVITY ALLOCATION MAP. This resource-activity allocation map, or subsets of it, can
be seen as a preliminary to the input options the optimizer has.

Besides legal combinations of resources and activities, another factor needs to be taken into regard. A
scenario could arise where a resource might only be allocated a certain number of times. This constraint
will be determined by counting the number allocation occurrences in all cases and taking the maximum
value. The maximum allocation is not a summation of all occurrences in all cases. The exact
determination for the resource allocation capacity is determined as follows:

∀𝑟 ∈ 𝑅; 𝑐!, 𝑐", … , 𝑐|$|%" ∈ 𝐶: 𝑟&'=Max{O(𝑟, 𝑐!),	O(𝑟, 𝑐"),	…,	O(𝑟, 𝑐(%"),	O(𝑟, 𝑐()}

Equation 1 – Where 𝑅 is the set of all resources and 𝑟 is a resource from that set, 𝐶 (𝐶 = {𝑐!, 𝑐", … , 𝑐#}) is the set of all process
cases and 𝑐$ is a case from that set, 𝑟%&is the maximum allocation allowance for a particular resource, Max takes the maximum
value of its set of inputs, and O(𝑥, 𝑦) find the occurrence of 𝑥 in 𝑦.

An important note to take into consideration is that in this thesis, no special attention will be given to
parallel resource allocation restrictions. To simplify the prototype, the prototype which will be
developed for this thesis will allow parallel allocations, as long as it abides to the above-described
restrictions of legal allocation combinations and allocation limitations.

Marcel Kolenbrander – 31 October 2022 21 - 128

In order to provide a visualisation of the expected outcome of the resource-activity allocation map,
consider the traces in Table 1, Table 2 and Table 3. When applying the methodologies described above,
the following resource-activity allocation map can be constructed as shown in Table 4.

Table 4 – Process Model Example 1, Resource-activity allocation map from traces 0, 1, 2

 Activity Resource
0 Customer places order -
1 Collect package in distribution center Jim
2 Payment is checked Erik
3 Payment is checked Shenna
4 Request payment from customer Erik
5 Order fulfilled and ready for hand out Ingrid
6 Order fulfilled and ready for hand out Pete
7 Transfer package to in store pick up service Jim
8 Customer picks up package from store -
9 Transfer package to delivery service Tim
10 Deliver service delivers package Tim

Accompanying the resource-activity allocation map, should be an allocation limit table, which indicates
for every resource how often it may be allocated:

Table 5 – Process Model Example 1, Resource allocation limit from traces 0, 1, 2

Resource Allocation limit
Jim 2
Erik 1
Shenna 2
Ingrid 1
Pete 1
Tim 2
- 2

As can be observed between Table 4 and Table 5, some resources, or employees in this example, such
as Erik, might be allocatable to more than one (1) activity, but they can only be allocated once. Other
resources, such as Shenna, can be allocated multiple times, but they are only assignable to one (1)
activity.

3.1.6 Find resource cost figures
In order to perform the optimizations on the objectives defined in Optimization definition, the cost of
allocation for every resource-activity combination needs to be determined. The cost of allocation in this
thesis will be captured in both monetary cost, and time related costs such as wait time and throughput
time. This cost will be translated into a model which plays and instrumental part in the modelling of a
process.

In this thesis, the theory is used that the allocation of a resource to two (2) or more activities affects its
cost behaviour in any of its objective functions. This theory originates form the inverted U-theory [25]–
[27], which is further elaborated on in Resource simulation values. An additional assumption which is
made is that an activity occurring multiple times will also affect its cost behaviour. For example, one
such scenario could be imagined as follows, if an employee is allocated twice in a process, the allocation
in monetary terms could become cheaper, however, they could take longer to perform the activities. A
second scenario would be the following, say an activity is involved with quality control and repairs. This
activity occurs when there is a problem with a product or service. If this activity reappears after the
initial attempt of solving this issue, then a scenario could exist where the problem is more complex than
initially thought of, so this next attempt of solving the issue will require more time and effort. This
assumption could affect the way the optimizer chooses to pick its optimal resource-activities allocation
combinations.

Marcel Kolenbrander – 31 October 2022 22 - 128

Taking the above theories into regard, the way the cost for an allocation is determined adds some
complexity to the overall process. Instead of finding the associated cost values, in time and monetary
regards, now the optimizer needs to define functions of cost for at least two (2) variables. These functions
of cost could be determined through multi-variate regression over the available event data. Because there
are multiple methods for approaching this issue, a separate section is introduced in Cost Figure
Variants where this issue is elaborated on in more detail.

The functions of cost should be functions with the following parameters and variables:

• RESOURCE (𝑟) the resource which is going to be allocated to an activity;
• ACTIVITY (𝑎) the activity to which the resource is allocated to;
• ALLOCATION COUNT 6O(𝑟, 𝑠)8 the number of allocations of this particular resource, where 𝑠

is the simulated optimized (variant) case;
• ACTIVITY OCCURRENCE COUNT 6O(𝑎, 𝑠)8 the number of allocations of this particular

activity, where 𝑠 is the simulated optimized (variant) case.

The parameters and variables above should provide a simple baseline for inputs to construct cost
functions. However, just like with regular datamining exercises, more parameters, or inputs, could be
used. This makes the models more complex, but it also adds a greater degree of flexibility and insight.

3.1.7 Prune process trees
To implement the divide and conquer approach a pruned process trees for every variant will be
developed. In this pruned variant, all XOR-sub-processes are resolved to be one (1) sequential branch,
and all loops are unrolled into sequential branches. This means that only the relevant branch in the XOR-
sub-processes will remain, and that for the loop, all repeated elements are put in sequence after one and
another. Pruning of XOR-sub-processes and loops is done to remove probabilistic elements and convert
the process from one (1) large stochastic model into multiple smaller, deterministic models.

A structure which will remain in pruned process trees, are parallel sub-processes. This has two (2)
reasons. In a parallel sub-process, all branches are executed concurrently, so there is no branch to cut
out. If there are XOR-sub-processes or XOR-loops within branches of a parallel sub-process, these
components will be pruned and resolved to simplify the individual parallel branches. The second reason
is because a parallel branch carries significance in throughput time. As stated before in Determine
process variants, branches in a parallel branch do not have to start concurrently, but the next activity
can only start when all branches have finished. This means that the throughput time of a parallel branch
is never shorter than its longest lasting branch.

In order to visualize the pruning concept, consider the process traces, and two variants, as presented in
Determine process variants, in Table 1, Table 3. The original process tree, as presented in Figure 2,
is represented in a tuple-list structure below.

('>',
 ['Customer places order',
 ('+',
 ['Collect package in distribution center',
 ('*', ['Payment is checked', 'Request payment from customer'])]),
 'Order fulfilled and ready for hand out',
 ('X',
 [('>',
 ['Transfer package to delivery service',
 'Deliver service delivers package']),
 ('>',
 ['Transfer package to in store pick up service',
 'Customer picks up package from store'])])]) Figure 3 – Process model example 1, represented in a textual schema

Marcel Kolenbrander – 31 October 2022 23 - 128

This representation knows four (4) different operators. These operators are defined as follows:

• > A SEQUENCE OPERATOR all children of this operator are executed in a sequence of one after
another (Left to right, top to bottom).;

• + A PARALLEL OPERATOR all children of this operator are executed concurrently. They may
start at the same time, and the element after the parallel operator can only start once all children
of the parallel branch are concluded;

• * AN XOR-LOOP OPERATOR has two (2) children, of which the left most (or topmost) element
is always executed, and the other child is optionally executed after the first element. If the
optional child is executed, the first child must be executed (again) as well;

• X AN XOR-BRANCH OPERATOR has two (2) or more children, of which only one (1) may be
executed per instance of a process.

Now consider the variant represented in Table 1. This variant does not initiate the payment loop, and it
opts for the second of the two (2) XOR-sub-process branches. Its process tree is represented in a tuple-
list style, in Figure 4, below.

As stated in Determine process variants, this particular variant also covers the trace in Table 2 even
though the trace is slightly different.

Finally consider the variant in Table 3. This variant does initiate the payment loop, and it opts for the
first of the two (2) XOR-sub-process branches. Its process tree is represented in a tuple-list style, in
Figure 5, below.

3.1.8 Perform variant optimizations
With the pruning of process trees, for the different variants, completed, the optimization step can be
executed. The optimization step will be performed on the pruned trees of the different variants as the
divide and conquer approach of this optimizer.

In Determine process variants the concept of determining variants is introduced and the importance of
occurrence recording is discussed. This variant optimization concept is based on the Pareto principle
which, when extended to processes, provides the following (paraphrased) idea: “20% of a business’

('>',
 ['Customer places order',
 ('+',
 ['Collect package in distribution center',
 'Payment is checked']),
 'Order fulfilled and ready for hand out',
 'Transfer package to in store pick up service',
 'Customer picks up package from store'])

Figure 4 – Process model example 1, variant representing Table 1 and Table 2

('>',
 ['Customer places order',
 ('+',
 ['Collect package in distribution center',
 ('>',
 ['Payment is checked',
 'Request payment from customer',
 'Payment is checked'])]),
 'Order fulfilled and ready for hand out',
 'Transfer package to in store pick up service',
 'Customer picks up package from store'])

Figure 5 – Process model example 1, variant representing Table 3

Marcel Kolenbrander – 31 October 2022 24 - 128

processes/supply line structures generates 80% of the overall profits” [28]. In Merge variant
optimizations techniques the Pareto 80/20 principle is applied to a certain degree when merging
different variants optimizations into one (1) complete optimized process. In this thesis, “a process”, as
stated in the Pareto principle, is a variant of the overall business process. In In Variants to optimize
selections the concept of selecting only a subset of process-variants is discussed.

On to the actual discussion of the optimization step: In this step, an optimized resource-activity
allocation combination is determined for every variant of the selected subset of variants. In order to
perform the optimization step, four (4) components are required:

• OBJECTIVE FUNCTIONS the function for which the optimizer will find a most optimal value,
which is the smallest value in this particular problem setting;

• INPUT VARIABLES the variables which the optimizer can tweak and adjust in order to
manipulate the outcome of the objective function;

• CONSTRAINTS the borders and rules within which the optimizer needs to operate, and to which
the optimizer needs to adhere;

• PROBLEM TYPE the problem type determines how the optimization problem needs to
approached from a formal constraint definition and input variable type standpoint.

3.1.8.1 Objective Functions
This section will develop the (three (3)) objective functions into mathematical definitions used for the
optimization steps. Since the optimization problem in this thesis has multiple objective functions, a
separate section on optimizing for multiple objectives at the same time has been introduced in Multi-
objective optimization.

MONETARY COST The first objective is the monetary cost objective. Within this thesis, this objective
function is a simple objective, as it’s, in its fundamental basis, a completely linear function. To determine
the cost of a (variant of a) process, all costs of executing activities with certain resources need to be
simply summated. Parallel sub-processes, as defined in Determine process variants do not require
special treatment. These branches operate concurrently, and their respective cost is the sum of the costs
of in these branches. With the above in mind, the objective function for monetary cost can be defined as
follows:

𝑟!, 𝑟", … , 𝑟|)'|%" ∈ 𝑅*999: 𝑜+6𝑟!, 𝑟", … , 𝑟|)'|8 =;𝛾(𝑟, , 𝑎,)
|)'|

,-!

Equation 2 – Where 𝐴(is the set of all activities of a particular variant 𝑣, and ‘𝑎’ is an activity in this set, 𝑅(111 is the set of all
resources which may be allocated to activities in this variant 𝑣 and 𝑟) is a resource from within this set specifically allocated
to an activity, 𝑜* is the result of the objective function for costs, and 𝛾(𝑥, 𝑦) is the cost of executing activity ‘𝑦’ with resource
‘𝑥’. The cost of executing an activity is a result of a regression function which uses historical data for a particular resource
and activity allocation combination, specifically looking at the effects of a resource being allocated more than once. 𝛾(𝑥, 𝑦)
can be substituted for one of the proposed models (multivariate linear or polynomial) from Cost Figure Variants, specifically
setup for the monetary cost component. 𝑜* takes an input as a list of resources which are allocated to activities. Note that two
resource inputs, say 𝑟! and 𝑟" may point to the same resource.

THROUGHPUT TIME Next is the throughput time objective. The throughput time objective is similar
to the monetary cost objective, as it is a sum of its time components, however, one (1) deviation is that
parallel branches are not approached as a simple sum. In a parallel branch instance two (2) or more
branches may start at the same time, they can occur concurrently, and the next activity after the branches
may only start once the last/latest branch has finished executing. For the sake of simplicity during the
optimizations, wait-time is not taken into consideration so that only run time dictates the slowest branch.
This simplifies the objective in that only the longest branch time needs to be considered for the
summation. This means parallel components can be modelled using Max expressions. The objective
function of throughput time is defined as follows:

Marcel Kolenbrander – 31 October 2022 25 - 128

∀𝑟!, 𝑟", … , 𝑟|)'|%" ∈ 𝑅*999: 𝑜.6𝑟!, 𝑟", … , 𝑟|/|%"; 𝑇*8 =

Θ6𝑟!, 𝑟", … , 𝑟(; 𝐴* − 𝑃*(𝑇*)8 +

; Max C
𝑜.6𝑟!, 𝑟", … , 𝑟|0+|; 𝑝!8, 𝑜.6𝑟!, 𝑟", … , 𝑟|0,|; 𝑝"8, … ,

𝑜. E𝑟!, 𝑟", … , 𝑟10|.|/01; 𝑝|2|%3F , 𝑜.(𝑟!, 𝑟", … , 𝑟10|.|/,1; 𝑝|2|%")
G

2∈2'(/')|0+,0,,…,0|.|∈2

Equation 3 – Where 𝑇(is a process tree of variant 𝑣, 𝑅(111 is the set of all resources which may be allocated to activities in this
variant 𝑣 and 𝑟) is a resource from within this set specifically allocated to an activity. 𝑃((𝑥) is the set of all parallel tree
occurrences for a given process-(sub)tree 𝑥, and 𝑃	is a parallel subtree which itself is a set of two (2) or sub trees (also called
branches of in a parallel tree). 𝑝* is a branch of a parallel component 𝑃 where is 𝑐 is the count of a branch. 𝛩(𝑅$; 𝐴$) is the
function described in Equation 4, where 𝑅$ is the set of all resources allocated to the activities from 𝐴$, and 𝐴(− 𝑃((𝑥) (see
Figure 6) is the remaining set of activities after subtracting all activities in any and all parallel branches. This function is
defined recursively to deal with nested parallel components. Finally, Max takes the maximum value of its set of inputs, and 𝑜1
is the result of the objective function for throughput time.

𝑟!, 𝑟", … , 𝑟|)| ∈ 𝑅*999: Θ6𝑟!, 𝑟", … , 𝑟|)|%"; 𝐴8 =;𝜃(𝑟, , 𝑎9,)
|)|

,-!

Equation 4 – Where 𝐴(is the set of all activities of a particular variant 𝑣, and ‘𝑎’ is an activity in this set, 𝑅(111 is the set of all
resources which may be allocated to activities in this variant 𝑣 and 𝑟) is a resource from within this set specifically allocated
to an activity, 𝛩(𝑅, 𝐴) is the result of the objective function for throughput time of a sequential set of activities, and 𝜃(𝑥, 𝑦) is
the time required of executing activity ‘𝑦’ with resource ‘𝑥’. The time required is a result of a regression function which uses
historical data for a particular resource and activity allocation combination, specifically looking at the effects of a resource
being allocated more than once. 𝜃(𝑥, 𝑦) can be substituted for one of the proposed models (multivariate linear or polynomial)
from Cost Figure Variants, specifically setup for the throughput time component.

WAIT TIME Lastly, the wait time objective can be defined. The wait time objective will only be
developed conceptually in this thesis, it is not included in the prototype. The wait time in this thesis is
defined as the total wait time over all activities. Just as with the cost objective, parallel sub-processes
are not given any special treatment, as the total wait time over all activities is to be regarded. With the
above in mind, the wait time objective can be defined as follows:

𝐴* − 𝑃*

𝐴* 𝑃*

Figure 6 – 𝐴(− 𝑃(which indicates only the diagonally hatched section of the set 𝐴(.
(Note that 𝑃(is a subset of 𝐴()

Marcel Kolenbrander – 31 October 2022 26 - 128

𝑟!, 𝑟", … , 𝑟|)'|%" ∈ 𝑅*999: 𝑜9(𝑟!, 𝑟", … , 𝑟|)'|%") =;𝜔(𝑟, , 𝑎,)
|)'|

,-!

Equation 5 – Where 𝐴(is the set of all activities of a particular variant 𝑣, and ‘𝑎’ is an activity in this set, 𝑅(111 is the set of all
resources which may be allocated to activities in this variant 𝑣 and 𝑟) is a resource from within this set specifically allocated
to an activity, 𝑜2 is the result of the objective function for costs, and 𝜔(𝑥, 𝑦) is the sum of half of the wait time before and after
executing activity ‘𝑦’ with resource ‘𝑥’. The wait time before and after executing an activity is a result of a regression function
which uses historical data for a particular resource and activity allocation combination, specifically looking at the effects of a
resource being allocated more than once.	𝜔(𝑥, 𝑦)	can be substituted for one of the proposed models (multivariate linear or
polynomial) from Cost Figure Variants, specifically setup for the wait time component.

3.1.8.2 Input variables
In the development of the conceptual objective functions in Objective Functions, two (2) input
variables have already been introduced. These two (2) input variables are also the only input variables
that need to be considered in order to perform optimizations. The input variables are resources and
activities, or rather more specifically, the combination of resources and activities.

In order to simplify the input variables, the two (2) variables, resources and activities, will be combined
into one (1) variable in the form of an input array with a single dimension. This variable will be called
the input allocation table, and it consists of all legal combinations of resources and activities for a certain
variant. This allocation table is a binary table where every true, or one (1), value indicates that a resource
is allocated to a certain activity, and every false, or zero (0), value indicates that it is not allocated.

The input allocation table is different for every variant, as it only needs to contain the activities (and
respective resources) which occur in a variant. Take the trace from Table 3, its corresponding variant
(as indicated in Figure 5), and the original resource-activity table in Table 4. The input allocation table
for this variant would be the like the following table:

Table 6 – Input allocation table for the variant associated with the trace in Table 3. Where 𝜄 signifies the input possibilities
from a non-empty binary set.

Activity Resource Allocated 𝜾 ∈ {true,false}
Customer places order -
Collect package in distribution center Jim
Payment is checked Erik
Payment is checked Shenna
Request payment from customer Erik
Order fulfilled and ready for hand out Ingrid
Order fulfilled and ready for hand out Pete
Transfer package to delivery service Tim
Deliver service delivers package Tim

3.1.8.3 Constraints
The last base-component for setting up the optimization step is the set of constraints. This optimization
problem, as developed in this thesis, only knows two (2) constraints within which the optimizer must
operate. Note that these are only theoretical constraints based on the model constructed in this thesis.
This model could be extended with one (1) or more constraints to consider extra dimensions of
process/supply chain bottlenecks.

The first constraint is as follows: Every activity must have at least and at most one (1) resource allocated
to it. This stems from the idea that an activity can only be executed if there is a resource allocated to it,
and that only one (1) resource at the same time can perform an activity. However, there are scenarios
thinkable where an activity might require multiple resources in order to function. There are also
occasions where an activity is repeated in a process multiple times, and in its repeat a different resource
might be allocated to each separate occurrence. But, for simplicity’s sake, the model in this thesis, and
the prototype based on this thesis’ model, will only consider one (1) resource per activity and no more.

Marcel Kolenbrander – 31 October 2022 27 - 128

The constraint will be defined as being an equality constraint, where the constraint function must equal
zero (0) in order to be satisfied. With this and the above in mind, the constraint can be defined as follows:

∀𝑟' ∈ 𝑅* , ∀𝑟̅' ∈ 𝑅*: 0 =;SC6𝑟'3 , 𝑟̅'3 , 𝑎,8

|)'|

,-!

− |𝐴*|

Equation 6 – Where 𝐴(is the set of all activities of a particular variant, and ‘𝑎’ is an activity in this set, 𝑅(is the set of all
resources for a variant 𝑣, 𝑟& is the subset of resources from within this set which may be allocated to an activity, and 𝑟&4 is the
subset of resources from within this set specifically allocated to an activity. 𝑆𝐶(𝑥, 𝑦, 𝑧) is the single-count over activity ‘𝑧’ with
resources ‘𝑥’ and allocated resource ‘𝑦’, where it will provide a value of one (1) if one (1) and only one (1) resource (in ‘𝑦’)
is allocated to the activity ‘𝑧’ (with the condition that 𝑦 ∈ 𝑥) and it will provide a value of zero (0) if zero (1) or more than one
(1) resource (in ‘𝑦’) is allocated to the activity ‘𝑧’ (or if 𝑦 ∉ 𝑥).

This constraint works on the following basis: the −|𝐴*| component is the size (length) of the activities
set for a variant. If there are ten (10) activities in this set, then its size is also ten (10). Because this is
the difference over the sum of the XOR components, the constraint can only be zero (0), therefor
satisfied, if for all activities, there is only one (1) resource allocated.

The second constraint has to be defined to ensure that the allocation limit, as described at the end of
Determine legal resource-activity allocations, is not overshot. As a short recap: every resource will
have a limited allocation budget (so how often they can be allocated to activities in a process).

With the above description in mind, and with the notion that this constraint will also be an equality
constraint, the resource allocation limit constraint can be defined as follows:

0 =;MaxOC:(𝑟,), 𝑏:3Q
|;|

,-!

−;𝑏,

|<|

,-!

Equation 7 – Where 𝑅 is the set of all resources, 𝑟 is a resource from this set. 𝐵 is the set of resource allocation budgets, and
𝑏$ is the allocation budget of a resource, and 𝑏5! is the specific allocation budget of resource 𝑟$. Max takes the maximum value
of its set of inputs, and C5(𝑥) finds the number of total occurrences of the given resource 𝑥.

This constraint works on the following basis: first the sum of all budgets for all resources is calculated.
This sum is then subtracted from the Max sum component. The Max sum component should equal the
total budget if and only if for every resource the total number of allocations is smaller or equal to its
budget. If one (1) resource is above the budget, the max sum component exceeds the sum of all budgets,
making the constraint inequal thereby failing the constraint.

An issue with the second constraint is that its bases its validity solely on historical data. The maximum
budgets of the resources are based on what the maximum recorded allocation budget is in all data records
as is described in Determine legal resource-activity allocations. However, in real world applications,
this maximum recorded limit might be because of a “freak incident” where certain resources had to be
pushed to meet process demands. This is however not entirely problematic, as the constraint simply
relies on an allocation budget table. A method to prevent unwanted over allocation, as result of “freak
incident” recording, is to pre-process the allocation budget table by enforcing an artificial allocation
limit, where for each row the allocation budget is set to: Min(𝑏, 𝑙) where Min	takes the smallest value
of its inputs, 𝑏 is the recorded budget, and 𝑙 is an artificially enforced budget.

3.1.8.4 Problem Type
With the three (3) base-components defined, and the problem statement defined, it’s important to define
the problem type. The problem type determines the approach with which the optimization of a problem-
space is attempted. Within the world of optimization problems, there exist many different forms of
optimization settings and problems. Examples range from Convex Linear Programming, Integer Linear
Programming, and Integer Non-Linear Programming, to Mixed (Integer) Linear Programming and
Mixed (Integer) Linear Programming [29], [30]. In order to define the overall problem type, all

Marcel Kolenbrander – 31 October 2022 28 - 128

components, being the objective functions, the input variables, and the constraints, have to be broken
down into a type. Ideally, if possible, the components should be converted or formulated as linear integer
problem types in order to simplify the optimization as they will then be NP-complete as compared to
NP-hard [30]. A more in-depth reasoning for the advantage of the optimization being integer linear as
compared to other types is given at the end of this sub-section.

First the INPUT VARIABLES. The input variables, as defined in Input variables, are linear variables, or
more specifically, 0 – 1 linear integer variables in the form of binary variables. The input component of
this optimization problem is therefor a linear problem component.

Second are THE CONSTRAINTS. The constraints of this problem are defined in Constraints, and are
essentially linear limitations to the input variables. In their definitions, they appear to be non-linear, due
to the use of the single-count component, and Max component, but this is only the case for the
collectivised constraints. The constraints described earlier, can be seen as a combined constraint of many
smaller constraints. Each of these smaller constraints can be described as a linear constraint of the linear
input variables.

The first constraint described in Equation 6, could for example be broken down per activity. Take for
example the activity Order fulfilled and ready for hand out from the input table in Table 6. For this
activity the constraint can be redefined as an equality constraint (only satisfies when the constraint
evaluates to zero (0)) as such:

𝑟= ∈ {0,1}, 𝑟> ∈ {0,1}: 0 = 1 ⋅ 𝑟= + 1 ⋅ 𝑟> − 1

Equation 8 – Where 𝑟6 signifies whether Ingrid is allocated (value of one (1)) or not (value of zero (0)), and 𝑟7 signifies whether
Pete is allocated (value of one (1)) or not (value of zero (0)).

A more general description of this per-activity 𝑎 ∈ 𝐴 constraint can be described as follows:

0 = ; 1 ⋅ 𝑟,

|;(')|

,-!

−𝒜(𝑎)

Equation 9 – Per activity equality constraint where 𝐴 is the set of all activities and 𝑎 is an activity from this set, and 𝑅(𝑎) is
the set of all resources which can be allocated to activity 𝑎 and 𝑟$ is a resource in this set which is limited to the values one (1)
for allocated and zero (0) for not allocated for all 𝑖. 𝒜(𝑥) signifies the number of required allocations for activity 𝑥.

Just like with the constraint described in Equation 6, this componentized constraint is only satisfied if
and only if exactly the required number of resources (𝒜(𝑥)) are allocated to the activity, which in this
case is one (1). If no resources are allocated, then the result of the constraint equals −1 and if more than
one (1) resource is allocated, then the constraint evaluates to ≥ 1. This constraint is expanded into
allowing, or rather requiring, multiple resources to be allocated to an activity before it can be executed,
by replacing the −1 component from Equation 8 with 𝒜? as seen in Equation 9.

By expanding the constraint of Equation 6, into the smaller, per activity, constraints, the first constraint
component also becomes linear.

The second constraint for resource allocation limitations, can also be redefined to translate into a linear
problem. Just like with the one (1) (or 𝑛) resource(s) per activity, the constraint described in Equation
7 has to be broken down into many smaller constrains on a per resource basis. Take for example the
resource Erik from the input table in Table 6 and its corresponding allocation budget from the resource
allocation limit table in Table 5. For this resource the constraint can be redefined as an equal-smaller
than constraint (only satisfies when the constraint evaluates to zero (0) or smaller than zero (0)).

Marcel Kolenbrander – 31 October 2022 29 - 128

𝜄3 ∈ {0,1}, 𝜄@ ∈ {0,1}: 0 ≥ 1 ⋅ 𝜄3 + 1 ⋅ 𝜄@ − 𝐿

Equation 10 – Where 𝜄8 signifies whether Erik is allocated to activity “Payment is checked” (value of one (1)) or not (value of
zero (0)), and 𝜄9 signifies whether Erik is allocated to activity “Request payment from customer” (value of one (1)) or not
(value of zero (0)). The −𝐿 component is obtained by obtaining the allocation limits from Table 5, in this case specifically for
Erik.

A more general description of this resource allocation 𝑟 ∈ 𝑅 constraint for all resources can be described
as follows:

0 ≥ ; 1 ⋅ 𝜄,

|A(:)|

,-!

− 𝐿(𝑟)

Equation 11 – Per resource allocation constraint where 𝑅 is the set of all resources and 𝑟 is a resource from this set, 𝐼(𝑟) is
the set of allocation options of resource 𝑟 where 𝜄$ is an allocation option which is limited to the values one (1) for allocated
and zero (0) for not allocated for all 𝑖. Finally, 𝐿(𝑥) signifies the allocation allowance for resource 𝑥.

This constraint differs slightly from the constraint described in Equation 7 with the expanded condition
that the result of the constraint may now also be lower than zero (0). Other than the expansion of the
equality component, the constraint functions the same as the one in Equation 7. The constraint is valid
if and only if the number of times the resource is allocated is less than or equal to its allocation limit. If
it is less, the constraint is satisfied (because the result is negative therefor smaller than zero (0)).
However, if it allocated more than its allocation limit, then the constraint evaluates to a positive figure,
thereby failing the less than or equal to zero (0) condition.

Finally, the last component is the OBJECTIVE FUNCTION. In Objective Functions three (3) objective
functions are defined. Two (2) of these objective functions, being the monetary cost and wait time
objectives, are potentially completely linear provided that of the two (2) cost-models discussed in Cost
Figure Variants the linear regression model is used. However, the throughput time objective is not
immediately linear, even if the linear regression model is used. When inspecting the objective function
for throughput time in Equation 3, two (2) components can be observed. The first component,
Θ6𝑟!, 𝑟", … , 𝑟|)|%"; 𝐴8 is potentially strictly linear, again provided that the linear regression model is
used, however the second component is not by virtue of it having a Max component.

Luckily, linearizing a Max component is not impossible and, in all actuality, not difficult to automize
either as demonstrated in the following example [31], [32]:

Suppose the following expression with a max operator is to be linearized.

𝑥 = Max{𝑥!, 𝑥"}

In this problem 𝑥 has the following expected value 𝑥 ≥ 𝑥!, 𝑥". This can be linearized in the following
manner. A binary decision variable, 𝛾, for which the value is dictated by the following relations, can be
introduced:

𝛾 =]1, 𝑥" < 𝑥!
0, 𝑥" ≥ 𝑥!

Next a constant, 𝐶, is introduced for which holds that 𝑥!, 𝑥" ≤ 𝐶 within any legal and valid solution in
the optimization problem. In the optimization problem in this thesis, 𝐶 could be defined as the outcome
of the worst-case scenario of allocations for a branch. This could be done by taking the sums of all
resource-activity allocations in the different branches (where 𝑥!, 𝑥" represent branches) such that no
worse allocation can be chosen (in this case, the allocation limits introduces in Determine legal
resource-activity allocations can be disregarded). Then the largest sum is chosen for 𝐶.

Marcel Kolenbrander – 31 October 2022 30 - 128

With the constant 𝐶 and additional binary decision variable 𝛾 developed, an additional set of constraints
can be defined to enforce that 𝑥 = 	Max{𝑥!, 𝑥"} should it be linearized.

𝑥 ≥ 𝑥!

𝑥 ≥ 𝑥"

𝑥 ≤ 𝑥! + 𝐶 ⋅ (1 − 𝛾)

𝑥 ≤ 𝑥" + 𝐶 ⋅ 𝛾

With the above constraints, the max component is linearizable. However, this is an example with only
two (2) elements in the max component. Looking at Equation 3 more than two (2) elements per max
component can occur. Should a max component contain more than two (2) elements, then this can be
solved by substituting the elements with another max components and then linearizing the simplified
elements as such:

𝑥 = Max{𝑥!, 𝑥", 𝑥3, 𝑥B}

𝑥 = Max{Max{Max{𝑥!, 𝑥"}, 𝑥3}, 𝑥B}

However, this increases the complexity of the optimization problem, this also increases the additional
binary decision variables needed, and it increases the number of constraints. The number of constants
does not have to increase, because that simply must be sufficiently large enough. The number of required
binary decision variables is 𝑛 − 1 where 𝑛 is the number of elements in a max component, and the
number of constraints is 𝑛 + 2 ⋅ (𝑛 − 1) (see 10.6 for a worked out example supporting this claim).

With the linearization of Max components, the objective function in Equation 3 can also be linear,
provided that it also only relies on linear regression for the cost, or rather throughput time, models. There
also exist optimizers which themselves can deal with max components without the need to linearize
first. Two (2) examples are in Decision Optimization CPLEX [33] and GUROBI optimization [34].

Taking the full deliberation on objective functions in mind, the optimization problem in this thesis can
fall into two categories. The first category is Integer Linear Programming, and more specifically,
Binary-Integer Linear Programming. If the objective functions are to be linear, then they must use the
linear regression models for the cost models. If the objective functions are fully linear(ized) and the cost
models are using the linear regression models, then this optimization problem becomes a NP-Complete
problem by virtue of being linear and having the integer input set being limited to {0,1} as described by
Karp’s 21 NP-Complete problems [30]. Otherwise, the optimization problem could be NP-Hard.

The second category is Integer Non-Linear programming, and more specifically for this thesis, Binary-
Integer Non-Linear Programming. The optimization problem in this thesis will be non-linear in the first
place if polynomial regression models are used for cost model construction.

3.1.8.5 Solver types
Knowing the (complexity) type of the optimization problem is not only useful for determining the
complexity of the optimization problem, but also for determining which type of solver method should
be used. As mentioned before, there are several existing optimization solvers, such as IBM CPLEX [33]
and GUROBI [34]. The prototype for this thesis will solely use the IBM CPLEX solver. No research
has been done into the exact difference and (dis)advantages between the two (2) optimizer frameworks,
the IBM CPLEX optimizer was simply available at the time of writing.

When using an optimizer framework several optimization engines/methods are often available. This
thesis will approach mathematical programming and constraint programming as optimization methods.
Knowing the (complexity) type of the optimization problem, and knowing how the different

Marcel Kolenbrander – 31 October 2022 31 - 128

components, such as inputs, constraints, and objectives, are setup, is important for determining which
optimization method/engine to use. The two (2) methods are compared below.

The first method which will be examined is the MATHEMATICAL PROGRAMMING method.
Mathematical programming accepts both continuous variables, which can be limited to linear integer
variables, thereby also to binary variables, as well as discrete variables. Mathematical programming
requires a problem to lie within a well-defined mathematical problem type/category in terms convexity,
linearity/non-linearity. Based on the mathematical problem type, the solver engine will choose a
different solution strategy. Mathematical programming does not natively support all logical-arithmetic
operators, such as minimum/maximum. In order to use minimum/maximum components, these
components have to be linearized as has been described earlier on. The mathematical programming
method is strictly limited to linear and/or quadratic problems [35].

Looking at the problem type described in Problem Type, an applicability conclusion can be drawn for
mathematical programming. The mathematical programming engine can only use linear and/or
quadratic problems. The objectives are only linear if all of its components are linear, which is only the
case if linear models, as described in Cost Figure Variants, are used. So, in order to use mathematical
programming, the optimizer must be limited to using linear cost models. Polynomial models could be
quadratic, but only for small degrees. And, in order to retain the flexibility of the polynomial models, it
is not recommended to combine the polynomial models with the mathematical programming engine.

The second method is the CONSTRAINT PROGRAMMING method. Constraint programming only
accepts discrete input variables, such as Boolean or integer variables. Contrary to mathematical
programming, constraint programming does not infer any assumptions on the mathematical problem
type of the optimization problem, and it does not change its optimization strategy based on the different
problem types. Constraint programming supports a broader range of logical-arithmetic operators as
compared to mathematical programming, such as minimum/maximum, mathematical operators
(addition, subtraction, division, multiplication, roots and exponents), modulo and operators such as
logical comparators. Constraint programming is not limited to linear or quadratic problems, it can accept
much greater exponents, but it is limited to discrete problems only [35].

When again looking at the problem type described in Problem Type, an applicability conclusion can
be drawn for constraint programming. The main issue which could be a concern is the type of the input
variables, luckily the input variables for the optimization problem in this thesis are all discrete in the
form of binary variables. One (1) major difference between the constraint optimizer and the
mathematical optimizer, is that the constraint optimizer can deal with greater than quadratic exponent
expressions, so, both the linear as well as the polynomial models, as described in Cost Figure Variants,
can be used without restrictions to the model degree depth.

The prototype for this thesis can use both the mathematical programming method, but only when the
linear models are used, and the constraint optimizer for both linear and polynomial models. Which
method is used for experimentation is described in Runtime environment.

3.1.9 Merge variant optimizations
In the last step, all variant optimizations have to be merged into one (1) final optimized resource and
activity allocation combination set. Following the previous step from Perform variant optimizations,
the optimizer should now have a set of activity-resource allocation tables. For each activity-resource
allocation table, the variant for which the particular input table is optimized is recorded, along with its
occurrence.

In merging the optimized activity-resource allocation tables, all activities for the entire process, not a
pruned variant of this process, should have a resource allocated to itself. The merging of partial solutions
from the variants can be done in several different ways. As mentioned before, the occurrence count of

Marcel Kolenbrander – 31 October 2022 32 - 128

variants can be taken into account in applying a certain importance weight to certain solutions. Different
methods for merging and applying these importance weights are described in Merge variant
optimizations techniques. This section will provide full a full overview of the proposed merging
algorithms. For each optimization run of a process, one (1) of these methods is to be selected as the
merging method of choice.

Once the results have been merged, the process optimizer will offer the user an allocation table where
the set of available resource have been optimally allocated, within the defined constraints, to the
processes’ activities.

3.2 Cost Figure Variants
In Find resource cost figures, the concept of cost figure discovery is introduced. First the notion of
cost needs to further elaborated. Cost in the context of cost figure, or cost model, discovery is in terms
of the definitions set by the objectives and objective functions. Referring back to Optimization
definition and Objective Functions three (3) objectives are defined, namely monetary cost, throughput
time, and wait time. In the sense of cost figure discovery, cost refers to all three (3) objectives.
Concretely, in cost figure discovery, monetary cost signifies the increase in monetary cost required to
execute the process, when allocating a resource to an activity. Similarly, for throughput time, the cost is
the increase in throughput time required to execute the process when allocating a resource to an activity
and wait time cost is the increase in total wait time when allocating a particular resource to an activity
in a process.

With cost defined, the method of assigning costs to allocations needs to be defined. In this thesis,
regression models will be developed for the cost of allocation. Earlier in Find resource cost figures
four (4) parameters for cost discovery and determination are defined, these parameters are key to
developing the cost models. To simplify the model development, two (2) parameters, the activity, and
the resource, can be approached as follows: instead of creating one (1), more complex, model for all
activity and resource combinations, every viable resource and activity combination will receive a
separate model. This eliminates the need for two (2) of the four (4) variables, only leaving the frequency
of resource allocation and activity occurrence count in place. Note that, just like with regular regression
exercises, the model can be expanded upon by introducing other variables to further strengthen these
models. These variables could be anything which could impact a process, such as for example, weather,
personnel satisfaction, budget, etc.

In this thesis, two (2) modelling types for cost figure discovery and modelling will be considered. One
(1) type is linear regression, and the other type is polynomial regression. The next two (2) sections
discuss and compares these two (2) options.

For both options, the regression is performed over the original event-data traces. The 𝑥 variables which
is used in the model construction are the number of times a resource is allocated, not just to the current
activity, but to all activities, within a case and the number of times an activity occurs within a case. The
target variable which it tries to predict is the observed objective-cost value. By observing all cases in a
process-trace a set of independent resource-allocation and activity-occurrence values with a one-to-one
mapping to the dependent cost-objective values is found. This resulting set can be used to construct
regression models.

3.2.1 Linear regression
Linear regression is a method of regression which results in the construction of a linear model. The
problem in this thesis cannot be solved with simple linear regression, as that only supports a single
variable. Instead, multi-variate linear regression, or simply: linear regression, needs to be used. A linear
regression model would be one such as the one represented in Equation 12.

Marcel Kolenbrander – 31 October 2022 33 - 128

𝛽! ∈ 𝐵∀𝑖: 𝑓(𝑋) =0𝛽!𝑥!

|#|

!$%

+ 𝛼

Equation 12 – Linear Regression model where 𝑋 is the set of all variables and 𝑥 is a variable in this set, 𝛼 is the y-
intercept, and 𝐵 is the set of all slope constants where 𝛽! is a slope constant [36].

In the prototype for this thesis, and in testing, linear regression is implemented using the Python SciKit-
Learn libraries [37].

Linear regression is an easy method of numerical model construction which does not have to require
additional parameters. Unlike for example curve-fitting or polynomial regression, no target format, such
as a target function [38], or poly-degree [39], has to be configured. For the implementation suggested in
this thesis, all which is required is the base model as displayed in Equation 12, and the three (3)
regression input values which are the recorded cost figures, resource allocation counts and activity
occurrence counts. Each model can also easily be explained by extracting the slope constants and 𝑦-
intersect. Linear regression is also hypothetically a faster method as compared to other methods. Finally,
as discussed in Problem Type use exclusive use of only linear models could simplify this optimization
problem into an NP-complete instead of an NP-hard problem. However, the major downside of linear
regression is that this model type only works if the data is mostly linear. If the data is not entirely linear,
or if the data contains a non-linear section, then the linear regression method will probably fail to fit
accurately.

3.2.2 Polynomial regression
The polynomial model is a linear summation of non-linear components (for degrees higher than one
(1)). The modelling problem in this thesis, is a problem which by virtue of the unknown behaviour of
input data curve lines makes for a strong polynomial regression candidate [39].

There are two (2) variants of the polynomial regression method which will be considered in this thesis.
The first multi-variate model is represented in the formula seen in Equation 13 and Equation 14. This
is a regular polynomial regression model, where there is no interaction between variables.

𝑓C(𝑥) = 𝑋𝛽 + 𝛼

Equation 13 – Polynomial regression, where 𝑑 signifies the degree of the polynomial regression function, and 𝛼 is the y-
intercept [39]. 𝑋 and 𝛽 are further worked out in Equation 14.

𝑓C(𝑥⃗) =

⎣
⎢
⎢
⎢
⎢
⎡1 𝑥" 𝑥"3 𝑥"B ⋯ 𝑥"C%" 𝑥"C

1 𝑥3 𝑥33 𝑥3B ⋯ 𝑥3C%" 𝑥3C

1 𝑥B 𝑥B3 𝑥BB ⋯ 𝑥BC%" 𝑥BC
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 𝑥(𝑥(3 𝑥(B ⋯ 𝑥(C%" 𝑥(C⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝛽!
𝛽"
𝛽3
⋮
𝛽C⎦
⎥
⎥
⎥
⎤

+ 𝛼

Equation 14 – Polynomial regression where the 𝑥⃗ and 𝛽⃗ vectors are further worked out, where 𝑑 signifies the degree of the
polynomial regression function and 𝑛 signifies then number of (independent) input variables.

The second model which will be considered for polynomial regression, is a model with variable
interaction [39]. This model allows for the potential modelling of relations between different variables.
Interaction regression makes for more complex expressions, and to limit the complexity of the
expressions, only a definition for a two-variable model will be provided. This two-variable polynomial
regression model with interaction is shown in Equation 15.

Marcel Kolenbrander – 31 October 2022 34 - 128

∃𝛽! ∈ 𝐵: 𝑓(𝑥!, 𝑥", 𝑑) = 𝛽! +; ;

⎩
⎪
⎨

⎪
⎧𝒷𝑥!

,%𝒹𝑥"𝒹 , 𝑖 − 𝒹 > 0 ∧ 𝑑 > 0
𝒷𝑥!,%𝒹 , 𝑖 − 𝑑 > 0 ∧ 𝑑 ≤ 0
𝒷𝑥"𝒹 , 𝑖 − 𝑑 ≤ 0 ∧ 𝑑 > 0
0, 𝑖 − 𝒹 ≤ 0 ∧ 𝑑 ≤ 0

(C,E:)∈F(<[𝒟(3/+):𝒟(3)])

CG"

,-!

+ 𝛼

Equation 15 – Polynomial regression where 𝑥!, 𝑥" are input variables and 𝐵 is the set of all slope constants where 𝛽 and
𝒷 are slope constants, and 𝛼 is the y-intercept. 𝛦(𝑠) is an enumerator function which returns two (2) sets, the first is a set
of counters from 0 to 𝑛 where 𝑛 is the size of the second set, and the second set are the objects from the original input set 𝑠.
𝐵[&:A] signifies a subset of 𝐵 from index position 𝑎 to index position 𝑏. 𝒟(𝑥) calculates the number of coefficients for a given
degree 𝑥 for a polynomial regression model with interaction over two (2) variables. The full definitions of 𝒟(𝑥) is given in
Equation 16.

𝒟(𝑛) =
(𝑛 + 2)(𝑛 + 1)

2

Equation 16 – Calculates the number of coefficients for a given degree 𝑛 for a polynomial regression model with interaction
over two (2) variables.

If it is known beforehand that the two (2) variables are completely independent, then the non-interactive
variant should be chosen to reduce model complexity and increase explainability. The size of the
expression with regards to the number of variables and the degree depth increases linearly, whereas the
expression with interaction on two (2) variables grows quadratically (see Equation 16). However, in the
context of this thesis, it is not a guarantee that variables are completely independent. Processes, and the
relation the different variables have with one and another, can be wildly different between use-cases.
For this sole reason, the unpredictability of the data and the unpredictability of relations in the data, the
more flexible method is chosen, sacrificing readability of the created models.

In the prototype for this thesis, and in testing, polynomial regression is implemented using the Python
SciKit-Learn libraries [37]. Besides using the library for the base implementation, a few extra steps
elements are used to for example tune the degree hyper parameter, and to prevent overfitting.

3.2.2.1 Degree fitting
Finding the best degree should be done by first splitting the data in a training and testing set [40], and
then use these to model for different degrees on the training data and observe the Coefficient of
Determination and Root Mean Square Error score on the testing data.

The Coefficient of Determination (𝑅3 see Equation 17) [41] and the Root Mean Square Error (𝑅𝑀𝑆𝐸
see Equation 18) [42], where the closer the 𝑅3 between the target data and the model data to the value
of one (1) gets, the more accurate the model is in terms of how well the predicter variables can explain
the variance in response variables. And the smaller (closer to zero (0)) the 𝑅𝑀𝑆𝐸 between the target and
model data gets, the closer the model output lies to the target data.

𝑅3 = 1 −
∑ 6𝑦(𝑖) − 𝑓(𝑖)83(
,-!
∑ (𝑦(𝑖) − 𝑦9)3(
,-!

Equation 17 – 𝑅8 where the quotient between the squared sum over the error between the target and regression line, and the
squared sum over the error of the mean line, are subtracted from one (1). 𝑦 is the observed data, 𝑦1 is the mean line over the
observed data, and 𝑓 is the result from the regression function [41].

𝑅𝑀𝑆𝐸 = 9∑ ;𝑓(𝑖) − 𝑦(𝑖)>&'
!$%

𝑛

Equation 18 – 𝑅𝑀𝑆𝐸 where the sum of the squared error between the regression value and the target value is divided by the
number of samples to obtain the mean, which is squared to compensate the squared component. 𝑦 is the observed data, and 𝑓
is the result from the regression function [42].

Marcel Kolenbrander – 31 October 2022 35 - 128

When the data becomes overfitted, and thereby the degree being too large, the 𝑅3 should start to drop
off from its highest observed value, and the 𝑅𝑀𝑆𝐸 should start to increase again from the lowest
observed value.

3.2.2.2 Multiple Model Issue
In this particular optimization problem, as described in this thesis, where for each activity-resource
combination a model has to be generated, one (1) aspect to keep in mind is that not every model for an
activity-resource combination, will have the same optimal degree. There are several options to deal with
the multiple model issue. Each of these options is a compromise between accuracy and speed. The most
optimal degree will be defined as is stated before, the degree which produces the highest 𝑅3 score and
the lowest 𝑅𝑀𝑆𝐸 score on test data.

• SINGLE DEGREE This option sets a one (1) degree for all models. This hypothetically should
allow for the fastest model construction, but it could be at the cost of accuracy on a per model
basis;

• BEST AVERAGE DEGREE This option finds the best average degree out of a subset of all
activity-resource combinations. For a subset, say for example a random set of 20% of the
activity-resource combinations, determine their most optimal degree. For these activity-resource
combinations, the particular model and degree can be saved regardless of the next step. Once
for each of the combinations the most optimal degree is found, the best average is found by
averaging all 𝑅3 scores and 𝑅𝑀𝑆𝐸 scores and picking the degree with the best average score.
Hypothetically this should provide a better overall fitting model than the single degree option,
but it is slower to run because multiple models have to be developed;

• BEST 𝑛-AVERAGE DEGREE An extended version of previous option would be to use a best 𝑛-
average degree. In this option, instead of one (1) degree being used for all other models, 𝑛-
degrees could be chosen from the average pool. When modelling the other activity-resource
combinations, the best fitting degree could be chosen out of the 𝑛-degrees from the average
pool. Hypothetically this allows for a greater degree of freedom and possibly better fitting
degrees, but this increases complexity because for each model, 𝑛 different degrees need to be
tried;

• PER MODEL BEST DEGREE The final option is to determine the best degree on a per model
basis. For each model, find the best degree, out of the available range, and use that for that
particular model. Hypothetically, this should allow for finding the best fitting degree across all
models, however this is also computationally the most expensive, because each activity-
resource combination needs to be modelled multiple times and evaluated on their best degree.
There are however two (2) methods of going about degree search in this option:

o EXHAUSTIVE BEST DEGREE SEARCH Develops every degree option into a model, and
then finds the best configuration. This is the most expensive option;

o GREEDY BEST DEGREE SEARCH Keeps developing models for all the available degree
options, until a (local) convergence occurs based on the highest-yet 𝑅3 score and the
lowest-yet 𝑅𝑀𝑆𝐸 score. Once a degree is found where the 𝑅3 is decreasing again and
the 𝑅𝑀𝑆𝐸 score is increasing, it will stop its search, with the assumption that after an
overfit, the increase in degrees will never reduce the overfitting. This could potentially
save on computation time.

3.2.3 Exhaustive fit on best model
When developing hyperparameters, such as the degree setting in the polynomial regression method
shown in Multiple Model Issue, the hyperparameters are not developed on the entire dataset. Instead,
the data will be split up in a train dataset and a test dataset. This is done to prevent overfitting to the
target data and skewing test results. A model should be a generalistic model for the target data, so even
if it is trained on a subset of the target data, it should still score well on a different subset.

Marcel Kolenbrander – 31 October 2022 36 - 128

However, once the hyperparameters have been set up correctly, a model can be trained on the entire
dataset. This is done to feed it more, and more variate data, which should make it more robust and
generalizable. Both implementations of the modelling methods described in this thesis have the ability
to train on the entire dataset, instead of a smaller split. For linear regression this simply means that it
will immediately fit on the entire dataset. For the polynomial regression model, depending on the degree
determination mode, it will (re)train its model after the final degree has been found.

3.3 Variants to optimize selections
In Perform variant optimizations the notion of selecting variants for optimization was introduced. In
this section, three (3) different methods for selecting variants to optimize will be elaborated on. Each of
these methods will most likely be a trade-off between compute time performance and accuracy.

3.3.1 All selection
The first option would be to simply optimize for every variant and pool all results into the merging stage.
This might however, depending on the merging strategy (see Merge variant optimizations
techniques), lead to useless computation, as for some merging strategies, the least prevalent variants
impact hardly impact the overall result. On the other hand, this method could hypothetically provide the
most realistic outcome. It might not provide the highest performing outcome, but since it also takes
niche cases into regard, it could hypothetically prevent edge case/niche case performance bottlenecks.

3.3.2 Minimum requirement selection
A second option is to only select as many requirements as are required. The selection should be done
based on prevalence. The variant selection step would continuously select an extra variant into the
variant-optimization-pool, starting at the most prevalent variant and moving towards the least prevalent,
until all activities which exist in the complete process also exist in the variant-optimization-pool.

The pseudo algorithm for this algorithm can be defined as follows:

This could have several benefits. First, the computation time is reduced, because only a subset of all
variants is optimized. Additionally, because only the most prevalent variants are optimized for, the
resulting model will be focussed on the highest performance for the majority of cases.

3.3.3 Minimum requirement selection non repeating
Finally, a third option can be proposed, which is an extension on the minimum requirement variant
selection method above. The minimum requirement selection non repeating method is similar in

target_set := {∗ 𝐴(, };
selected_variants := [∅,];

for (𝑣 in 𝑉𝑠() {
 selected_variants.append(𝑣);

 if (|target_set≔ target_set− {∗ 𝐴)}| < 1) {
 break;
 }
}

return selected_variants;

Figure 7 – Pseudo algorithm describing the minimum requirement selection
method. 𝐴B is a list of all activities occurring in process 𝑝, and the ∗ operator
in front of a list unrolls said list into individual components. 𝑉𝑠B is the set of
all variants of process 𝑝 which are sorted from highest to lowest occurrence,
and 𝑣 is a variant in this set. 𝐴(is a list of all activities in a given variant 𝑣.

Marcel Kolenbrander – 31 October 2022 37 - 128

behaviour in that it only searches and appends variants to the selected variants target list until all
activities in a process have been found. But where it differs is in the non repeating part: it avoids adding
more variants than necessary by only adding variants to the pool if a variant contains an activity which
has not been covered before. If, in its search, it comes across a variant which does not contain activities
which have not been seen before, it will not be added to the pool.

The pseudo algorithm for this algorithm can be defined as follows:

The primary advantage of this approach is to minimize the size of the pool, thereby minimizing the
number of optimizations that have to be run. A downside to this approach is that it could occur that a
lesser occurring variant is “overrepresented” in the pool simply by having a rare activity. Other variants
which might occur (far) more often might be skipped simply because the activities they cover have
already been covered by other, previous, variants.

3.4 Merge variant optimizations techniques
Optimization of processes in this thesis is approached with a divide and conquer approach by dividing
the problem into several smaller optimization problems. As stated in Perform variant optimizations,
a (sub)set of variants are each individually optimized. After optimizing, each variant’s solution needs to
be merged into a general solution, as stated in Merge variant optimizations. In this section, several
techniques for ordering the importance of variants are discussed. Experiments on these different
techniques are set up in Variant selection and merge methods comparison.

However, first the idea of merging needs to be elaborated on. For each of the optimized variants, there
exists a resource-activity allocation table indicating the most optimal allocation for that variant. These
tables need to be merged into a single complete resource-activity allocation table for the entire process.
For each activity, there is a set of resources, with a size of 𝑛 ≥ 1, obtained from the different variants,
from which the best resource candidate needs to be derived.

Determining the best resource for each activity, is where the following three (3) different techniques are
used. All techniques rely on a largest vote percentage basis, where the resource with the largest
allocation-percentage is allocated. For example, in the following set: 𝑉 =
{𝑎: 30%, 𝑏: 20%, 𝑐: 15%, 𝑑: 15%, 𝑒: 10%, 𝑓: 8%, 𝑔: 2%} 𝑎 would be chosen by virtue of having the
largest percentage of votes. For all three (3) techniques, this principle is identical, the different
techniques only determine how the votes are allocated. For all examples in the three (3) techniques,
Table 7 is used as the input.

target_set := {∗ 𝐴(, };
selected_variants := [∅,];

for (𝑣 in 𝑉𝑠() {
 if (|target_set ∩ {∗ 𝐴)}| > 0) {
 selected_variants.append(𝑣);

 if (|target_set≔ target_set− {∗ 𝐴)}| < 1) {
 break;
 }
 }
}

return selected_variants;

Figure 8 – Pseudo algorithm describing the minimum requirement selection
nonrepeating method. 𝐴B is a list of all activities occurring in process 𝑝, and the ∗
operator in front of a list unrolls said list into individual components. 𝑉𝑠B is the
set of all variants of process 𝑝 which are sorted from highest to lowest occurrence,
and 𝑣 is a variant in this set. 𝐴(is a list of all activities in a given variant 𝑣.

Marcel Kolenbrander – 31 October 2022 38 - 128

Table 7 – Example scenario portraying six (6) different variants all proposing a resource for four (4) activities. The occurrence
count indicates how often a variant occurs in the total process event-dataset. 𝑉$ indicates a variant, 𝑟$ indicates a resource
proposed by the variant (in the same column) for an activity, and 𝑎$ indicates an activity for which resources are proposed.

 𝑽𝟎 𝑽𝟏 𝑽𝟐 𝑽𝟑 𝑽𝟒 𝑽𝟓
Occurrence count 100 75 50 30 20 10
Occurrence percentage 35% 26% 18% 11% 7% 3%

Activity Resource
𝒂𝟎 𝑟0 𝑟& 𝑟% 𝑟1 𝑟% 𝑟%
𝒂𝟏 𝑟2 𝑟3 𝑟4 𝑟3 𝑟5 𝑟6
𝒂𝟐 𝑟7 𝑟0% 𝑟0% 𝑟00 𝑟0& 𝑟01

3.4.1 Highest count merging
The first technique, highest count merging, looks at how often a resource is put forth by the variants. In
this technique, the variant occurrence is not taken into account. This technique should hypothetically
prevent less prevalent variants from being disregarded outright. With preventing smaller variants from
being disregarded, a more favourable balance towards preventing worst case process scenarios could
hypothetically be created.

For any given activity, the average merging technique will count for each proposed resource how often
it is proposed by the variants for that particular activity. The resource which is proposed the most will
be the resource which will be allocated to the activity. If a tie occurs between two (2) or more resources,
then the resource which occurs first, sorted by variant occurrence, will be proposed for allocation.
Looking at the example in Table 7, if for activity 𝑎! resources 𝑟" and 𝑟3 would tie on count, then resource
𝑟" will be proposed.

When applying the highest count merging technique on Table 7, then the following result is to be
expected:

Table 8 – Result table of the highest count merging technique applied on the input from Table 7. Under Resources and counts,
the notation 𝑟$: 𝐶 indicates with 𝑟$ the resource and 𝐶 the respective count for that resource.

Activity Resources and counts Allocated resource
𝒂𝟎 𝑟%: 3 𝑟0: 1 𝑟&: 1 𝑟1: 1 𝒓𝟎
𝒂𝟏 𝑟2: 1 𝑟3: 2 𝑟4: 1 𝑟5: 1 𝑟6: 1 𝒓𝟓
𝒂𝟐 𝑟7: 1 𝑟0%: 2 𝑟00: 1 𝑟0&: 1 𝑟01: 1 𝒓𝟏𝟎

3.4.2 Weighted average merging
In the second option, weighted average merging, variant occurrence is considered for determining which
resource should be allocated. This technique hypothetically helps to allocate more effectively for a better
average case because variants which are more prevalent weigh in more for the allocation decision. This
better average performance is to be expected because historically based on the event-data there is a
higher chance that the more prevalent variants occur again, and with the final allocation being more
suited for these more prevalent variants, the performance for these variants should increase.

The weighted average merging works by taking the weighted average, based on occurrence count, for
each resource, and selecting the resource with the highest weighted average. The weighted average for
a resource is calculated as follows:

𝑟̃',, =
∑ 𝑝H
|2C,E|
H-!

𝑁

Equation 19 – Where 𝑃&,5 is the set of occurrence counts for the variants for a given resource 𝑟 and activity 𝑎 and 𝑝 is an
occurrence count within this set, 𝑟̃&,$ is the weighted average for resource 𝑖 for activity 𝑎, and 𝑁 is number of total cases (the
sum of all occurrence counts for all variants).

Marcel Kolenbrander – 31 October 2022 39 - 128

When considering the example data in Table 7, and focussing on activity 𝑎! and resources 𝑟! the
weighted average score for 𝑟! is:

𝑃!,! = {50, 20,10}

𝑁 = 285

𝑟̃!,! =
80
285

= 0.281

A tie occurrence in the weighted average, will be dealt with in the same manner as in the highest count
merging method. Expanding this principle to the entire example data, the following results are to be
expected:

Table 9 – Result table of the weighted average merging technique applied on the input from Table 7. Under Resources and
counts, the notation 𝑟$: 𝐶 indicates with 𝑟$ the resource and 𝐶 the respective weighted average.

Activity Resources and weighted average Allocated resource
𝒂𝟎 𝑟%: 0.281 𝑟0: 0.351 𝑟&:0.263 𝑟1:0.105 𝒓𝟏
𝒂𝟏 𝑟2: 0.351 𝑟3: 0.368 𝑟4: 0.175 𝑟5: 0.070 𝑟6: 0.035 𝒓𝟓
𝒂𝟐 𝑟7: 0.351 𝑟0%: 0.439 𝑟00: 0.105 𝑟0&: 0.070 𝑟01: 0.035 𝒓𝟏𝟎

3.4.3 “Pareto” merging
The third option is an option highly based around the Pareto principle of “80% of the results stems from
20% of the effort” [28]. In the context of merging techniques, this principle will be applied to heavily
skew the allocation favourably to the more prevalent variants. This amplifies the hypothesized effect
discussed in the weighted average merging technique.

Instead of using the occurrence of a variant as the weight, the occurrence now dictates the position of
the variance on the distribution line of the Pareto Distribution with the Probability Density Function
(see Equation 20)[43]. The distribution of the variance is achieved by normalizing the occurrence over
the input with min-max feature scaling (see Equation 21). However, this scaling will be reversed, such
that the highest occurrence will obtain the lowest normalized value.

𝑝𝑑𝑓I,J(𝑥) = C𝛼 ⋅
𝛽I

𝑥IG" , 𝑥 ≥ 𝛽
0, 𝑥 < 0

Equation 20 – Pareto Probability Density Function, where 𝑝𝑑𝑓 is the result of the function, 𝑥 is an input on the distribution
line, 𝛼 being the shape parameter and 𝛽 being the scale parameter [43].

𝑥(FG,F/,HG,H/(𝑥) =
𝑋G − 𝑥
𝑋G − 𝑋%

⋅ (𝑆G − 𝑆%) + 𝑆%

Equation 21 – Reversed min-max feature scaling where 𝑥# is the normalized value of the input 𝑥, 𝑋I is the highest value of all
the input values, 𝑋J is the lowest value of all input values, 𝑆I is the highest target scale value, and 𝑆J is the lowest target scale
value.

Between the Probability Density Function and the reversed scale min-max feature scaling, the two scale
factors, 𝛽, and 𝑆G and 𝑆% respectively, are to be linked. In this implementation, a scale of 𝛽 = 𝑆G = 10
will be chosen for the upper bound of the Probability Density Function input, and the lower bound will
be set to 𝑆% = 1. This means that all occurrence counts from Table 7 will translate to normalized input
values in the domain 𝐷: [1,10]. Applying the normalization, the following results for occurrence counts
should be expected:

Table 10 – Normalized occurrence counts with the values from Table 7 as inputs.

 𝑽𝟎 𝑽𝟏 𝑽𝟐 𝑽𝟑 𝑽𝟒 𝑽𝟓
Occurrence count 100 75 50 30 20 10

Marcel Kolenbrander – 31 October 2022 40 - 128

Normalized occurrence count 1 3.5 6 8 9 10
Another value to set in Equation 20 is the shape 𝛼. For this thesis a simplified shape value of 𝛼 = 1
will be used, however this hyper parameter, along with the scale parameter 𝛽 could be tuned. The
resulting Probability Density Function (see Equation 22) will be applied over the inputs from Table 7.

𝑝𝑑𝑓","!6𝑥(,++,,+,,+,,(𝑥)8 =
10

𝑥(,++,,+,,+,,(𝑥)3

Equation 22 – Pareto Probability Density Function with a reverse min-max scaling applied where 𝑋I = 100,	𝑋J = 10,	𝑆I =
10	and	𝑆J = 1,	and	𝛼 = 1	and	𝛽 = 10.	Note	that	the	𝑥 < 0	(or	rather	𝑥# < 0	in	this	case)	from	Equation 20	is	omitted	
because	the	scaling	provided	by	𝑥#	has	a	lowest	bound	of	𝑥# = 1.	

The application of the Probability Density Function and its configuration are done by calculating for
each resource the sum of all pdf values based on the occurrence counts of the variants putting forth the
resources for a particular activity. The resource with the highest accumulated pdf values will be allocated
for an activity. Tie occurrences are dealt with in the same manner as in the highest count merging method
and weighted average merging method. The accumulated pdf values for a resource are calculated as
follows:

𝑟̂',,K,L,FG,F/,HG,H/ = ; 𝑝𝑑𝑓I,J �𝑥(KG,K/,LG,L/6𝑝H8�

|2C,E|

H-!

Equation 23 – Where 𝑃&,5 is the set of occurrence counts for the variants for a given resource 𝑟 and activity 𝑎 and 𝑝 is an
occurrence count within this set, 𝑟̂&,$ is the sum of the pdf values for resource 𝑖 for activity 𝑎, 𝑝𝑑𝑓M,N is the Pareto Probability
Density Function from Equation 20 and 𝑥#O",O#,P",P# is the Reversed min-max feature scaling from Equation 21.

When considering the example data in Table 7, and focussing on activity 𝑎! and resources 𝑟! the
accumulated pdf value for 𝑟! is:

𝑃!,! = {50, 20,10}

𝑟̂!,!,,,+,,++,,+,,+,, = 0.278 + 0.123 + 0.100 = 0.501

Applying Equation 23, with the configurations shown in Equation 22 (where the normalized values are
presented in Table 10), to the entire example data, the following results are to be expected:

Table 11 – Result table of the weighted average merging technique applied on the input from Table 7. Under Resources and
counts, the notation 𝑟$: 𝐶 indicates with 𝑟$ the resource and 𝐶 the respective sum of the pdf values.

Activity Resources and 𝒑𝒅𝒇 sum Allocated resource
𝒂𝟎 𝑟%: 0.501 𝑟0: 10.0 𝑟&:0.816 𝑟1:0.156 𝒓𝟏
𝒂𝟏 𝑟2: 10.0 𝑟3: 0.972 𝑟4: 0.278 𝑟5: 0.123 𝑟6: 0.100 𝒓𝟒
𝒂𝟐 𝑟7: 10.0 𝑟0%: 1.09 𝑟00: 0.156 𝑟0&: 0.123 𝑟01: 0.100 𝒓𝟗

3.5 Multi-objective optimization
The process optimization method described in this thesis is designed to exist within a business
environment. More specifically, the optimization method should optimize business processes and supply
chain processes. In the introduction, Optimization definition, several objectives have been defined. Up
and until now, the proposed method has been primarily focussed on single objective optimization.
However, within a business environment, single objective optimization or rather prioritisation, is hardly
favourable. Ideally all objectives are optimized to their theoretical best but depending on circumstances
this is not always possible. Therefore, multi-objective optimization exists as a compromise between
objectives. More specifically, it exists as a compromise between objectives on a Pareto optimum front,
where improving one objective probably results in worsening the other objective. Given this setup, this
optimizer should apply a technique which allows for multi-objective optimization within the
environment, goals, and constraints setup within this thesis.

Marcel Kolenbrander – 31 October 2022 41 - 128

3.5.1 Multi-objective optimization applicability
Before looking at the specific possible approaches, and specific possible implementation options, a case
should be reviewed to show that multiple objectives could have compromising effects on one and
another. In this thesis a method for constructing test-, or rather experiment-process-traces will be
proposed. This method of generating experiment-process-traces will also be used in this section to
demonstrate that within certain environments, a possible compromise, with an accompanying Pareto
optimum front, between objectives can occur.

In 10.7 a fully detailed setup of the trace generator parameters is defined. Here a short description of the
generated model will be provided. In order to demonstrate a solution space where two objectives do not
necessarily provide an absolute optimum, where both objectives are optimally minimized, a simple
process is set up with only four (4) activities. Two (2) of these activities are sequenced activities, and
two (2) activities are looped activities. A visual representation of the process can be seen in Figure 9.

Figure 9 – Pareto Example Process

Besides the process, a set of resources is required to start generating a full trace. In order to create a
problem space which offers a compromise between multiple objectives, several sets of resources are to
be generated. These different sets of resources are each “specialized” in a specific objective. Note that
“specialized” in this context means that the simulation base values and certain modifiers are favoured
for a particular objective. In this specific case, three sets of resources are generated. For this example,
one set is specifically generated to have more favourable properties for throughput time, one is
specifically generated to favour cost performance, and one set is a balanced performer for both
objectives, but in both cases worse than the “specialized” resources for one particular objective. These
resources are similar in setup as the ones which will be used in the experimentation. Please refer to
Resource simulation values, to find a full justification for the reasoning and “real-world-comparing”
for these resources.

The combination of the process and set of resources results in a process trace containing a variety of
different process variants, and activity-resource combinations. Specifically, 1000 different cases, or
instances, of the above process has been simulated, which resulted in five (5) different variants, and 23
unique activity-resource combinations.

To show the applicability of multi objective optimization on this particular case, it should be
demonstrated that the solution space shows a compromise between the two (2) objectives. This means
that, in order to show this, the (entire) solution space should be developed. Developing the solution
space first requires developing the models which are going to provide the throughput and cost results
based on their application to the process. The models which are developed for this applicability
showcase, are based on polynomial models, as described in Polynomial regression, where the per
model degree is developed according to the exhaustive per model best degree approach as introduced in
Multiple Model Issue. After these models have been developed, they can be used to develop the
complete solution space. Note that for this example, only the complete solution space for a found variant
of this process will be developed. The variant which is developed is the second variant, which has a
pruned process tree of the shape as shown in Figure 10. This variant displays two (2) instances of the
loop (activities 'a_a' and 'a_d') as seen in Figure 9.

Marcel Kolenbrander – 31 October 2022 42 - 128

Developing this solution space is accomplished by simulating every possible, legal (as defined by its
constraints set in Constraints), combination of resources and activities through the objective functions
from Objective Functions and then recording the results from the objective functions. This results in
the following solution space:

Figure 11 – Pareto Optimum front demonstration for the process in Figure 9. Please refer to 10.8 for a larger version.

This fully developed solution space shows every feasibly and legal possible solution outcome for the
second variant of the above-described example process. The dashed line in Figure 11 illustrates the
Pareto optimum front where all dominating (or rather non-dominated) solutions exist. Sliding across this
line would give an optimum compromise between the two (2) objectives.

The solution space in this applicability example shows that for this particular case a multi-objective
optimization strategy is required to get “acceptable” results. One point of discussion is how well this
translates to real world applications. This example has been specifically generated to create a
compromised solution space; however, it is not entirely unrealistic to assume that a real business and/or
supply chain application could have specialized resources. Within a real-world application, a set of
resources could exist which are highly specialized for high throughput realizations (meaning low
throughput time), but which are expensive because of it, and on the other hand, a set of resources could
exist which are specialized in cost excellence, but therefor lack in raw throughput capabilities. So,
despite this being a specifically simulated and crafted scenario, the possibility of the existence of
specialized resources does merit the need for multi-objective optimization strategies.

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0

CO
ST

TIME

Solution space cost versus time

Cost vs. Time
Pareto Front

Cost vs. Time
Solution Space

('>',
 ['a_b', 'a_c', 'a_a',
 'a_d', 'a_a', 'a_d',
 'a_a'])

Figure 10 – Pruned second variant process
tree of the process in Figure 9

Marcel Kolenbrander – 31 October 2022 43 - 128

3.5.2 Multi-objective optimization techniques
In the above subsection, the need for multi-objective optimization techniques and strategies has been
laid out. In this subsection, different techniques will be evaluated for the optimization method described
in this thesis. In the next subsection, the implementation of the best fitting technique will be laid out.

The main goal of multi-objective optimization is to find a solution somewhere in the solution space,
which is a dominating solution, or in other words, which lies on the Pareto optimum front. This means
that for a given dominating solution, no other combination can be found where both objectives improve.
The only manner of improving one objective in this sub-set of solutions is by compromising on the other
objective. Ideally a multi-objective technique is able to slide along the Pareto optimum front by adjusting
some parameter determining the importance weighing of the objectives.

In order to evaluate different techniques, an acceptable set of minimum requirements needs to be
defined. This set of requirements needs to work within the confines of the problem statement and
proposed method of this thesis. As described throughout previous sections, this thesis aims to propose a
generalizable method for optimizing a (business) process and/or supply chains by means of event-log
analysis. This brings out a problem specific to this thesis: the problem, and therefor solution space, may
be completely different between different cases thrown at the optimizer. The exact shape and behaviour
of the objective models is not known before the start of the optimization process. More precisely, the
shape and behaviour of the models are only known after all the steps of the optimization process method
have been executed. Despite this, the optimizer should work regardless of what shape or type of
behaviour the models, derived from the input trace, show. It should optimize regardless of knowing the
solutions space it can work in. With the possibility of the models being completely different between
cases, the solution space can be completely different in shape and properties between cases as well. A
solution space could have a single point best objective with only one (1) dominating solution, or a Pareto
optimum front with multiple dominating solutions, furthermore, the solution space could be convex, and
it could also be non-convex. Lastly, the absolute min and max values of an objective are not known
beforehand. This brings out the following requirements within which the multi-objective optimizers
need to work in:

• NO (ABSOLUTE) MIN MAX KNOWLEDGE The multi-objective optimization techniques need
to be able to work without having any prior knowledge of the absolute min and max values of
each objective;

• CONVEX AND NON-CONVEX The multi-objective optimization techniques must be able to
handle both convex and non-convex solution spaces;

• NO KNOWLEDGE PARETO FRONT SLIDING Without any (prior)knowledge of the shape,
domain, range and behaviour of the underlying models, the multi-objective optimizer should be
able to offer a sliding parameter which allows for sliding over all, or most, possible dominating
solutions;

• SCALE INDEPENDENT Finally the multi-objective optimization technique needs to be able

In this thesis, only classical multi-objective techniques will be evaluated, as at least one of these
techniques (as described further on) suffices in achieving an acceptable multi-objective optimization
strategy for this particular use case. Whilst genetic multi-objective optimization algorithms offer certain
advantages such as providing a set of solutions instead of a single point solution [44], in this thesis the
scope multi-objective optimization is limited to exploring whether multi-objective optimization is
possible within this particular problem statement and proposed method. However, in future research,
genetic algorithms can also be explored within the same requirements/constraints as described above.
The primary goal and added value of genetic algorithms would then be to develop a set of optimal
solutions instead of a point.

Marcel Kolenbrander – 31 October 2022 44 - 128

The classical multi-objective optimization techniques which will be explored are THE WEIGHTED SUM
METHOD, THE e-CONSTRAINT METHOD, and THE WEIGHTED METRIC METHOD.

3.5.2.1 Weighted Sum
The weighted sum method is a method where multiple objective functions are combined into one (1)
single objective function by means of applying weights. The collective objective function is defined as
follows:

𝑤 ∈ 𝑊:minimize6𝐹M(𝑥)8 = minimize�;𝑤N𝑓N(𝑥)
|M|

N-!

�

Equation 24 – Weighted sum of all objective functions where 𝑂 is the set of all objectives and 𝑜 is an objective from this set,
where 𝑊 is the set of respective weights to be applied to each objective from 𝑂 and 𝑤 is a weight from this set, 𝑥 are the input
variables or single input variable for all objective functions from 𝑂.

The primary advantage of the weighted sum method is its simplicity of implementation. No prior
knowledge about the solution space and objectives is required to get this method to work. The only
aspect which needs to be set is the weights to apply to each objective in order to make this multi-
objective optimizer work. However, with its simplicity comes several disadvantages [44], [45].

The first disadvantage is the difficulty of setting the weights. When the objective functions have entirely
different scales, the weights must be adjusted for that. Another element which needs to be considered is
the magnitude of outcomes produced by the objective functions. If one objective function for example
has an outcome difference of lets say ten (10) between solutions, and another objective has an outcome
difference of lets say 1000 for the same solutions, then the weights need to be adjusted for this. If weights
are set incorrectly, the found solution after optimization might not even be a dominating solution on the
Pareto optimum front.

Even though earlier it was stated that “No prior knowledge about the solution space and objectives is
required” to get this method to work, this is only true for just getting it to work. For getting this method
to work effectively and acceptably, so to produce solutions on the Pareto optimum front, the exact
behaviour and shape of models and objective models is required, which goes against one of the
requirements.

Another problem with the weighted sum method, is that it cannot find some solutions on the Pareto
optimum front in case of a non-convex solution space. This is also problematic, as some process cases
might produce non-convex solution spaces, as is for example the case in Figure 11.

3.5.2.2 e-Constraint
The e-constraint method, unlike the other two (2) methods does not alter the expression which will be
optimized for by minimization. The e-constraint achieves multi-objective optimization by means of
introducing an additional constraint. This additional constraint is essentially an expression representing
one of the objective functions, which will be limited to a certain maximum value, which is the e
parameter.

As the optimization functions are not changed, the actual optimization expression does not change as
compared to single-objective optimization. However, for the constraints, the following expression can
be defined:

∀𝑜 ∈ 𝑂%, ∀𝜖 ∈ Ε: 𝑓N(𝑥) ≤ 𝜖N

Equation 25 – e-constraints for all but one(1) objective function, where 𝑂J is the set of all objective functions, with the
exception of the primary target objective function and 𝑜 is an objective function from this set, where 𝛦 is the set of all
constraining epsilon parameters respective to the set of objectives and 𝜖 is an epsilon constraint from this set, 𝑥 are the input
variables or single input variable for all objective functions from 𝑂J and also including the primary target objective.

Marcel Kolenbrander – 31 October 2022 45 - 128

The primary advantage of the e-constraint method is that it works with both convex and non-convex
problems, and it can be scale and magnitude independent if epsilon is chosen cleverly [44], [46]. In this
method, it is important to carefully choose the epsilon value for every objective function, as this
determines the range of (dominating) solutions this objective function will accept. This does require
some knowledge of the feasible solution range, however this can also be approximated. And, unlike the
weighted sum method, a poorly chosen epsilon value does not result in a dominated solution, so, as long
as the epsilon values do not constrain outside of the solution space, an optimal solution on the Pareto
optimum front should always be found.

3.5.2.3 Weighted Metric
The weighted metric method, or the Tchebycheff method, again tries to combine multiple objectives
into one (1) single objective to optimize for. The weighted metric method seems similar to the weighted
sum method, in that weights are applied to every objective function, however, before weights are
applied, the objective functions are adjusted with the difference between them and the vector elements
of an ideal solution. Lastly there is a scaling factor which determines how the final objective function is
shaped. The objective function is constructed as follows:

𝑤 ∈ 𝑊, 𝑧∗ ∈ 𝑍⋆, 𝐷0: [1,∞):minimize6𝐹M(𝑥)8 = minimize�;𝑤N|𝑓N(𝑥) − 𝑧N⋆|0
|M|

N-"

�

"
0

Equation 26 – Weighted metric sum of all objective functions where 𝑂 is the set of all objectives and 𝑜 is an objective from this
set, where 𝑊 is the set of respective weights to be applied to each objective from 𝑂 and 𝑤 is a weight from this set, 𝑥 are the
input variables or single input variable for all objective functions from 𝑂, and 𝑍⋆ is the ideal solution vector of which 𝑧⋆ are
elements in this ideal solution vector, and finally 𝑝 is a scaling vector.

Of the three (3) methods, the Tchebycheff method is the most “complete” method, as it guarantees that
all Pareto optimum solutions can be found with a given ideal vector 𝑍⋆ [44], [47], [48]. It is also able to
deal with both convex and non-convex problems, unlike the weighted sum method. However, its
implementation requires finding ideal vector 𝑍⋆. This can be found by optimizing for every individual
objective function. However, what is less ideal is the need to know the actual minimum and maximum
objective values. These could be found by again optimizing with minimization and maximization for
every objective function, but this is not ideal when the number of objectives increase, and the size of the
objectives (the complexity of the process) increases. Lastly, this method is limited by the 𝑝-value, for a
small 𝑝-value, not all Pareto-optimal solutions are obtained, and on the other hand, for large 𝑝-value the
complexity of the objective function increases.

Comparing all three (3) methods, the weighted sum method is the first method to fall out of favor. It
requires too much prior knowledge about the shape and behavior of the models and solution spaces for
it to be a feasible technique to use in a generalistic optimization method. It is also not able to optimize
for non-convex solution spaces. The other two (2) methods are both feasible candidates for multi-
objective optimization techniques within this optimization problem. The primary advantage of the
weighted metric approach over e-constraint is a guarantee to find all Pareto optimum solutions.
However, where the weighted metric method requires the actual absolute min and max values for all
objective functions, a guarantee of finding all Pareto optimum solutions can also be achieved with the
e-constraint method with a less strict requirement. With the e-constraint, a theoretical min and max value
can also be used, which, in the optimization problem of this thesis, is relatively easy to obtain.
Furthermore, it is only required for the constrained objectives, not for all. Lastly, the e-constraint is a
much simpler method to implement within the conditions of this thesis, whilst theoretically being able
to achieve the same results. With this in mind, the multi-objective method which will be used in this
thesis will be the e-CONSTRAINT METHOD.

Marcel Kolenbrander – 31 October 2022 46 - 128

3.5.3 Implementation of the e-constraint method
The e-constraint method requires three (3) components: the primary objective function, the constrained
objective function(s), and some epsilon value. The main element which needs to be figured out for
implementation is setting the e-constraint parameter for Equation 25. As stated in e-Constraint this
parameter needs to be set carefully in order to prevent it from constraining the constrained objective
outside of its feasible solution space. It should also be set in such a way that the objective is not
compromised too much, thereby effectively turning the problem into a single-objective optimization
problem.

One way of setting the right epsilon value, is to define it as a point between the minimum and maximum
values of the objective function. However, since the shape and behaviour of the models and solution
space are not known prior to running the optimization step, the real min and max values are not known.
Thankfully though, it is possible to construct a theoretical min and max for the objective function with
relative ease. Even though the shape and behaviour of the objective functions, and the solution space
are not known, it is known how to calculate the objective function values using the functions from
Objective Functions. And, a set of models, as regression models per activity-resource combination, is
also available, and in generating the models, the mean performance of a particular activity-resource
combination can be recorded. With these components, a theoretical min and max value for an objective
function can be found.

In order to find Tmin and Tmax, where T indicates theoretical, the objective function needs to be
calculated twice. Once with the most efficient (lowest mean), for that objective, activity-resource
combinations, and once with the least efficient (highest mean), for that objective, activity-resource
combinations. Effectively this done by finding all target activities, activities in the current variant to be
optimized, and then for every activity find the best or worst resource based on the mean respectively.
This should be done without any regard for the constraints set in Constraints. This also explains why
these min and max values are theoretical. The activity-resource combination sets for min and max might
not be feasible solutions because they might not meet the constraints. However, for defining the epsilon
range, this is acceptable, because this still approximates the actual min and max values of the objective
function. Adding to that, there is a fair probability that the theoretical min and max values are smaller
and greater than the actual min and max values of that objective, thereby giving a fair probability that
all solutions on the Pareto optimum front can be found by picking points for epsilon between the Tmin
and Tmax values.

Concretely, the above translates into the following constraint setup:

∀𝑜 ∈ 𝑂%, 𝑐 ∈ 𝐶, 𝜖 ∈ Ε: 𝜖N = 𝑐N(𝑇G − 𝑇%) + 𝑇%

Equation 27 – The e-constraints worked out for this application, where 𝜖R from Equation 25 are defined as a point in the
range between 𝑇I (Tmax) and 𝑇J (Tmin), where the point in this range is defined by 𝑐R which a the compromise-allowance
factor, between (inclusive) zero (0) and one (1) and is a real number, for a given objective from the larger set 𝐶 which is the
set of all compromise-allowance factors for all objectives in 𝑂J. 𝑂J is the set of all objectives, with the exception of the primary
target objective and 𝑜 is an objective from this set, and finally 𝛦 is the set of all constraining epsilon parameters respective to
the set of objectives and 𝜖 is an epsilon constraint from this set.

Note that there is an extra factor added in this constraint setup: 𝑐. This factor is the compromise-
allowance, which is a value between (inclusive) zero (0) and one (1). This value indicates how much the
constrained objective is allowed to be compromised on. This essentially indicates how close to Tmin or
Tmax the constrained objective should be. Note, the compromise-allowance 𝑐 ≠ 𝜖! It does however
decide the final epsilon value.

A little back, it was mentioned that finding all target activities is related to the current variant. This is
because, just like with single objective optimization, multi-objective optimization, or optimization as a

Marcel Kolenbrander – 31 October 2022 47 - 128

whole in order to improve the performance of a process, is not done on the entire process, but on its
variants as is described in Perform variant optimizations.

Applying the Tmin and Tmax technique of finding the best and worst activity-resource combinations to
the solution space example from Figure 11, the following new solution space is developed:

Figure 12 – Pareto Optimum front demonstration for the process in Figure 9. With an added Tmin Tmax solution space
constraint for the cost objective. Please refer to 10.9 for a larger version.

As described earlier, Tmin and Tmax could theoretically be smaller and/or greater than the actual min
and max of its respective objective function, but, as is seen in this case, this is not always the case.
However, despite not all solutions being available, still a large set of solutions along the Pareto optimum
front are available.

The actual constrained solution space can now be found by applying a compromise-allowance factor. In
this case, Tmin and Tmax are ~1.102 and ~3.024 respectively. If an arbitrary compromise-allowance
factor of for example 0,35 is applied, meaning that the calculated value for the cost objective may not
be worse (higher) than 35% of the Tmin and Tmax constrained solution space, then the e-constraint
evaluates to ~1.775 in accordance with Equation 27. This then results in the following e-constrained
solution space:

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0

CO
ST

TIME

Tmin tmax limited solution space

Cost vs. Time Pareto Front

Cost vs. Time Solution Space

T-Max

T-Min

Marcel Kolenbrander – 31 October 2022 48 - 128

Figure 13 – Pareto Optimum front demonstration for the process in Figure 9. With an added Tmin Tmax solution space
constraint and an applied e-constraint with a compromise allowance of 𝑐 = 0.35 for the cost objective. Please refer to 10.10
for a larger version.

This leaves only the unmarked area as the feasible and allowed solution space. Next, the optimizer will
optimize, rather minimize, for the throughput time objective. The solution with lowest possible
throughput time will most probably evaluate to the solution of: {𝑜.: 4.046,36; 𝑜+: 1.748,91}. This is
worse than the best solution for either throughput time or cost in single-objective optimization, but it
could be an acceptable compromise between the two (2) objectives where neither result would increase
to an extreme value.

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0

CO
ST

TIME

Epsilon constrained solution space

Cost vs. Time Pareto Front

Cost vs. Time Solution Space

Epsilon

Epsilon

T-Max

T-Min

Marcel Kolenbrander – 31 October 2022 49 - 128

4 Data Requirements
This section about data requirements will cover two (2) aspects on data, namely the shape and format of
the data required to perform optimizations. The first part is the requirements for the initial process
mining part, where a process tree is constructed based on trace data, and the second part is about the
data requirements for the model construction step discussed in Find resource cost figures and Cost
Figure Variants. Besides the shape and format of the data, the quantity aspect will also be discussed in
this section. The quantity question is split in two (2) parts, one (1) specifically aimed at the quantity
requirements for the process miner, and the second part is about the requirements for the cost modelling
techniques.

4.1 Optimizer data requirement
The data requirements from the process optimizer is split up in three (3) parts. The requirements from
the process miner (the inductive miner), the requirements from the optimizer itself and then the
requirements from the different objective functions. The three (3) subsections below cover these three
(3) parts.

4.1.1 Process miner data requirements
The process miner used for the optimizer in this thesis is the pm4py process miner [10], [11]. This
process miner has three (3) specific data requirements. From the pm4py process mining library, the
inductive miner is used (refer to Existing theories on process mining for an in-depth elaboration on
the miner choice), which tries to construct a chronologically correct process tree, based on a data trace.
The inductive miner has three (3) data requirements, which are as follows:

• CASE IDENTIFIER every trace must have case identifiers which are unique and assigned to one
(1) single process instance;

• ACTIVITY IDENTIFIERS activities in a process must have an identifier, unique number or
unique descriptor string. Activity ids are unique and consistent across all cases. Activities may
occur multiple times in a process;

• START TIMESTAMP the start timestamp is used to indicate the order of activities in a process,
indicate loop order (distinguish between base and looping activities), and show concurrent
activity occurrences;

As stated above, time stamps help determine which activities happen concurrently, or rather, in parallel.
There is one (1) special condition to detect whether activities, or sub processes, occur in parallel. The
process miner only picks up a parallel occurrence when the sub processes are repeatedly shown in
parallel, and only when their starting order varies between cases. This phenomenon can be demonstrated
with the following two (2) example cases:

Table 12 – Example process for parallel activity occurrence.

Case ID Activity ID Start Timestamp
0 a 00:00
0 b 01:00
0 c 01:00
0 d 03:00
1 a 15:00
1 b 16:30
1 c 16:30
1 d 20:00

In this trace activities c and b occur in parallel. However, when applying the inductive miner, all
activities will be shown in sequence. An output of the process miner for this example dataset can be
seen in Figure 14.

Marcel Kolenbrander – 31 October 2022 50 - 128

Figure 14 – BPMN process representation of the example process shown in Table 12.

Table 13 – Example process for parallel activity occurrence.

Case ID Activity ID Start Timestamp
0 a 06:00
0 b 07:00
0 c 07:00
0 d 10:00
1 a 12:00
1 c 13:00
1 b 13:00
1 d 16:00

This second trace has a similar setup as the first trace, where again activities c and b occur in parallel.
But this time activities c and b have been swapped around between the two (2) cases, whilst having
identical start timestamps. Even though the two (2) processes are identical, with exception to the activity
trace recording swap, the second trace will show a parallel sub process in the inductive process discovery
result. An output of the process miner for this example dataset can be seen in Figure 15.

Figure 15 – BPMN process representation of the example process shown in Table 13.

4.1.2 Process optimizer base data requirements
Besides the requirements from the process miner, there is one (1) other base requirement. The optimizer
in this thesis attempts to optimize the allocation of resources to activities. The fourth requirement,
coming from the optimizer, is therefor resource ids. Concretely the resource identifier requirement is as
follows:

RESOURCE IDENTIFIERS resources get unique identifiers, unique numbers or unique descriptor strings.
Resource ids must be consistent across all cases. Resources can occur multiple times in a case and can
be assigned to multiple activities and/or an activity multiple times. Multiple resources may not be
assigned to one (1) instance of an activity at the same time, but they can be assigned to multiple instances
of an activity in a case.

4.1.3 Objective function data requirements
In this thesis, as is introduced in Optimization definition, there are three (3) objective functions. These
three (3) objectives bring forth their own data requirements. This thesis will only cover the additional
data requirements for the three (3) objective functions discussed in this thesis. However, with the
introduction of more objective functions, more data format requirements can arise.

The data requirement for the three (3) objectives are as follows:

• ACTIVITY EXECUTION DURATION TIME This field indicates how long the activity-resource
combination took to finish its task. The format or unit may be arbitrary, as long as it is consistent

Marcel Kolenbrander – 31 October 2022 51 - 128

between cases. The optimizer will not calculate the execution duration time on its own based on
timestamps, as this might be ambiguous;

• ACTIVITY WAIT TIME This fields indicates how long this activity-resource combination had
to wait until it could start its task. The format or unit may be arbitrary, as long as it is consistent
between cases. The optimizer will not calculate the execution duration time on its own based on
timestamps, as this might be ambiguous;

• (Optional) END TIMESTAMP This optional data column could be added in order to calculate
the activity execution duration time and/or wait-time in pre-processing if this is absent prior to
the start of the optimization process;

• MONETARY COST This indicates how much the execution of a task in an activity-resource
combination cost. The unit may be arbitrary, as long as it is consistent between all cases.

4.2 Data quantity requirements
The second question related to data requirements is: how much data is required at a minimum. There
are two (2) components which should be considered when trying to answer this question. Both the
process miner and the cost models have their own data quantity requirements.

4.2.1 Process miner data quantity requirements
Process mining does not necessarily have a minimum requirement for discovering processes [49].
Sequential activities and loops could be discovered within one (1) or two (2) cases, as long as the
activities are unique in their identification. For parallel components an anecdotal example was provided
in Fout! Verwijzingsbron niet gevonden., showing that in order to discover these two (2) parallel
branches, two (2) cases should at least be present where the two (2) branches are swapped in occurrence.
One (1) hypothesis which could arise is then that the minimum number of required cases (in which the
branches are all swapped) is determined by the number of parallel branches in a parallel component,
because they need to occur in several different configurations.

Another element worth noting when discussing process miners, is the XOR-choice component. In a
process-case only one (1) branch of a XOR-choice component will be shown at a time. So, in order to
cover all different choices, the number of cases should hypothetically be the number of different choice
branches for an XOR-choice component.

More importantly than covering all different tree variants, is having a representative dataset. If certain
variants occur 30% of the time when running an instance of a process, then the dataset should closely
mirror that. The number of required cases, or rather the quantity requirement for process mining therefor
is hard to define, it should at least be representative, and the exact requirement to cover a large majority
of the different variants, completely differs depending on the complexity of a process tree.

4.2.2 Objective function modeller data quantity requirements
The objective function modeller in this thesis is based on either linear or polynomial regression. Note
that there is not one (1) big model, but rather multiple smaller models, therefor this minimum
requirement is on a per model basis.

Regression depends on an intercept and a (set of) slope(s) as is shown in Cost Figure Variants. Linear
regression, by virtue of its inner workings, could determine the intercept and slope of a dataset with two
(2) datapoints [36], but this would probably not give a good correlation between the variables. There are
statistical tests which could help determine whether the number of datapoints would result in a
representative model, one of these tests would for example be a Type two (2) risk error test. However,
there have been done several studies which ask this exact question [50], [51]. From these studies, the
answers range from between ten (10) datapoints per variable in a model, to at least 25 datapoints to get
a representative model.

Marcel Kolenbrander – 31 October 2022 52 - 128

5 Experiment Setup
In the method and design section (Method & Design) the process optimizer has been fully
conceptualized and designed. However, several parts of the process optimizer method have several
possible variants which can be used to achieve the same goal. For these components of the process
optimizer, it has yet to be determined which method is the overall best method for that particular
component. Figuring out which method is best per component, will be done through a set of experiments.

A second objective in the experiments is, is to show whether the optimizer can improve processes or not
and how it behaves depending on changing parameters and processes. This is not expected to give an
absolute improvement potential promise, but rather show that the divide and conquer concept is
functional.

This section will be split up in three (3) parts. First the setup of the datasets for the experiments are
discussed. Secondly the experiments themselves will be set up. Finally, the third section is about the
experimentation environment on which all data is generated, and on which all experiments are
conducted.

Note that all experiment data, intermediary results, configurations and prototype source codes are
available through the repository linked with this thesis. The prototype source codes includes both the
source codes for the optimizer as well as for the experiment data generator. The repository is accessible
through “https://github.com/MarcelKolen/process-mining-resource-allocation-optimizer”.

5.1 Experiment Data
To cover a wide set of different scenarios, several different process trees, with varying properties, will
be generated. For each trace all activities in the different trees receive a randomly generated model
which will follow a set of rules. And, for every trace related to a tree, a set of resources will be added
which are also randomly generated but do follow a set of rules and constraints.

These datasets will be generated with a five (5) step experiment-trace generator. The five (5) steps are
as follows:

1. PROCESS TREE CONSTRUCTION The first step is to randomly generate a process tree with a
set of unique activities;

2. ADD SIMULATION VALUES TO PROCESS TREE To allow for different variants, the tree has to
be extended with simulation values;

3. CONSTRUCT SIMULATION ACTIVITIES Next is the construction of simulation values for the
activities, where certain base values and modifiers for the objective functions are added to the
activities;

4. CONSTRUCT SIMULATION RESOURCES In order to make the datasets suitable for activity-
resource allocation optimization, resources also have to be added which will also have base
values and modifiers for the objective functions;

5. GENERATE TRACES Lastly a number of simulation runs will be performed based on the rules
and values set out in the previous steps in order to construct a dataset with multiple cases.

This section will cover how the experiment-trace generator works as well as how the parameters are
setup in order to achieve a diverse set of experiment datasets.

5.1.1 Process trees
A set of five (5) different process trees will be generated. Three (3) trees will consist solely out of one
of the primary components, those being: loops, parallel sub-processes and XOR-sub-processes as
introduced in Determine process variants. Two (2) other trees will be combined trees, where both trees

Marcel Kolenbrander – 31 October 2022 53 - 128

should contain all tree components, totalling five (5) trees which are to be used to construct experiment
data.

Note that for the following five (5) trees, sequential structures are always included, as trees often only
exist when they have sequential activity structures.

These trees are going to be generated using a pre-existing tree generating algorithm from the pm4py
library. Pm4py has several process simulation algorithms [10], [11], however in this thesis only a simple
tree generator will be used. This tree generator does not produce traces, it only produces a process tree.

This process tree generator takes a set of parameters. The list of (default) parameters (settings) can be
found on the pm4py reference page [11]. For every process tree below, the used parameters and
generation seeds will be recorded. There is one (1) parameter which deviates from the default settings
for all trees, which is the silent probability parameter. This will be set to zero (0) for all trees.

5.1.1.1 Loops only
This tree will only include loops as a special tree structure. Parallel and XOR-choice sub-processes are
not included in this tree type. The parameters used in the process trace generator for the tree generator
are as follows:

Table 14 – Settings used for the loops only tree.

Seed 0 Seed 1 Min Max Mode Silent (%) Choice (%) Parallel (%) Loop (%)

4674 6666 5 8 6 0.0 0.0 0.0 25.0
A BPMN representation of the tree is as follows:

Figure 16 – Loops only tree based on the settings shown in Table 14.

The loops only tree has been added because one (1) of the aspects of model generating, as described in
Find resource cost figures and Cost Figure Variants, is tracking resource and activity occurrence.
The current cost description models in this thesis also have two (2) input variables: resource and activity
occurrence for a respective activity-resource pair. This tree type should specifically stress the model
component of the process optimizer.

5.1.1.2 Parallel branches only
This tree will only include parallel. Loops and XOR-choice sub-processes are omitted from this tree
type. The parameters used in the process trace generator for the tree generator are as follows:

Table 15 – Settings used for the parallel branches only tree.

Seed 0 Seed 1 Min Max Mode Silent (%) Choice (%) Parallel (%) Loop (%)

722101364 1020699242 5 8 6 0.0 0.0 25.0 0.0
A BPMN representation of the tree is as follows:

Marcel Kolenbrander – 31 October 2022 54 - 128

Figure 17 – Parallel branches only tree based on the settings shown in Table 15.

The parallel branches only tree has been added because one (1) of the objective functions, the time
objective function specifically, needs to correctly deal with parallel occurrences of activities as described
in Objective Functions.

5.1.1.3 XOR-branches only
The next tree will only include XOR-choice sub-processes. Loops and parallel sub-processes are omitted
from this tree type. The parameters used in the process trace generator for the tree generator are as
follows:

Table 16 – Settings used for the XOR-branches only tree.

Seed 0 Seed 1 Min Max Mode Silent (%) Choice (%) Parallel (%) Loop (%)

1911086572 193421582 5 8 6 0.0 25.0 0.0 0.0
A BPMN representation of the tree is as follows:

Figure 18 – XOR-branches only tree based on the settings shown in Table 16.

The XOR-choice sub-processes tree has been added because one (1) of the aspects of the process
optimizer is to detect process variants as is described in Determine process variants. This tree should
specifically stress the process variant search component of this process optimizer.

5.1.1.4 Small, combined tree
The second to last tree will be a combined tree with loops, parallel sub-processes and XOR-choice sub-
processes. The parameters used in the process trace generator for the tree generator are as follows:

Table 17 – Settings used for the small, combined tree.

Seed 0 Seed 1 Min Max Mode Silent (%) Choice (%) Parallel (%) Loop (%)

775451721 548953530 5 8 6 0.0 25.0 25.0 25.0
A BPMN representation of the tree is as follows:

Marcel Kolenbrander – 31 October 2022 55 - 128

Figure 19 – Small combined tree based on the settings shown in Table 17.

The small, combined tree is set up to stress all components of the process optimizer at once.

5.1.1.5 Large, combined tree
Finally, the last tree will be a large, combined tree with loops, parallel- and XOR-choice sub-processes.
The parameters used in the process trace generator for the tree generator are as follows:

Table 18 – Settings used for the large, combined tree.

Seed 0 Seed 1 Min Max Mode Silent (%) Choice (%) Parallel (%) Loop (%)

1961566938 1793279626 8 16 12 0.0 25.0 25.0 25.0
A BPMN representation of the tree is as follows:

Figure 20 – Large combined tree based on the settings shown in Table 18.

The small, combined tree is set up to stress all components of the process optimizer at once.

5.1.2 Simulation values
In order to generate traces, the trees are going to need simulation values attached to their components.
These simulation values dictate for example how often, and with what probability a loop may occur, and
they dictate the probability distributed across XOR-choice sub-process children.

For each tree, three (3) different simulation settings will be generated. The seed combinations are
recorded for every tree type. The simulation value generator takes three (3) parameters. The three
parameters, together with the base settings for each tree are as follows:

Table 19 – Base settings for generating all tree simulation settings.

Max loop depth Decrease loop probability Even XOR probability
6 Yes No

The settings in the table above are explained in Fout! Verwijzingsbron niet gevonden..

The simulation values and seeds for every tree are described in 10.11. In the following three (3)
subsections the two (2) simulation elements will be explained as well as their resulting formats.

Marcel Kolenbrander – 31 October 2022 56 - 128

5.1.2.1 Loop simulation values
The loop component of the trace simulator has two (2) “parameters” which can be set. The first
parameter is the max loop depth, and the second is the probability of a loop initiating another instance
of itself.

Every loop in the process tree will get a list of instance probabilities. This list has two (2) purposes. The
first purpose is to indicate how often a loop may repeat. The second purpose of the list of instance
probabilities is to indicate what the probability of a loop starting another instance of itself is. This list
works as follows: Take the list of probabilities shown in Table 20.

Table 20 – Example loop instance probability list.

Instances 0 1 2 3 4
Probabilities 86% 74% 55% 31% 17%

This list has five (5) probabilities, for five (5) instances. This means that the loop may only happen five
(5) times. If this first loop occurs, then the process simulator will look at the second instance. This
second instance has probability of 74% of occurring. This continues until all values have been covered.

The first of the two (2) parameters, max loop depth, dictates the maximum number of loop instances.
Note that the number of loops instances, which is randomly determined, can be less than the maximum.

The second parameter, decrease loop probability, dictates how the probabilities are set. If this parameter
is set to true, then the probability of a next instance may not be higher than its predecessor unless it is
the first instance. If this parameter is set to false then each loop instance can have a probability between
zero (0, or 0%) and one (1, or 100%). The domain of the probability of every instance can essentially
be defined as follows:

𝑝 ⊆ [0,1], 𝛿 ∈ {true,false}: 𝐷03,S = ®
[0,1], 𝑖 = 0 ∨ 𝛿 = false

[0, 𝐷03/,,S
G], 𝑖 > 0 ∧ 𝛿 = true

Equation 28 – Probability domain 𝐷B for every instance 𝑖 of a loop probability list where 𝛿 indicates whether “decrease loop
probability” is active or not, and 𝐷B!#$,&

I indicates the upper bound of a probability domain of instance 𝑖.

5.1.2.2 XOR-Choice simulation values
XOR-choice components are, dependent on probability settings. XOR-choice sub-trees have a set of two
(2) or more children, and each of these children has a probability of occurrence.

The behaviour of the formation of this list of child probabilities depends on the earlier mentioned
parameter XOR even probability. If this parameter is set to true every child in an XOR-choice sub-tree
will have an equal occurrence probability. If the XOR even probability parameter is set to false then
every child will have its own probability, possibly different from the others, as long as the sum of
probabilities is equal to one (1 or 100%).

5.1.2.3 Simulation tree format
The simulation values are added in a specific format. This format is setup as follows:

SEQUENTIAL COMPONENT The sequential component consists of the sequential operator (‘>’) as the
first element, and a list of children as the second element to the tuple:

(‘>’, [list of children])
Figure 21 – Sequential component of a
process tree with ‘>’ as its operator.

Marcel Kolenbrander – 31 October 2022 57 - 128

PARALLEL COMPONENT The parallel component consists of the parallel operator (‘+’) and a list of
children, or rather, a list of parallel sub trees:

LOOP COMPONENT The loop component operator is ‘*’. The loop operator is followed by a list of loop
instance probabilities. The third element is the list of children. Note that a loop only has two (2) children
in the process trace generator described in this thesis. The first child is the base activity, and the second
child is always the looping activity or looping sub-tree. The loop component is represented as follows:

XOR-CHOICE COMPONENT The XOR-choice component has three (3) elements. The XOR-choice
operator (‘X’), a list of child instance probabilities and a list of children. Note that the position of a
probability in the list corresponds with a child in the same index position in the list of children. The
XOR-choice component is represented as follows:

5.1.3 Activity simulation values
The third step is to add simulation values for each objective function (time and cost in this case) to the
activities. All simulation values for the activities for all trees are generated with the same base
parameters. The random seeds used for each tree are the same as the seeds as the ones in Simulation
values 10.11 . Note that for each tree, three (3) simulation setups are constructed. And for every
simulation setup, a unique set of activity settings is setup.

The base parameters give a probability range for how much the activity “costs” when executed for each
objective. These are set as follows:

Table 21 – Base settings for generating all activities.

Min Time Max Time Min Cost Max Cost
10 1000 10 1000

In order to simulate re-occurrence effects, for example with loops, the activities will receive a modifier
function. The independent variable indicates how often an activity is repeated in a case. Multiple
modifier functions can be provided to the experiment-trace generator, but only one (1) will be assigned
to an activity. This happens randomly according to a given probability distribution. For the re-occurrence
functions, the following settings are used:

Table 22 – Modifier functions with re-occurrence of an activity (𝑥) as input.

Time functions
Function Probability distribution

𝒇𝑨𝒕(𝒙) =
𝟏
𝟐𝒙	−

𝟏
𝟐

2
3

𝒇𝑨𝒕(𝒙) = √𝒙𝟒 1
3

Cost functions

(‘+’, [list of children])

Figure 22 – Parallel component of a process
tree with ‘+’ as its operator.

Figure 23 – Loop component of a process tree with ‘*’ as its operator.

(‘*’,
 [list of loop instance probabilities],
 [list of children])

(‘X’,
 [list of child occurrence probabilities],
 [list of children])

Figure 24 – XOR-choice component of a process tree with ‘X’ as its operator.

Marcel Kolenbrander – 31 October 2022 58 - 128

Function Probability distribution

𝒇𝑨𝒄(𝒙) = −
𝒙√𝒙𝟒

𝟐𝟎
4
5

𝒇𝑨𝒄(𝒙) = −
𝟑𝒙√𝒙
𝟐𝟎

1
5

These functions are justified in the following two (2) sub-sections.

5.1.3.1 Throughput time functions
There are two (2) throughput time functions which can be used. The first function is a linear asymptotic
function with a maximum value of zero (0) and a minimum value of lim

Q→%,0

𝑦 (approaching -0.5) within

the permissible domain 𝐷?: [1,∞). This function should decrease the throughput time “cost” with a
diminishing and limited return. This could for example simulate a production activity: when more items
are produced, the production efficiency increases and therefor the throughput time for every production
cycle decreases.

The second function is root function with a maximum value of lim
Q→S

𝑦 (approaching infinity) and a

minimum value of one (1) within the permissible domain 𝐷?: [1,∞). This function is designed to
increase the throughput time of an activity gradually when it is repeated. This function could simulate
for example an activity such as a repair service activity. Where when an activity has to be repeated, the
original problem has not been alleviated yet and the complexity of the repair activity has to increase.

5.1.3.2 Cost functions

The cost functions are both negative root functions one with a maximum value of − "
3!

 and the other

with a maximum value of − B
3!

 and both with a minimum value of lim
Q→%S

𝑦. One (1) function has a slower

cost decrease whereas the other function has more rapid cost decrease per activity run. Both are based
on the idea that starting an activity initially brings the highest costs, but once this activity has been
established, the cost per run of an activity decreases as the initial “investments” have already been done.

Finally, the exact values for all activities for every tree, and their subsequent simulation variants, are
described in 10.12.

5.1.4 Resource simulation values
The last components which are needed in order to generate experiment trace data, is a set of resource to
randomly assign, with a probability distribution, to the activities. In order to cover a wider set of
scenarios, four (4) different sets of activities are created for each tree. As with the activities setup and
simulation setting setup for the trees, for all four (4) sets will be generated three (3) times with differing
seeds. The seeds are the same seeds as used in the previous sections.

The four (4) sets of resources result from two (2) properties which can be applied. These properties are:
a set of resources will have both average performers and specialized performers, or only average
performers; and, the average resources will either have no random effects added to them, or they will
have random effects added to them. A subset of the average resources is limited to a randomly selected
few activities, so not every resource from this subset can perform all activities. Another set is freely
allocatable. The freely allocatable average resources receive a jack of all trades penalty. The specialized
resources are always unrestricted, and they also do not suffer any jack of all trades penalties.

The random effects are only added to the throughput time performance of a resource, and they will only
be applied to average performers, not to the specialized resources. These random effects should simulate
occurrences such as strikes, large holdups/traffic jams due to protests, heavy weather, etc. What should
be taken into account however is that these random effects are not at all balanced or in scale related to
aforementioned examples, they are merely randomly assigned modifiers.

Marcel Kolenbrander – 31 October 2022

59 - 128

The resources have a set of base settings. There are four (4) sets of settings to be distinguished: one (1)
for average resources without random throughput time modifiers, one (1) for average resources with
random throughput time modifiers, one (1) for throughput time effective resources, and finally one (1)
for cost effective resources. The subsections below describe the setup of the four (4) resource groups.

5.1.4.1 Base settings: average resources without random throughput time modifiers
The AVERAGE RESOURCES WITHOUT RANDOM THROUGHPUT TIME MODIFIERS resource
generator receive the following base settings:

Table 23 – Base parameter settings for average resources without random modifiers.

Min number
of resources

Max
number of
resources1

Jack of all
trades
penalty

Min time
base
modifier

Max time
base
modifier

Min cost
base
modifier

Max cost
base
modifier

3 10 0.25 -0.3 0.3 -0.2 0.2
In order to simulate reallocation effects, the resources will receive a modifier function. The independent
variable indicates how often an activity is repeated in a case. Multiple modifier functions can be provided
to the experiment-trace generator, but only one (1) will be assigned to an activity. This happens
randomly according to a given probability distribution. For every function, a threshold parameter is
added. This is a randomly determined value within a given threshold range. This threshold parameter
determines a crossover-point for the functions below where they shift behaviour. For the re-occurrence
functions, the following settings are used:

Table 24 – Modifier functions with allocation of a resource 𝑥 and a threshold value 𝜏 as input for average resources without
random modifiers.

Time functions
Function Threshold range

𝒇𝑹𝒕(𝒙, 𝝉) = e

𝒙
𝟐 , 𝒙 ≤ 𝝉

(𝒙 − 𝝉)𝟐 +
𝝉
𝟐 , 𝒙 > 𝝉

𝐷<: [3,7]

Cost functions
Function Threshold range

𝒇𝑹𝒄(𝒙, 𝝉) =

⎩
⎪
⎨

⎪
⎧−√

𝒙
𝟏𝟎 , 𝒙 ≤ 𝝉

−√
𝝉

𝟏𝟎 , 𝒙 > 𝝉

𝐷<: [5,10]

The throughput time function is based on the inverted U-theory, also known as the Yerkes-Dodson Law
[25] and the findings of other related, in terms of task-performance-task-pressure-relation, studies.
Several studies state that employee performance has some inverted U-shape relation to task pressure
and/or a relation of lower performance with (too) high work pressure [26], [27]. The essence of this
theory comes down to the following: if an employee is not pressured enough, then their performance
will be sub-optimal. This sub-optimality of their performance could for example be due to boredom. On
the other hand, if an employee is pushed too hard, so if the task pressure is too high, then the performance
of this employee will falter as well due to them becoming strained, stressed, or even in worst-case
scenarios, burned-out.

In this experiment setup, the throughput time modifier function indicates a level of performance.
Pressure will be defined as the number of activities a resource has to perform. The function is based on
a simplified version of the U-theory. In this experiment, the resources are set to already perform at an

1 Due to a bug within the trace generator, if resources are set to be limited to either some activities, or not be limited
at all, there will always be the maximum number of resources. When all resources should be limited to a set of
activities, then the number of resources is always the minimum (or close to the minimum) allowed amount. For all
settings: please assume that the number of resources will always be the max amount!

Marcel Kolenbrander – 31 October 2022 60 - 128

optimum, so there is no minimum requirement to perform optimally. Instead, the resource will only be
modelled to suffer from higher stress as their task pressure increases. At a certain level of pressure,
which is determined by a random value 𝜏 in order to simulate stress-tolerance variance between resource,
the performance of a resource will decrease in a quadratic fashion. This simulates a resource being
burned out.

The cost function is based on the notion that allocating a resource pays for that resource’s time, and that
when a resource is allocated multiple times, the cost of that resource can be shared between allocations.
This is however set to be based on diminishing returns with a hard cap. This hard cap varies between
resources and is determined randomly by the value 𝜏.

5.1.4.2 Base settings: average resources with random throughput time modifiers
The AVERAGE RESOURCES WITH RANDOM THROUGHPUT TIME MODIFIERS resource generator has
the same base settings and parameters as the resources without a random throughput time modifiers.
The only difference is between the throughput time cost function, which now has a random element
added to it:

Table 25 – Modifier function for throughput time with allocation of a resource x and a threshold value τ as input for average
resources with random modifiers.

Time functions
Function Threshold range Random value range

𝒇𝑹𝒕(𝒙, 𝝉) = e

𝒙
𝟐 + 𝝃, 𝒙 ≤ 𝝉

(𝒙 − 𝝉)𝟐 +
𝝉
𝟐 + 𝝃, 𝒙 > 𝝉

𝐷<: [3,7] 𝐷=: [0.01,0.1]

This throughput time function is similarly setup as the one in the section above. The principles are also
based on a simplified version of the inverted U-theory. The only difference is the addition of a random
element which has been explained in the overall resource setup description.

5.1.4.3 Base settings: throughput time specialized resources
The THROUGHPUT TIME SPECIALIZED RESOURCES resource generator receives the following base
settings:

Table 26 – Base parameter settings for throughput time specialized resources.

Min number of
resources

Max number
of resources

Min time base
modifier

Max time base
modifier

Min cost base
modifier

Max cost base
modifier

2 4 -0.5 -0.5 0.5 0.5
The throughput time specialized resources have the following functions applied to them.

Table 27 – Modifier function for throughput time and cost with allocation of a resource x as input for throughput time
specialized resources.

Time function Cost functions

𝒇𝑹𝒕(𝒙) =
√𝒙
𝟏𝟎 𝑓>$(𝑥) = −√

𝑥
5

Just like with the average performer resources, the time function for the specialized resources is based
on an idea that as resources are pressured more (beyond their optimal pressure point), their performance
will decrease. However, the throughput time specialized resources are much less affected by an increase
of pressure than average resources. As a trade-off, the cost function does not decrease as significantly
as compared to the average performing resources, with the idea being that these resources are higher
performing (for longer) but therefor also more expensive to allocate.

An example of these resources could for example be work-field expert working as consultants. They are
flown-in resources which bring more expertise and therefor a higher performance than the average
resources, but they are more costly due to their fly-in nature.

Marcel Kolenbrander – 31 October 2022 61 - 128

5.1.4.4 Base settings: cost specialized resources
The COST SPECIALIZED RESOURCES resource generator receives the following base settings:

Table 28 – Base parameter settings for cost specialized resources.

Min number of
resources

Max number
of resources

Min time base
modifier

Max time base
modifier

Min cost base
modifier

Max cost base
modifier

2 4 0.5 0.5 -0.5 -0.5
The cost specialized resources have the following functions applied to them.

Table 29 – Modifier function for throughput time and cost with allocation of a resource x as input for cost specialized resources.

Time function Cost functions

𝒇𝑹𝒕(𝒙) =
𝒙𝟐

𝟏𝟎 𝑓>$(𝑥) = − √𝑥
100

These resources are designed to have minimal cost, which is reflected by their base settings and cost
function. However, this is at a cost of large throughput time penalties both in the base settings and in the
time function. The throughput time function models low pressure resistance.

An example of these resources could be (young) intern employees. An intern employee could be
employed at a (much) lower cost as compared to average employees, but due to their inexperience, they
could perform worse at their given tasks, and they could possibly be overworked earlier as compared to
average employees.

5.1.5 Case counts & Dataset Combinations
For all combinations of the trees, the simulation values of the trees, and resource sets variants, except
for the combinations with the large, combined tree, the number of cases (simulation runs) is 2,000. All
runs with the large, combined tree will receive 5,000 cases (simulation runs). This makes for five (5)
times three (3) times four (4) combinations, which results in 60 different datasets. 48 of these datasets
have 2,000 cases, and 12 datasets have 5,000 cases, for a total of 156,000 cases across the 60 datasets.

Ideally the number of cases covers a large enough set of variants, or at least a set which represents the
most likely variant outcome. If an exhaustive coverage is to be reached, then the expected value of the
negative binomial could be used to approximate the required number of cases.

𝔼(𝑋) =
𝑛
𝑝

Equation 29 – Expected value of the negative binomial where X is the binomial of n and p and where 𝑛 is the number of times
we want the event with probability 𝑝 to occur.

Using the example from Loop simulation values where the last instance has a accumulated probability
of 𝑝 = 1.8% then if a full coverage is to be reached with 𝑛 = 1, 56 cases would be required.

For every simulation case, three (3) steps are performed to go from the simulation settings to a process
trace. These steps are explained in three (3) subsections below.

5.1.5.1 Play out the simulation tree
The simulation tree has a set of tree components, which are the sequential components, parallel
components, looping components and XOR-choice components. For every case instance, the process
trace generator randomly plays out the input simulation tree. This random playout is steered by the
previously set probability values. In essence, there are only two (2) components which are developed
into a played-out variant of themselves, the looping components and the XOR-choice components.

LOOPING COMPONENTS The looping components are pruned down into a sequential sub-tree with a
pattern repeating child list consisting of a looping pattern of the base child and the looping child. How
often a loop is initiated depends on the probability list set prior.

Marcel Kolenbrander – 31 October 2022 62 - 128

XOR-CHOICE COMPONENTS The XOR-choice components are also pruned down into a sequential
sub-tree. The list of children of the sequential sub-tree will be the child branch of the XOR-choice
component which is randomly chosen according to the set probabilities.

5.1.5.2 Attach resources
After the simulation tree has been played out into a variant for a case, the resources can be allocated to
the activities. This is done by traversing down the entire simulation tree and finding every activity. For
every activity which has been found, an allocation operation is commenced.

The allocation of resources to activities is done at random with a probability guide. The allocation
operation works as follows:

1. First the subset of all resources which can be allocated is to be determined:
a. In order to determine this subset, the first step is to find all unrestricted resources. These

are resources are freely allocatable to any activity, and they are all automatically added
to the allocation candidate list;

b. Then, for the remaining resources, their restriction list has to be checked. If the current
considered activity is found in the allocation restriction list of a resource, then this
resource may be added to the allocation candidate list;

2. Once the allocation candidate list is determined, their allocation probabilities need to be
determined:

a. If during the construction of all resources, the parameter all resources have an equal
probability is set to true, then the resource to be assigned is simply randomly chosen;

b. If during the construction of all resources, the parameter all resources have an equal
probability is set to false, then the allocation process first must determine the actual
allocation probability of a resource. In order to determine the actual allocation
probability of a resource, their probability base value has to be divided by the sum of
all probability base values for the entire resource candidate list.

5.1.5.3 Generate traces
In the played-out simulation tree, there are now only two (2) types of operators, the sequence operator
and the parallel operator. XOR-choice child choosing, and loop unrolling has been done before. This
makes generating a trace a straightforward task. The trace generator will traverse through the entire tree,
starting at the first operator, and traversing through its children, from left most in the list to right most
in the list. This process is done recursively.

For every activity-resource the objective simulation results have to be calculated. The processing of
these objective simulation results is the same for every objective in the current implementation. The
following equation shows how this simulation result will be calculated, in this case for throughput time,
however this can also be applied in the same way for the cost objective.

𝑎 ∈ 𝐴, 𝑟 ∈ 𝑅: 𝑆/(𝑎, 𝑟) = 𝑇E(𝑎) ⋅ E𝑇TT6𝑎, 𝐶)(𝑎)8 + 𝑇&(𝑟) + 𝑇TU6𝑟, 𝐶;(𝑟)8F

Equation 30 – Simulation result 𝑆V for the throughput time where 𝐴 is the set of all activities and 𝑎 is an activity in this set and
𝑅 is the set of all resources and 𝑟 is a resource in this set. 𝑇A(𝑥) is the base throughput time value for activity 𝑥, 𝑇W'�𝑥, 𝐶X(𝑥)�
is the throughput time modifier function for activity 𝑥 and 𝐶X(𝑥) is the occurrence count of activity 𝑥 in the current process
variant. 𝑇%(𝑦) is the base throughput time modifier associated to resource 𝑦 and 𝑇W(�𝑦, 𝐶Y(𝑦)� is the throughput time modifier
function for resources 𝑦 and 𝐶Y(𝑦) is the allocation count of resource 𝑦.

The second thing which needs to be done is to properly record, in correct format and order, the results
from the simulations. The required format is described in Fout! Verwijzingsbron niet gevonden.. One
(1) important part to consider is how to develop the start timestamp. The first activity can simply use
some arbitrary initial timestamp. Succeeding activities will use a start timestamp which is calculated by
taking the initial timestamp of the preceding activity and add the calculated simulation throughput time

Marcel Kolenbrander – 31 October 2022
63 - 128

of the preceding activity to that timestamp. When the preceding component is part of a parallel sub-tree
the start timestamp is determined by taking the maximum of all the last activities their initial timestamp
added together with their simulated throughput time in every parallel branch.

Parallel components throw one (1) last gotcha. Referring to Fout! Verwijzingsbron niet gevonden., the
results of all parallel branches cannot simply be added in sequence. If the recursive results of the
different children of parallel branches are simply recorded in order from left to right, as would be the
case with sequential components, then the inductive miner might not be able to pick up on parallel
occurrences. To combat this, the outcomes of the parallel branches are recorded separately until all
children of the parallel component are finished. Once they are finished the sub-traces will be scrambled
among one and another.

5.2 Experiments
The first part of the experiment setup in this thesis, setting up the experiment data traces, has been
completed in the previous section. The second part will detail how the experiments on this data, to test
the optimizer and its aspects which are laid out in Method & Design, are going to be run. There are
three (3) main areas to be tested:

• MODEL TYPE PERFORMANCE here the two (2) methods of model construction, as proposed
in Cost Figure Variants, are going to be compared against one and another on the experiment
data. One (1) of the two (2) models, polynomial regression, has several implementation variants
which will be compared as well;

• VARIANT SELECTION AND MERGE METHOD MODES the nine (9) combinations of variants
selection and merge methods, as described in Variants to optimize selections and Merge
variant optimizations techniques, will be compared.

• OPTIMIZER BEHAVIOUR Finally, the best performing2 setup will be used to give an overview
of the overall capabilities of the optimizer on all relevant different setups of the small, combined
tree datasets. This experiment will also show the resource allocation behaviour depending on its
different settings. This final experiment is therefore dependent on the other experiments, and in
this thesis it is only setup and described after the analysis of the other experiments has been
completed.

For every experiment, all (immediate adjustable) parameters will be recorded. Most experiments will
produce larger result datasets which will be interpreted and further distilled down with various statistical
methods/operations. The results of these processing steps will be presented in

2 Note that best performing is based on the metrics described per tested component.

Marcel Kolenbrander – 31 October 2022 64 - 128

Results. The large intermediary result datasets will be made available in the linked repository
(“https://github.com/MarcelKolen/process-mining-resource-allocation-optimizer”).

5.2.1 Cost modelling methods Analyses
In this thesis, two (2) methods for cost model discovery have been proposed: linear regression and
polynomial regression with variable interaction. The polynomial regression method itself has seven (7)
proposed methods to constructs method. Overall, this thesis argues that polynomial regression offers a
higher accuracy fit as compared to linear regression, but it is not immediately clear to what degree
polynomial regression performs better. And, for the polynomial regression setup, it is not necessarily
clear which degree determination method is the best performing method.

This experiment tries to quantify the performance difference both in model accuracy and runtime
performance between linear regression and the seven (7) implementation, as described in Multiple
Model Issue, of the polynomial regression method. Each experiment will be repeated ten (10) times.

5.2.1.1 Comparison metrics
Two (2) elements are going to be explored and tested in the experiments of this section:

• MODEL TO DATA ACCURACY PERFORMANCE This will be obtained by using the 𝑅3 and the
𝑅𝑀𝑆𝐸 methods (Equation 17 & Equation 18 respectively). Note that for every run over a
dataset, a mean 𝑅3 and 𝑅𝑀𝑆𝐸 score for that particular dataset is given;

• Time performance For every run of either the linear- or the polynomial regression models over
a dataset, the mean average time it took to create the models is recorded.

5.2.1.2 Base settings of components
The LINEAR REGRESSION MODEL has three (3) settings which can be altered. These settings are
displayed in the table below:

Table 30 – Settings and parameters for the linear regression model method of this experiment.

Exhaustive fit on best model Split percentage Split seed
Yes n.a. n.a.

The POLYNOMIAL REGRESSION MODEL has six (6) settings which can be altered. These settings are
recorded in the table below:

Table 31 – Settings and parameters for the polynomial regression model method of this experiment.

Exhaustive fit on best
model

Split
percentage

Split
seed

Degree
bound

Best model mode 𝒏-
average

Yes Train 1
3 n.a. 𝐷?: [1,5] inverse 𝑅& 𝑅𝑀𝑆𝐸

product
3

Test 2
3

With the per model best degree with exhaustive search method a range of degrees to work within have
to be defined. This will be set between one (1) for the lowest degree and five (5) for the highest degree.
This figure range has been chosen fairly arbitrarily, however after several test runs on similar (in setup)
datasets, as compared to the ones being used for this experiment, whilst testing the polynomial
regression method, the highest found degree has not been higher than five (5).

One (1) other setting related to the degree application mode, is the comparison method for determining
which degree is better, called best model mode. There are three (3) options for this setting, of which the
third option has been chosen. These options are described below:

• Compare on 𝑅𝑀𝑆𝐸, models with lower 𝑅𝑀𝑆𝐸 values are better;
• Compare on 𝑅3, models with higher 𝑅3 values are better;

Marcel Kolenbrander – 31 October 2022 65 - 128

• Compare on inverse 𝑅3 𝑅𝑀𝑆𝐸 product, this combines 𝑅𝑀𝑆𝐸 and 𝑅3 via the equation shown in
Equation 31. Models with a lower combined score, are better.

𝑅29999 ⋅ 𝑅𝑀𝑆𝐸 = (1 − 𝑅2) ⋅ 𝑅𝑀𝑆𝐸

Equation 31 – inverse 𝑅8 𝑅𝑀𝑆𝐸 product where 𝑅8 is given in Equation 17 and 𝑅𝑀𝑆𝐸 is given in Equation 18.

5.2.2 Variant selection and merge methods comparison
Because this optimizer optimizes on a per variant basis, and then merges the results of the variants into
a generalizable solution, methods for selecting the appropriate variants, as described in Variants to
optimize selections, and methods for merging these results, as described in Merge variant
optimizations techniques, had to be proposed. In this third experiment the comparison of variant
selection strategies and merge methods will take place.

The three (3) variant selection methods to be tested are:

• ALL VARIANTS;
• REQUIRED VARIANTS;
• MINIMAL REQUIRED VARIANTS.

The three (3) merge methods to be tested are:

• HIGHEST COUNT MERGING;
• VARIANT OCCURRENCE WEIGHTED AVERAGE MERGING;
• PARETO 80/20 CURVE WEIGHTED AVERAGE MERGING.

The performance of variant selection cannot be measured without also running one (1) of the merging
methods and vice-versa. In order to measure the performances, both improvement impact and time wise,
the experiments will be run on all combinations of variants and merge methods. This would result in
nine (9) experiments to cover all combinations. Note that this will be done across four (4) different
objective modes, of which the results will be merged in an overall dataset:

• TIME OBJECTIVE;
• COST OBJECTIVE;
• MULTI-OBJECTIVE TIME CONSTRAINED this is cost objective optimization with the time

objective added as a constraint with a certain epsilon value;
• MULTI-OBJECTIVE COST CONSTRAINED this is time objective optimization with the cost

objective added as a constraint with a certain epsilon value.

Because of runtime and hardware limitations, this particular experiment will not be repeated ten (10)
times like the other experiments. This experiment will only be performed three (3) times.

5.2.2.1 Comparison metrics
There are two (2) metrics worth looking at, the improvement an optimization offers compared against
the mean performance of a dataset, and the run time required to achieve said result.

In order to record the run time of the optimizations, first it should be determined what runtime portion
of the optimization step should be recorded. As described in Optimization routine, there are several
steps associated with optimizing a process within the method proposed in this thesis. In this experiment,
the only steps of real concern are the variant selection step and the result merging step. The process-,
variant- and model discovery part are not taken into account.

The other metric, improvement of an optimized process compared against the mean performance of a
dataset, has several aspects worth discussing. First, the mean of a dataset. The mean of a dataset is
simply obtained by running an analysis over every dataset and collecting for every case the cost of all

Marcel Kolenbrander – 31 October 2022 66 - 128

activities and the difference between the start and end time of the first and last activity. These figures
are then divided by the number of cases in a dataset to obtain the mean average of a dataset.

The averages of the processes after the optimization results have to be calculated before they can be
compared. The optimizer produces a most optimal set of activity-resource combinations and the
optimizer also knows, as described in Variants to optimize selections, which variants occur for every
process, and also how often these variants occur. So, in order to calculate what the mean figures are of
the optimized processes, every variant receives a simulated run where the activity-resource
combinations suggested by the optimizer are applied. Then, for every variant, the count of the variant is
used to repeat the results.

With the baseline performance for every dataset, and with the results for every optimized dataset known,
the improvement can be calculated. The improvement is recorded as a percentile improvement. This
percentile improvement is measured as follows:

Δ%(𝑁, 𝑂) =
𝑁 − 𝑂
|𝑂|

Equation 32 – Percentile difference formula where 𝑁 signifies a new value and 𝑂 an old value over which the percentile
difference is to be calculated.

In this case, a negative percentile improvement, indicates an improvement by the process optimizer
compared to the average of a dataset.

To compare methods on a relative performance level, so across all datasets, a mean average
improvement percentile is to be determined. However, as some datasets could produce comparatively
large improvement percentiles as compared to other datasets, the results must be normalized. This
normalization will be done over the percentile improvements of each tree type with min-max-scaling,
as explained in Equation 21, where the feature scale is set to scale between 0.0 and 1.0. Note that the
min-max-scaling in this experiment is not reversed, unlike in Equation 21.

5.2.2.2 Base settings of components
In order to run this experiment, a cost modelling method needs to be used. This experiment will use the
polynomial regression cost modelling method. The settings for the modelling component are to be as
follows:

Table 32 – Settings and parameters for the polynomial regression model method of this experiment.

Exhaustive fit on
best model

Split percentage Split seed Degree
determination
mode

Degree
bound

Best
model
mode

𝒏-
average

Yes Train 1
3 n.a. Per model best

degree with
exhaustive
search

𝐷?: [1,5] inverse
𝑅&
𝑅𝑀𝑆𝐸
product

n.a.

Test 2
3

Another setting which needs to be set is the compromise allowance for the multi-objective optimization
modes. The compromise allowance, which is explained in Implementation of the e-constraint
method, will be set to 35% for this experiment.

5.2.3 Optimization improvement & behaviour
This last experiment is a “forward declared” experiment in the sense that this experiment is only
formulated after the results from the two (2) previous experiments have been gathered. In this
experiment a baseline comparison will be performed to see how well it is able to optimize one (1) of the
available datasets. To measure the improvement, the results from the optimizations are to be compared
against the average baseline of the given process. This experiment should also show the resource
allocation behaviour depending on the used settings for the optimizer and the used dataset. Because this

Marcel Kolenbrander – 31 October 2022 67 - 128

experiment is going to be used to show the practicality of its results, it will only perform multi-objective
optimizations.

The reason this experiment is only formulated after the previous two (2) experiments have been finished
and fully analysed, is because in this experiment the best possible setup is to be used.

This experiment will only use a subset of the experiment data. It will use the Small combined tree setup
(see Small, combined tree), using both the average resources only (see Base settings: average
resources without random throughput time modifiers) setup and the specialized resources (see Base
settings: throughput time specialized resources and Base settings: cost specialized resources).
Datasets with random events have been omitted. They have been omitted because the random events
have been added primarily to stress the modelling components. For both data setups, each of the three
(3) tree and resource variants will be used. This results in this experiment being run across six (6)
different experiment datasets. As said above, the optimizer is to be used in the multi-objective
optimization mode only. It will perform the optimizations on two (2) different constraining methods for
each dataset, once in throughput time objective constraining, and once for cost objective constraining.
The optimizer will use three (3) compromise allowances for each mode. Each experiment configuration
will be repeated ten (10) times. This should results in six (6) times two (2) times three (3) times time
(10), making 360 results.

5.2.3.1 Comparison metrics
In this experiment there are two (2) elements which will be analysed. One (1) element is the allocation
behaviour. This is not so much an element subject to comparisons, but rather it is an analysis into the
behaviour of the optimizer. It is expected that when the optimizer is tasked to, for example, optimize
more in favour of throughput time performance, that it will select primarily resources which are
throughput time efficient.

The other element worth analysing is the improvement over baseline. In this case, improvement should
seen as the reduction in the objective values as compared to the average baseline. The improvement will
be recorded as a percentual difference using Equation 32. The definition of the average baseline is
identical to the definition used in Comparison metrics.

5.2.3.2 Base settings of components
MODELLING METHOD The modelling method with the highest accuracy according to the results from
Cost modelling methods Analyses is the polynomial modelling with the following setup:

Table 33 – Settings and parameters for the polynomial regression model method using the single degree method.

Exhaustive fit on
best model

Split percentage Split seed Degree
determination
mode

Degree
bound

Best
model
mode

𝒏-
average

Yes Train 1
3 n.a. Per model best

degree with
exhaustive
search

𝐷?: [1,5] inverse
𝑅&
𝑅𝑀𝑆𝐸
product

n.a.

Test 2
3

VARIANT SELECTION METHOD The best variant selection methods to use according to the results from
Variant selection method performance comparison are either the All variants method or the Required
variants method. In order to reduce the required runtime, the Required variants method will be used as
it has a shorted runtime compared to All variants.

OPTIMIZATION RESULT MERGING METHOD The most suitable merging method is the Highest count
merging method as seen in Optimization results merge methods performance comparison.

COMPROMISE ALLOWANCE For both multi-objective modes three (3) compromising allowance values
are to be used: 30% (0,3), 50% (0,5) and 70% (0,7).

Marcel Kolenbrander – 31 October 2022
68 - 128

5.3 Runtime environment
This section provides details about the experiment and runtime environment within which all data
construction and experimentation tasks are performed. This will be split up in three (3) parts. The first
part will be dedicated to describing the runtime hardware. The second part is to be dedicated to the
runtime virtualization/platform translation required to run the experiments on the aforementioned
hardware. Finally, all versions of the used software and libraries will be formally noted.

5.3.1 Hardware
The hardware on which all data generating, experiments, and analyses are to be performed is described
in the table below:

Table 34 – Hardware overview.

Vendor Model
Name

Model ID Year CPU GPU Memory Storage

Apple Macbook
Pro (16-
inch 2021)

MacBookPro18,2 2021 M1-Max
P8E2

M1-Max
32C

64GB
Unified
Memory

2TB

During all operations, the machine will be set to the “high power” energy mode. The only applications
which will be permitted to run are JetBrains-DataSpell and the underlying JuPyter engine, which are
used to run and control the operations.

5.3.2 Runtime environment
In order to get the optimizer to work with IBM (Do)CPLEX, a special runtime environment has to be
setup. At the current time of performing the experiments, the CPLEX optimizer is only available for the
x86-64 versions of MacOS. The used hardware does not use an x86-64 processor, but rather an ARM-
64 processor, and could therefore not natively run the CPLEX optimizer.

In order to combat this problem, a binary translation layer will be used. This translation layer, Rosetta
2, is native to the used operating system installed on the hardware. The translation layer is able to convert
x86-64 applications, such as IBM’s CPLEX optimizer, into ARM-64 compatible software. In order to
use the Python modelling tool with CPLEX in x86-64 mode, Python3, and all the associated libraries,
will also run as x86-64 applications through the Rosetta 2 conversion layer.

Finally, on the topic of the CPLEX optimizer, all optimization runs are done using the constraint
programming engine from CPLEX. Both the linear and the polynomial optimization experiments are
performed using this engine. This is done because the constraint programming engine offers more
flexibility and supports both linear as well as polynomial cost model.

5.3.3 Software and library versions
This section includes the versions of all relevant software packages/systems and libraries which will be
used to run all operations on. Note that dependency libraries are not included, only primary libraries.

Table 35 – Software and libraries overview.

Name Version
MacOS Monterey 12.5.1 (21G83)
CPlexStudio 2210
Dataspel 2021.3.3 #DS-213.7172.29
Jupyter 1.0.0
Python 3.10.4
3 CPlex 22.1.0.0

3 These following entries are libraries used within Python.

Marcel Kolenbrander – 31 October 2022 69 - 128

 DoCplex 2.23.221
 Numpy 1.23.1
 Pandas 1.4.3
 Pm4py 2.2.24
 Scikit-learn 1.1.1
 Scipy 1.8.1

Marcel Kolenbrander – 31 October 2022 70 - 128

6 Results
In this section all results and analyses from the experiments, described in Experiments which were run
on the data generated in Experiment Data, are going to be presented. The results will be accompanied
with a brief interpretation and conclusive discussion. This discussion should provide the reader with
meaningful insights in the collected results.

6.1 Cost modelling methods Analyses
The experiment run, described in Cost modelling methods Analyses, resulted in 4,800 by 12
intermediary results. These results will be analysed and compiled in a more digestible fashion. For this
experiment two (2) distinct analyses will be performed.

MEAN AVERAGE AND STANDARD DEVIATION MODEL ACCURACY COMPARISON The first analysis
is aimed at quantifying the accuracy performance differences between the eight (8) different modelling
techniques. This will be done by compiling the mean average 𝑅3 and 𝑅𝑀𝑆𝐸 scores for the eight (8)
models. Besides the mean average, the standard deviation for both metrics will be given as well.

This will be done across three (3) dataset splits:

• OVERALL DATASET PERFORMANCE;
• Performance exclusively on datasets with random events;
• Performance exclusively on datasets without random events.

The latter two (2) will only be compared on the throughput time objective, as this is the only part of the
modelling task which has random events added to its datasets. Refer to Resource simulation values for
the complete setup of the random event inclusion.

MODELLING TIME MEAN AVERAGE the second analysis is aimed at comparing the required run time
to construct the linear and polynomial models. This analysis compares the mean average of the eight (8)
models. In giving the mean average, the standard deviation will also be given.

The result tables below use abbreviation notations for the model descriptors. The following table
explains the different abbreviations.

Table 36 – Abbreviation list for the Polynomial Regression methods.

SD BAD BADg BnAD BnADg PMBDe PMBDg
Single
Degree

Best
Average
Degree

Best
Average
Degree
Greedy

Best n
Average
Degree

Best n
Average
Degree
Greedy

Per Model
Best Degree
Exhaustive

Per Model
Best Degree
Greedy

6.1.1 R2 & RMSE mean average and standard deviation model accuracy
comparison

In comparing the models on accuracy there are two (2) accuracy metrics (𝑅3 and 𝑅𝑀𝑆𝐸) to be
considered. The results will be compared for both metrics separately. In each comparison, three (3)
methods are to be compared: the linear method, the worst performing polynomial method and the best
performing polynomial method. The comparison will be split between the cost and throughput time
objective where-ever applicable.

After comparing the models, a short conclusive discussion will be held. This discussion should provide
a definitive answer on which method is the best for accuracy and the compromises are.

Marcel Kolenbrander – 31 October 2022

71 - 128

6.1.1.1 Overall data
Table 37 – Model accuracy comparison analyses between linear and polynomial regression models, using the 𝑅8 and 𝑅𝑀𝑆𝐸
metrics. 𝑛 signifies the number of datapoints these comparisons are gathered from. Please refer to Table 36 for a list of
abbreviation definitions used for the models.

Model Objective
mode

𝒏 Mean
𝑹𝟐

Std.4
𝑹𝟐

Min
𝑹𝟐

Max
𝑹𝟐

Mean
𝑹𝑴𝑺𝑬

Std.	
𝑹𝑴𝑺𝑬

Min
𝑹𝑴𝑺𝑬

Max
𝑹𝑴𝑺𝑬

Lin5 Throughput Tim
e O

bjective

300 0.892 0.138 0.486 0.999 25.505 38.882 4.366
⋅ 10@02

177.944

SD 300 0.915 0.146 0.486 1.000 4.919 5.654 4.511
⋅ 10@02

18.882

BAD 300 0.911 0.145 0.486 1.000 8.070 7.320 4.660
⋅ 10@02

40.454

BADg 300 0.910 0.144 0.486 1.000 9.641 9.353 4.542
⋅ 10@02

69.433

BnAD 300 0.913 0.145 0.486 1.000 7.184 7.722 4.584
⋅ 10@02

61.055

BnADg 300 0.914 0.146 0.486 1.000 6.308 6.340 4.546
⋅ 10@02

28.710

PMBDe 300 0.914 0.146 0.486 1.000 6.358 6.621 4.558
⋅ 10@02

40.201

PMBDg 300 0.912 0.145 0.486 1.000 8.101 9.536 4.518
⋅ 10@02

71.133

Lin C
ost O

bjective

300 0.935 0.106 0.604 0.999 1.390 1.564 2.710
⋅ 10@02

6.601

SD 300 0.939 0.108 0.605 1.000 0.005 0.018 2.699
⋅ 10@02

0.084

BAD 300 0.938 0.108 0.604 1.000 0.276 0.361 2.775
⋅ 10@02

2.460

BADg 300 0.938 0.108 0.604 1.000 0.350 0.429 2.775
⋅ 10@02

2.598

BnAD 300 0.939 0.108 0.605 1.000 0.135 0.213 2.766
⋅ 10@02

1.350

BnADg 300 0.939 0.108 0.604 1.000 0.111 0.172 2.775
⋅ 10@02

1.080

PMBDe 300 0.939 0.108 0.605 1.000 0.117 0.196 2.791
⋅ 10@02

1.111

PMBDg 300 0.939 0.108 0.605 1.000 0.005 0.018 2.699
⋅ 10@02

0.084

Comparing the methods above, the linear regression method, the Polynomial: Best Average Degree
Greedy and the Polynomial: Single Degree methods will be considered.

Table 38 – Three-way model comparison conclusion on the 𝑅8 and 𝑅𝑀𝑆𝐸 metrics.

Best and worst methods on mean average 𝑹𝟐 performance
Objective Linear regression Polynomial: BADg Polynomial: SD
Time 0.892 0.910 (+2.02 %) 0.915 (+2.58 %)
Cost 0.935 0.938 (+0.32 %) 0.929 (+0.43 %)

Best and worst methods on mean average 𝑹𝑴𝑺𝑬 performance
Objective Linear regression Polynomial: BADg Polynomial: SD
Time 25.505 9.641 (-62.20 %) 4.919 (-80.71 %)
Cost 1.390 0.350 (-74.82 %) 0.005 (-99.64 %)

COMPARING THE LINEAR REGRESSION MODELS AGAINST THE POLYNOMIAL MODELS on the 𝑅3
metric, the polynomial models score better on both objectives, but only by a small margin. The time

4 “Std.” is used as an abbreviation for Standard Deviation.
5 “Lin” is used as a shorthand for Linear Regression.

Marcel Kolenbrander – 31 October 2022 72 - 128

objective sees the largest difference, and this is most likely due to the more complex nature of the time
objective setup and experiment data. The 𝑅𝑀𝑆𝐸 metric sees a larger deviation of the accuracy
performance between the three (3) modelling methods, especially between the linear and the polynomial
models. On both metrics, the worst performing polynomial model is the Best Average Degree Greedy
model, and the best model is the Single Degree model. Overall, the polynomial models perform better
than the linear models, but depending on the metric, only by a small margin.

A NOTABLE ABSENCE from the comparisons is the Per Model Best Degree Method Exhaustive method.
Earlier in this thesis an expectancy was given that this method will perform the best of all methods. The
primary idea behind this prediction was that this method should have been able to prevent overfitting
and thereby beat a method such as the Single Degree method which is more susceptible to overfitting.
It should be noted that this method is still among the most accurate methods, but nevertheless, there are
two (2) most probable explanations behind these results:

• THE FIRST REASON is that at the current degree depth (max of five (5)) on the used datasets,
overfitting is not as big as an issue yet, so, the model which always applies the most powerful
model (Single Degree in this case) will theoretically be the best performer. If the degree budget
was increased and/or with a different dataset, overfitting might have become an issue where the
Per Model Best Degree Method Exhaustive method would have been able to pull ahead;

• THE SECOND REASON why the Per Model Best Degree Method Exhaustive method might
underperform compared to the Single Degree method, is because it bases its degrees on a
development on a data-subset for every activity-resource model. By chance, this subset might
have been selected unfavourably which could results in an ill-fitting degree for the overall
model.

6.1.1.2 Exclusively with vs without random events
Table 39 – Model accuracy comparison analyses between linear and polynomial regression models, using the 𝑅8 and 𝑅𝑀𝑆𝐸
metrics. n signifies the number of datapoints these comparisons are gathered from. Please refer to Table 36 for a list of
abbreviation definitions used for the models. These results are based only on the throughput time objective. The “Dataset”
column indicates whether the random or non-random dataset is used.

Model Dataset 𝒏 Mean
𝑹𝟐

Std.	
𝑹𝟐

Min
𝑹𝟐

Max
𝑹𝟐

Mean
𝑹𝑴𝑺𝑬

Std.	
𝑹𝑴𝑺𝑬

Min
𝑹𝑴𝑺𝑬

Max
𝑹𝑴𝑺𝑬

Lin W
ith R

andom

Events

300 0.867 0.161 0.486 0.983 28.990 40.059 3.576 177.944
SD 300 0.890 0.171 0.486 0.996 9.640 4.337 3.338 18.882
BAD 300 0.887 0.170 0.486 0.996 11.582 6.044 3.517 31.108
BADg 300 0.886 0.169 0.486 0.996 12.771 8.409 3.576 69.433
BnAD 300 0.888 0.171 0.486 0.996 11.452 7.190 3.350 46.973
BnADg 300 0.889 0.171 0.486 0.996 10.625 5.495 3.345 28.710
PMBDe 300 0.889 0.171 0.486 0.995 10.609 5.450 3.345 31.022
PMBDg 300 0.887 0.170 0.486 0.995 12.259 9.989 3.344 71.133

Lin W
ithout R

andom
 E

vents

300 0.917 0.103 0.605 0.999 22.021 34.104 6.048
⋅ 10@02

164.990

SD 300 0.940 0.110 0.605 1.000 0.198 5.654 4.511
⋅ 10@02

3.566

BAD 300 0.936 0.109 0.605 1.000 4.558 7.320 4.660
⋅ 10@02

40.454

BADg 300 0.934 0.108 0.605 1.000 6.511 9.353 4.542
⋅ 10@02

42.865

BnAD 300 0.939 0.110 0.605 1.000 2.917 7.722 4.584
⋅ 10@02

61.055

BnADg 300 0.939 0.110 0.605 1.000 1.990 6.340 4.546
⋅ 10@02

24.399

PMBDe 300 0.939 0.110 0.605 1.000 2.108 6.621 4.558
⋅ 10@02

40.201

Marcel Kolenbrander – 31 October 2022 73 - 128

PMBDg 300 0.938 0.109 0.605 1.000 3.944 9.536 4.518
⋅ 10@02

33.583

In the random and non-random dataset comparisons, three (3) modelling techniques will be compared.
The three (3) models which will be compared are: the linear regression method, the Polynomial: Best
Average Degree Greedy and the Polynomial: Single Degree methods.

Table 40 – Three-way model comparison conclusion on the 𝑅8 and 𝑅𝑀𝑆𝐸 metrics.

Best and worst methods on mean average 𝑹𝟐 performance
Dataset Linear regression Polynomial: BADg Polynomial: SD
Random 0.867 0.886 (+2.19 %) 0.890 (+2.65 %)
Non-Random 0.917 0.934 (+1.85 %) 0.940 (+2.51 %)

Best and worst methods on mean average 𝑹𝑴𝑺𝑬 performance
Objective Linear regression Polynomial: BADg Polynomial: SD
Random 28.990 12.771 (-55.95 %) 9.640 (-66.75 %)
Non-Random 22.021 6.511 (-70.43 %) 0.198 (-99.10 %)

For both datasets, the polynomial methods again deliver a higher accuracy performance as compared to
the linear method. For all methods goes that adding random elements to the datasets hurts the accuracy
performance of the models.

The two (2) accuracy metrics do not pain a clear picture whether one (1) model is better at dealing with
random data than the other. In the 𝑅3 metric comparisons, the polynomial methods show a higher
percentual improvement on data with random elements as compared to data without random elements.
But, for the 𝑅𝑀𝑆𝐸 metric the opposite is true. This shouldn’t be surprising as regression is not meant to
work with and model for random outliers, it should model patterns. Instead of using a more complex
modelling technique, such as polynomial regression, random noise in data should probably be pre-
processed out of the data in order to improve model accuracy on noisy data.

6.1.2 Modelling time mean average and standard deviation comparison
This overview provides the mean average runtime of each of the eight (8) models and the percentual
difference between, using the linear model as the baseline as that is the fastest model.

Table 41 – Modelling run time comparison analyses between linear and polynomial regression across both objectives
(throughput time and cost), where 𝑛 signifies the number of datapoints these comparisons are gathered from. Please refer to
Table 36 for a list of abbreviation definitions used for the models.

Model 𝒏 Mean (s) Standard Deviation Min (s) Max (s)
Linear 600 10.907 (+-0.00%) 6.228 2.454 28.818
SD 600 12.884 (+18.13%) 0.110 2.859 39.355
BAD 600 12.507 (+14.67%) 0.109 2.770 31.790
BADg 600 12.280 (+12.59%) 0.108 2.714 31.147
BnAD 600 12.736 (+16.77%) 0.110 2.770 31.143
BnADg 600 13.130 (+18.13%) 0.110 2.812 31.343
PMBDe 600 13.491 (+20.38%) 0.110 3.091 36.223
PMBDg 600 13.029 (+19.46%) 0.109 2.773 35.060

As stated above, the linear method is the fastest method overall, and of the polynomial methods the Best
Average Degree Greedy method is the fastest whereas the Per Model Best Degree Method Exhaustive
is the slowest overall. These results are all fairly in line of expectations, especially if the complexity of
the methods is to be taken into regard.

The linear method is the simplest method which creates simple models without performing any hyper
parameter tuning. The Best Average Degree Greedy method develops a best overall degree for the entire
model set in a greedy manner, so every remaining model outside of the development set has only one
(1) degree to develop for without any further hyper parameter tuning. But the same is true for the Single
Degree approach, which also only applies one (1) degree for all models, so then why is Best Average
Degree Greedy faster by roughly 6 percent points? The most probable explanation is that the Best

Marcel Kolenbrander – 31 October 2022 74 - 128

Average Degree Greedy method manages to develop a degree which is smaller than the degree used in
the current Single Degree setup, and atop of that, that a lower degree has a higher impact on runtime
than having to develop a small model subset greedily.

The Per Model Best Degree Method Exhaustive method being the slowest isn’t surprising either, because
this method develops, in the current setup with five (5) degree depths, five (5) different models for each
activity-resource model and then evaluates the best performing degree depth. This method develops the
most models, including the most complex models (with the highest degree depth), so it is no surprise
that this method is slower.

6.1.3 Results discussion
There are three (3) main conclusions/findings which can be drawn from this experiment:

• LINEAR VS. POLYNOMIAL The results show that, overall, the polynomial models perform
better than the linear models. The accuracy improvement is greater on the 𝑅𝑀𝑆𝐸 metric than
on the 𝑅3 metric, however, still in both models it shows an overall improvement in favour of
the polynomial models. Of these models the Single Degree method seems to be the most
effective for the current setup. Note that in a different setup (different data or a greater degree
depth budget) the Per Model Best Degree Method Exhaustive method could take over as the
better method. As a last note, yes, the polynomial models perform better, but the linear method
are also a surprisingly strong candidate. This means that it is still feasible to use this approach
as a fully linear optimizer, which could constitute it as a NP-Complete problem as compared to
an NP-Hard problem as stated in Problem Type. A potential explanation for the small
difference between the linear and polynomial model performance could be down to the used
data. The data models exhibit fairly linear behaviour, such as the long end of a root function, or
the threshold functions described in Activity simulation values and Resource simulation
values. If more complex models were used with fewer linear components, then an increase in
performance difference might have been more noticeable;

• RANDOM VS. NON-RANDOM In the results from the dataset split on datasets with random and
without random elements added to them, the conclusion could be drawn that applying
polynomial models is not a solution to dealing with random noise in the data. Whilst the
polynomial models did perform better than the linear models in random data, they also do that
on non-random data, so it is not possible to draw a conclusion there to say that polynomial
models solve randomness in data. The better solution would probably be to pre-process the data
to eliminate random noise before applying the cost models;

• TIME PERFORMANCE Comparing the time performance is simple, linear is the fastest method,
and the polynomial methods, and especially Per Model Best Degree Method Exhaustive, are
slower overall. More important perhaps is to wonder what a longer runtime offers. Whilst the
Single Degree method was 18.13% slower than the linear method, it does offer higher accuracy,
up to 2.58 % on the 𝑅3 metric (overall data time-objective) and up to 99.64 % the 𝑅𝑀𝑆𝐸 metric
(overall data cost-objective). This makes the runtime difference comparatively small. Arguably,
the linear method should only be used if the model is to remain exclusively linear, else
polynomial methods should be used.

6.2 Variant selection and merge methods results
The experiment run, described in Variant selection and merge methods comparison, resulted in 6.353
by 16 intermediary results. These results will be analysed and compiled in a more digestible fashion.
For this experiment three (3) distinct analyses will be performed.

• COMBINATIONS OF OPTIMIZATION RESULT MERGE METHODS AND VARIANT SELECTION
METHODS This analysis attempt to compare all nine (9) combinations of the merge and variant
selection methods against one and another.

Marcel Kolenbrander – 31 October 2022 75 - 128

• VARIANT SELECTION METHODS ONLY This analysis attempt to compare the three (3)
different variant selection methods against one and another. This comparison is expected to
show the largest variance in runtime as compared to the variances between different merge
methods, meaning this is most likely the setting with the largest impact on runtime performance.

• OPTIMIZATION RESULT MERGE METHODS ONLY This analysis attempt to compare the three
(3) different optimization result merge methods against one and another. This comparison is
expected to show the largest variance in objective function improvement as compared to the
variant selection method, meaning this is most likely the setting with the largest impact on
optimization improvement performance, up to

The experiments are run across four (4) objective modes as is mentioned in the introduction of this
experiment. The mean average process improvement performances and the mean average run time
performances of these four (4) objectives is pooled together in overall results in order to generalize the
outcomes.

Every result is sorted from best to worst. Note that in all cases, lower values (such as min-max-scaled
percentile objective improvements) are better than higher values. This is because all results are feature
scaled between zero (0) and one (1), which means that negative percentage differences (which indicate
an improvement in the objectives) are closer to zero (0) as compared to positive percentage difference
(which indicate a worsening of the objectives).

The results are discussed per section. Merge methods and variant selection finds their results in their
own dedicated subsections.

6.2.1 Variant and merge combined performance comparison
OBJECTIVE FUNCTION IMPROVEMENT PERFORMANCE

Table 42 – Overall performance comparison of variant selection and merging method combinations. The results are sorted
best to worst by means of performing a two (2) field sort on time mean difference mean and cost mean difference mean.

Variant selection Merging methods Time mean
difference mean

Cost mean
difference mean

Run time
mean

0 Required
variants

Highest count merge 0.498081 0.344647 0.149909

1 Required
variants

Weighted average
merge

0.500621 0.348941 0.144596

2 All variants Highest count merge 0.502408 0.334211 0.373876
3 Required

variants
Pareto merge 0.504904 0.349151 0.14591

4 All variants Pareto merge 0.505721 0.346207 0.363251
5 Min required

variants
Weighted average
merge

0.509784 0.346696 0.142106

6 All variants Weighted average
merge

0.51053 0.348687 0.383396

7 Min required
variants

Pareto merge 0.51393 0.345434 0.141287

8 Min required
variants

Highest count merge 0.515488 0.348155 0.130417

 Standard Deviation
0.005993 0.004633 0.115796

The result overview in the table above shows which combinations of variants to optimize selection
methods and optimization results merge methods perform best overall in terms of mean differences to
the cost and throughput time objective baselines.

Marcel Kolenbrander – 31 October 2022 76 - 128

On average and overall, the best combination to use is the required variants variant selections method
and the highest count merging method. In the overall setup, the highest count merge method was not
necessarily the method which was expected to perform best, but, as can be seen in the merge method
comparison below, this result is consistent across both analyses. The variant selection method does not
necessarily perform the best compared to the second analysis. However, on both fronts, something which
should be noted is that the deviation between performance results is fairly small between all
combinations. It is also not immediately clear which component variants to optimize selection methods
or optimization results merge methods has the highest overall impact on process improvement.

RUNTIME PERFORMANCE

The runtime performance is determined by sorting the run time mean column in the table above from
lowest to highest value. The index order, thereby the performance order, is as follows:

8, 7, 5, 1, 3, 0, 4, 2, 6

The runtime performance is most likely influenced greatest by the variant selection method, as that
influences the subset size runtime complexity. It is therefore not surprising to see that the runtime
performance sorting is grouped precisely against the three (3) variant selection methods. The fastest
three (3) results (8, 7, 5) are given by the min required variants method, the slowest three (3) results
(4, 2, 6) are given by the all variants method, and the remaining three (3) middle performers (1, 3, 0) are
all the required variants method. These results are also consistent with the findings below.

6.2.2 Variant selection method performance comparison
OBJECTIVE FUNCTION IMPROVEMENT PERFORMANCE

Table 43 – Overall performance comparison of variant selection methods. The results are sorted best to worst by means of
performing a two (2) field sort on time mean difference mean and cost mean difference mean.

Variant selection Time mean difference
mean

Cost mean difference
mean

Run time
mean

0 All variants 0.50622 0.343035 0,373508
1 Min required

variants
0.513067 0.346762 0,137937

2 Required variants 0.501202 0.34758 0,146805
 Standard Deviation

0.005956 0.002422 0.133521
Among the three (3) selection methods all variants is the best performing method in terms of objective
improvement, but, it should be noted that the difference between the three (3) methods is minute.
Because the differences are small, and because the results are conflicting with earlier results, no real
general recommendation could be given on which method is provides the best overall objective
improvement. At most: all variants and required variants should provide more data to create a more
representative outcome.

RUNTIME PERFORMANCE

The runtime performance is determined by sorting the run time mean column in the table above from
lowest to highest value. The index order, thereby the performance order, is as follows:

1, 2, 0

The runtime performance is consistent with earlier results, where the min required variants method is
the fastest and the all variants method is the slowest. This is no surprise as the min required variants
method has the lowest number of optimizations to be run, then the required variants method and lastly
the all variants method. If a full data coverage is to be desired, then the all variants method should be
used, otherwise, because the difference between the lather two (2) methods is small (~1%), the required

Marcel Kolenbrander – 31 October 2022 77 - 128

variants method should preferably be used as it allows for a more larger, and potentially more
representative, sample. Only if runtime is critical should the min required variants method be used.

6.2.3 Optimization results merge methods performance comparison
OBJECTIVE FUNCTION IMPROVEMENT PERFORMANCE

Table 44 – Overall performance comparison of optimization result merge methods. The results are sorted best to worst by
means of performing a two (2) field sort on time mean difference mean and cost mean difference mean.

Merging methods Time mean difference
mean

Cost mean difference
mean

Run time
mean

0 Highest count merge 0.505326 0.342338 0,218067
1 Pareto merge 0.508185 0.346931 0,216816
2 Weighted average

merge
0.506978 0.348108 0,223366

 Standard Deviation
0.001435 0.003049 0.003477

For the merging methods the highest count merge method is overall best performer for both objective
functions. This is consistent with earlier results, but not necessarily as predicted earlier in this thesis.
This is a non-weighted method, so it does not necessarily optimize for more prevalent variants. Instead,
it’s an equal voting system. The most likely explanation for this higher performance as compared to
weighted methods is that this method takes less prevalent variants equally in regards as more often
occurring variants. This approach might improve the performances in worst case process instances,
which could (significantly) improve the average performance. But what should be noted overall, is that
these methods are all fairly close together in terms of performance. This could indicate these methods
are not optimal and that better methods, which for example have a fairer weight application, could exist.

RUNTIME PERFORMANCE

The runtime performance is determined by sorting the run time mean column in the table above from
lowest to highest value. The index order, thereby the performance order, is as follows:

1, 0, 2

The runtime performance is only partially consistent with earlier results. The difference in runtime
performance is fairly minute, and based on their theoretical implementation, these methods shouldn’t
create large runtime differences between the different methods. Because of that, no recommendation on
runtime performance can be given for the merging methods.

6.3 Optimization improvement & behaviour results
From the experiment described in Optimization improvement & behaviour there are two (2) results
to be analysed. First the improvement over baseline. As there are 360 results, there are also 360 baseline
differences. These results will be reduced in to two (2) by six (6) categories making for 12 results.

The first distinction is results over the datasets with only average performing resources or over the
datasets with average performing resources and specialized resources. The second distinction is made
over the two (2) optimization modes, where in the first mode the optimizer compromises on the
throughput time and in the second mode the optimizer compromises on the cost. For each of these modes,
there are three (3) set compromise allowances, and the results will be presented against these
compromise allowances.

The results which will be presented are the mean averages and standard deviations over the different
tree variants and repeated runs. The mean averages and standard deviations will be given for the
improvement percentage over the throughput time and the cost objectives.

Marcel Kolenbrander – 31 October 2022

78 - 128

The second results to analyse is the allocation behaviour. It’s expected that allocation behaviour changes
based on three (3) factors: The used resource pool (only average performers or average performers with
specialized resources), the multi-objective compromising mode, and the compromise allowance. There
are, just like with improvement over baseline performance, 12 different combinations to be made
between the datasets and the different objective modes and compromise allowances. However, there is
one (1) extra element which needs to be considered. Each tree, and therefor each resource set, has three
(3) different versions. This means that in total there will be 36 results to be presented. The results are
presented as a matrix where the activities are presented as columns and the allocated resource is
presented in different rows.

As there are ten (10) repeat runs, the way in which the resources are allocated might change between
runs. This will be taken into account by showing the allocation occurrence percentage in case that
multiple resources are allocated to activities.

6.3.1 Difference against baseline performance
In this section four (4) results are presented in two (2) tables which indicate the mean overall objective
differences as compared to the baseline which the optimizer is able to obtain for given configurations.
Following these results, a brief results discussion is conducted.

6.3.1.1 Only average resources
Table 45 – Average performance difference achieved by optimizer over baseline.

Tree Obj6 Compromise
Allowance

Mean Time
Improvement
(%)

Time
Improvement
Standard
Deviation

Mean Cost
Improvement
(%)

Cost
Improvement
Standard
deviation

n

0 M
ulti-objective:

Tim
e

O
bjective C

onstrained
7

30 % 16.69 % 2.93 ∗ 10@03 -26.48 % 0.00 10
50 % 16.69 % 2.93 ∗ 10@03 -26.60 % 0.00 10
70 % 16.69 % 2.93 ∗ 10@03 -26.49 % 5.85 ∗ 10@03 10

1 30 % -8.14 % 0.00 -18.90 % 2.93 ∗ 10@03 10
50 % -4.47 % 7.31 ∗ 10@04 -19.58 % 0.00 10
70 % -4.51 % 0.00 -19.57 % 2.93 ∗ 10@03 10

2 30 % -10.16 % 1.46 ∗ 10@03 -25.22 % 0.00 10
50 % -9.93 % 0.00 -25.22 % 0.00 10
70 % -9.93 % 0.00 -25.22 % 0.00 10

0 M
ulti-objective:

C
ost

O
bjective C

onstrained
8

30 % -21.69 % 2.93 ∗ 10@03 -19.01 % 2.93 ∗ 10@03 10
50 % -21.71 % 2.93 ∗ 10@03 -16.45 % 0.00 10
70 % -21.70 % 2.93 ∗ 10@03 -14.72 % 0.00 10

1 30 % -18.55 % 0.00 -12.71 % 2.93 ∗ 10@03 10
50 % -17.48 % 0.00 -9.80 % 0.00 10
70 % -17.50 % 2.93 ∗ 10@03 -11.57 % 1.46 ∗ 10@03 10

2 30 % -21.77 % 0.00 -19.20 % 0.00 10
50 % -24.65 % 2.93 ∗ 10@03 -14.22 % 0.00 10
70 % -26.85 % 0.00 -10.75 % 1.46 ∗ 10@03 10

6 “Obj” is shorthand for Objective mode.
7 Note that the optimizer is optimizing for the Cost objective and using the Throughput time as a constraint.
8 Note that the optimizer is optimizing for the Throughput time objective and using the Cost as a constraint.

Marcel Kolenbrander – 31 October 2022 79 - 128

6.3.1.2 Average and specialized resources
Table 46 – Average performance difference achieved by optimizer over.

Tree Obj Compromise
Allowance

Mean Time
Improvement
(%)

Time
Improvement
Standard
Deviation

Mean Cost
Improvement
(%)

Cost
Improvement
Standard
deviation

n

0 M
ulti-objective:

T
im

e
O

bjective C
onstrained

30 % -21.04 % 0.00 -49.04 % 5.85 ∗ 10@03 10
50 % 3.18 % 0.00 -55.88 % 0.00 10
70 % 8.72 % 0.00 -56.19 % 0.00 10

1 30 % -52.70 % 0.00 -11.69 % 0.00 10
50 % 12.78 % 0.00 -52.59 % 1.17 ∗ 10@02 10
70 % 29.32 % 0.00 -52.84 % 0.00 10

2 30 % -27.722 % 5.85 ∗ 10@03 -42.51 % 5.85 ∗ 10@03 10
50 % 0.28 % 0.00 -58.26 % 1.17 ∗ 10@02 10
70 % 14.08 % 2.93 ∗ 10@03 -58.01 % 1.17 ∗ 10@02 10

0 M
ulti-objective:

C
ost

O
bjective C

onstrained

30 % -29.65 % 5.85 ∗ 10@03 -48.00 % 5.85 ∗ 10@03 10
50 % -25.40 % 5.85 ∗ 10@03 -7.48 % 0.00 10
70 % -47.87 % 5.85 ∗ 10@03 -29.56 % 0.00 10

1 30 % 2.43 % 3.66 ∗ 10@04 -31.80 % 0.00 10
50 % -53.50 % 0.00 -12.38 % 0.00 10
70 % -56.08 % 0.00 3.21 % 0.00 10

2 30 % -35.11 % 0.00 -41.25 % 0.00 10
50 % -50.38 % 0.00 -19.90 % 0.00 10
70 % -56.94 % 1.17 ∗ 10@02 -9.57 % 0.00 10

6.3.1.3 Results discussion
Analysing the results above, a few interesting findings can be extracted. It should first be noted that
some of the results using the current dataset and configuration setup does not always provide a clear
picture. There are however still other results to extract findings from:

• IMPROVE OBJECTIVES The first finding is that the optimizer is able to improve both objectives
over the performance given by the baseline. There are a few exceptions, such as for tree version
zero (0) for the time objective constrained setup in Table 45, there the optimizer is not able to
improve both objectives for any setting;

• COMPROMISE ALLOWANCE Looking into the compromise allowance, the key parameters for
the multi-objective optimization part of this optimizer, then a strong pattern can be observed. In
both results, but more so in the results from the runs with specialized resources (Table 46), the
effect of changing the compromise allowance parameter can be seen in the balance of
improvement between the two (2) objectives. Taking for example tree version two (2) for the
cost objective constrained setup in Table 46 (last three (3) rows), this balance slide between the
two (2) objectives is strongly noticeable. In these three (3) results the compromise allowance is
applied to the cost objective, meaning that as the compromise allowance increases, the optimizer
is allowed to “neglect” the cost objective more and focus more on the time objective. At 30%
compromising allowance, the cost objective sees a higher percentual improvement than the time
objective, but as this allowance is increased, the performance for the cost objective decreases
whereas it increases for the time objective. The compromise allowance therefor seems to be
effective;

• DIMINISHING RETURNS Staying with the compromise allowance, some setups show a limited
return on increasing the compromise allowance beyond a certain point. An example is the setup
for tree version one (1) for the cost objective constrained setup in Table 46. Increasing the
allowance from 30% to 50%, the time objective sees north of a 50 percent point performance
improvement. However, from 50% to 70% there is only a +-3 percent point improvement, whilst
at the same time the cost objective is compromised so much that the optimizer now worsens the

Marcel Kolenbrander – 31 October 2022 80 - 128

cost objective compared to the baseline. This limited and diminishing return is most likely a
characteristic of the used dataset. When referring back to the example from Figure 11 in Multi-
objective optimization applicability, a clear levelling out of the Pareto optimum front can be
observed where one (1) objective is only slightly improved, but the other objective is strongly
compromised;

• OBJECTIVE MODE PREFERENCE When observing the objective mode selection, an overall
image emerges that the objective which is optimized for, will be better off than the objective
which is constrained. This is perhaps not a complete surprise, but it does introduce a weakness
of the e-constraint method.

6.3.2 Allocation behaviour
In this section four (4) results are presented in two (2) tables which indicate the mean overall objective
differences as compared to the baseline which the optimizer is able to obtain for given configurations.
Following these results, a brief results discussion is conducted.

An important note to make before the analysis and discussion can commence is the following: resources
zero (0, “r_0”) up to and until resource nine (9, “r_9”) are all average performance resources. Some
perform better in a certain objective than the other, but overall, they all roughly perform equally for the
objectives. Resources 10 (“r_10”) up to and until resource 13 (“r_13”) are all throughput time
specialized resources. Resources 14 (“r_14”) up to and until resource 17 (“r_17”) are all cost
specialized resources. This goes for all configurations in this experiment. The specific resource
configurations and setups can be found in 10.13.4.

6.3.2.1 Only average resources
Table 47 – Resource allocation behaviour of the optimizer. The columns headers starting with ‘a_’ denote the activities, and
the cell elements starting with ‘r_’ denote the resources. Between runs, the suggested resource for an activity might change. If
several resources are suggested between the runs, the resources will be noted as: ‘r_0: 75%, r_4: 20%, r_5: 5%’ which means
that resource zero (0) is used 75% of the time, four (4) only 20% and finally five (5) just 5%. If no percentage is shown, then
that resource is used 100%.

 Resources allocated to activities
Tree Obj Compromise Allowance a_a a_b a_c a_d a_e a_f a_g n
0 M

ulti-objective: Tim
e

O
bjective C

onstraine d
30 % r_0 r_0 r_0 r_0 r_0 r_3 r_0 10
50 % r_0 r_0 r_0 r_0 r_0 r_3 r_0 10
70 % r_0 r_0 r_0 r_0 r_0 r_3 r_0 10

1 30 % r_6 r_1 r_6 r_0 r_0 r_6 r_1 10
50 % r_6 r_1 r_6 r_0 r_1 r_6 r_1 10
70 % r_6 r_1 r_6 r_0 r_1 r_6 r_1 10

2 30 % r_6 r_6 r_6 r_6 r_0 r_0 r_0 10
50 % r_6 r_6 r_6 r_6 r_0 r_0 r_0 10
70 % r_6 r_6 r_6 r_6 r_0 r_0 r_0 10

0 M
ulti-objective:

C
ost

O
bjective C

onstraine

30 % r_0 r_1 r_3 r_9 r_0 r_6 r_0 10
50 % r_0 r_1 r_0 r_4 r_9 r_3 r_6 10
70 % r_0 r_1 r_6 r_9 r_0 r_6 r_4 10

1 30 % r_8 r_1 r_4 r_0 r_3 r_8 r_6 10
50 % r_9 r_1 r_4 r_1 r_6 r_7 r_5 10
70 % r_6 r_1 r_4 r_1 r_6 r_7 r_7 10

2 30 % r_6 r_5 r_5 r_6 r_0 r_0 r_6 10
50 % r_8 r_3 r_1 r_6 r_0 r_0 r_3 10
70 % r_8 r_3 r_1 r_7 r_0 r_0 r_6 10

Marcel Kolenbrander – 31 October 2022 81 - 128

6.3.2.2 Average and specialized resources
MULTI-OBJECTIVE: TIME OBJECTIVE CONSTRAINED

Table 48 – Resource allocation behaviour of the optimizer. The columns headers starting with ‘a_’ denote the activities, and
the cell elements starting with ‘r_’ denote the resources. Between runs, the suggested resource for an activity might change. If
several resources are suggested between the runs, the resources will be noted as: ‘r_0: 75%, r_4: 20%, r_5: 5%’ which means
that resource zero (0) is used 75% of the time, four (4) only 20% and finally five (5) just 5%. If no percentage is shown, then
that resource is used 100%.

 Resources allocated to activities
Tree Obj Compromise Allowance a_a a_b a_c a_d a_e a_f a_g n
0 M

ulti-objective: Tim
e

O
bjective C

onstrained

30 % r_16 r_12 r_16 r_17 r_17 r_16 r_16 10
50 % r_15 r_16 r_15 r_14 r_14 r_15 r_14 10
70 % r_16 r_17 r_14 r_15 r_17 r_16 r_15 10

1 30 % r_15 r_12 r_13 r_17 r_15 r_15 r_16 10
50 % r_15 r_14 r_15 r_16 r_16 r_16 r_16 10
70 % r_17 r_17 r_14 r_15 r_17 r_14 r_16 10

2 30 % r_15 r_15 r_17 r_15 r_13 r_0 r_15 10
50 % r_16 r_16 r_17 r_16 r_17 r_15 r_15 10
70 % r_17 r_14 r_17 r_14 r_15 r_17 r_14 10

0 M
ulti-objective:

C
ost

O
bjective C

onstraine

30 % r_14 r_11 r_16 r_3 r_17 r_16 r_14 10
50 % r_6 r_13 r_17 r_12 r_12 r_6 r_15 10
70 % r_10 r_12 r_15 r_14 r_17 r_16 r_14 10

1 30 % r_14 r_1 r_4 r_12 r_15 r_15 r_1 10
50 % r_16 r_11 r_11 r_15 r_14 r_16 r_14 10
70 % r_14 r_12 r_13 r_11 r_0 r_9 r_1 10

2 30 % r_14 r_16 r_17 r_15 r_10 r_0 r_14 10
50 % r_14 r_7 r_14 r_15 r_12 r_11 r_14 10
70 % r_16 r_2 r_15 r_11 r_11 r_13 r_14 10

6.3.2.3 Results discussion
The allocation behaviour analysis and discussion will be done primarily on the allocation behaviour
results from the experiments done on the specialized datasets (Table 48). These two (2) experiment
results are chosen over the averages only results because the behaviour on the specialized dataset is
easier to analyse. However, the same findings can be applied to the results from Table 47. The overview
of resource classification, as given in the introduction of this result subsection, is summarized in the
table below:

Table 49 – Resource performance classification

Average Performers Throughput Time Specialized Cost Specialized
r_0 – r_9 r_10 – r_13 r_14 – r_17

The main results and conclusion which can be drawn from these specific results is that there are several
signs indicating that the optimizer has an “understanding” of the behaviours of its resources in relation
to the activities they are being assigned to. This understanding is primarily drawn from the behaviour
exhibited on changing the objective mode, so switching between which objective is being compromised
and which objective is being optimized, and on changing the compromise allowance.

The “understanding” of resources in relation to the given configuration can for example be observed in
tree version one (1) of the cost objective constrained setup in Table 48 (the second to last three (3)
results). When the compromise allowance is changed, the class of resources also changes. It changes
from resources specialized in cost performance to resources more focussed on time performance. The
table below shows the changing resource population for this example.

Marcel Kolenbrander – 31 October 2022 82 - 128

Table 50 – Resource class shift overview between three (3) compromise allowances.

Compromise Allowance Average Performers
Count

Throughput Time
Specialized Count

Cost Specialized Count

30 % 3 (42.86 %) 1 (14.29 %) 3 (42.86 %)
50 % 0 (0.00 %) 2 (28.57 %) 5 (71.43 %)
70 % 3 (42.86 %) 3 (42.86 %) 1 (14.29 %)

As can be seen, when the compromise allowance for the cost objective increases, so the cost objective
is given lower priority, the number of throughput time resources increases. Relating this same case to
the results in Table 46 this allocation behaviour of switching from cost specialized resources to
throughput time specialized resources can also be seen in the percentual improvement differences. As
more throughput time resources are used, and less cost resources, the throughput time performance
increases and the cost performances decreases.

Marcel Kolenbrander – 31 October 2022 83 - 128

7 Discussion: Limitations and opportunities
Whilst the research, design and experimentation have been performed with a high regard for the
scientific methods, contribution-orientated research, thoroughness, consistency, transparency, and
repeatability in mind, this thesis is not perfect and exhaustive in this topic. Unfortunately, due to scoping,
or other, limitations, some elements of this research have only been touched on briefly or have been
executed unfavourably. These limitations will be covered in this section.

Besides the limitations, or sometimes even alongside the limitations, opportunities stemming from this
thesis will also be discussed. This resource allocation optimizer, based on a divide and conquer
approach, has not only developed several interesting conclusions, but it also created several
opportunities for future research.

7.1.1 Experiment data
The experiment data of this research is pseudorandom generated data. This data has been generated to
test and compare different aspects of the process optimizer. Whilst constructing data according to
models has the benefit that the data can be tailormade to stress certain aspects of the process optimizer,
it can also lead to strongly favoured results. When generating data specifically for this process optimizer,
the data can be engineered in order to get results which favour a hypothesis. In this research this has
happened to some degree, albeit unintentionally. A specific example is the use of “specialized resources”
which are optimized for one (1) objective, whilst it compromises on the other objective. This setup led
to favourable results in an attempt to show the existence of a Pareto optimum front (see Multi-objective
optimization applicability) in the use case of this optimizer. Whilst compromises on objectives in real
world applications are not unthinkable, this should still be mentioned. This example is likely not the
only example, as there might be other unintentional favouring of results.

Another potential issue with the used data is that it is not real. Whilst the data has been engineered to
somewhat model and mirror real-world scenarios, it is still pseudorandom data based on models. Real-
world data might have made the results in this thesis more relevant. The primary reason why real-world
data has not been used is mostly due to unavailability. Either the datasets were too small in order to
perform enough experiments on them, or the data lacked too many of the properties for which the
requirements are set out in Optimizer data requirement.

7.1.2 Multi-objective optimizations & Genetic Algorithms
The implementation of the multi-objective optimizer in this thesis, which uses the e-constraint method,
only presents one (1) solution with a compromise on both (or rather all) of the objectives. Whilst this is
an improvement on single-objective optimizations, as it could be theorized that processes and/or supply
chains rarely ever have one (1) single objective, it still does not offer a desired result. A more favourable
result for the multi-objective optimizer is that the optimizer gives the user a spectrum of solutions on
which objectives are compromised more on or less on. This gives the user a less arbitrary choice of
choosing their desired compromise, as the result of their compromise decision is clearly visible, as
compared to how the optimizer works now, where a certain compromise allowance has to be chosen
beforehand without knowing how this affects the objectives.

Multi-objective optimization techniques gave a possible solution for this single point solution issue:
Genetic multi-objective optimization algorithms. Genetic multi-objective optimization algorithms do
not work on a single solution, but instead work on a set of solutions. A conceivable follow up research
could be a study into the applicability of genetic algorithms into this specific type of optimization
problem.

7.1.3 Optimizer framework choice, techniques & Algorithms
The optimizer framework used in the prototype implementation for this thesis is the IBM-CPLEX
optimizer. This optimizer was used for its ease of use in modelling and because of its accessibility thanks
to the academic licences which are available. A shortcoming is that there is no comparison or otherwise
consideration for other optimization frameworks, such as but not limited to Gurobi. However, it should

Marcel Kolenbrander – 31 October 2022 84 - 128

be noted that the comparison of performance or “ease of use” of optimizer frameworks is not the focus
of this thesis and would be entirely outside of the scope of this thesis.

Continuing on about the choice of optimizers: This thesis uses the constraint programming optimizer
from the CPLEX optimizer. The CPLEX optimizer uses generalized techniques and models to optimize
a given problem. However, using an optimizer framework is not the only method of optimizing a
problem. There are many different optimization algorithms, some of which could be better suited for an
optimization problem such as the one presented in this thesis. This has unfortunately not been explored.

There are three (3) follow up studies which can be performed based on this limitation. The first two (2)
studies are smaller, and the third study is a larger study. The first, smaller, follow-up study is to compare
different optimization frameworks, as well as their modelling approach, and see if there is a more
suitable framework available.

A second, smaller, study can be focussed on hyper parameter and configuration tuning of the optimizer.
Currently the CPLEX optimizer is used as is, without any hyper parameter tuning. Adjusting the hyper
parameters might yield better results.

The third study, which is a more substantial study, is to examine different optimization algorithms,
including algorithms and techniques for, for example, constraint programming and mathematical
programming, and try to evaluate which (type of) algorithm fits best to this specific optimization
problem.

7.1.4 Cost Modelling
The optimization method in this thesis uses regression models to construct a cost model for each
objective for each activity-resource pair. Regression models have been used as they seemed to be an
easy to use, approachable, and most importantly well-fitting modelling candidate for the described
problem. There are however a few shortcomings in the modelling setup.

The first shortcoming is the lack, or exclusion, of other variables. Currently only two (2) input variables
are considered, activity occurrence count and resource allocation count. In a real-world application,
there could be more than just two (2) variables which impact the performance of a certain activity-
resource pairing. This thesis, for sake of simplicity, has not explored the inclusion of other variables,
even though they might make the models more powerful and accurate.

In future research multiple per model and/or overarching variables could be considered. Examples of
these model extensions could be: weather, temperature, season, traffic conditions, etc. Some of these
variables could be per model specific, others could be applied globally.

The second shortcoming is the lack of comparison and consideration of different modelling techniques.
Whilst the currently proposed regression models, linear and polynomial models, seem to model well
within the provided data and scenarios, there are other regression techniques and other modelling
techniques. Some of these different modelling techniques might provide a more accurate, or better
fitting, model for the given data.

7.1.5 Objective function expansion
Related to the extension of the cost modelling techniques, objective functions could also be extended
and expanded. This thesis only considers three (3) objective functions, and only two (2) of these
objective functions have been implemented. However, it’s likely that the three (3) proposed objective
functions are not exhaustive for every (business) process and/or supply chain. Some processes might
have objectives such as climate impact (CO2 impact), customer satisfaction, production capacity,
production and/or product quality, etc. A follow-up study could focus on formulating a method of how
to define and formalize (with formulae and functions) objective functions. When defining and
formalizing objective functions, one should for example consider how to model these functions for the
cost models, and how to model these functions for the optimizer.

7.1.6 Optimizer comparison

Marcel Kolenbrander – 31 October 2022 85 - 128

The optimizer has been shown to be successful on improving against the average baseline on test data,
as can be seen in Difference against baseline performance. However, something which remains
unknown is how “impressive” or “significant” these results are. This thesis does not compare this
optimizer against other process optimizer, so there is no baseline comparison and improvement analysis.
This lack of comparison mostly comes forth from the lack of availability of similar process optimizers
to compare against.

7.1.7 Divide and conquer
For the last limitation, the optimizer in this thesis uses a form of divide and conquer when trying to
optimize a process. This is done by first optimizing variants of a process and then merging these variants
into a general solution for a process. The limitation is in the merging of the divide and conquer results.

Whilst the divide and conquer method used in this thesis seemed to be effective enough, the final
solution merging method appears to be lacking. The merging methods are able to merge solutions into
a general solution, but they only take simple statistics into account. Therefor a study could be dedicated
to the solution merging methods. The solution merging methods have been argued to be lacking because
they might put too much weight on larger variants, which do not result in a majority vote, or because
they do not take overall allocation effects into account. As the merging step is the final step which
converts optimal solutions of the variants into a general solution, it can have a large impact on the
performance of the optimized result.

Marcel Kolenbrander – 31 October 2022 86 - 128

8 Conclusions
The introduction of this thesis posed two (2) research questions. Throughout this thesis, several steps
have been taken, and methods have been developed and compared to answer the two (2) research
questions.

The first of the two (2) research questions was formulated as follows:

“What are the (minimum) data requirements, in terms of format, contents, and
quantity, in order to allow an optimizer to perform resource-activity allocation

optimizations?”

This question has primarily been answered in Data Requirements. The format was defined in the
following manner, a process trace should have at least the following fields so that the process optimizer
can translate a trace into a process tree and link resources with activities:

• CASE IDENTIFIER;
• ACTIVITY IDENTIFIERS;
• START TIMESTAMP;
• RESOURCE IDENTIFIERS.

Additionally, depending on the used objectives, several other fields data columns have to be added to a
process trace as well. This thesis defined three (3) objectives, throughput time, wait time and cost, and
the data columns for those objectives would be as follows:

• ACTIVITY EXECUTION DURATION TIME;
• ACTIVITY WAIT TIME;
• (Optional) END TIMESTAMP;
• ACTIVITY EXECUTION COST.

Note that these data column requirements are specific for the objectives defined in this thesis. Different
objective functions might bring different data column requirements with them. The data format
requirements are therefore partially dependent on the scenario in which the optimizer is to be applied.

The second part of this research question was about data quantity. The data quantity can be split up in
two (2) parts, the first being for the process miner, to construct a process tree out of a trace, and the
second being for the cost modellers. The first, the process miner, does not have strict minimum number
of cases it requires, as it heavily depends on the complexity of the process for how many cases are
required. Rather, enough cases should be provided to present a representative set of process variants.
The second question regarding the cost modelling is simpler and has statistical backing through other,
previous, studies. Ideally for every resource-activity cost model, there should be a minimum of between
ten (10) to 25 cases in order to create a representative enough model. The complexity of the underlying
model, i.e. being more linear or more polynomial, could sway the quantity requirement to either of the
two (2) aforementioned minima. Note that a scenario could arise where resource-activity pairs may share
cases, so five resource-activity pair models, do not necessarily need 125 cases to create accurate model.

The second question posed in the introduction was:

“How can process mining be used to optimize the allocation of resources to
activities, using a divided and conquer approach?”

This question has been approached and answered primarily in Method & Design. The answer is given
as an optimization method where the provided process, in the form of a process trace data-set, is
converted into a process tree using process mining, which is then optimized in a divide and conquer
style. This divide and conquer style works by optimizing variants of the process, and then merging the

Marcel Kolenbrander – 31 October 2022 87 - 128

results. The optimizations are done by defining the objectives as objective functions using objective cost
modelling functions and subjecting them to a set of constraints. The optimization output is a set of
recommended activity-resource combinations.

The optimizer has been tested and proven in potential (see Difference against baseline performance)
by using self-generated simulated data. This simulated data, as described in Experiment Data, allowed
to gain five main insights into the optimizer. Firstly, it showed the difference between the two (2)
modelling techniques, linear models and polynomial models. It showed the performance differences and
it allowed for a trade-off analysis between the two (2) methods. Secondly, it showed the advantages and
the validity of a divide and conquer approach with experiments on the variant selection methods. Using
the simulated data, the pruning of variants was shown to improve performance fairly substantially on
runtime whilst only showing a limited impact on improvement performance. Thirdly, it laid bare an
improvement area of the optimizer in the solution merging methods. Fourthly, data could be generated
to specifically stress the multi-objective optimization component of the optimizer. Not only was a Pareto
optimum shown to exist in an example process, as seen in Multi-objective optimization applicability,
the optimizer also had also shown the ability to deal with multi-objective optimizations effectively. And
lastly, tying into the last point, because the behaviour of resources has been pre-defined, it was possible
to create an insight into the allocation behaviour of the optimizer. The optimizer has shown to
“understand” the behaviour of certain resources and it is able to differentiate between resources based
on their “specialization” when shifting the optimization priority between objective functions, as can be
seen in Allocation behaviour.

Perhaps a more important question to answer is what a reader can learn from reading this thesis. As
mentioned in the introduction of this thesis and in the conclusion, this thesis describes how to construct
a process optimizer with the focus on multi-objective resource allocation optimizations using process
mining techniques. In describing this, a framework is built which allows users and researchers to develop
several insights, such as process behaviour and complex resource behaviour, by just analysing and
mining a process log. This zero-knowledge basis, the notion that the optimizer should gather all its
insights just from a process log using process mining techniques and not from any other external sources,
is a fairly unique characteristic of this particular optimizer when compared to existing resource
allocation optimizers. Other resource allocation optimizers require pre-defined resource behaviour
models to be given.

Another contribution which a reader should extract from this thesis is a method of expandability of this
framework. Not only is a framework provided which shows how to optimize resource allocations by
means of only reading and analysing logs, several descriptions and methods have also been provided on
how this framework could be made more advanced. This thesis for example describes how more
objectives can be added, how more performance impacting variables on resource behaviour can be added
(examples are weather, climate, rain, employee satisfaction, season, etc.), and how more objective
constraints can be added. Thereby this thesis presents an optimization framework truthful to the
definition of a “framework”, and it should therefor offer several new research opportunities in the field
of resource allocation optimizations and process mining.

Referring back to the results in Results and to the found knowledge gaps in Knowledge gap, several
findings can be added to the conclusions above:

• DIVIDE AND CONQUER This thesis has shown that the divide and conquer technique, together
with the merging technique, is a successful candidate for resource allocation optimizations. Not
only can a stochastic process be converted into deterministic variants, they can also be
individually optimized, and their individual results can be merged to serve as a generalizable
solution for the process. Another finding in the divide and conquer approach is that not every
variant of a process has to be optimized. This means that a complex stochastic model with many

Marcel Kolenbrander – 31 October 2022 88 - 128

different variants can essentially be optimized by only focussing on a (small) subset of process
variants, which potentially decreases the required runtime significantly;

• DYNAMIC MODELS A second finding is that dynamic models, based on regression on the
available process data, can successfully be used as cost models in a resource allocation
optimization exercise. This has two (2) implications. The first being that optimizing the
allocation of resources no longer requires an (a-priori) in-depth knowledge of the behaviour of
resources, which has been used as the theoretical basis for several other resource allocation
techniques. The second implication is that, because the dynamic models are regression models,
these models can easily be expanded with more inputs using existing regression theories and
techniques. So, taking external factors/parameters into regard when wanting to optimize a
process, such as weather, seasons, etc. does not require a complete redesign of the optimizer.
Instead, the user can simply rely on basic regression theories and include these extra parameters
into the regression-based cost models;

• POLYNOMIAL APPLICABILITY Extending the finding on the dynamic models, not only was it
shown that the optimizer works with linear models, it has also been shown that the optimizer
can work with polynomial regression models. In fact, not only are polynomial models
applicable, but they also provide a higher overall accuracy. The primary implication which can
be drawn from this, is that the optimizer can be used in more complex environments, where it
is not known whether the behaviour of resources exhibit themselves in a linear fashion, or in
any other predefined curve shape;

• MODEL COMPLEXITY The last finding is that, thanks to the removal of the stochastic elements
and the applicability of linear cost models, the optimizer is shown to have the potential to operate
in a lower complexity category. To be specific, theoretically, this optimizer, and therefore
resource allocation optimizations, could operate with NP-complete complexity, instead of NP-
hard complexity according to Karp’s 21 NP-Complete problems [30].

Marcel Kolenbrander – 31 October 2022 89 - 128

9 References
[1] W. M. P. van der Aalst, “Process Mining in the Large: A Tutorial,” Springer International

Publishing Switzerland , vol. BISS 2013, pp. 33–76, 2014, doi: 10.1007/978-3-319-05461-2.

[2] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow Mining: Discovering Process Models
from Event Logs,” 2004.

[3] W. van der Aalst, “Process mining: Overview and opportunities,” ACM Transactions on
Management Information Systems, vol. 3, no. 2. Jul. 2012. doi: 10.1145/2229156.2229157.

[4] W. M. P. van der Aalst, “Business Process Management: A Comprehensive Survey,” ISRN
Software Engineering, vol. 2013, pp. 1–37, Feb. 2013, doi: 10.1155/2013/507984.

[5] M. Siek and R. M. G. Mukti, “Business process mining from e-commerce event web logs:
Conformance checking and bottleneck identification,” in IOP Conference Series: Earth and
Environmental Science, Apr. 2021, vol. 729, no. 1. doi: 10.1088/1755-1315/729/1/012133.

[6] R. Bemthuis, N. van Slooten, J. J. Arachchige, J. P. S. Piest, and F. A. Bukhsh, “A classification
of process mining bottleneck analysis techniques for operational support,” in Proceedings of the
18th International Conference on e-Business, ICE-B 2021, 2021, pp. 127–135. doi:
10.5220/0010578601270135.

[7] G. Gill and M. Singh, “Bottleneck analysis and alleviation in pipelined systems: A fast
hierarchical approach,” in Proceedings - International Symposium on Asynchronous Circuits and
Systems, 2009, pp. 195–205. doi: 10.1109/ASYNC.2009.20.

[8] A. Barone, “Bottleneck,” https://www.investopedia.com/terms/b/bottleneck.asp, Jul. 2022.

[9] Iso, “THE PROCESS APPROACH IN ISO 9001:2015,” 2015. [Online]. Available: www.iso.org

[10] A. Berti, S. J. van Zelst, and W. M. P. van der Aalst, “Process Mining for Python (PM4Py):
Bridging the Gap Between Process-and Data Science.” [Online]. Available: http://python.org

[11] W. van der Aalst et al., “PM4PY,” https://pm4py.fit.fraunhofer.de.

[12] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow Mining: Discovering Process Models
from Event Logs,” 2004.

[13] A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. Alves De Medeiros, “Process Mining
with the HeuristicsMiner Algorithm.”

[14] W. van de Aalst, “Process discovery: Capturing the invisible,” IEEE Comput Intell Mag, vol. 5,
no. 1, pp. 28–41, Feb. 2010, doi: 10.1109/MCI.2009.935307.

[15] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “LNCS 7927 - Discovering Block-
Structured Process Models from Event Logs - A Constructive Approach.”

[16] W. M. P. van der Aalst, “Business Process Management: A Comprehensive Survey,” ISRN
Software Engineering, vol. 2013, pp. 1–37, Feb. 2013, doi: 10.1155/2013/507984.

[17] M. Arias, E. Rojas, J. Munoz-Gama, and M. Sepúlveda, Business Process Management
Workshops, vol. 256. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-
42887-1.

[18] X. Jiajie, L. Chengfei, and Z. Ziaohui, “Resource Allocation vs. Business Process Improvement:
How They Impact on Each Other,” Melbourne, 2008.

Marcel Kolenbrander – 31 October 2022 90 - 128

[19] M. Arias, E. Rojas, J. Munoz-Gama, and M. Sepúlveda, Business Process Management
Workshops, vol. 256. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-
42887-1.

[20] W. Zhao, L. Yang, H. Liu, and R. Wu, “The optimization of resource allocation based on process
mining,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9227, pp. 341–353. doi:
10.1007/978-3-319-22053-6_38.

[21] Z. Huang, W. M. P. van der Aalst, X. Lu, and H. Duan, “Reinforcement learning based resource
allocation in business process management,” Data Knowl Eng, vol. 70, no. 1, pp. 127–145, Jan.
2011, doi: 10.1016/j.datak.2010.09.002.

[22] P. Korhonen and M. Syrjänen, “Resource allocation based on efficiency analysis,” Manage Sci,
vol. 50, no. 8, pp. 1134–1144, 2004, doi: 10.1287/mnsc.1040.0244.

[23] W. Mckinney, “Data Structures for Statistical Computing in Python,” 2010.

[24] The pandas development team, “pandas-dev/pandas: Pandas.” Zenodo, Jun. 23, 2022.

[25] R. M. Yerkes A N D J O H N and D. Dodson, “THE RELATION OF STRENGTH OF
STIMULUS TO RAPIDITY OF HABIT-FORMATION.”

[26] X. Xu, Y. Wang, M. Li, and H. K. Kwan, “Paradoxical Effects of Performance Pressure on
Employees’ In-Role Behaviors: An Approach/Avoidance Model,” Front Psychol, vol. 12, Oct.
2021, doi: 10.3389/fpsyg.2021.744404.

[27] J. Hofmans, J. Debusscher, E. Dóci, A. Spanouli, and F. de Fruyt, “The curvilinear relationship
between work pressure and momentary task performance: The role of state and trait core self-
evaluations,” Front Psychol, vol. 6, no. OCT, 2015, doi: 10.3389/fpsyg.2015.01680.

[28] C. Tardi, M. Cheng, and T. Li, “80-20 Rule Definition,” 2022.
https://www.investopedia.com/terms/1/80-20-rule.asp (accessed Aug. 08, 2022).

[29] S. G. Johnson, “A Brief Overview of Optimization Problems,” 2008.

[30] R. M. Karp, “Reducibility Among Combinatorial Problems,” in 50 Years of Integer
Programming 1958-2008, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 219–241.
doi: 10.1007/978-3-540-68279-0_8.

[31] L. C. Coelho, “How to linearize max, min, and abs functions.” https://www.leandro-
coelho.com/how-to-linearize-max-min-and-abs-functions/ (accessed Aug. 04, 2022).

[32] L.-C. Kung, “Operations Research Applications of Linear Programming.”

[33] IBM, “IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual.”

[34] L. Gurobi Optimization, “GUROBI OPTIMIZER REFERENCE MANUAL.”

[35] IBM, “Mathematical programming versus constraint programming.”
http://ibmdecisionoptimization.github.io/docplex-doc/mp_vs_cp.html (accessed Aug. 04, 2022).

[36] R. Sridharan, “Statistics for Research Projects,” 2019.

[37] F. Pedregosa FABIANPEDREGOSA et al., “Scikit-learn: Machine Learning in Python Gaël
Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA,
VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot,” 2011. [Online]. Available:
http://scikit-learn.sourceforge.net.

Marcel Kolenbrander – 31 October 2022 91 - 128

[38] A. E. Smith, M. Gulsen, and D. M. Tate, “A genetic algorithm approach to curve fitting,” Int J
Prod Res, vol. 33, no. 7, pp. 1911–1923, 1995, doi: 10.1080/00207549508904789.

[39] P. Sinha, “Multivariate Polynomial Regression in Data Mining: Methodology, Problems and
Solutions,” Int J Sci Eng Res, vol. 4, 2013, [Online]. Available: http://www.ijser.org

[40] I. H. Witten, E. Frank, and M. A. Hall, “Training and Testing,” in Data Mining Practical
Machine Learning Tools and Techniques, Third., Elsevier, 2011, pp. 148–150.

[41] I. H. Witten, E. Frank, and M. A. Hall, “coefficient of determination,” in Data Mining: Practical
Machine Learning Tools and Techniques, 3rd ed., Elsevier, 2011, pp. 180–180. doi:
10.1016/C2009-0-19715-5.

[42] I. H. Witten, E. Frank, and M. A. Hall, “Root Mean Square Error,” in Data Mining: Practical
Machine Learning Tools and Techniques, 3rd ed., Elsevier, 2011, pp. 180–180. doi:
10.1016/C2009-0-19715-5.

[43] H. Pishro-Nik, “Probability Density Function,” in Introduction to Probability, Statistics, and
Random Processes, Kappa Research, 2014, pp. 163–167.

[44] S. Sudhoff, “Multi-Objective Optimization.”

[45] K. Deb, “Weighted Sum Method,” in Multi-Objective Optimization Using Evolutionary
Algorithms, 1st ed., vol. 1, S. Ross and R. Weber, Eds. Chichester, New York, Weinheim,
Drisbane, Singapore, Toronto: John Wiley & Sons, Ltd., 2001, pp. 50–56.

[46] K. Deb, “ε-Constraint Method,” in Multi-Objective Optimization Using Evolutionary
Algorithms, 1st ed., vol. 1, S. Ross and R. Weber, Eds. Chichester, New York, Weinheim,
Brisbane, Singapore, Toronto: John Wiley & Sons, Ltd., 2001, pp. 57–60.

[47] K. Deb, “Weighted Metric Method,” in Multi-Objective Optimization Using Evolutionary
Algorithms, 1st ed., vol. 1, S. Ross and R. Weber, Eds. Chichester, New York, Weinheim,
Brisbane, Singapore, Toronto: John Wiley & Sons, Ltd., 2001, pp. 60–65.

[48] I. Giagkiozis and P. J. Fleming, “Methods for multi-objective optimization: An analysis,” Inf Sci
(N Y), vol. 293, pp. 338–350, Feb. 2015, doi: 10.1016/j.ins.2014.08.071.

[49] Fluxicon and W. van der Aalst, “Process Mining Book,” https://fluxicon.com/book/read/dataext/,
2022.

[50] D. G. Jenkins and P. F. Quintana-Ascencio, “A solution to minimum sample size for
regressions,” PLoS One, vol. 15, no. 2, Feb. 2020, doi: 10.1371/journal.pone.0229345.

[51] J. F. Hair JR., W. C. Black, B. J. Babin, and R. E. Anderson, “Regression requirements,” in
Multivariate Data Analysis, 7th ed., Pearson, 2014, pp. 573–574.

10 Appendices
10.1 Process model example 0, represented in a BPMN schema

Process based on a dataset example curtesy of PM4PY [11].

Marcel Kolenbrander – 31 October 2022 93 - 128

10.2 Process model example 1, represented in a BPMN schema

10.3 Process model example 1, complete example event-data trace 1
Case Activity Resource Cost Timestamp Start
0 Customer places order - 0 12:00:00
0 Payment is checked Erik 11 12:00:10
0 Collect package in distribution center Jim 82 12:00:10
0 Order fulfilled and ready for hand out Pete 33 12:09:32
0 Transfer package to in store pick up service Jim 20.5 12:12:41
0 Customer picks up package from store - 10 12:15:01
1 Customer places order - 0 18:00:00
1 Collect package in distribution center Mike 74.4 18:00:10
1 Payment is checked Erik 10.25 18:00:10
1 Request payment from customer Erik 51.25 18:02:40
1 Payment is checked Erik 10.25 18:15:10
1 Order fulfilled and ready for hand out Ingrid 27 18:17:40
1 Transfer package to in store pick up service Kim 18.8 18:21:31
1 Customer picks up package from store - 10 18:23:25
2 Customer places order - 0 02:00:00
2 Payment is checked Erik 11 02:00:10
2 Collect package in distribution center Jim 90 02:00:10
2 Order fulfilled and ready for hand out Ingrid 27 02:08:34
2 Transfer package to delivery service Mohammed 28.5 02:12:25
2 Deliver service delivers package Chelsea 78.4 02:15:21
3 Customer places order - 0 08:00:00
3 Payment is checked Shenna 9.5 08:00:10
3 Collect package in distribution center Jim 90 08:00:10
3 Request payment from customer Erik 55 08:01:58
3 Payment is checked Shenna 9.5 08:12:58
3 Order fulfilled and ready for hand out Pete 33 08:14:46
3 Transfer package to delivery service Tim 22.5 08:17:55
3 Deliver service delivers package Tim 60 08:21:20
4 Customer places order - 0 16:00:00
4 Payment is checked Shenna 9.5 16:00:10
4 Collect package in distribution center Jim 82 16:00:10
4 Order fulfilled and ready for hand out Ingrid 27 16:09:32
4 Transfer package to in store pick up service Jim 20.5 16:13:23
4 Customer picks up package from store - 10 16:15:43
5 Customer places order - 0 17:00:00
5 Collect package in distribution center Jim 82 17:00:10
5 Payment is checked Erik 11 17:00:10
5 Order fulfilled and ready for hand out Ingrid 27 17:09:32
5 Transfer package to in store pick up service Jim 20.5 17:13:23
5 Customer picks up package from store - 10 17:15:43

Marcel Kolenbrander – 31 October 2022 95 - 128

10.4 Process model example 1, complete resource-activity allocation
map for complete example event-data trace 1

 Activity Resource
0 Customer places order -
1 Payment is checked Erik
2 Payment is checked Shenna
3 Collect package in distribution center Jim
4 Collect package in distribution center Mike
5 Order fulfilled and ready for hand out Pete
6 Order fulfilled and ready for hand out Ingrid
7 Request payment from customer Erik
8 Transfer package to delivery service Mohammed
9 Transfer package to delivery service Tim
10 Transfer package to in store pick up service Jim
11 Transfer package to in store pick up service Kim
12 Deliver service delivers package Chelsea
13 Deliver service delivers package Tim
14 Customer picks up package from store -

Marcel Kolenbrander – 31 October 2022 96 - 128

10.5 Process model example 1, complete resource allocation limit
for complete example event-data trace 1

Resource Allocation limit
Erik 2
Shenna 1
Jim 2
Mike 1
Kim 1
Pete 1
Ingrid 1
Mohammed 1
Chelsea 1
Tim 2
- 2

Marcel Kolenbrander – 31 October 2022 97 - 128

10.6 Linearization of a multi-element Max component
Suppose the following function:

𝑥 = Max{𝑥!, 𝑥", 𝑥3, 𝑥B, 𝑥@}

The linearization of this multi element Max function can be achieved by dividing the problem into
multiple two element Max functions and substituting these functions into the original problem.

𝑀! = 	Max{𝑥!, 𝑥"}

𝑀" = 	Max{𝑀!, 𝑥3}

𝑀3 = 	Max{𝑀", 𝑥B}

𝑥 = 	Max{𝑀3, 𝑥@}

Now suppose a constant 𝐶 such that 𝐶 ≥ 𝑥!, 𝑥", 𝑥3, 𝑥B, 𝑥@.

Next define a set of binary variables {𝛾!, 𝛾", … , 𝛾(%"} such that 𝛾 = {1: 𝑎 < 𝑏|0: 𝑎 ≥ 𝑏}

𝛾! =]1, 𝑥" < 𝑥!
0, 𝑥" ≥ 𝑥!

𝛾" =]1, 𝑥3 < 𝑀!
0, 𝑥3 ≥ 𝑀!

𝛾3 =]1, 𝑥B < 𝑀"
0, 𝑥B ≥ 𝑀"

𝛾B =]1, 𝑥@ < 𝑀3
0, 𝑥@ ≥ 𝑀3

Finally define a set of constraints such that 𝑥 ≥ 𝑥!, 𝑥", 𝑥3, 𝑥B, 𝑥@

𝑥 ≥ 𝑥!

𝑥 ≥ 𝑥"

𝑥 ≥ 𝑥3

𝑥 ≥ 𝑥B

𝑥 ≥ 𝑥@

𝑥 ≤ 𝑥! + 𝐶 ⋅ (1 − 𝛾!)

𝑥 ≤ 𝑥" + 𝐶 ⋅ 𝛾!

𝑥 ≤ 𝑀! + 𝐶 ⋅ (1 − 𝛾")

𝑥 ≤ 𝑥3 + 𝐶 ⋅ 𝛾"

𝑥 ≤ 𝑀" + 𝐶 ⋅ (1 − 𝛾3)

𝑥 ≤ 𝑥B + 𝐶 ⋅ 𝛾3

𝑥 ≤ 𝑀3 + 𝐶 ⋅ (1 − 𝛾B)

𝑥 ≤ 𝑥B + 𝐶 ⋅ 𝛾B

Marcel Kolenbrander – 31 October 2022 98 - 128

10.7 Pareto Front Multi Objective Problem Space Setup
10.7.1 Process tree setup
This tree will only include loops as a special tree structure besides sequential structures. Parallel and
XOR-branches are not included in this tree type. This tree should contain at a minimum three (3)
activities, at a maximum six (6) activities, and should have a mode of four (4) activities. Furthermore,
silent activities, which are empty activities used for more complex structures are omitted. The specific
parameters used in the process trace generator for the tree generator are as follows:

Table 51 – Settings used for the loops only tree.

Seed 0 Seed 1 Min Max Mode Silent (%) Choice (%) Parallel (%) Loop (%)

4674 6666 3 6 4 0.0 0.0 0.0 25.0

The resulting tree contains one (1) loops consisting of one (1) base activity and one (1) loop activity, the
loop component is preceded by two (2) activities in sequence, making a total of four (4) activities. A
BPMN representation of the tree can be found in Figure 9.

This tree is specifically generated to minimize the strain of exhaustive solution space generation by
keeping the number of activities relatively low. Furthermore, a loop element has been specifically added
in order to increase the variance in allocation results by means of re-occurrence and reallocation of
activities and resources respectively, which are used in modifier functions (defined later on).

10.7.2 Simulation tree setup
The attachment of simulation values to the process tree is done with the following base settings:

Table 52 – Base settings for generating the Pareto tree simulation settings.

Max loop depth Decrease loop probability Even XOR probability
10 Yes No

This setup has intentionally been chosen to maximize the loop size in order to increase the effect of the
modifier functions.

The two seeds used are: 1660384210 for seed 0 and 1660384210 for seed 1. This results in the following
simulation tree:

Figure 25 – Sim tree for the Pareto tree.

10.7.3 Activity simulation values
All simulation values for the activities for all trees are generated with the same base parameters. The
random seeds used for activity simulation values generation are the same seeds as the ones in the section
above. The base parameters are set as follows:

Table 53 – Base settings for generating all activities.

Min Time Max Time Min Cost Max Cost

('>',
 ['a_b',
 ('>',
 ['a_c',
 ('*',
 [0.9159173561354, 0.6667583105152183, 0.1566936358192275,
 0.1307744020939576, 0.06640381641892078, 0.007841389604520596,
 0.004330130279075698, 0.0007035462527451663],
 ['a_a', 'a_d'])])])

Marcel Kolenbrander – 31 October 2022 99 - 128

10 1000 10 1000
For the re-occurrence functions, the following settings are used:

Table 54 – Modifier functions with re-occurrence of an activity (𝑥) as input.

Time functions
Function Probability distribution

𝒇𝑨𝒕(𝒙) =
𝟏
𝟐𝒙	−

𝟏
𝟐

2
3

𝒇𝑨𝒕(𝒙) = √𝒙𝟒 1
3

Cost functions
Function Probability distribution

𝒇𝑨𝒄(𝒙) = −
𝒙√𝒙𝟒

𝟐𝟎
4
5

𝒇𝑨𝒄(𝒙) = −
𝟑𝒙√𝒙
𝟐𝟎

1
5

The settings in the tables above are explained in Activity simulation values.

Activities setup is performed with seed pair 1660384210 & 1660384210, this results in the following
setup:

Table 55 – Activities values for the Pareto process trace.

Activity Base time value Base cost value
a_a 271.845757 458.241301
a_b 565.749990 319.263352
a_c 733.317805 853.926122
a_d 889.181873 272.404352

10.7.4 Resource simulation values
The Pareto process should be a process where a Pareto optimum front can be formed based on solutions
each with a unique combination of resources and activities. In order to create a Pareto optimum front,
the activity resource combinations need to vary between effectiveness and ineffectiveness for the
respective objectives; in this case, there need to be average performing combinations, throughput time
effective and cost ineffective combinations, and cost effective and throughput time ineffective
combinations.

In order to achieve the above, the following set of resources is proposed: A set of resources with both
average performers, and two sets of specialized performers, one set who are cost effective and
throughput time ineffective and one set who are cost ineffective and throughput time effective.

10.7.4.1 Base settings: Average performance resources
The AVERAGE PERFORMANCE RESOURCES resource generator for the Pareto process trace generator
receives the following base settings:

Table 56 – Base parameter settings for average resources without random modifiers.

Min number
of resources

Max
number of
resources

Jack of all
trades
penalty

Min time
base
modifier

Max time
base
modifier

Min cost
base
modifier

Max cost
base
modifier

2 2 0,25 -0,3 0,3 -0,2 0,2
Table 57 – Modifier functions with allocation of a resource 𝑥 and a threshold value 𝜏 as input for average resources without
random modifiers.

Time functions
Function Threshold range

Marcel Kolenbrander – 31 October 2022 100 - 128

𝒇𝑹𝒕(𝒙, 𝝉) = e

𝒙
𝟐 , 𝒙 ≤ 𝝉

(𝒙 − 𝝉)𝟐 +
𝝉
𝟐 , 𝒙 > 𝝉

𝐷<: [3,7]

Cost functions
Function Threshold range

𝒇𝑹𝒄(𝒙, 𝝉) =

⎩
⎪
⎨

⎪
⎧−√

𝒙
𝟏𝟎 , 𝒙 ≤ 𝝉

−√
𝝉

𝟏𝟎 , 𝒙 > 𝝉

𝐷<: [5,10]

10.7.4.2 Base settings: throughput time specialized resources
The THROUGHPUT TIME SPECIALIZED RESOURCES resource generator receives the following base
settings:

Table 58 – Base parameter settings for throughput time specialized resources.

Min number of
resources

Max number
of resources

Min time base
modifier

Max time base
modifier

Min cost base
modifier

Max cost base
modifier

2 2 -0.5 -0.5 0.5 0.5
The throughput time specialized resources have the following functions applied to them.

Table 59 – Modifier function for throughput time with allocation of a resource x as input for throughput time specialized
resources.

Time function Cost functions

𝒇𝑹𝒕(𝒙) =
√𝒙
𝟏𝟎 𝑓>$(𝑥) = −√

𝑥
5

10.7.4.3 Base settings: cost specialized resources
The COST SPECIALIZED RESOURCES resource generator receives the following base settings:

Table 60 – Base parameter settings for cost specialized resources.

Min number of
resources

Max number
of resources

Min time base
modifier

Max time base
modifier

Min cost base
modifier

Max cost base
modifier

2 2 0.5 0.5 -0.5 -0.5
The cost specialized resources have the following functions applied to them.

Table 61 – Modifier function for cost with allocation of a resource x as input for throughput time specialized resources.

Time function Cost functions

𝒇𝑹𝒕(𝒙) =
𝒙𝟐

𝟏𝟎 𝑓>$(𝑥) = − √𝑥
100

10.7.4.4 Resources setup
Resources setup is performed with seed pair 1660384210 & 1660384210, this results in the following
setup:

Table 62 – Average resources without random events and with specialized resources.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_e 0.119357 0.109442 -0.029916 4 7
r_1 a_b, a_f, a_a,

a_e, a_d
0.197911 0.195291 0.158918 3 7

Specialized resources
r_2 0.222668 -0.500000 0.500000
r_3 0.901155 -0.500000 0.500000
r_4 0.171687 -0.500000 0.500000

Marcel Kolenbrander – 31 October 2022 101 - 128

r_5 0.863877 -0.500000 0.500000

10.7.5 Case count
The pareto process trace will have 1.000 cases, produced by 1.000 simulation runs over all the above
simulation values.

10.8 Pareto solution space visualisation

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0

CO
ST

TIME

Solution space cost versus time

Cost vs. Time Pareto Front

Cost vs. Time Solution Space

Marcel Kolenbrander – 31 October 2022 103 - 128

10.9 Tmin Tmax solution space visualisation

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0

CO
ST

TIME

Tmin tmax limited solution space

Cost vs. Time Pareto Front

Cost vs. Time Solution Space

T-Min

T-Max

Marcel Kolenbrander – 31 October 2022 104 - 128

10.10 Epsilon constrained problem space visualisation

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0

CO
ST

TIME

Epsilon constrained solution space

Cost vs. Time Pareto Front

Cost vs. Time Solution Space

Epsilon

T-Max

T-Min

Epsilon

10.11 Process trace generator: Simulation tree results
10.11.1 Loops only
The three (3) seed combinations are:

Table 63 – Sim tree seeds for the loops only tree

 Sim Tree 0 Sim Tree 1 Sim Tree 2
Seed 0 827811881 78488783 751954824
Seed 1 892884050 571064686 113944411

The three (3) resulting trees with simulation values are as follows:

Figure 27 – Sim tree 1 of the loops only tree.

Figure 28 – Sim tree 2 of the loops only tree.

('>',
 [('>',
 [('*',
 [0.49858121831207936, 0.06278856931551752, 0.0066042507336793056],
 ['a_a', 'a_d']),
 ('*',
 [0.6012613504991797, 0.591790226193634, 0.4818295384953422,
 0.37817439420305476, 0.3486813944177145],
 ['a_f', 'a_c'])]),
 ('*',
 [0.8033917029517865, 0.40319111961786586, 0.388562850457725],
 ['a_e', 'a_b'])])

('>',
 [('>',
 [('*',
 [0.4158709049820133, 0.034698704354528355, 0.024575995808307036],
 ['a_a', 'a_d']),
 ('*',
 [0.2865720514227674, 0.2499755715447975, 0.12976540173076961,
 0.03248390518516331, 0.018702818046026887],
 ['a_f', 'a_c'])]),
 ('*',
 [0.12123977990767587,.0534741423865912, 0.047490588820646114,
 0.024722220073648046],
 ['a_e', 'a_b'])])

('>',
 [('>',
 [('*',
 [0.9437539084778306, 0.2749080246815939, 0.072500314790804],
 ['a_a', 'a_d']),
 ('*',
 [0.9629261359177992, 0.4066324434639764],
 ['a_f', 'a_c'])]),
 ('*',
 [0.10904550783693645, 0.06689673567119508, 0.06262154134423079,
 0.026706132876516357, 0.0027815165080447304],
 ['a_e', 'a_b'])])

Figure 26 – Sim tree 0 of the loops only tree.

Marcel Kolenbrander – 31 October 2022 106 - 128

10.11.2 Parallel branches only
The three (3) seed combinations are:

Table 64 – Sim tree seeds for the parallel branches tree.

 Sim Tree 0 Sim Tree 1 Sim Tree 2
Seed 0 1579143339 1216797035 1075399334
Seed 1 617776679 1143991442 1754616638

The three (3) resulting trees with simulation values are as follows:

Figure 29 – Sim tree 0 of the parallel branches only tree.

The three (3) simulation tree outputs are identical. This is because parallel branches have no probability
values to set. However, the three (3) simulation seed pairs will also be used for activity and resource
model construction.

10.11.3 XOR-branches only
The three (3) seed combinations are:

Table 65 – Sim tree seeds for the XOR-branches tree.

 Sim Tree 0 Sim Tree 1 Sim Tree 2
Seed 0 1088179171 694198756 1150356829
Seed 1 28661790 640368126 1399333154

The three (3) resulting trees with simulation values are as follows:

Figure 30 – Sim tree 0 of the XOR-branches only tree.

('>',
 [('+',
 [('>',
 ['a_c', 'a_d']),
 ('>',
 ['a_b',
 ('+',
 ['a_e', 'a_f'])])]),
 ('>', ['a_g', 'a_a'])])

('X',
 [0.2857142857142857, 0.7142857142857143],
 [('>',
 ['a_c',
 ('X',
 [0.42857142857142855, 0.5714285714285714],
 ['a_e',
 ('>',
 ['a_f', 'a_b'])])]),
 ('X',
 [0.16666666666666666, 0.8333333333333334],
 ['a_a', 'a_d'])])

Marcel Kolenbrander – 31 October 2022 107 - 128

Figure 31 – Sim tree 1 of the XOR-branches only tree.

Figure 32 – Sim tree 2 of the XOR-branches only tree.

10.11.4 Small, combined tree
The three (3) seed combinations are:

Table 66 – Sim tree seeds for the small, combined tree.

 Sim Tree 0 Sim Tree 1 Sim Tree 2
Seed 0 1718538115 990283461 1708917191
Seed 1 1176869713 1969710494 1421704765

The three (3) resulting trees with simulation values are as follows:

Figure 33 – Sim tree 0 of the small, combined tree.

('X',
 [0.3333333333333333, 0.6666666666666666],
 [('>',
 ['a_c',
 ('X',
 [0.75, 0.25],
 ['a_e',
 ('>',
 ['a_f', 'a_b'])])]),
 ('X',
 [0.5, 0.5],
 ['a_a', 'a_d'])])

('X',
 [0.75, 0.25],
 [('>',
 ['a_c',
 ('X',
 [0.7142857142857143, 0.2857142857142857],
 ['a_e',
 ('>',
 ['a_f', 'a_b'])])]),
 ('X',
 [0.42857142857142855, 0.5714285714285714],
 ['a_a', 'a_d'])])

('+',
 [('X',
 [0.5, 0.5],
 ['a_a',
 ('X',
 [0.4, 0.6],
 ['a_c',
 ('*',
 [0.5357273491284736, 0.3502118621436266, 0.060528983431140826],
 ['a_e',
 ('+',
 ['a_g', 'a_d'])])])]),
 ('+',
 ['a_f', 'a_b'])])

Marcel Kolenbrander – 31 October 2022 108 - 128

Figure 34 – Sim tree 1 of the small, combined tree.

Figure 35 – Sim tree 2 of the small, combined tree.

10.11.5 Large, combined tree
The three (3) seed combinations are:

Table 67 – Sim tree seeds for the small, combined tree.

 Sim Tree 0 Sim Tree 1 Sim Tree 2
Seed 0 1602080410 1235104103 1383974871
Seed 1 648465147 925448569 1316528754

The three (3) resulting trees with simulation values are as follows:

('+',
 [('X',
 [0.75, 0.25],
 ['a_a',
 ('X',
 [0.42857142857142855, 0.5714285714285714],
 ['a_c',
 ('*',
 [0.16763358845762388, 0.02554899607507254, 0.0048262906169289415,
 0.002543670576001397,.002102847488469429],
 ['a_e',
 ('+',
 ['a_g', 'a_d'])])])]),
 ('+',
 ['a_f', 'a_b'])])

('+',
 [('X',
 [0.5, 0.5],
 ['a_a',
 ('X',
 [0.5555555555555556, 0.4444444444444444],
 ['a_c',
 ('*',
 [0.8266444192850504, 0.6386235175593885, 0.13237504793754443],
 ['a_e',
 ('+',
 ['a_g', 'a_d'])])])]),
 ('+',
 ['a_f', 'a_b'])])

Marcel Kolenbrander – 31 October 2022 109 - 128

Figure 36 – Sim tree 0 of the large, combined tree.

Figure 37 – Sim tree 1 of the large, combined tree.

('X',
 [0.6666666666666666, 0.3333333333333333],
 [('>',
 [('>',
 ['a_c',
 ('*',
 [0.8568863343673961, 0.24253650054053202, 0.22052183610969922],
 ['a_f', 'a_h'])]),
 ('*',
 [0.816236922361096, 0.46883518255370826],
 ['a_a', 'a_i'])]),
 ('+',
 ['a_d',
 ('>',
 ['a_e',
 ('X',
 [0.5, 0.5],
 ['a_b',
 ('*',
 [0.8939180320703698, 0.1273815761114933, 0.009398971481050946,
 0.004211614509921592],
 ['a_g', 'a_j'])])])])])

('X',
 [0.14285714285714285, 0.8571428571428571],
 [('>',
 [('>',
 ['a_c',
 ('*',
 [0.5777150804191634, 0.4710819435133378],
 ['a_f', 'a_h'])]),
 ('*',
 [0.9250958647756223, 0.913042964723886, 0.7395763672385849],
 ['a_a', 'a_i'])]),
 ('+',
 ['a_d',
 ('>',
 ['a_e',
 ('X',
 [0.6666666666666666, 0.3333333333333333],
 ['a_b',
 ('*',
 [0.49991190494995685, 0.4581612025276598, 0.3827921113918269],
 ['a_g', 'a_j'])])])])])

Marcel Kolenbrander – 31 October 2022 110 - 128

Figure 38 – Sim tree 2 of the large, combined tree

('X',
 [0.8, 0.2],
 [('>',
 [('>',
 ['a_c',
 ('*',
 [0.8869814147660922, 0.16337736292403074, 0.0316535579857634,
 0.029954469343759848],
 ['a_f', 'a_h'])]),
 ('*',
 [0.4061140759372188, 0.11340518506150618],
 ['a_a', 'a_i'])]),
 ('+',
 ['a_d',
 ('>',
 ['a_e',
 ('X',
 [0.3333333333333333, 0.6666666666666666],
 ['a_b',
 ('*',
 [0.9707367669090233, 0.016479416484125892,
 0.0027768997127055653],
 ['a_g', 'a_j'])])])])])

Marcel Kolenbrander – 31 October 2022 111 - 128

10.12 Process trace generator: Activity sets results
Note that all activities are preceded with an a_ notation, this is a characteristic of the process trace
generator. This applies to all following tables within the Activity simulation values section.

10.12.1 Loops only
Activities setup for seed pair 827811881 & 892884050:

Table 68 – Activities values for sim tree 0.

Activity Base time value Base cost value
a_a 389.56 554.08
a_b 605.25 816.05
a_c 922.79 73.60
a_d 935.64 705.25
a_e 428.63 78.12
a_f 573.81 430.15

Activities setup for seed pair 78488783 & 57106468:

Table 69 – Activities values for sim tree 1.

Activity Base time value Base cost value
a_a 448.54 479.72
a_b 293.71 523.92
a_c 580.00 804.40
a_d 678.51 207.63
a_e 506.56 418.31
a_f 391.84 938.46

Activities setup for seed pair 751954824 & 113944411:

Table 70 – Activities values for sim tree 2.

Activity Base time value Base cost value
a_a 243.70 133.20
a_b 963.30 524.01
a_c 311.37 868.37
a_d 928.83 578.36
a_e 358.38 594.22
a_f 510.09 766.15

10.12.2 Parallel branches only
Activities setup for seed pair 1579143339 & 617776679:

Table 71 – Activities values for sim tree 0.

Activity Base time value Base cost value
a_a 620.73 708.82
a_b 267.26 595.22
a_c 269.32 796.28
a_d 717.20 864.05
a_e 497.07 496.11
a_f 674.72 762.85
a_g 711.63 450.31

Activities setup for seed pair 1216797035 & 1143991442:

Table 72 – Activities values for sim tree 1.

Activity Base time value Base cost value
a_a 364.51 531.80
a_b 556.94 317.64
a_c 915.21 157.16

Marcel Kolenbrander – 31 October 2022 112 - 128

a_d 189.35 49.61
a_e 451.23 815.83
a_f 652.50 368.32
a_g 658.26 113.45

Activities setup for seed pair 1075399334 & 1754616638:

Table 73 – Activities values for sim tree 2.

Activity Base time value Base cost value
a_a 911.73 659.56
a_b 101.31 739.95
a_c 729.33 760.72
a_d 987.40 878.53
a_e 512.90 104.04
a_f 631.32 995.85
a_g 603.97 365.00

10.12.3 XOR-branches only
Activities setup for seed pair 1088179171 & 28661790:

Table 74 – Activities values for sim tree 0.

Activity Base time value Base cost value
a_a 572.93 35.74
a_b 587.60 138.04
a_c 533.66 115.06
a_d 149.41 646.12
a_e 891.79 872.58
a_f 623.84 329.47

Activities setup for seed pair 694198756 & 640368126:

Table 75 – Activities values for sim tree 1.

Activity Base time value Base cost value
a_a 110.39 784.44
a_b 125.32 603.81
a_c 446.68 771.61
a_d 377.64 617.28
a_e 265.62 639.06
a_f 411.48 936.95

Activities setup for seed pair 1150356829 & 1399333154:

Table 76 – Activities setup for sim tree 2.

Activity Base time value Base cost value
a_a 593.02 515.38
a_b 927.14 292.36
a_c 444.58 685.21
a_d 456.21 621.68
a_e 735.63 689.90
a_f 471.68 767.85

10.12.4 Small. combined tree
Activities setup for seed pair 1718538115 & 1176869713:

Table 77 – Activities values for sim tree 0.

Activity Base time value Base cost value
a_a 771.88 977.40
a_b 951.65 188.72
a_c 203.84 714.25

Marcel Kolenbrander – 31 October 2022 113 - 128

a_d 219.54 75.10
a_e 43.63 354.21
a_f 470.83 976.34
a_g 130.37 976.98

Activities setup for seed pair 990283461 & 1969710494:

Table 78 – Activities values for sim tree 1.

Activity Base time value Base cost value
a_a 97.18 589.34
a_b 453.08 742.08
a_c 835.90 580.68
a_d 267.46 725.02
a_e 250.31 940.56
a_f 128.13 278.27
a_g 165.92 764.08

Activities setup for seed pair 1708917191 & 1421704765:

Table 79 – Activities values for sim tree 2.

Activity Base time value Base cost value
a_a 559.71 713.57
a_b 43.69 83.13
a_c 272.11 758.57
a_d 497.24 782.62
a_e 902.39 276.04
a_f 893.14 513.02
a_g 44.27 483.13

10.12.5 Large. combined tree
Activities setup for seed pair 1602080410 & 64845147:

Table 80 – Activities values for sim tree 0.

Activity Base time value Base cost value
a_a 969.43 117.57
a_b 818.07 642.62
a_c 472.95 279.89
a_d 521.14 448.76
a_e 287.78 826.13
a_f 929.14 91.14
a_g 515.84 762.50
a_h 630.38 156.36
a_i 132.04 677.59
a_j 40.38 577.01

Activities setup for seed pair 1235104103 & 925448569:

Table 81 – Activities values for sim tree 1.

Activity Base time value Base cost value
a_a 565.97 197.66
a_b 987.10 219.09
a_c 189.73 281.01
a_d 660.75 62.35
a_e 949.11 821.85
a_f 650.48 676.52
a_g 840.94 478.25
a_h 585.68 452.00
a_i 684.20 558.07
a_j 581.40 438.18

Marcel Kolenbrander – 31 October 2022 114 - 128

Activities setup for seed pair 1383974871 & 1316528754:

Table 82 – Activities values for sim tree 2.

Activity Base time value Base cost value
a_a 291.29 364.15
a_b 627.18 286.45
a_c 347.19 518.01
a_d 54.08 803.98
a_e 438.08 881.70
a_f 437.62 808.37
a_g 463.31 116.84
a_h 992.85 331.14
a_i 424.44 262.93
a_j 827.31 14.53

Marcel Kolenbrander – 31 October 2022 115 - 128

10.13 Process trace generator: Resource sets results
Note that all activities are preceded with an a_ notation, this is a characteristic of the process trace
generator. This applies to all following tables within the Activity simulation values section.

10.13.1 Loops only
10.13.1.1 Average resources without random events
Resources setup for seed pair 827811881 & 892884050:

Table 83 – Average resources without random events seeds from sim tree 0.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_e 0.920414 -0.000798 0.126148 6 7
r_1 a_b, a_f, a_a,

a_e, a_d
0.629925 -0.202731 -0.048200 5 9

r_2 a_f 0.602583 -0.154535 -0.005235 6 5
r_3 a_d, a_e, a_f,

a_c, a_b
0.913418 0.044629 -0.042365 6 6

r_4 0.228319 0.414796 0.170198 3 7
r_5 0.777067 0.047427 0.366105 6 5
r_6 0.276988 0.229528 0.347552 3 5
r_7 0.812112 0.408370 0.445150 5 7
r_8 0.689251 0.524925 0.246362 6 9
r_9 0.407127 0.223431 0.151061 5 9

Resources setup for seed pair 78488783 & 571064686:

Table 84 – Average resources without random events seeds from sim tree 1.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_c, a_e, a_a,
a_d

0.853426 -0.137848 -0.007110 5 8

r_1 a_a, a_f, a_d,
a_e

0.594380 -0.115800 -0.149735 4 7

r_2 a_b, a_c, a_f 0.929502 -0.176845 0.193889 5 8
r_3 0.137582 0.364872 0.093888 4 6
r_4 0.509792 0.486180 0.180184 5 8
r_5 0.359032 0.476135 0.241760 5 8
r_6 0.915971 0.155175 0.213279 4 7
r_7 0.423389 0.285725 0.153991 4 8
r_8 0.642433 0.071598 0.366885 6 7
r_9 0.307391 0.511524 0.141203 3 8

Resources setup for seed pair 751954824 & 113944411:

Table 85 – Average resources without random events seeds from sim tree 2.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_e 0.478951 0.153405 -0.077849 3 7
r_1 a_a, a_f 0.941618 0.275939 0.138888 5 6
r_2 a_c, a_f, a_a,

a_b, a_d
0.144722 0.074503 0.040048 6 9

r_3 a_b 0.782829 0.281221 -0.091826 5 9
r_4 a_a, a_d 0.749434 -0.018234 -0.131705 6 9

Marcel Kolenbrander – 31 October 2022 116 - 128

r_5 a_b, a_d, a_e,
a_a

0.601922 0.294241 0.187768 3 7

r_6 a_c, a_e, a_f,
a_d

0.586414 0.092887 0.065305 5 9

r_7 a_a 0.897172 0.254558 0.156707 5 9
r_8 0.656645 0.057686 0.440117 5 7
r_9 0.262856 0.196418 0.300882 5 6

10.13.1.2 Average resources with random events
The resulting resource parameters for the average resources with random events, is the same as the
resulting parameters for the average resources without random events. This is because the addition of a
random function does not impact the random generation of the “constant” parameters as shown in the
tables.

Please refer to the setup above for the parameter settings of this setup.

10.13.1.3 Average resources without random events and with specialized resources
Resources setup for seed pair 827811881 & 892884050:

Table 86 – Average resources without random events and with specialized resources seeds from sim tree 0.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_e 0.920414 -0.000798 0.126148 6 7
r_1 a_b, a_f, a_a,

a_e, a_d
0.629925 -0.202731 -0.048200 5 9

r_2 a_f 0.602583 -0.154535 -0.005235 6 5
r_3 a_d, a_e, a_f,

a_c, a_b
0.913418 0.044629 -0.042365 6 6

r_4 0.228319 0.414796 0.170198 3 7
r_5 0.777067 0.047427 0.366105 6 5
r_6 0.276988 0.229528 0.347552 3 5
r_7 0.812112 0.408370 0.445150 5 7
r_8 0.689251 0.524925 0.246362 6 9
r_9 0.407127 0.223431 0.151061 5 9
Specialized resources
r_10 0.623892 -0.500000 0.500000
r_11 0.849139 -0.500000 0.500000
r_12 0.993314 -0.500000 0.500000
r_13 0.109843 -0.500000 0.500000
r_14 0.412405 0.500000 -0.500000
r_15 0.727870 0.500000 -0.500000
r_16 0.155966 0.500000 -0.500000
r_17 0.721926 0.500000 -0.500000

Resources setup for seed pair 78488783 & 571064686:

Table 87 – Average resources without random events and with specialized resources seeds from sim tree 1.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_c, a_e, a_a,
a_d

0.853426 -0.137848 -0.007110 5 8

r_1 a_a, a_f, a_d,
a_e

0.594380 -0.115800 -0.149735 4 7

r_2 a_b, a_c, a_f 0.929502 -0.176845 0.193889 5 8
r_3 0.137582 0.364872 0.093888 4 6
r_4 0.509792 0.486180 0.180184 5 8
r_5 0.359032 0.476135 0.241760 5 8

Marcel Kolenbrander – 31 October 2022 117 - 128

r_6 0.915971 0.155175 0.213279 4 7
r_7 0.423389 0.285725 0.153991 4 8
r_8 0.642433 0.071598 0.366885 6 7
r_9 0.307391 0.511524 0.141203 3 8
Specialized resources
r_10 0.440189 -0.500000 0.500000
r_11 0.542991 -0.500000 0.500000
r_12 0.241690 -0.500000 0.500000
r_13 0.270567 -0.500000 0.500000
r_14 0.822326 0.500000 -0.500000
r_15 0.572093 0.500000 -0.500000
r_16 0.209232 0.500000 -0.500000
r_17 0.871395 0.500000 -0.500000

Resources setup for seed pair 751954824 & 113944411:

Table 88 – Average resources without random events and with specialized resources seeds from sim tree 2.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_e 0.478951 0.153405 -0.077849 3 7
r_1 a_a, a_f 0.941618 0.275939 0.138888 5 6
r_2 a_c, a_f, a_a,

a_b, a_d
0.144722 0.074503 0.040048 6 9

r_3 a_b 0.782829 0.281221 -0.091826 5 9
r_4 a_a, a_d 0.749434 -0.018234 -0.131705 6 9
r_5 a_b, a_d,

a_e, a_a
0.601922 0.294241 0.187768 3 7

r_6 a_c, a_e, a_f,
a_d

0.586414 0.092887 0.065305 5 9

r_7 a_a 0.897172 0.254558 0.156707 5 9
r_8 0.656645 0.057686 0.440117 5 7
r_9 0.262856 0.196418 0.300882 5 6
Specialized resources
r_10 0.221306 -0.500000 0.500000
r_11 0.176898 -0.500000 0.500000
r_12 0.268878 -0.500000 0.500000
r_13 0.375688 -0.500000 0.500000
r_14 0.385918 0.500000 -0.500000
r_15 0.691316 0.500000 -0.500000
r_16 0.913789 0.500000 -0.500000
r_17 0.366638 0.500000 -0.500000

10.13.1.4 Average resources with random events and with specialized resources
The resulting resource parameters for the average resources with random events and specialized
resources, is the same as the resulting parameters for the average resources without random events and
specialized resources. This is because the addition of a random function does not impact the random
generation of the “constant” parameters as shown in the tables.

Please refer to the setup above for the parameter settings of this setup.

10.13.2 Parallel branches only
10.13.2.1 Average resources without random events
Resources setup for seed pair 1579143339 & 617776679:

Table 89 – Average resources without random events seeds from sim tree 0.

Marcel Kolenbrander – 31 October 2022 118 - 128

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_a, a_d, a_f,
a_g, a_e

0.916556 0.264739 0.184737 3 7

r_1 a_f 0.112067 0.007979 -0.149586 5 9
r_2 a_f, a_b, a_a 0.960778 -0.268980 0.057794 4 5
r_3 a_a, a_d, a_c 0.197090 -0.059198 -0.016693 6 6
r_4 0.963751 0.154692 0.090694 6 7
r_5 0.265582 0.000470 0.174146 4 5
r_6 0.875577 0.056296 0.191717 5 5
r_7 0.163531 0.023126 0.187612 3 7
r_8 0.267002 0.163581 0.264897 4 9
r_9 0.272681 0.002322 0.358937 4 9

Resources setup for seed pair 1216797035 & 1143991442:

Table 90 – Average resources without random events seeds from sim tree 1.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_b, a_f, a_e 0.432383 0.130798 0.037686 5 5
r_1 a_f, a_e, a_b,

a_c, a_d
0.164676 -0.014706 -0.161370 6 7

r_2 a_c, a_a, a_e,
a_b

0.880190 0.169543 0.053301 4 7

r_3 0.377339 0.081320 0.204681 4 5
r_4 0.834130 0.118297 0.360992 4 5
r_5 0.962209 0.453846 0.424382 5 7
r_6 0.535867 0.211120 0.351271 5 7
r_7 0.393349 0.237836 0.447852 5 7
r_8 0.836438 0.151875 0.307891 5 6
r_9 0.109641 0.101172 0.348990 5 7

Resources setup for seed pair 1075399334 & 1754616638:

Table 91 – Average resources without random events seeds from sim tree 2.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_d, a_b, a_e 0.899995 0.020963 0.172626 4 7
r_1 a_f, a_d, a_a,

a_g, a_e
0.881519 -0.086564 -0.019295 5 9

r_2 a_a, a_e, a_c,
a_b

0.158848 -0.064966 -0.171615 5 8

r_3 a_a, a_e, a_g,
a_c, a_f

0.268773 0.108624 0.047091 4 7

r_4 a_a, a_f, a_e 0.114809 0.148080 0.175293 6 9
r_5 a_d, a_c, a_a 0.349823 0.252586 -0.090544 3 6
r_6 a_a, a_g, a_e,

a_b, a_d, a_c
0.555626 0.142905 -0.060893 3 6

r_7 a_a, a_f, a_d,
a_c, a_b, a_g

0.756382 -0.273644 -0.163232 6 6

r_8 0.699128 0.499312 0.410396 4 9
r_9 0.605663 0.270403 0.356160 4 9

10.13.2.2 Average resources with random events
The resulting resource parameters for the average resources with random events, is the same as the
resulting parameters for the average resources without random events. This is because the addition of a

Marcel Kolenbrander – 31 October 2022 119 - 128

random function does not impact the random generation of the “constant” parameters as shown in the
tables.

Please refer to the setup above for the parameter settings of this setup.

10.13.2.3 Average resources without random events and with specialized resources
Resources setup for seed pair 1579143339 & 617776679:

Table 92 – Average resources without random events and with specialized resources seeds from sim tree 0.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_a, a_d, a_f,
a_g, a_e

0.916556 0.264739 0.184737 3 7

r_1 a_f 0.112067 0.007979 -0.149586 5 9
r_2 a_f, a_b, a_a 0.960778 -0.268980 0.057794 4 5
r_3 a_a, a_d, a_c 0.197090 -0.059198 -0.016693 6 6
r_4 0.963751 0.154692 0.090694 6 7
r_5 0.265582 0.000470 0.174146 4 5
r_6 0.875577 0.056296 0.191717 5 5
r_7 0.163531 0.023126 0.187612 3 7
r_8 0.267002 0.163581 0.264897 4 9
r_9 0.272681 0.002322 0.358937 4 9
Specialized resources
r_10 0.809576 -0.500000 0.500000
r_11 0.453388 -0.500000 0.500000
r_12 0.180483 -0.500000 0.500000
r_13 0.589070 -0.500000 0.500000
r_14 0.250666 0.500000 -0.500000
r_15 0.291038 0.500000 -0.500000
r_16 0.786255 0.500000 -0.500000
r_17 0.878807 0.500000 -0.500000

Resources setup for seed pair 1216797035 & 1143991442:

Table 93 – Average resources without random events and with specialized resources seeds from sim tree 1.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_b, a_f, a_e 0.432383 0.130798 0.037686 5 5
r_1 a_f, a_e, a_b,

a_c, a_d
0.164676 -0.014706 -0.161370 6 7

r_2 a_c, a_a, a_e,
a_b

0.880190 0.169543 0.053301 4 7

r_3 0.377339 0.081320 0.204681 4 5
r_4 0.834130 0.118297 0.360992 4 5
r_5 0.962209 0.453846 0.424382 5 7
r_6 0.535867 0.211120 0.351271 5 7
r_7 0.393349 0.237836 0.447852 5 7
r_8 0.836438 0.151875 0.307891 5 6
r_9 0.109641 0.101172 0.348990 5 7
Specialized resources
r_10 0.484974 -0.500000 0.500000
r_11 0.886981 -0.500000 0.500000
r_12 0.223994 -0.500000 0.500000
r_13 0.826126 -0.500000 0.500000
r_14 0.959755 0.500000 -0.500000
r_15 0.276022 0.500000 -0.500000

Marcel Kolenbrander – 31 October 2022 120 - 128

r_16 0.877033 0.500000 -0.500000
r_17 0.722597 0.500000 -0.500000

Resources setup for seed pair 1075399334 & 1754616638:

Table 94 – Average resources without random events and with specialized resources seeds from sim tree 2.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_d, a_b, a_e 0.899995 0.020963 0.172626 4 7
r_1 a_f, a_d, a_a,

a_g, a_e
0.881519 -0.086564 -0.019295 5 9

r_2 a_a, a_e, a_c,
a_b

0.158848 -0.064966 -0.171615 5 8

r_3 a_a, a_e, a_g,
a_c, a_f

0.268773 0.108624 0.047091 4 7

r_4 a_a, a_f, a_e 0.114809 0.148080 0.175293 6 9
r_5 a_d, a_c, a_a 0.349823 0.252586 -0.090544 3 6
r_6 a_a, a_g, a_e,

a_b, a_d, a_c
0.555626 0.142905 -0.060893 3 6

r_7 a_a, a_f, a_d,
a_c, a_b, a_g

0.756382 -0.273644 -0.163232 6 6

r_8 0.699128 0.499312 0.410396 4 9
r_9 0.605663 0.270403 0.356160 4 9
Specialized resources
r_10 0.519840 -0.500000 0.500000
r_11 0.125580 -0.500000 0.500000
r_12 0.267946 -0.500000 0.500000
r_13 0.414269 -0.500000 0.500000
r_14 0.898345 0.500000 -0.500000
r_15 0.519577 0.500000 -0.500000
r_16 0.125831 0.500000 -0.500000
r_17 0.826258 0.500000 -0.500000

10.13.2.4 Average resources with random events and with specialized resources
The resulting resource parameters for the average resources with random events and specialized
resources, is the same as the resulting parameters for the average resources without random events and
specialized resources. This is because the addition of a random function does not impact the random
generation of the “constant” parameters as shown in the tables.

Please refer to the setup above for the parameter settings of this setup.

10.13.3 XOR-branches only
10.13.3.1 Average resources without random events
Resources setup for seed pair 1088179171 & 28661790:

Table 95 – Average resources without random events seeds from sim tree 0.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_c, a_f, a_a,
a_d, a_b

0.157766 0.224964 0.048459 3 9

r_1 a_e, a_a, a_c,
a_d

0.121389 -0.100670 -0.176506 5 5

r_2 a_f, a_d 0.984564 -0.069585 -0.095482 5 5
r_3 a_d, a_a, a_b 0.183523 -0.286176 -0.192829 5 5
r_4 a_b 0.958239 0.007910 -0.134083 5 9
r_5 0.408517 0.284779 0.090525 3 5

Marcel Kolenbrander – 31 October 2022 121 - 128

r_6 0.458328 -0.009812 0.286588 5 5
r_7 0.129026 0.154388 0.160531 5 5
r_8 0.528588 0.400971 0.216075 5 5
r_9 0.924357 0.286597 0.355690 4 9

Resources setup for seed pair 694198756 & 640368126:

Table 96 – Average resources without random events seeds from sim tree 1.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_e, a_c, a_d,
a_a, a_f

0.665650 0.225169 -0.162403 4 5

r_1 a_b 0.464529 -0.210180 0.155700 6 7
r_2 a_a 0.465674 0.172777 -0.125100 4 8
r_3 a_b 0.404228 -0.196395 -0.110553 3 8
r_4 a_d, a_b 0.264668 -0.130066 -0.028440 4 8
r_5 a_d, a_a, a_e 0.831119 0.160920 0.029610 4 8
r_6 a_c, a_b, a_a 0.118725 0.266444 -0.046341 5 8
r_7 0.353122 0.254724 0.418194 6 8
r_8 0.190952 0.313599 0.130550 5 8
r_9 0.788614 0.500437 0.195802 5 7

Resources setup for seed pair 1150356829 & 1399333154:

Table 97 – Average resources without random events seeds from sim tree 2.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_e, a_f, a_c 0.642402 -0.187205 0.166488 6 9
r_1 a_f 0.502514 -0.080209 -0.161191 6 5
r_2 a_f, a_a, a_e 0.195869 0.199047 0.054236 6 6
r_3 0.200671 0.033682 0.398578 3 7
r_4 0.892344 0.390513 0.222255 5 9
r_5 0.630866 0.246190 0.396772 6 5
r_6 0.837432 0.051199 0.402704 4 6
r_7 0.888102 0.088863 0.217978 5 9
r_8 0.849076 0.154073 0.434445 3 9
r_9 0.238601 -0.019835 0.385108 5 5

10.13.3.2 Average resources with random events
The resulting resource parameters for the average resources with random events, is the same as the
resulting parameters for the average resources without random events. This is because the addition of a
random function does not impact the random generation of the “constant” parameters as shown in the
tables.

Please refer to the setup above for the parameter settings of this setup.

10.13.3.3 Average resources without random events and with specialized resources
Resources setup for seed pair 1088179171 & 28661790:

Table 98 – Average resources without random events and with specialized resources seeds from sim tree 0.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_c, a_f, a_a,
a_d, a_b

0.157766 0.224964 0.048459 3 9

r_1 a_e, a_a, a_c,
a_d

0.121389 -0.100670 -0.176506 5 5

r_2 a_f, a_d 0.984564 -0.069585 -0.095482 5 5

Marcel Kolenbrander – 31 October 2022 122 - 128

r_3 a_d, a_a, a_b 0.183523 -0.286176 -0.192829 5 5
r_4 a_b 0.958239 0.007910 -0.134083 5 9
r_5 0.408517 0.284779 0.090525 3 5
r_6 0.458328 -0.009812 0.286588 5 5
r_7 0.129026 0.154388 0.160531 5 5
r_8 0.528588 0.400971 0.216075 5 5
r_9 0.924357 0.286597 0.355690 4 9
Specialized resources
r_10 0.470618 -0.500000 0.500000
r_11 0.357029 -0.500000 0.500000
r_12 0.625171 -0.500000 0.500000
r_13 0.891407 -0.500000 0.500000
r_14 0.176860 0.500000 -0.500000
r_15 0.759846 0.500000 -0.500000
r_16 0.526806 0.500000 -0.500000
r_17 0.721455 0.500000 -0.500000

Resources setup for seed pair 694198756 & 640368126:

Table 99 – Average resources without random events and with specialized resources seeds from sim tree 1.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_e, a_c, a_d,
a_a, a_f

0.665650 0.225169 -0.162403 4 5

r_1 a_b 0.464529 -0.210180 0.155700 6 7
r_2 a_a 0.465674 0.172777 -0.125100 4 8
r_3 a_b 0.404228 -0.196395 -0.110553 3 8
r_4 a_d, a_b 0.264668 -0.130066 -0.028440 4 8
r_5 a_d, a_a, a_e 0.831119 0.160920 0.029610 4 8
r_6 a_c, a_b, a_a 0.118725 0.266444 -0.046341 5 8
r_7 0.353122 0.254724 0.418194 6 8
r_8 0.190952 0.313599 0.130550 5 8
r_9 0.788614 0.500437 0.195802 5 7
Specialized resources
r_10 0.454024 -0.500000 0.500000
r_11 0.777729 -0.500000 0.500000
r_12 0.241361 -0.500000 0.500000
r_13 0.275182 -0.500000 0.500000
r_14 0.938151 0.500000 -0.500000
r_15 0.884341 0.500000 -0.500000
r_16 0.911585 0.500000 -0.500000
r_17 0.841864 0.500000 -0.500000

Resources setup for seed pair 1150356829 & 1399333154:

Table 100 – Average resources without random events and with specialized resources seeds from sim tree 2.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_e, a_f, a_c 0.642402 -0.187205 0.166488 6 9
r_1 a_f 0.502514 -0.080209 -0.161191 6 5
r_2 a_f, a_a, a_e 0.195869 0.199047 0.054236 6 6
r_3 0.200671 0.033682 0.398578 3 7
r_4 0.892344 0.390513 0.222255 5 9
r_5 0.630866 0.246190 0.396772 6 5
r_6 0.837432 0.051199 0.402704 4 6
r_7 0.888102 0.088863 0.217978 5 9
r_8 0.849076 0.154073 0.434445 3 9

Marcel Kolenbrander – 31 October 2022 123 - 128

r_9 0.238601 -0.019835 0.385108 5 5
Specialized resources
r_10 0.989276 -0.500000 0.500000
r_11 0.726084 -0.500000 0.500000
r_12 0.685680 -0.500000 0.500000
r_13 0.311557 -0.500000 0.500000
r_14 0.757203 0.500000 -0.500000
r_15 0.808933 0.500000 -0.500000
r_16 0.243324 0.500000 -0.500000
r_17 0.274912 0.500000 -0.500000

10.13.3.4 Average resources with random events and with specialized resources
The resulting resource parameters for the average resources with random events and specialized
resources, is the same as the resulting parameters for the average resources without random events and
specialized resources. This is because the addition of a random function does not impact the random
generation of the “constant” parameters as shown in the tables.

Please refer to the setup above for the parameter settings of this setup.

10.13.4 Small, combined tree
10.13.4.1 Average resources without random events
Resources setup for seed pair 1718538115 & 1176869713:

Table 101 – Average resources without random events seeds from sim tree 0.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_a 0.158015 -0.010268 0.132464 3 7
r_1 a_g 0.781009 0.216598 0.042697 4 7
r_2 a_e, a_c, a_f,

a_g, a_d
0.236172 -0.063923 0.086787 4 6

r_3 a_f 0.832822 0.216360 0.107416 3 7
r_4 a_g, a_e, a_d 0.794436 -0.292807 0.156056 3 6
r_5 a_d, a_c, a_e,

a_a
0.129981 0.297535 0.114275 4 8

r_6 a_e 0.949316 0.167332 0.188116 4 8
r_7 a_d, a_a, a_f 0.157495 -0.242720 0.077790 6 7
r_8 0.501517 0.012107 0.393627 4 8
r_9 0.802496 0.390332 0.345039 3 6

Resources setup for seed pair 990283461 & 1969710494:

Table 102 – Average resources without random events seeds from sim tree 1.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_e, a_g, a_b,
a_d

0.536559 -0.009791 -0.039098 4 9

r_1 a_e, a_d 0.815651 0.145446 0.143597 6 9
r_2 0.496044 0.222588 0.239230 4 6
r_3 0.507935 0.251795 0.127812 4 8
r_4 0.615895 0.234606 0.233457 4 5
r_5 0.131972 0.086995 0.313685 6 5
r_6 0.521752 0.546660 0.304834 4 6
r_7 0.929053 0.043002 0.301377 4 8
r_8 0.287014 0.342198 0.074367 6 8
r_9 0.244082 0.151777 0.266208 6 5

Resources setup for seed pair 1708917191 & 1421704765:

Marcel Kolenbrander – 31 October 2022 124 - 128

Table 103 – Average resources without random events seeds from sim tree 2.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_a, a_g 0.717161 0.267873 0.198809 6 7
r_1 a_d, a_a 0.181336 0.090986 -0.023921 5 7
r_2 a_c 0.712825 0.058402 -0.101056 6 6
r_3 a_f, a_a, a_c 0.196962 -0.296524 -0.193763 6 5
r_4 0.231194 0.466476 0.239329 6 5
r_5 0.663873 0.043717 0.060791 4 6
r_6 0.233476 0.337214 0.154498 3 6
r_7 0.540605 0.125325 0.443224 6 7
r_8 0.838832 0.172906 0.086659 4 7
r_9 0.323515 0.254124 0.343637 6 7

10.13.4.2 Average resources with random events
The resulting resource parameters for the average resources with random events, is the same as the
resulting parameters for the average resources without random events. This is because the addition of a
random function does not impact the random generation of the “constant” parameters as shown in the
tables.

Please refer to the setup above for the parameter settings of this setup.

10.13.4.3 Average resources without random events and with specialized resources
Resources setup for seed pair 1718538115 & 1176869713:

Table 104 – Average resources without random events and with specialized resources seeds from sim tree 0.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_a 0.158015 -0.010268 0.132464 3 7
r_1 a_g 0.781009 0.216598 0.042697 4 7
r_2 a_e, a_c, a_f,

a_g, a_d
0.236172 -0.063923 0.086787 4 6

r_3 a_f 0.832822 0.216360 0.107416 3 7
r_4 a_g, a_e, a_d 0.794436 -0.292807 0.156056 3 6
r_5 a_d, a_c, a_e,

a_a
0.129981 0.297535 0.114275 4 8

r_6 a_e 0.949316 0.167332 0.188116 4 8
r_7 a_d, a_a, a_f 0.157495 -0.242720 0.077790 6 7
r_8 0.501517 0.012107 0.393627 4 8
r_9 0.802496 0.390332 0.345039 3 6
Specialized resources
r_10 0.632957 -0.500000 0.500000
r_11 0.885364 -0.500000 0.500000
r_12 0.349910 -0.500000 0.500000
r_13 0.302426 -0.500000 0.500000
r_14 0.714547 0.500000 -0.500000
r_15 0.834851 0.500000 -0.500000
r_16 0.399971 0.500000 -0.500000
r_17 0.919343 0.500000 -0.500000

Resources setup for seed pair 990283461 & 1969710494:

Table 105 – Average resources without random events and with specialized resources seeds from sim tree 1.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

Marcel Kolenbrander – 31 October 2022 125 - 128

r_0 a_e, a_g,
a_b, a_d

0.536559 -0.009791 -0.039098 4 9

r_1 a_e, a_d 0.815651 0.145446 0.143597 6 9
r_2 0.496044 0.222588 0.239230 4 6
r_3 0.507935 0.251795 0.127812 4 8
r_4 0.615895 0.234606 0.233457 4 5
r_5 0.131972 0.086995 0.313685 6 5
r_6 0.521752 0.546660 0.304834 4 6
r_7 0.929053 0.043002 0.301377 4 8
r_8 0.287014 0.342198 0.074367 6 8
r_9 0.244082 0.151777 0.266208 6 5
Specialized resources
r_10 0.905114 -0.500000 0.500000
r_11 0.101776 -0.500000 0.500000
r_12 0.941368 -0.500000 0.500000
r_13 0.149639 -0.500000 0.500000
r_14 0.885854 0.500000 -0.500000
r_15 0.527485 0.500000 -0.500000
r_16 0.666293 0.500000 -0.500000
r_17 0.594059 0.500000 -0.500000

Resources setup for seed pair 1708917191 & 1421704765:

Table 106 – Average resources without random events and with specialized resources seeds from sim tree 2.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 [a_a, a_g] 0.717161 0.267873 0.198809 6 7
r_1 [a_d, a_a] 0.181336 0.090986 -0.023921 5 7
r_2 [a_c] 0.712825 0.058402 -0.101056 6 6
r_3 [a_f, a_a,

a_c]
0.196962 -0.296524 -0.193763 6 5

r_4 0.231194 0.466476 0.239329 6 5
r_5 0.663873 0.043717 0.060791 4 6
r_6 0.233476 0.337214 0.154498 3 6
r_7 0.540605 0.125325 0.443224 6 7
r_8 0.838832 0.172906 0.086659 4 7
r_9 0.323515 0.254124 0.343637 6 7
Specialized resources
r_10 0.381256 -0.500000 0.500000
r_11 0.737904 -0.500000 0.500000
r_12 0.309329 -0.500000 0.500000
r_13 0.493560 -0.500000 0.500000
r_14 0.567350 0.500000 -0.500000
r_15 0.550823 0.500000 -0.500000
r_16 0.764538 0.500000 -0.500000
r_17 0.712569 0.500000 -0.500000

10.13.4.4 Average resources with random events and with specialized resources
The resulting resource parameters for the average resources with random events and specialized
resources, is the same as the resulting parameters for the average resources without random events and
specialized resources. This is because the addition of a random function does not impact the random
generation of the “constant” parameters as shown in the tables.

Please refer to the setup above for the parameter settings of this setup.

10.13.5 Large, combined tree
10.13.5.1 Average resources without random events
Resources setup for seed pair 1602080410 & 64845147:

Marcel Kolenbrander – 31 October 2022 126 - 128

Table 107 – Average resources without random events seeds from sim tree 0.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_h, a_f, a_c,
a_a

0.825431 0.250171 0.135195 6 6

r_1 0.523014 0.083562 0.448967 4 6
r_2 0.155295 0.277025 0.209048 5 6
r_3 0.937392 0.071287 0.169014 5 8
r_4 0.553726 0.537893 0.172952 5 8
r_5 0.586393 0.485045 0.376728 4 8
r_6 0.453205 0.084579 0.360978 4 8
r_7 0.895183 0.225772 0.362027 3 7
r_8 0.492710 -0.026345 0.058214 4 6
r_9 0.313917 0.282066 0.293429 3 7

Resources setup for seed pair 1235104103 & 925448569:

Table 108 – Average resources without random events seeds from sim tree 1.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_j, a_a, a_g,
a_c, a_d, a_h,
a_e, a_b

0.179561 -0.052460 -0.055994 3 6

r_1 a_c 0.958650 -0.035791 0.075692 3 8
r_2 a_a, a_d 0.930285 -0.146778 -0.091530 5 5
r_3 a_h, a_i, a_b,

a_c, a_e, a_g
0.373655 0.261319 0.188411 6 7

r_4 a_a, a_e, a_i,
a_b, a_h, a_f,
a_g

0.136513 0.107790 -0.153667 3 8

r_5 a_j, a_c, a_i,
a_g, a_e, a_f,
a_d

0.660809 0.067160 -0.166120 3 5

r_6 0.471310 0.170879 0.104655 3 7
r_7 0.445688 0.423160 0.132171 5 5
r_8 0.904943 0.463863 0.311865 4 7
r_9 0.758423 0.333638 0.322176 6 7

Resources setup for seed pair 1383974871 & 1316528754:

Table 109 – Average resources without random events seeds from sim tree 2.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_g, a_b, a_f,
a_h, a_i, a_c,
a_a, a_d, a_j

0.652956 -0.037458 -0.094767 3 5

r_1 a_j, a_d, a_h,
a_f, a_i, a_g,
a_b, a_c, a_e

0.259693 0.088016 -0.149701 5 8

r_2 a_h, a_g, a_e 0.412760 0.057443 -0.017310 4 8
r_3 a_g 0.505690 0.127552 0.182860 3 8
r_4 a_f, a_e, a_b,

a_i, a_a, a_d
0.585027 -0.294220 0.047259 3 5

r_5 a_b, a_i, a_g,
a_h, a_f

0.758280 0.247651 -0.182290 4 8

r_6 a_f, a_a 0.178666 -0.282778 0.085961 6 5

Marcel Kolenbrander – 31 October 2022 127 - 128

r_7 a_f, a_c, a_i,
a_b, a_e, a_j

0.238206 -0.109496 0.146479 5 8

r_8 0.537962 0.179948 0.166671 5 5
r_9 0.565356 0.089500 0.083838 5 5

10.13.5.2 Average resources with random events
The resulting resource parameters for the average resources with random events, is the same as the
resulting parameters for the average resources without random events. This is because the addition of a
random function does not impact the random generation of the “constant” parameters as shown in the
tables.

Please refer to the setup above for the parameter settings of this setup.

10.13.5.3 Average resources without random events and with specialized resources
Resources setup for seed pair 1602080410 & 64845147:

Table 110 – Average resources without random events and with specialized resources seeds from sim tree 0.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_h, a_f, a_c,
a_a

0.825431 0.250171 0.135195 6 6

r_1 0.523014 0.083562 0.448967 4 6
r_2 0.155295 0.277025 0.209048 5 6
r_3 0.937392 0.071287 0.169014 5 8
r_4 0.553726 0.537893 0.172952 5 8
r_5 0.586393 0.485045 0.376728 4 8
r_6 0.453205 0.084579 0.360978 4 8
r_7 0.895183 0.225772 0.362027 3 7
r_8 0.492710 -0.026345 0.058214 4 6
r_9 0.313917 0.282066 0.293429 3 7
Specialized resources
r_10 0.265972 -0.500000 0.500000
r_11 0.684984 -0.500000 0.500000
r_12 0.627025 -0.500000 0.500000
r_13 0.425247 -0.500000 0.500000
r_14 0.147976 0.500000 -0.500000
r_15 0.742781 0.500000 -0.500000
r_16 0.663366 0.500000 -0.500000
r_17 0.403060 0.500000 -0.500000

Resources setup for seed pair 1235104103 & 925448569:

Table 111 – Average resources without random events and with specialized resources seeds from sim tree 1.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_j, a_a, a_g,
a_c, a_d,
a_h, a_e, a_b

0.179561 -0.052460 -0.055994 3 6

r_1 a_c 0.958650 -0.035791 0.075692 3 8
r_2 a_a, a_d 0.930285 -0.146778 -0.091530 5 5
r_3 a_h, a_i, a_b,

a_c, a_e, a_g
0.373655 0.261319 0.188411 6 7

r_4 a_a, a_e, a_i,
a_b, a_h, a_f,
a_g

0.136513 0.107790 -0.153667 3 8

Marcel Kolenbrander – 31 October 2022 128 - 128

r_5 a_j, a_c, a_i,
a_g, a_e, a_f,
a_d

0.660809 0.067160 -0.166120 3 5

r_6 0.471310 0.170879 0.104655 3 7
r_7 0.445688 0.423160 0.132171 5 5
r_8 0.904943 0.463863 0.311865 4 7
r_9 0.758423 0.333638 0.322176 6 7
Specialized resources
r_10 0.583049 -0.500000 0.500000
r_11 0.503620 -0.500000 0.500000
r_12 0.266339 -0.500000 0.500000
r_13 0.281288 -0.500000 0.500000
r_14 0.680562 0.500000 -0.500000
r_15 0.282343 0.500000 -0.500000
r_16 0.342686 0.500000 -0.500000
r_17 0.836051 0.500000 -0.500000

Resources setup for seed pair 1383974871 & 1316528754:

Table 112 – Average resources without random events and with specialized resources seeds from sim tree 2.

Resource Limited to
activities

Allocation
probability

Time
modifier

Cost
modifier

Threshold
time
function (𝝉)

Threshold
cost function
(𝝉)

r_0 a_g, a_b, a_f,
a_h, a_i, a_c,
a_a, a_d, a_j

0.652956 -0.037458 -0.094767 3 5

r_1 a_j, a_d, a_h,
a_f, a_i, a_g,
a_b, a_c, a_e

0.259693 0.088016 -0.149701 5 8

r_2 a_h, a_g, a_e 0.412760 0.057443 -0.017310 4 8
r_3 a_g 0.505690 0.127552 0.182860 3 8
r_4 a_f, a_e, a_b,

a_i, a_a, a_d
0.585027 -0.294220 0.047259 3 5

r_5 a_b, a_i, a_g,
a_h, a_f

0.758280 0.247651 -0.182290 4 8

r_6 a_f, a_a 0.178666 -0.282778 0.085961 6 5
r_7 a_f, a_c, a_i,

a_b, a_e, a_j
0.238206 -0.109496 0.146479 5 8

r_8 0.537962 0.179948 0.166671 5 5
r_9 0.565356 0.089500 0.083838 5 5
Specialized resources
r_10 0.920015 -0.500000 0.500000
r_11 0.968996 -0.500000 0.500000
r_12 0.846316 -0.500000 0.500000
r_13 0.863480 -0.500000 0.500000
r_14 0.683099 0.500000 -0.500000
r_15 0.550267 0.500000 -0.500000
r_16 0.821394 0.500000 -0.500000
r_17 0.577061 0.500000 -0.500000

10.13.5.4 Average resources with random events and with specialized resources
The resulting resource parameters for the average resources with random events and specialized
resources, is the same as the resulting parameters for the average resources without random events and
specialized resources. This is because the addition of a random function does not impact the random
generation of the “constant” parameters as shown in the tables.

Please refer to the setup above for the parameter settings of this setup.

