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Abstract

Sorting is a fundamental part of computing. Many different concepts in computing require
either direct or indirect use of sorting algorithms. As sorting is such a broad concept, many
different approaches exist on how to perform this task. The performance achieved by the
different approaches also depends on the hardware architecture and size of the data set. Sorting
algorithms to be used are typically selected or implemented by the programmer, which allows
for non-optimal solutions to be implemented that cannot be amended by traditional compilers.
We will explore sorting in tUPL, a high level program specification language, which disallows
explicit execution order and dependencies to be specified. We define different transformations
that can be applied to a base specification of sorting in tUPL, that when combined result
in the generation of different sorting algorithms. We found that there are algorithms which
perform better than the rest, but also that existing algorithms can surpass these algorithms.
The gathered results can be used as the basis for future work, where the task will be to
combine different algorithms to be able to surpass these existing algorithms.
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1 Introduction

Sorting is one of the most fundamental concepts in computing. When a programmer wants to sort
a set of numbers, they are faced with many options in terms of both languages and algorithms. As
far as the language goes, this heavily depends on how long the sorting operation would take. As
the input gets larger, a low level language would be more beneficial, as these could process the
data faster than a high level languages [PF16]. One of the drawbacks with low level languages is
that the programmer is given the freedom to choose the data structure and the control flow for
the algorithm. This implies that the programmer has to take optimisations and dependencies into
account when developing said algorithm. Furthermore, by explicitly encoding these dependencies
and fixed execution orders in the low-level program, traditional compilers are limited in their ability
to further optimize the code.

tUPL is a high-level program specification language designed to disallow programmers from
specifying dependencies, execution orders and data structures explicitly [RW14b, vdZ19]. The main
premises through which this is achieved are the looping structures introduced and the removal of
explicitly defined data structures. By doing so, the compiler is given many more opportunities to
transform and optimise the program and to suit it to a particular target architecture as it is no
longer restricted by (false) dependencies specified by the programmer.

There exist a vast amount of different sorting algorithms, which all have different performance with
different inputs. As sorting is used in many different scenarios in computing, it is crucial to generate
the algorithm which performs the best for the use case. In some cases, when a single algorithm
might not be sufficient, hybrid algorithms could be generated in order to handle more diverse input
sets. When using tUPL, this can be performed by the compiler instead. This allows the programmer
to only write the base algorithm and therefore increase the speed at which the code is written.

1.1 Thesis overview

For this thesis, we will be exploring the possibilities of transforming the tUPL base sorting algorithm
in order to find a set of transformations which performs near-optimal in most scenarios. As tUPL
heavily relies on the compiler, these transformations should be implementable as modifications
to the loop structure or the data structure. We will solely be focusing on the loop structure in
this thesis, although the modifications to data structure can also heavily influences the resulting
algorithm speed [Sed98]. We will be exploring different transformations, each affecting the flow of
the visitation of tuples.

In this thesis, we will go over all steps required to test and compare different sorting transformations
and combinations in tUPL. Section 2 will be focused on discussing the background of the thesis
subject and previous works related to tUPL; Section 3 will consist of setting up all preliminaries
for the evaluation; Section 4 will discuss both the setup of the tests and the gathered findings;
Section 5 will conclude the thesis and provide a final verdict. This thesis was written as part of
the Computer Science bachelor’s degree at the Leiden Institute of Advanced Computer Science
(LIACS) and supervised by Dr. Kristian F.D. Rietveld and Prof. Dr. Harry A.G. Wijshoff.
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2 Background

2.1 tUPL

We will look into the premise of tUPL and why this programming specification language gives
the compiler many more optimisation opportunities. We will first look at the introduced looping
structures, the forelem and whilelem loops. These loops iterate through a tuple reservoir, which
contains a set of n-dimensional tuples. The forelem loop visits each tuple in the tuple reservoir
exactly once in an undefined order. The whilelem loop continues to visit tuples in undefined order,
visiting each tuple any number of times, until no more operations are executed inside the loop body.
This allows the whilelem loop to visit tuples more than once, but also to not execute certain tuples
for an infinite amount of iterations. Both loop structures are inherently parallel. Each iteration of
both loops executes the loop body atomically, which nullifies the risk of data dependencies.

Instead of defining data structures in the code, tUPL handles the generation of optimal data
structures during compile time. As data structures are not explicitly defined, lists such as arrays
must be stored in some abstract way. This is done using a shared space. A shared space is a storage
location which is indexed by any-dimensional integers. To access this shared space, we use an
address function. An address function FA of shared space A takes a tuple as input and returns an
index inside the shared space. This mapping is simplified to A[t], where A[t]= n implies that n is
stored in A at [FA(t)]. This does not imply that the shared space is defined as an array, as the
structure of the shared space is defined during compile time. The order at which the shared space
is stored into memory is also not explicitly defined, which provides more optimisations in terms of
locality.

2.2 Sorting

As we will be discussing sorting in this thesis, we will look at the base sorting algorithm for tUPL
in Listing 2.1. Sorting in tUPL is based on the swapping of elements. After an arbitrary number of
swaps, any given list can be sorted. The tUPL algorithm achieves this by swapping elements based
on tuples provided in an undefined order. When the shared space is eventually sorted, no more
actions are performed inside the loop body as no more tuples refer to an unsorted pair of positions,
which terminates the whilelem loop.

The first line denotes the tuple reservoir. This reservoir contains all tuples where i < j and where
both values are constrained between [0, |X|). If we take |X| = 4 for example, we would get a tuple
reservoir consisting of:

T = { < 0, 1 >, < 0, 2 >, < 0, 3 >, < 1, 2 >, < 1, 3 >, < 2, 3 > }
The whilelem loop defines a single tuple t of the tuple reservoir T. Due to the whilelem loop, the
order in which the tuples are iterated is undefined. The loop body attempts to swap the elements
at positions t.i and t.j in X if these are not in the correct order. Once no elements are out of
order, no tuple can be visited that has any influence on the shared space X, which can be used as
definition to terminate the whilelem loop. As the whilelem loop body is executed atomically, it is
possible to parallelise the loop, provided no overlapping tuples are executed. This implies that with
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the prior example of |X| = 4, tuples < 0, 1 > and < 2, 3 >, < 0, 2 > and < 1, 3 > or < 0, 3 > and
< 1, 2 > could be iterated at the same time.

1 T = { < i,j > | 0 ≤ i < j < |X| }
2

3 whilelem ( t; t ∈ T ) {
4 if (X[t.i] > X[t.j]) {
5 swap(X[t.i], X[t.j]);
6 }
7 }

Listing 2.1: Base sorting algorithm in tUPL

At the start of the algorithm, the cardinality of the inversion set, also known as the inversion
number [Man85], will be any value inv(X) ∈ {x | x ∈ N0 and 0 ≤ x ≤

∑|X|−1
n=1 n}. The task of the

algorithm is to reduce this value to inv(X) = 0. We first declare the set of tuples which can be
executed:

Ta = {< i,j > | < i,j > ∈ T and X[t.i] > X[t.j]}
We also declare the inversion set I(X), containing all inversions in X. A tuple in Ta is always in
I(X), as a tuple which can be executed is an inversion, which gives that Ta ⊆ I(X). An inversion
in I(X) is also always a tuple in Ta that can be executed, as it is a pair of values that can be
swapped by the algorithm, which gives that I(X) ⊆ Ta. We can therefore say that Ta = I(X).

We assume we perform a swap between a tuple ta ∈ Ta. We will look at how the amount of
inversions changes after this tuple is executed. For each inversion which contains both any position
of ta and a position outside the range between ta, we can say that this tuple will still be present
after the swap, except with ta.i replaced by ta.j and vice versa. This is because for these values,
the relative positions have not changed. We now assume that there are 3 possible values which can
exist between the positions of ta, which can be denoted as x < X[ta.j] < y < X[ta.i] < z. An
example of this would be the list {3, x = 0, y = 2, z = 4, 1} where ta =< 0, 4 >. If we swap these
positions, tuples < 0, 1 > and < 3, 4 > both remain enabled, as either value at the positions of
ta will always be in the incorrect order. The tuples < 0, 2 > and < 2, 4 > are both removed from
Ta, as after the swap these pairs are both in the correct order. In addition, the original inversion
also disappears from Ta. We get that the amount of inversions will decrease with 2n+ 1 inversions,
where n = |{p | ta.i < p < ta.j and X[ta.i] > X[p] > X[ta.j]}|. This implies that the inversion
number will always decrease when performing a swap between a valid inversion.

After a finite amount of swaps, we will reach a point where inv(X) = 0. At this point, we know
that no more tuples can be executed, as the shared space is fully sorted. We can therefore conclude
that the base sorting algorithm in tUPL will, after a finite amount of swaps, sort the full shared
space. We can also conclude that the maximum number of swaps required to sort a shared space
will always be equal to the inversion number of the shared space.
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2.3 Related Work

As the tUPL framework is a relatively new framework, not much research has been performed on
the possibilities that this framework poses. The initial concept for the framwork was described in
2013 as the forelem framework [RW13, Rie14]. This framework did not yet contain the whilelem
loop, as this was later described by Prof. Dr. H.A.G. Wijshoff in unreleased slides.

Over time, algorithms such as K-means clustering [Hom17, HRW19], PageRank [vSRW17] and
sparse matrix-vector multiplication [RW22] have been constructed in and optimised using tUPL.
The principle of the forelem framework has also been used in the optimisation of database queries
[RW14a, RW15]. To compile and run tUPL code, van der Zwaan created a compiler and frontend for
tUPL named libtupl and Tython respectively [vdZ19]. This setup will not be used in the upcoming
experiments, as we require more control over the order in which the loops visit the tuples.

Similar to this thesis, testing transformations on an algorithm in tUPL has been performed before.
The sparse matrix-vector multiplication has been extensively transformed and tested in tUPL in
a case study [RW22]. We attempt to take a similar approach in this thesis, with the exception
that all transformations are loosely based on existing sorting algorithms, such as bubble sort and
insertion sort.
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3 Methods

In this section, we will discuss all methods and techniques that have been used in order to perform
the experiments. In Section 3.1, we will discuss the different transformations that can be applied to
the base algorithm. In Section 3.2, we will look at possibilities of combining these derivations in
order to create an even more optimised algorithm.

3.1 Transformations

The first step to evaluating implementations of sorting algorithms, is defining a set of transformations
which we can implement and combine in order to generate different algorithms. We will be looking
at five different transformations. Sections 3.1.1 and 3.1.2 will focus on mandatory transformations,
where these have to be applied in order to run reproducible experiments. These transformations
remove the randomness of tUPL, which ensures the results are always consistent. Sections 3.1.3
to 3.1.5 will define optional transformations, which can be applied to the base algorithm in order
to change the execution time of the algorithm. In all sections, we will review an implementation
of the transformation in tUPL. It is however possible to perform these transformations during
compilation solely on the visitation order of tuples. As this is not straightforward to display, we
will instead look at code examples which achieve the same objective.

3.1.1 Limiting Reservoirs

In the elementary sorting algorithm in tUPL, the tuples in the tuple reservoirs are able to swap any
two elements of the shared space as long as the elements in the given positions are not sorted. This
opens up the possibility for a possible path where the minimal amount of swaps are performed to sort
the shared space. In spite of this, as the selection of tuples is randomized, a high probability exists
that a substantial amount of tuples which are selected will not be inversions. This, in turn, increases
the execution time of the sorting algorithm. By implementing limiting of the tuple reservoirs, the
algorithm will have less tuples to select from, which consecutively reduces the probability that a
randomly selected finite chain of tuples will already be sorted.

As there exist (|X|!/2) · 2((|X|−1)(|X|−2))/2 valid subsets of a given reservoir, it would be unfeasible
to experiment with all possibilities. Instead, we will focus on a single minimal derivation, only
allowing neighbouring elements to swap. Let T’ be a tuple reservoir defined by:

T’ = {< i,j > | 0 ≤ i < |X| − 1, j = i+ 1}
Here, the reservoir T’ will consist of only tuples where i and j are adjacent numbers, which can
also be denoted as:

T’ = {< 0, 1 >,< 1, 2 >, ..., < |X| − 2, |X| − 1 >}.
This subset will allow any value to shift to any position, as long as it reduces the amount of
inversions in the shared space. As it is a minimal derivation, only a single path exists which a value
can take to move to the sorted position. This ensures, given perfect visitation of tuples, that the
algorithm will have a consistent amount of swaps with each run for any given shared space.
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3.1.2 Ordering

The order at which tuples are visited in whilelem and forelem loops is inherently random. This
implies that any two runs of a non optimised tUPL algorithm containing either of the loops could
differ in time elapsed or number of swaps. Even if the compiler performs notable optimisations,
the statistics would still be dependent on which tuples are visited in which order. In theory, this
randomness presents many opportunities for optimal runs; however, these randomised statistics
would be impractical during testing. Test results can differ greatly depending on which tuples are
visited in which order. To combat this, we introduce the ability to control the order at which tuples
are visited. We attempt to eliminate the use of the whilelem loop, which creates a single sequential
path of tuples.

As there are infinite different paths which can be traversed, we will be focusing on four paths:
neighboring tuples and selections in both forward and backward direction. Neighboring tuples is
equivalent to the optimisation discussed in Section 3.1.1, where only neighboring elements are
allowed to swap. This would be beneficial for the cache as the principle of spatial locality is strongly
adhered. For selections, we will look at the principle of selection sort. With selection sort, we sort
the array by moving the minimum value of the unsorted part to the end of the sorted part. This
can be simulated in tUPL, by traversing the reservoir in a specified order. In Listing 3.1, we can see
an example of this. T.i[curr] denotes a subset of the reservoir T containing only tuples whose
field i value equals curr. At the end of each iteration of the for loop, the value at the position
curr will be the minimum value of the unsorted part of the shared space, which will in turn be
the maximum value of the sorted part. This also has potential to benefit the cache, as here the
principle of temporal locality is strongly adhered at position curr.

1 T = { < i,j > | 0 ≤ i < j < |X| }
2

3 for (int curr = 0; curr < |X| - 1; curr++) {
4 forelem ( t; t ∈ T.i[curr] ) {
5 if (X[t.i] > X[t.j]) {
6 swap(X[t.i], X[t.j]);
7 }
8 }
9 }

Listing 3.1: Sorting algorithm in tUPL with selection

Both paths can be traversed in the forwards and backwards directions. With the forward direction,
for each incremental step of i, we traverse all steps of j where i > j in order from j = i + 1 to
j = |X| − 1. The backward direction is similar, except we take decremental steps for j and traverse
all steps of i in decrementing order from i = j− 1 to i = 0. With neighboring tuples, this would
result in only a single tuple for each step, whereas selections allows us to pick all possible tuples.

All four paths have a single sequential path defined for the visitation of tuples. We can therefore
transform the whilelem loop of the base sorting algorithm to plain C code with for loops instead,
displayed in Listing 3.2. By replacing the whilelem loops, it is possible to achieve consistent results
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throughout the testing of the transformations.

1 // Forward Neighboring
2 for (i = 0; i < |X| - 1; i++) {
3 if (X[i] > X[i + 1]) {
4 swap(X[i], X[i + 1]);
5 }
6 }
7

8 // Backward Neighboring
9 for (i = |X| - 1; i > 0; i--) {

10 if (X[i - 1] > X[i]) {
11 swap(X[i - 1], X[i]);
12 }
13 }
14

15 // Forward Selection
16 for (i = 0; i < |X| - 1; i++) {
17 for (j = i + 1; j < |X|; j++) {
18 if (X[i] > X[j]) {
19 swap(X[i], X[j]);
20 }
21 }
22 }
23

24 // Backward Selection
25 for (j = |X| - 1; j > 0; j--) {
26 for (i = j - 1; i >= 0; i--) {
27 if (X[i] > X[j]) {
28 swap(X[i], X[j]);
29 }
30 }
31 }

Listing 3.2: Ordering for sorting algorithms in C

3.1.3 Problem Reduction

The task of a sorting algorithm is to sort any input list of numbers. The task enforces the algorithm
to sort the whole list, which can be a major task when working with large lists. With reducing the
size of the problem, where the list is sorted in increasingly larger parts, we attempt to reduce the
complexity as at each step the list is already partially sorted. An implementation of this is given
in Listing 3.3. Here, lim denotes the size of the part of the shared space which will be sorted in
the given iteration. This ensures we sort the shared space in single steps, rather than as a whole
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immediately. The starting point is lim = 1, to ensure the first pass of the shared space will consist
only of the first two elements. To ensure that all tuples reside between the 0 and lim, we check
that field j is less than or equal to lim. As field i is always lower than field j, it is guaranteed
that the tuples able to be visited are all in the range [0,lim).

To validate whether this transformation still allows sorting, we will first setup a base case. If |X| = 1,
the shared space is always sorted as it only consists of a single element. If we take |X| ≥ 2 and
lim = 2, the shared space is either sorted or can be sorted by performing the swap < 0, 1 >. The
algorithm will continuously increment lim until it reaches the size of the full shared space. If we
next assume lim = n with 2 < n ≤ |X|, we assume that the part of the shared space in range
[0, n− 2] is already sorted. As deduced earlier in Section 2.2, with the base sorting algorithm the
shared space can be sorted in a finite amount of steps. This implies that this new range [0, n− 1]
can also be sorted in a finite amount of steps. By induction this implies that this transformation is
valid and allows the full shared space to be sorted.

1 T = { < i,j > | 0 ≤ i < j < |X| }
2

3 for (int lim = 2; lim ≤ |X|; lim++) {
4 whilelem ( t; t ∈ T ) {
5 if (t.j < lim && X[t.i] > X[t.j]) {
6 swap(X[t.i], X[t.j]);
7 }
8 }
9 }

Listing 3.3: Sorting algorithm in tUPL with problem reduction

3.1.4 Divide and Conquer

As discussed in Section 3.1.3, it is possible to reduce the complexity of sorting a list by sorting said
list in increasingly larger parts, compared to sorting the full list at once. A similar way to decrease
the complexity of the problem, is to instead apply divide and conquer to the algorithm. The basic
principle of this transformation is similar to the functionality of iterative merge sort. In iterative
merge sort, the list which has to be sorted gets divided into chunks of size 1. Each two neighboring
chunks are combined, or conquered, and afterwards sorted. This process gets repeated for steps of
powers of 2, with the last step being the full list. This is visualised in Figure 3.1 as a full binary
tree, with each leaf consisting of a single chunk of size 1. As the last chunk will not always be an
exact power of 2, the tree is not perfect. Listing 3.4 displays a sorting function which simulates a
similar path. Instead of breaking the shared space into small chunks, boundaries are set for which
part has to be sorted. Here, l and r represent the respectively inclusive and exclusive boundaries
of the current chunk of the shared space. Each chunk is sorted and combined. We make use of
size to keep track of the size of a single chunk, hence why size gets multiplied by 2 at each step.
As we make use of the forelem loop, we have the option to sort these chunks in parallel. This would
increase the load on the processor, but in turn decrease the execution time.
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To validate this transformation, we will follow the steps which the algorithm will take. The algorithm
will split the shared space into chunks of length 1. Two chunks are combined and sorted, creating a
single sorted chunk. From Section 2.2, we know that these chunks can be sorted, as these can be
seen as individual shared spaces. At the root of the tree, the algorithm will behave exactly like the
base algorithm, sorting the full shared space without any restrictions. The only difference here is
that the shared space has already been sorted in two parts. This implies that an algorithm with
only divide and conquer implemented will, at the root, sort the full shared space.

1 T = { < i,j > | 0 ≤ i < j < |X| }
2

3 for (int size = 1; size < |X|; size *= 2) {
4 forelem ( l; l ∈ [0, 2 * size, 4 * size...] ) {
5 whilelem ( t; t ∈ T ) {
6 if (t.i ≥ l && t.j < l + 2 * size && X[t.i] > X[t.j]) {
7 swap(X[t.i], X[t.j]);
8 }
9 }

10 }
11 }

Listing 3.4: Sorting algorithm in tUPL with iterative divide and conquer

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 3.1: Full binary tree for iterative divide and conquer for 14 elements

3.1.5 Interval Sorting

In Sections 3.1.3 and 3.1.4, we looked at splitting a list into smaller chunks to sorted. Each chunk
was defined as a short list of locally connected values. With interval sorting, we take another possible
route where we look at chunks with intervals between each value. Listing 3.5 shows the algorithm
which can be used to depict interval sorting. The interval contains the current interval at which
the shared space will be sorted. Here the interval is based on floor divisions by 2, however this
could also consist of powers of 2 or any other arbitrary values, as long as the last value will always
be interval = 1. By making use of the forelem loop, all offsets of the interval could potentially
be sorted in parallel, which would reduce the execution time of the algorithm.

Validating the transformation is similar to Section 3.1.4. We will sort each interval of increasingly
larger chunks. Each interval can be sorted, as this is essentially sorting a chunk with a step size
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between the values. The reduction of the interval continues until we reach interval = 1. At this
point, the only value for offset will be 0. This suggests that the shared space will be sorted with
an offset of 0 from the start and a step size of 1, which is the same as sorting the full shared space.

1 T = { < i,j > | 0 ≤ i < j < |X| }
2

3 for (int interval = |X| / 2; interval > 0; interval /= 2) {
4 forelem ( int offset; offset ∈ [0,interval-1] ) {
5 whilelem ( t; t ∈ T ) {
6 if (t.i % interval == offset &&
7 t.j % interval == offset &&
8 X[t.i] > X[t.j]) {
9 swap(X[t.i], X[t.j]);

10 }
11 }
12 }
13 }

Listing 3.5: Sorting algorithm in tUPL with intervals

3.2 Hybrid Algorithms

We have explored the possibilities of combining transformations in order to generate sorting
algorithms in tUPL. As the transformations from Sections 3.1.3 to 3.1.5 are based on dividing the
shared space into smaller chunks, we could also choose to combine certain algorithms based on
the chunk size, creating a hybrid sorting algorithm. Hybrid sorting algorithms implement multiple
algorithms and change the functionality based on the input list. One of these existing hybrid sorting
algorithms is Timsort created by Tim Peters [Pet02]. Timsort uses a combination of merge sort
and insertion sort to sort any given list.

A tUPL implementation, similar to the basis of Timsort but derived from the tUPL base specification
using the above described transformations, is displayed in Listing 3.6. This algorithm consist of
a combination of the divide and conquer and problem reduction transformations. With divide
and conquer, the shared space is divided into chunks of size 1. In the example however, we split
the shared space into chunks of size CHUNK SIZE = 32. The first forelem loop goes over each
chunk, sorting these individually using problem reduction. We encapsulate the problem reduction
algorithm with a forelem loop, which indicates that the chunks can theoretically be sorted in any
order and in parallel. The chunks are the basis for the second part, where we combine these chunks
using the divide and conquer transformation.
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1 T = { < i,j > | 0 ≤ i < j < |X| }
2

3 const int CHUNK_SIZE = 32;
4

5 // Divide into chunks
6 forelem ( l; l ∈ [0, CHUNK_SIZE, 2 * CHUNK_SIZE...] ) {
7 // Problem reduction
8 for (int lim = 2; lim ≤ CHUNK_SIZE; lim++) {
9 whilelem ( t; t ∈ T ) {

10 if (t.i ≥ l && t.j < l + lim && X[t.i] > X[t.j]) {
11 swap(X[t.i], X[t.j]);
12 }
13 }
14 }
15 }
16

17 // Conquer chunks
18 for (int size = CHUNK_SIZE; size < |X|; size *= 2) {
19 forelem ( l; l ∈ [0, 2 * size, 4 * size...] ) {
20 whilelem ( t; t ∈ T ) {
21 if (t.i ≥ l && t.j < l + 2 * size && X[t.i] > X[t.j]) {
22 swap(X[t.i], X[t.j]);
23 }
24 }
25 }
26 }

Listing 3.6: Hybrid sorting algorithm based on Timsort in tUPL
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4 Evaluation

We will now look at the performed tests and the findings gathered from these. In Section 4.1, we
will look at the setup of the experiments and the input sets used. In Section 4.2, we will discuss the
results of the algorithms and compare these against each other. In Section 4.3, we will compare
these results against existing algorithms.

4.1 Experiment Setup

For these tests, a single architecture consisting of an Intel Core i7-8700 CPU at 3.20Ghz running
Ubuntu Linux 18.04.6 has been used. The sizes of the L1 through L3 cache on this CPU are 32K,
256K and 12M. The compiler used is gcc 7.5.0.

To perform tests on the generated algorithms, we need a substantial set of sample data with different
configurations. We will be testing each algorithm with 7 different data set sizes. Of the 7 sizes, 3
are used for testing the functionality of the algorithm and the output, while the other 4 are used
to perform the actual tests. The first two sizes consist of 8 and 13 values. This is to test whether
the algorithm is indeed capable of sorting a given list. The other functionality test consists of 256
values, which is used to check for any problems with larger inputs. The first true test set, labeled
L0, is designed to be larger than the test cases, but still able to fit inside the L1 cache. For this
reason, the L0 set consist of 2 048 values, with a file size of 4K. The remaining test sets, labeled
L1 through L3, are sized to overflow the respective cache. This results in the inputs respectively
containing 9 216 (36K), 81 920 (320K) and 4 194 304 (16M) values.

As we have 7 different input sizes, we have to stay within reasonable margin with the actual tests
in each level. For all input sizes, we will be testing:

• values in ascending order,
• values in descending order,
• values in random order without duplicates twice,
• values in random order with duplicates twice.

With this setup, we attempt to capture the best and worst case time complexity of each algorithm,
while also approximating an average case time complexity by using 4 random input lists.

Each level has been assigned a time limit, as it is not feasible to run all 2016 tests completely in a
regular time span. The time limits for the L0 through L3 tests have been set at 1 minute, 5 minutes,
30 minutes and 2 hours. For this reason also, any algorithm that fails on a given input data set,
will not run the larger version of that same input set on the next tests. If algorithm A is unable
finish the descending data set on L1 in the given time, algorithm A will not run the descending
data set on L2 or L3, as this can not be an optimal solution. This reduces the amount of tests that
have to be executed and considerably reduces the execution time, as inadequate algorithms are
filtered out in the early stages of the tests.

The naming system of the tests will follow sort_X1X2_X3. X1 and X2 represents the path taken by
the algorithm, defined in Section 3.1.2. These combinations consist of forwards neighboring (fn),
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backwards neighboring (bn), forwards selection (fs) and backwards selection (bs). X3 represents
which transformations from Sections 3.1.3 to 3.1.5 have been implemented and in which order.
For example, sort fs 23 uses selection in the forwards direction, where the shared space is first
divided with divide and conquer and each chunk is sorted using interval sorting.

4.2 Results

We will discuss all results from the tests performed on all algorithms. In Section 4.2.1, we will
look at the ascending data sets, where only validation of the list determines the execution time. In
Section 4.2.2, we look at the descending data set, which will in most cases generate the worst case
complexity. In Section 4.2.3, we look at both the unique and non-unique random data sets, which
give an average case for all algorithms. All results can be found in Tables A.1 to A.4 of Appendix A.

4.2.1 Ascending Values

The most unambiguous test is the ascending list of values. The algorithm has to validate whether a
given list is sorted. For the base algorithm in tUPL, this is done by validating whether no tuple
can be visited that does not refer to two positions which are not sorted. This would imply that the
full shared space is sorted. Each optional transformation introduces an extra step to the algorithm,
which is wrapped around the whilelem loop. As the algorithm checks each chunk of shared space
whether or not it is sorted, this will increase the execution time of the algorithm.

In Table A.1 of Appendix A, we can see the results of the algorithms. As the execution time of the
algorithms varies heavily, we can not denote this in a proper graph. We instead plot Figure 4.1,
which denotes which ascending input data sets have been finished within the set time limits for
each algorithm. As an example, sort Xn 1 was able to finish L0, L1 and L2, but not L3. All
sorting algorithms with the same transformations and tuple reservoir are combined in this plot, as
validation is not based on the direction of the validation, rather the contents of the tuple reservoir,
the surrounding transformation and how validation is handled by these.

To validate whether a list is sorted, we visit each tuple and validate whether the elements at the
positions of each tuple are sorted. For a full shared space, this would take |X| − 1 comparisons
with only neighboring swaps, as we have to check {(0, 1), (1, 2), ..., (|X| − 2, |X| − 1)}. With selection

swaps however, this would take
∑|X|−1

n=1 n = (|X| · (|X| − 1))/2 comparisons. The base algorithm will
check the full shared space a single time, which takes O(n) time with neighboring swaps and O(n2)
time with selection swaps to perform. The base algorithm with neighboring swaps is in turn the
fastest best case algorithm. The difference between neighboring and selection swaps is also visible
in Figure 4.1. We can see that for each pair of algorithms, the selection swap performs equal to or
worse than the neighboring swap counterpart.

Algorithms with problem reduction implemented take the longest time to execute. This can be
explained by checking how many validations have to be performed. In problem reduction, we start by
reducing the problem to two elements. This is validated by a single comparison, denoted by {(0, 1)}.
After introducing a third value, we introduce an extra comparison between (1, 2). As we have to
validate the full chunk of shared space, we have to perform the original comparison (0, 1) again in this
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Figure 4.1: Finished ascending data sets within the time limit for each algorithm

validation. With four elements, we introduce yet another comparison. This continues until the last
element is added to the sorting space. We have now performed 1+2+3+...+(|X|−1) = (|X|·(|X|−1))/2
comparisons, which means any algorithm with problem reduction implemented will take O(n2)
time on validation of the ascending list.

To calculate the best case time complexity of divide and conquer, we will use a shared space where
|X| ∈ {2n | n ∈ N+}. To simplify the steps, we will work backwards through the algorithm. The
final validation will consist of the full shared space, performing |X| − 1 comparisons. The second
to last step compares two chunks of size |X|/2. As there is only a single pair which will not be
checked, namely (|X|/2− 1, |X|/2), we can deduce that this step performs |X| − 2 comparisons. We
can continue this until we arrive at chunks of size 2. As we constantly divided all chunks into 2
equal parts, we can deduce that this has taken log2(|X|) steps. As in each step we have checked
|X| −m (1 ≤ m ≤ |X|/2) pairs, we can deduce that the base algorithm with the divide and conquer
transformation applied will take O(n log n) time to validate the ascending list.

The last transformation to calculate is interval sorting. As interval sorting and divide and conquer
are similar, we will compare the two and deduct the best case time complexity from this. In divide
and conquer, we split the shared space into chunks of half the size of the previous chunks. This
is done similarly in interval sorting, with the difference that the chunks are now interleaved with
each other. This does however not change anything about the amount of comparisons required for
validation. Each chunk has a size half of the predecessor, with the final chunks in both algorithms
containing 2 elements. This concludes that divide and conquer and interval sorting use the same
size of chunks and therefore have the same time complexity, thus we can say that interval sorting
takes O(n log n) time to validate the ascending list.
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4.2.2 Descending Values

A list of descending values is often the basis for the worst case scenario of a sorting algorithm
[Sed78, Sha15, MAÇ17]. The algorithm must perform the maximum amount of swaps in order
to achieve a sorted list, as values have to move to the exact opposite side of the list in order to
be sorted. This issue however is not relevant to the base tUPL algorithm. As the tuple reservoir
contains tuples which connect each position in the shared space to any other, it is theoretically
possible to sort a descending shared space in ⌊|X|/2⌋ swaps. In the actual tests however, we make
use of different predefined paths, as these paths are focused on sorting any shared spaces, rather
than only the descending space.

All results can be found in Table A.2 of Appendix A. As we must perform swaps now, contrary to
Section 4.2.1, we will use both the execution time and the number of swaps as the metric. If the
algorithm was unable to finish, the percentage of the list that was sorted is also displayed. This
percentage is based on the inversion number divided by the total size of the default tuple reservoir.
Figure 4.2 denotes which descending input data sets have been finished within the set time limits
for each algorithm. As the direction now influences the speed of the algorithm, all algorithms have
been plotted.
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Figure 4.2: Finished descending data sets within the time limit for each algorithm

As we can see from the raw results, the base algorithm using selection swaps performs better than
the same algorithm with neighboring swaps. This behaviour seems to not adhere to what was
deduced in Section 4.2.1, where selection swap took longer as more validations had to be performed.
As we look into the steps that the algorithm takes however, we deduct why this is the case. We
will take the forward direction algorithm as example. We look at the first |X| − 1 iterations of the
whilelem loop. In this time, sort fn will have moved the first element, containing the highest value,
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to the end of the shared space. All other values in the shared space will have shifted one position
to the left. In the same amount of iterations, sort fs will have moved the lowest value from the end
of the shared space to the front, shifting all other values one spot to the right. The next step for
sort fn would take |X| − 1 steps, as the algorithm will have to visit all tuples, including the final
tuple which will be sorted. Sort fs on the other hand only requires |X| − 2, as all tuples in T.i[1]
will now be validated, which does not include the tuple < 1, 0 >. At each step, the amount of tuples
that has to be validated decrements. This implies that sort fs can sort a list in half the amount
of comparisons it takes sort fn to sort the same list. Both algorithms have a time complexity of
O(n2), as sort fn will perform (|X| − 1)2 swaps and sort fs will perform ((|X| − 1)(|X| − 2))/2 swaps,
which is the which is the worst case scenario for both algorithms.

In sort XX 1, sort XX 12 and sort XX 21, we can see a peak in the backwards neighboring algorithms.
We deduced in Section 4.2.1 that the problem reduction transformation requires the longest time
to validate an ascending list. With the addition of having to sort the shared space, it could be
assumed that all algorithms with problem reduction would have the lowest performance overall. If
we look at the raw data in Table A.2 however, we can see that sort bn 1 performs similar to sort bn
and only slightly below sort bn 2. We can determine why this occurs by looking at an iteration
of all four orderings. We will use sort XX 1 for this example. We assume a shared space X with a
chunk of size m, which is sorted for [0,m− 2] and contains the minimal element at position m− 1.
The algorithm has to move the new element from the last position m− 1 to the first position of the
sorted part.

We will first look at the selection algorithms, starting with forward selection. The algorithm starts
by checking all tuples in T.i[0]. Here, the lowest value gets moved to position 0 using the last
tuple < 0,m− 1 >. The problem now is that the value which was originally at position 0, has been
moved to position m−1. As all values, except for the new value, have to shift a single position to the
right, this value needs to be moved to position 1. The algorithm will now visit all tuples in T.i[1],
eventually moving the value at position m− 1 to position 1. We have now repeated the problem,
where the value which should be at position 2 is at position m. We can deduce that, for every value
of 0 ≤ q < m− 1, if we place the correct value at that position, the value which is supposed to be
at position q + 1 will be at position m instead. We can see an example of this in Listing 4.2. As the
amount of tuples which get validated for each incremental position q gets decremented, we can say
that to append a minimal position to a sorted chunk, it would take

∑m−1
k=1 k comparisons. As this

has to be done for all values 2 ≤ m ≤ |X|, we can determine that the whole algorithm will take∑|X|
m=2

∑m−1
k=1 k comparisons in total, which is equivalent to a time complexity of O(n3).

{1, 2, 3, 0}
{1, 2, 3, 0}
{1, 2, 3, 0}
{0, 2, 3, 1}
{0, 2, 3, 1}
{0, 1, 3, 2}
{0, 1, 2, 3}

Listing 4.1: Steps to sort a decreasing shared space chunk using sort fs 1
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As we have seen, we require
∑m

k=1 k to sort a single part of size m+ 1 with problem reduction with
forwards selection. We will now be looking how backwards selection handles this. In Listing 4.2, we
can see the steps which the algorithm performs. We see that this is similar to Listing 4.1 depicting
sort fs 1, with the difference being that instead of moving a value to the back of the sorted part,
we now only move the minimal value a single position to the left for each iteration. If we compare
the two algorithms, we can deduce that this would also take

∑m
k=1 k comparisons for each position.

From this, we can conclude that this algorithm also has a time complexity of O(n3) and takes the
same amount of comparisons.

{1, 2, 3, 0}
{1, 2, 0, 3}
{1, 2, 0, 3}
{1, 2, 0, 3}
{1, 0, 2, 3}
{1, 0, 2, 3}
{0, 1, 2, 3}

Listing 4.2: Steps to sort a decreasing shared space chunk using sort bs 1

We now know that sorting with selection sort has a time complexity of O(n3) for both forward and
backward selection. We will now look at neighboring swaps, starting with the forward direction. We
move through the sorted part using m− 1 tuples. From these tuples, the only one which performs
a swap is the final one, as this tuple refers to the maximum value of the sorted part and the new
minimum value. This places the minimal value at position m− 2. The algorithm will now go over
all tuples again, swapping only the positions of the second to last tuple. This pattern continues
until the minimal value is at the second position. With a single swap, the chunk of the shared space
will be sorted. Listing 4.3 displays this pattern. As we move the value to the second position in
m− 2 loops, we can deduce that this will take (m− 1) · (m− 2) + 1 comparisons. As this has to be

performed for all values of m, we get that sorting with sort fn 1 will take
∑|X|

m=2((m−1) ·(m−2)+1)
comparisons. This in turn results in a time complexity of O(n3).

{1, 2, 3, 0}
{1, 2, 3, 0}
{1, 2, 3, 0}
{1, 2, 0, 3}
{1, 2, 0, 3}
{1, 0, 2, 3}
{1, 0, 2, 3}
{0, 1, 2, 3}

Listing 4.3: Steps to sort a decreasing shared space chunk using sort fn 1

We have seen that all other algorithms for problem reduction sort had a time complexity of O(n3).
We will now explore why backwards neighboring swap sorting stands head and shoulders above
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the other algorithms. We perform a single pass of the tuple reservoir. The first tuple moves the
minimal value a single step to the left and places the maximum value at the correct position. The
next tuple performs the same operation, moving the minimal value further to the left and placing
the second largest value at the correct position. This continues, until all tuples have been visited.
At this point, the minimal value has been moved to the left and all other values have been shifted
to the correct positions. Listing 4.4 shows the steps the algorithm takes. This implies that sort bn 1
can sort a chunk of size m in m − 1 comparisons. Performing this on all chunks, we get a total
of

∑|X|
m=2(m− 1) comparisons to sort the full shared space. This results in a time complexity of

O(n2), which is significantly lower than the time complexity of the other algorithms.

{1, 2, 3, 0}
{1, 2, 0, 3}
{1, 0, 2, 3}
{0, 1, 2, 3}

Listing 4.4: Steps to sort a decreasing shared space chunk using sort bn 1

From all algorithms, we can see from Figure 4.2 that only sort Xn 3 and sort Xn 23 have managed
to finish the L3 descending input set. From the raw data in Table A.2, we can find that the fastest
algorithms in this set are sort Xn 3. We can also see that there is a huge margin between both
sort Xn 3 and sort Xs 3, and sort Xn 23 and sort Xs 23. This can both be explained by looking
at how this transformation affects the order of the tuples at each iteration of the interval. As we
apply interval sorting to each individual chunk, we will focus on sort fX 3, as this concept can be
generalised to each individual chunk of sort fX 23. We know that the size of the first interval will
be of distance |X|/2. If we follow the minimal value in the shared space, in this case 0, we can
see from Listing 4.5 that this would consist of performing log |X| swaps for each value. As each
swap moves two values, this means we need |X| ∗ log |X|/2 swaps to sort the full share space. If we
look at sort Xs 3 instead, when we reach an interval of |X|/4 and for example an offset of 0, we
swap tuple < 0, 4 >, but we also validate < 0, 8 > and < 0, 12 >. Where sort Xn 3 performs one
additional comparison for the second interval, sort Xs 3 performs 4 additional comparisons. This
greatly increases the execution time of sort Xs 3, which clarifies the difference in execution time
between sort Xn and sort Xs 3.

{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}
{ 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}
{ 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}
{ 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

Listing 4.5: Steps to sort a decreasing shared space of |X| = 16 using sort Xn 3
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4.2.3 Random Values

The most general use case of a sorting algorithm is to sort lists with a random permutation. If we
were to know the precise permutation of the input list beforehand, we could use a specific algorithm
in order to always sort the list in an optimal time. As we do not know this in advance, we use
sorting algorithms in order to handle all possible cases. In tUPL, it is theoretically possible to
sort every possible shared space permutation in |X| − 1 swaps or less. This would require a perfect
algorithm however, which could be considered an impossible task. As every possible permutation is
allowed, the average case time and space complexity can be derived from these inputs.

Tables A.3 and A.4 of Appendix A display all raw results. For both input types, two tests have
been performed. In both cases, the algorithms reached similar results, where the final data set
size was always the same. As these sets contain random permutations, the average result has been
displayed instead for both cases. Similar to the other sections, Figure 4.3 denotes which random
input data sets have been finished within the set time limits for each algorithm. As both the unique
random and non unique random results have the same final data set sizes for each algorithm, a
single plot has been used to display both input sets.

If we compare this plot with Figure 4.2, we see that these plots are very similar. The exception
to this is sort bn 123. As we can see in Table A.2, sort bn 123 took 28,5 minutes to sort L2. As
the limit for sorting an L2 set is 30 minutes, this could potentially be an outlier result where the
function managed to sort the shared space, while the average execution time for this is higher than
the set time limit.
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Figure 4.3: Finished random data sets within the time limit for each algorithm

From looking at Figures 4.2 and 4.3, we can see that only sort Xn 3 and sort Xn 23 were able
to finish data set L3. With what we have discussed in Sections 4.2.1 and 4.2.2, we can deduce
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why these four sorting algorithms stand out from the rest. In Section 4.2.1, we have seen that
the problem reduction transformation greatly increases the amount of comparisons required to
validate any permutation of a shared space. The exceptions for this, as discussed in Section 4.2.2,
are algorithms with backwards neighboring swaps. We have seen that these algorithms perform
better than equivalent algorithms with different tuple ordering. We can see similar results in the
random results. Additionally, if we look at the raw data, we can see that the percentage sorted
of sort bn 1, sort bn 12 and sort bn 21 is below 10% for the L3 descending data set, while the
same algorithms reach over 50% sorted for both L3 random data sets. We know however, from
the ascending data sets, that the upper limit for these algorithms is L2, as these were not able to
validate the L3 data sets. From this, we can deduce that the only algorithms with potential to
finish L3 are sort XX, sort XX 2, sort XX 3 and sort XX 23. This is also consistent with Table A.1,
where these algorithms, excluding sort Xs 23, were able to validate L3.

We are able to exclude sort XX and sort XX 2 from the list by looking at the influence of the
algorithms on the inversion number. We can say that for sort Xn and sort Xn 2 that the inversion
number will only be able to reduce by 1 for each swap. As we have discussed in Section 2.2, the
inversion number can only decrease by a value bigger than 1 if any value between the two positions
of the swap is an inversion with both positions before the swap. As there are no values between
the tuples with neighboring swaps, the algorithm will always require I(X) swaps to sort the given
shared space. This argument can also be made for sort Xs and sort Xs 2. We will take for example
sort fs with the shared space {3, 1, 2, 0}. We can see that the shared space could be sorted by a
single swap < 0, 3 >. However, sort fs will first perform the swap < 0, 1 >, resulting in {1, 3, 2, 0}.
We now know that the values at these positions are in the correct order. If we were to continue, we
will find tuple < 0, 3 >. We know however that all values between 0 and 3 are are not inversions
with 0. For this reason, there can be no additional tuples that will be removed when performing
a swap. We can also see that sort XX 3 and sort XX 23 are not affected by this, as these both
implement interval sorting, which allows gaps between the tuple positions.

When we compare the execution times for sort Xn 3 and sort Xn 23, we can see some interesting
properties of these algorithms. For the descending data set in Table A.2, we can see that sort Xn 3
takes roughly 1.37 seconds to sort the shared space, while sort X 23 takes an average of 4.0 seconds.
If we look at the random data sets in Tables A.3 and A.4 however, we can see that sort X 23 takes
approximately 8.3 seconds to sort the shared space, while sort X 3 takes 131.6 seconds on average.
These two comparisons show a strange difference between the algorithms. We can deduce why
sort Xn 3 takes long for the random data sets. If we look at Listing 4.5, we see the path which the
minimum value takes. If we were to place this value at another position however, this shortest path
is not guaranteed to exist anymore. If a value lands at a position, where it only leaves at a very low
interval, this value has to move many positions in order to reach the correct position. This also
gives an indication as to why, for the random data sets, sort bn 3 performs slightly better than
sort fn 3. This is similar to what was discussed in Listings 4.3 and 4.4, where a value moves to
the correct position quicker using backward neighboring swaps. It can be speculated that, for the
random input sets, values had to be moved further to the left on average than to the right. For this
reason, a slight difference in execution time can be measured.
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4.3 Comparing with existing algorithms

We have discussed the results of the transformations which we have applied to the base tUPL sorting
algorithm. In Section 3.2, we briefly touched upon the concept of a hybrid algorithm, where multiple
algorithms are combined to form a single algorithm. We have looked at Timsort and discussed a
tUPL algorithm based on Timsort, however this algorithm is only a partial implementation of the
full Timsort algorithm. We will be using the a C99 implementation of Timsort to test and compare
the algorithm [Per16]. We will also be looking at two other hybrid algorithms, namely qsort and
introsort. Qsort is the default glibc sorting algorithm. It is a hybrid sorting algorithm consisting
of quicksort and insertion sort. The algorithm first partially sorts the input list using quicksort,
after which it uses insertion sort to finish the sorting process. To test this we will be using the base
implementation from the stdlib.h library. Introsort is the default sorting algorithm of the C++ STL
library. It is also a hybrid algorithm based on quicksort, heapsort and insertion sort. The algorithm
begins with quicksort. It switches to heapsort when the recursion depth exceeds a value based on
the logarithm of the number of elements in the current list. It switches to insertion sort when the
number of elements to be sorted is below a given threshold.

The results for these algorithms can be seen in Table A.5. From looking at the table, we can see
that Timsort has the lowest execution time for both the ascending and descending data sets. We
can also see that for the random data sets, qsort performs the best. Introsort performs worst in the
ascending and descending data sets and places second in the random data sets. We can compare
this to the results which we acquired from the previous experiments in Section 4.2. We will compare
the fastest algorithm from each data set in L3 to the hybrid algorithms.

For the ascending set, we find the fastest algorithm to be sort Xn, which was also concluded in
Section 4.2.1. If we compare this to the hybrid algorithms, we find that Timsort performs this task
in around half the time sort Xn takes. If we look at the descending set, sort Xn 3 performs this in
1.39 seconds. All hybrid algorithms on the other hand manage to execute this task in under 0.25
seconds, with Timsort being the fastest with under 0.02 seconds. Looking at the unique random
and non-unique random sets, we find that sort bn 23 is the fastest with 8.2 seconds to sort the
random shared spaces. The same random sets were used to test the hybrid algorithms. We fidn
that all algorithms manage to perform this sort in under a second, with qsort taking slightly over
half a second.

We find that for each case, there exists a hybrid algorithm which can perform the task quicker.
We can derive this conclusion from the definition of a hybrid algorithm. A hybrid algorithm is a
combination of multiple algorithms which can efficiently sort a list based on the input data. With
the transformations, we have only been looking at using a single algorithm composed of multiple
transformations. An example for this would be Listing 3.6, which combines divide and conquer and
problem reduction based on the size of the chunk size from divide and conquer. It would be possible
for a compiler to, with modification of tuple visitation order, simulate a hybrid algorithm.
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5 Discussion and Conclusion

We have explored different transformations on the tUPL base sorting algorithm and compared the
results between themselves and to other existing algorithms. By defining five transformations, we
were able to evaluate 48 different algorithms which can all be reduced to tuple paths which the
base algorithm can perform. We found that the sort Xn 3 and sort Xn 23 managed to achieve the
best performance compared to the other algorithms.

While we did manage to find algorithms which performed better than the other algorithms, this
does not define these algorithms as being true best algorithms. As stated in Sections 3.1.1 and 3.1.2,
there exist many more paths which could be traversed, which would all provide different results.
It would be unfeasible to test all different paths, as this would theoretically take infinite time to
perform. It could be a possibility to change this to an optimisation instead of a transformation,
where the compiler dynamically generates the order instead of using a predefined order.

We also found that, even though some algorithms manage to sort L3 in a short time, the currently
existing hybrid algorithms display better results compared to the tUPL transformed algorithms. As
these algorithms are based on finding near-optimal solutions for multiple smaller problems instead
of a single big problem, these algorithms can perform better in most general cases. As stated
in Section 4.3 and demonstrated by Listing 3.6, it would be feasible for the base tUPL sorting
algorithm to be transformed into a hybrid tUPL algorithm by the compiler. This would require
further investigation on which combination of algorithms display significant improvement in any
way. The defined transformations and the gathered results could serve as a basis for these hybrid
algorithms.

Due to the time it took to conduct all tests, some results could have contained outlier values, such
as sort bn 123 described in Section 4.2.3, where these would have been filtered out with average
tests instead. Even though the data has a risk of containing slight outliers, we can say that the
data fits into the provided explanations, which implies that it is likely that no more outliers are
present in the data. Additionally, as the random data is composed of two different input sets, the
chances of outliers in these sets are already lowered.
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A Result Data

A.1 Ascending

L0 L1 L2 L3
Algorithm Time (s) Time (s) Time (s) Time (s)
sort Xn 0.000017 0.000072 0.000635 0.031877
sort Xs 0.006774 0.196161 5.112715 4.310384
sort Xn 1 0.016496 0.332075 28.066313 DNF
sort Xs 1 6.016598 267.841482 DNF -
sort Xn 2 0.000192 0.000960 0.010031 0.636601
sort Xs 2 0.020549 0.531700 26.297225 813.156236
sort Xn 3 0.000089 0.000553 0.007266 0.601360
sort Xs 3 0.026245 0.579283 37.944788 3117.971472
sort Xn 12 0.158135 3.729265 427.548668 DNF
sort Xs 12 6.697171 DNF - -
sort Xn 13 0.102044 1.567635 251.368989 DNF
sort Xs 13 18.593539 DNF - -
sort Xn 21 0.032955 0.859541 62.670340 DNF
sort Xs 21 6.793023 DNF - -
sort Xn 23 0.000815 0.006199 0.075374 3.703634
sort Xs 23 0.069800 1.449062 100.475182 DNF
sort Xn 31 0.021531 0.869401 41.904999 DNF
sort Xs 31 8.984876 DNF - -
sort Xn 123 0.512934 21.922393 DNF -
sort Xs 123 29.212412 DNF - -
sort Xn 213 0.186770 6.765592 502.119122 DNF
sort Xs 213 22.972763 DNF - -
sort Xn 231 0.087759 1.416610 127.899332 DNF
sort Xs 231 19.839762 DNF - -

Table A.1: Average time taken to validate an ascending
list
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A.2 Descending

L0 L1 L2 L3
Nr of Swaps Nr of Swaps Nr of Swaps Nr of Swaps

Algorithm Time (s) Time (s) Time (s) Time (s)
(% Sorted) (% Sorted) (% Sorted) (% Sorted)

sort fn
2096128
0.045111

42462720
0.892366

3355402240
75.664569

1151307395944
DNF (13.08%)

sort bn
2096128
0.036351

42462720
0.931791

3355402240
78.167186

1103976220655
DNF (12.55%)

sort fs
2096128
0.016607

42462720
0.621848

3355402240
22.550353

5732269103817
DNF (65.16%)

sort bs
2096128
0.031381

42462720
0.345442

3355402240
40.984008

5698810173320
DNF (64.78%)

sort fn 1
2096128

21.328590
13589308

DNF (32.00%)
- -

sort bn 1
2096128
0.046968

42462720
0.757995

3355402240
58.277720

569909126791
DNF (6.47%)

sort fs 1
2096128

11.948158
37260028

DNF (87.74%)
- -

sort bs 1
2096128

12.905672
24085270

DNF (56.72%)
- -

sort fn 2
2096128
0.050043

42462720
1.478048

3355402240
101.435200

600937741902
DNF (6.83%)

sort bn 2
2096128
0.052863

42462720
0.964709

3355402240
71.586795

580670193664
DNF (6.60%)

sort fs 2
2096128
0.051448

42462720
0.886357

3355402240
57.758699

2303004434961
DNF (26.18%)

sort bs 2
2096128
0.059783

42462720
1.343066

3355402240
56.225755

2428425717735
DNF (27.60%)

sort fn 3
11264

0.000343
54272

0.001004
638976

0.011970
46137344
1.369404

sort bn 3
11264

0.000339
54272

0.001112
638976

0.019076
46137344
1.383927

sort fs 3
11264

0.040583
54272

0.657869
638976

54.981840
41521578

DNF (99.99%)

sort bs 3
11264

0.040253
54272

0.953501
638976

38.649166
41490432

DNF (99.99%)

sort fn 12
2096128

16.235893
15547400

DNF (36.61%)
- -

sort bn 12
2096128
0.175443

42462720
4.220805

3355402240
462.239917

67691212996
DNF (0.76%)

sort fs 12
2096128
9.090255

26423941
DNF (62.22%)

- -
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L0 L1 L2 L3
Nr of Swaps Nr of Swaps Nr of Swaps Nr of Swaps

Algorithm Time (s) Time (s) Time (s) Time (s)
(% Sorted) (% Sorted) (% Sorted) (% Sorted)

sort bs 12
2096128

14.901833
25632284

DNF (60.36%)
- -

sort fn 13
2096128
0.135053

42462720
2.969532

3355402240
498.669452

186012486910
DNF (2.11%)

sort bn 13
2096128
0.208544

42462720
3.865258

3355402240
265.505980

223304128014
DNF (2.53%)

sort fs 13
2096128

29.819064
21836136

DNF (51.42%)
- -

sort bs 13
2096128

33.436370
24745034

DNF (58.27%)
- -

sort fn 21
2096128

16.621842
19646692

DNF (46.26%)
- -

sort bn 21
2096128
0.063759

42462720
1.410025

3355402240
92.986209

379189198848
DNF (4.31%)

sort fs 21
2096128
7.044232

34074112
DNF (80.24%)

- -

sort bs 21
2096128
7.741015

24520101
DNF (57.74%)

- -

sort fn 23
11264

0.000957
89088

0.007545
1048576
0.047835

46137344
4.078250

sort bn 23
11264

0.000485
89088

0.007580
1048576
0.096192

46137344
3.908560

sort fs 23
11264

0.070363
89088

1.929896
1048576

127.068670
39845888

DNF (12.49%)

sort bs 23
11264

0.040125
89088

1.951079
1048576

179.269749
39845888

DNF (12.49%)

sort fn 31
11264

0.045113
54272

0.728213
638976

36.921471
40335315

DNF (99.99%)

sort bn 31
11264

0.028859
54272

0.610610
671744

57.709613
38707224

DNF (99.99%)

sort fs 31
11264

17.079443
53246

DNF (99.99%)
- -

sort bs 31
11264

12.918621
54272

DNF (100.00%)
- -

sort fn 123
2096128
0.727380

42462720
14.202856

2983599840
DNF (88.91%)

-

sort bn 123
2096128
0.547201

42462720
19.963312

3355402240
1715.459160

36469847951
DNF (0.41%)

sort fs 123
2096128

38.459365
8146863

DNF (54.18%)
- -
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L0 L1 L2 L3
Nr of Swaps Nr of Swaps Nr of Swaps Nr of Swaps

Algorithm Time (s) Time (s) Time (s) Time (s)
(% Sorted) (% Sorted) (% Sorted) (% Sorted)

sort bs 123
2096128

38.515272
8247891

DNF (53.42%)
- -

sort fn 213
2096128
0.400090

42462720
9.270643

3355402240
763.578500

149457143169
DNF (1.69%)

sort bn 213
2096128
0.306731

42462720
5.838961

3355402240
815.772535

188976463872
DNF (2.14%)

sort fs 213
2096128

48.575900
18141068

DNF (42.72%)
- -

sort bs 213
2096128

28.572557
18400893

DNF (43.33%)
- -

sort fn 231
11264

0.070660
89088

1.447418
1048576

141.630244
40894464

DNF (18.74%)

sort bn 231
18318

0.109571
125952

2.074139
1456356

181.735681
65040838

DNF (11.71%)

sort fs 231
11264

21.648020
58368

DNF (80.24%)
- -

sort bs 231
18318

18.438339
125448

DNF (99.99%)
- -

Table A.2: Number of swaps and time taken to sort a
descending list
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A.3 Unique Random

L0 L1 L2 L3
Nr of Swaps Nr of Swaps Nr of Swaps Nr of Swaps

Algorithm Time (s) Time (s) Time (s) Time (s)
(% Sorted) (% Sorted) (% Sorted) (% Sorted)

sort fn
1054964
0.037579

21338280
0.776394

1675399483
72.149437

1005772453768
DNF (61.42%)

sort bn
1054964
0.044334

21338280
0.928341

1675399483
71.005161

970425301974
DNF (61.01%)

sort fs
1054964
0.022789

21338280
0.495471

1675399483
26.522183

796374361848
DNF (59.04%)

sort bs
1054964
0.027964

21338280
0.504116

1675399483
36.809139

818741542982
DNF (59.29%)

sort fn 1
1054964

11.072979
10799537

DNF (75.18%)
- -

sort bn 1
1054964
0.029491

21338280
0.542997

1675399483
42.794181

379866655361
DNF (54.30%)

sort fs 1
1054964

11.426693
18789208

DNF (93.99%)
- -

sort bs 1
1054964
9.197065

20353360
DNF (97.94%)

- -

sort fn 2
1054964
0.043702

21338280
1.307503

1675399483
86.311526

307006107057
DNF (53.47%)

sort bn 2
1054964
0.044933

21338280
0.834031

1675399483
50.426982

298790137836
DNF (53.38%)

sort fs 2
1054964
0.045691

21338280
0.839377

1675399483
46.305473

1139403045924
DNF (62.93%)

sort bs 2
1054964
0.052360

21338280
1.223758

1675399483
48.321028

1220173970330
DNF (63.85%)

sort fn 3
43106

0.001379
295112

0.008800
9847303
0.358485

4281634011
123.742384

sort bn 3
43106

0.001025
295112

0.007636
9847303
0.206557

4281634011
121.511550

sort fs 3
43106

0.058299
295112

1.209596
9847303

56.990061
2330401398

DNF (99.96%)

sort bs 3
43106

0.052305
295112

0.885851
9847303

59.313737
2261728296

DNF (99.96%)

sort fn 12
1054964
6.757971

14996573
DNF (85.06%)

- -

sort bn 12
1054964
0.161635

21338280
4.063889

1675399483
459.571673

35044207040
DNF (50.38%)

sort fs 12
1054964

14.757941
8082989

DNF (68.78%)
- -
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L0 L1 L2 L3
Nr of Swaps Nr of Swaps Nr of Swaps Nr of Swaps

Algorithm Time (s) Time (s) Time (s) Time (s)
(% Sorted) (% Sorted) (% Sorted) (% Sorted)

sort bs 12
1054964

12.679747
15032841

DNF (85.15%)
- -

sort fn 13
1054964
0.237408

21338280
3.508180

1675399483
453.337624

95286791465
DNF (51.06%)

sort bn 13
1054964
0.170148

21338280
2.982098

1675399483
237.109111

133535239653
DNF (51.50%)

sort fs 13
1054964

29.847980
13788231

DNF (82.21%)
- -

sort bs 13
1054964

23.381217
15641949

DNF (86.58%)
- -

sort fn 21
1054964
7.480358

14623634
DNF (84.18%)

- -

sort bn 21
1054964
0.048244

21338280
1.061563

1675399483
78.188455

229861373492
DNF (52.59%)

sort fs 21
1054964

12.486611
17302684

DNF (90.49%)
- -

sort bs 21
1054964
9.053450

16546489
DNF (88.71%)

- -

sort fn 23
33288

0.000992
229596

0.013247
2962969
0.089137

265046273
8.448423

sort bn 23
33288

0.001722
229596

0.012340
2962969
0.168040

265046273
8.219742

sort fs 23
33288

0.112819
229596

2.829468
2962969

151.631321
198042336

DNF (56.23%)

sort bs 23
33288

0.107454
229596

2.574902
2962969

199.975693
203268762

DNF (57.80%)

sort fn 31
43106

0.133046
295112

1.735021
9847303

493.636804
341125642

DNF (99.69%)

sort bn 31
43360

0.029505
296198

0.756526
9857027

60.909006
1854969112

DNF (99.95%)

sort fs 31
43106

21.146341
289766

DNF (99.98%)
- -

sort bs 31
43336

9.520690
293801

DNF (99.99%)
- -

sort fn 123
1054964
0.453979

21338280
13.722421

1379132178
DNF (91.17%)

-

sort bn 123
1054964
0.523004

21338280
16.193078

1296323632
DNF (88.70%)

-

sort fs 123
1051849

37.164145
10984460

DNF (75.57%)
- -
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L0 L1 L2 L3
Nr of Swaps Nr of Swaps Nr of Swaps Nr of Swaps

Algorithm Time (s) Time (s) Time (s) Time (s)
(% Sorted) (% Sorted) (% Sorted) (% Sorted)

sort bs 123
1054964

41.057299
10763606

DNF (75.09%)
- -

sort fn 213
1054964
0.374091

21338280
8.671061

1675399483
990.480544

78117242422
DNF (50.87%)

sort bn 213
1054964
0.272413

21338280
5.828314

1675399483
620.937056

105038048436
DNF (51.18%)

sort fs 213
1054964

50.820805
15614637

DNF (86.52%)
- -

sort bs 213
1054964

29.417080
13599203

DNF (81.77%)
- -

sort fn 231
33288

0.087002
229596

1.066666
2962969

86.849212
203572233

DNF (57.80%)

sort bn 231
33482

0.115225
230564

1.645795
2971633

118.180251
195893733

DNF (55.84%)

sort fs 231
33288

26.936398
225576

DNF (99.98%)
- -

sort bs 231
33712

17.854500
230511

DNF (99.99%)
- -

Table A.3: Average number of swaps and time taken to
sort a unique random list
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A.4 Non-Unique Random

L0 L1 L2 L3
Nr of Swaps Nr of Swaps Nr of Swaps Nr of Swaps

Algorithm Time (s) Time (s) Time (s) Time (s)
(% Sorted) (% Sorted) (% Sorted) (% Sorted)

sort fn
1034783
0.044668

21234665
0.781311

1671845031
71.169897

1003399099168
DNF (61.40%)

sort bn
1034783
0.040469

21234665
0.968708

1671845031
71.100322

966970688750
DNF (60.99%)

sort fs
761032

0.025546
15542043
0.404514

1230404454
32.389005

732584908881
DNF (60.14%)

sort bs
779491

0.019432
15583570
0.381352

1226676216
31.133989

757412607456
DNF (60.50%)

sort fn 1
1034783

10.901621
10743611

DNF (75.28%)
- -

sort bn 1
1034783
0.030933

21234665
0.523034

1671845031
41.934964

379630159341
DNF (54.31%)

sort fs 1
761032

12.143632
12701398

DNF (89.58%)
- -

sort bs 1
1034783
6.200382

13934263
DNF (82.79%)

- -

sort fn 2
1034783
0.043840

21234665
1.399293

1671845031
91.815000

307036630837
DNF (53.49%)

sort bn 2
1034783
0.044901

21234665
0.827363

1671845031
56.328664

298878452054
DNF (53.39%)

sort fs 2
883115

0.044816
17562284
1.133026

1373861893
46.671484

1070730395100
DNF (62.70%)

sort bs 2
896871

0.052104
18783208
0.679015

1487830145
44.396378

1117440290067
DNF (63.29%)

sort fn 3
52862

0.001563
309654

0.009239
10228177
0.379809

5284825711
142.383325

sort bn 3
52862

0.001507
309654

0.006805
10228177
0.221572

5284825711
138.704259

sort fs 3
47608

0.069478
298811

1.299423
9766708

76.703661
2108431882

DNF (99.95%)

sort bs 3
47559

0.056543
301445

1.224074
9717359

72.933599
2126115670

DNF (99.95%)

sort fn 12
1034783
6.521379

14978975
DNF (85.25%)

- -

sort bn 12
1034783
0.189432

21234665
4.329785

1671845031
436.157660

34715779258
DNF (50.39%)

sort fs 12
762887

9.117285
11336221

DNF (84.74%)
- -
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L0 L1 L2 L3
Nr of Swaps Nr of Swaps Nr of Swaps Nr of Swaps

Algorithm Time (s) Time (s) Time (s) Time (s)
(% Sorted) (% Sorted) (% Sorted) (% Sorted)

sort bs 12
1034783

10.035396
14894531

DNF (85.05%)
- -

sort fn 13
885909

0.236295
18071554
3.498455

1419140475
308.131197

94868242600
DNF (51.10%)

sort bn 13
885909

0.169525
18071554
2.326735

1419140475
254.917601

130471026607
DNF (51.53%)

sort fs 13
846136

26.973508
8198103

DNF (72.08%)
- -

sort bs 13
885909

19.776540
11730802

DNF (81.40%)
- -

sort fn 21
1034783
7.269802

14602584
DNF (84.37%)

- -

sort bn 21
1034783
0.041798

21234665
1.157687

1671845031
85.235844

229736889971
DNF (52.61%)

sort fs 21
883115

7.014793
13416896

DNF (86.07%)
- -

sort bs 21
1034783
6.065331

15322435
DNF (86.06%)

- -

sort fn 23
32222

0.000988
222185

0.013170
2905577
0.174299

262608852
8.484805

sort bn 23
32222

0.000935
222185

0.012682
2905577
0.166913

262608852
8.104582

sort fs 23
32222

0.108550
222184

2.443923
2905203

184.865100
197984502

DNF (56.25%)

sort bs 23
32222

0.137392
222185

2.945188
2905255

219.765985
202856202

DNF (57.81%)

sort fn 31
52862

0.109595
309654

1.289607
10228177

612.185646
340746972

DNF (99.69%)

sort bn 31
53099

0.029736
310679

0.885239
10237671
59.558023

1714213012
DNF (99.94%)

sort fs 31
47608

21.039848
292947

DNF (99.96%)
- -

sort bs 31
53075

9.488318
308618

DNF (99.98%)
- -

sort fn 123
882195

0.509126
18031946
24.185745

1006268286
DNF (84.46%)

-

sort bn 123
882195

0.558230
18031946
14.217641

1490674116
DNF (94.41%)

-

sort fs 123
849918

36.991328
6361137

DNF (66.64%)
- -
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L0 L1 L2 L3
Nr of Swaps Nr of Swaps Nr of Swaps Nr of Swaps

Algorithm Time (s) Time (s) Time (s) Time (s)
(% Sorted) (% Sorted) (% Sorted) (% Sorted)

sort bs 123
882195

37.233967
8286825

DNF (71.90%)
- -

sort fn 213
948078

0.370813
19148552
7.343043

1500045636
726.164973

77796270137
DNF (50.88%)

sort bn 213
948078

0.270903
19148552
5.282602

1500045636
442.249563

104516615356
DNF (51.19%)

sort fs 213
937027

29.954984
9362481

DNF (73.23%)
- -

sort bs 213
948078

38.379727
15750372

DNF (90.02%)
- -

sort fn 231
32222

0.076760
222185

1.627745
2905577

83.576241
203171552

DNF (57.81%)

sort bn 231
32424

0.116410
223113

1.632834
2914540

116.507698
195909913

DNF (55.86%)

sort fs 231
32222

27.931792
220689

DNF (99.98%)
- -

sort bs 231
32652

14.488620
223661

DNF (99.98%)
- -

Table A.4: Average number of swaps and time taken to
sort a non-unique random list
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A.5 Hybrid Algorithms

L0 L1 L2 L3
Data Set Algorithm Time (s) Time (s) Time (s) Time (s)
Ascending introsort 0.000378 0.001821 0.006975 0.273307

qsort 0.000095 0.000719 0.007446 0.119889
timsort 0.000013 0.000141 0.001297 0.015562

Descending introsort 0.000348 0.001864 0.003841 0.224986
qsort 0.000148 0.000773 0.006188 0.121322
timsort 0.000042 0.000177 0.001530 0.018047

Unique Random introsort 0.001010 0.005330 0.012233 0.771161
qsort 0.000391 0.002636 0.010059 0.540909
timsort 0.000869 0.004840 0.014157 0.834823

Non-Unique Random introsort 0.001005 0.005260 0.012691 0.774225
qsort 0.000575 0.002983 0.010398 0.538410
timsort 0.000883 0.005046 0.012729 0.833785

Table A.5: Time taken to sort each input set using hybrid
sorting algorithms
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