
 Universiteit Leiden

ICT in Business and the Public Sector

Introducing Capabilities to a DevOps Maturity Model

Name: Tarık Emin Kaplan
Student-no: 3287254

Date: 29/08/2023

1st supervisor: Dr. C.J. Stettina MSc
2nd supervisor: T.D. Offerman MSc

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Abstract

DevOps is a popular paradigm in organizations delivering software, calling for organizations
to unite their development and operational work and use automation substantially, in order to
increase their delivery performances [1], [2], [3].

Decades of research has highlighted the significance of organizational capabilities and rou-
tines [4], [5], [6], [7]. Despite that fact, the DevOps maturity models created in order to help
organizations assess their DevOps maturity have not been developed with a focus on this topic
[8], [9].

This research studies the problems associated with DevOps maturity models, how the per-
spective of organizational capabilities and routines relate to DevOps, and how this perspective
could be utilized in order to address the problems relating to DevOps maturity models. In order
to do this, a first round of interviews was conducted with 10 DevOps practitioners. Following
these interviews, one of the DevOps maturity models used in practice was improved and expanded
with the lens of organizational capabilities and routines. A second round of interviews with 11
DevOps practitioners, 8 of whom participated in the first round, was conducted to validate this
improved model.

The findings indicate that the model is moderately successful in helping practitioners under-
stand which capabilities and routines their organizations need to adopt or improve in order to
increase their maturity; and is easy to use (which is shown to be a very important factor).

However it was also shown that the link between the original model and the capabilities
featured in it is not well established; the model may not be covering a complete view of every
capability; and it may not be suited the best for DevOps practitioners who are doing DevOps
using “alternative” team structures.

There are also other findings that could be interesting to both the practitioners and the
researchers. For the latter, it is found that the capabilities and practices related to the “Cultural”
dimension of DevOps do not necessarily act as a foundation for other dimensions; instead, all
the dimensions are related to one another and the practices related to them are meant to be
adopted together. For practitioners, it is found that the maturity assessments lead to practical
improvements only when the assessment is done in regular periods, and when a strong focus on
improvements from the last time the assessment was performed is present.

Acknowledgement

I would like to thank my supervisors Tyron Offerman and Christoph Stettina for guiding me
through this journey, your help and flexibility in order to make this research happen was greatly
appreciated. I also would like to thank all the people who have participated in the interviews as
part of the research, though I cannot list your names to keep your anonymity, you all know who
you are, and I appreciate your effort to contribute to this project. In particular, a special thank
you to R.B.; from contributing to the interviews, to connecting with me with other people for
more interviews, and for your advice when I reached out; your help for this research has been
invaluable. Most importantly, I would like to thank my family as well, if I were to write down
the reasons on how grateful I am for having you all, it would be longer than this paper.

1

Contents

1 Introduction 3
1.1 Document Structure . 4

2 Literature 5
2.1 DevOps . 5
2.2 DevOps maturity . 6
2.3 Organizational capabilities and routines . 9

3 Problem Statement 13
3.1 Research question . 13

4 Methodology 15
4.1 Interview Guide . 16

5 Results 18
5.1 Interviewee Sample . 18
5.2 Insights from first interviews . 19
5.3 Improved Maturity Model . 21
5.4 Insights from second interviews . 36

6 Discussion 39
6.1 Implications of the insights on the model . 39
6.2 Implications of the insights on DevOps practices 41
6.3 Answering the research question . 43
6.4 Limitations . 45

7 Conclusion 47
7.1 Future Work . 48

A Questions used in the interviews 53
A.1 Questions for the first cycle . 53
A.2 Questions for the second cycle . 54

B Improved Maturity Model 56

2

Chapter 1

Introduction

In the current landscapes of businesses in nearly all industries, adopting information technologies
(IT) and software has been, and is continuing to be an integral part of their value chain; as it
brings significant economic benefits to organizations, governments, and consumers alike [10]. This
mass adoption of IT and software is commonly referred as “digitization”. Digitization requires
organizations to invest in new technologies, and one of the most popular method regarding such
investments is to create these new technologies by orchestrating software development within
organizations [11].

Maturity models are popular with regards to many aspects of software development (e.g.
project management, business processes), both in terms of use and in terms of creation by
individuals and organizations [12]. The intent behind the creation of maturity models is to define
an “anticipated, desired, or logical path” from an initial state to a mature state, where there are
typically a “sequence of levels (or stages)” included to define such a path [13]. Maturity models
can help organizations “identify organizational strengths and weaknesses while also providing
benchmarking information at the same time” [12].

Traditionally, software development has been done across silos, two of these silos being de-
velopment and operations. Years of software development done in this “traditional” way has
resulted in development and operations teams within the same organizations having different
understanding of problems, and even culture [1]. To bridge this internal separation and to
deliver high quality software continuously, DevOps was introduced in the last decade [14].

DevOps finds its roots within Agile and Lean, both of which define certain methodologies,
ways of working and a mindset regarding software development, and both are remaining to be
used widely by practitioners today [14], [3]. Agile primarily focuses on incremental delivery,
team collaboration, continual planning, and continual learning; and as a result aims to achieve
high delivery performance and flexibility in handling customer inputs [15], [16]. Lean also has a
similar focus, but it puts a large emphasis on the concept of “eliminating waste”; which explains
to remove activities (expressed in monetary terms or time) that don’t add value to the customer
[17], [18].

DevOps is a paradigm calling for the “establishment of cross-functional, agile teams that are
responsible for development and operations of their systems”, and automation is a key part of
DevOps [1], [2]. DevOps has been gaining popularity, both in research and in practice; but for
the latter, it is especially popular within organizations where digital transformation is taking
place; to change the ways of working associated with the aforementioned “traditional” software
development, which is now outdated [2], [19], [20].

The “Dev” in DevOps refers to the development team, which is responsible for creating

3

and modifying software products; while the “Ops” refers to the operations team responsible for
the deployment and maintenance of such products. The routines of each team entail duties in
line with this description but it is absolutely necessary for these two teams to collaborate and
communicate for optimal execution of DevOps as a strategy [21]. Typically, this is achieved by
organizing team(s) such that practitioners belonging to both the Dev and the Ops disciplines are
on the same team(s), but there are also alternative team structures when implementing DevOps
[22].

The increasing use of DevOps has resulted in the birth of DevOps maturity models, which
are created by organizations and by researchers alike. However, the DevOps itself is a relatively
“young” paradigm within software development, as a result of this, there are different interpre-
tations associated with the organizational capabilities and routines related to DevOps, which is
also reflected within different DevOps maturity models [23], [9]. In other words, DevOps matu-
rity models themselves are not at a “mature state”. Furthermore, there aren’t too many of them
compared to other aspects of software development [9].

Organizational capabilities (also referred simply as “capabilities” throughout the paper) and
routines - and their popular sub-topic, dynamic capabilities - all have been a popular subject of
research within the academics for decades, and the topic is considered to be at a fairly mature
state, as the researchers and practitioners have reached a relatively common understanding [4],
[5], [6], [7]. On the other hand, the capabilities and routines (including dynamic capabilities) in
the face of DevOps have only recently been beginning to be explored in literature [8], [2]. This
indicates that the DevOps maturity models already developed have been likely done so without
much consideration to the perspective of organizational capabilities and routines.

Therefore, it is the objective of this research to understand more about the capabilities and
routines associated with DevOps, and to reflect this understanding within a DevOps maturity
model.

1.1 Document Structure

The remainder of this paper is as follows: In chapter 2, the key pieces of literature reviewed for
this research is explained in detail under three main categories: “DevOps”, “DevOps maturity”,
and “Organizational capabilities and routines”. In chapter 3, the problems identified within the
literature is expressed, and the research question is introduced to further define the research
objective. In chapter 4, the approach used within this research to answer the research question
and the guiding questions is explained. In chapter 5, the insights gathered from the interviews,
the maturity model created following these interviews, and the insights gathered validating the
model are given. In chapter 6, the implication of the insights gathered are discussed in detail. In
chapter 7, the paper is concluded with a reflection on the research question and potential future
work that could be done to expand on this research.

4

Chapter 2

Literature

2.1 DevOps

One popular framework present within the DevOps literature used to define DevOps from an aca-
demic view is the CALMS (Culture, Automation, Lean, Measurement, and Sharing) framework;
coined by Humble et al. [23], [21], [24]. CALMS is a framework that “assesses a company’s
ability to adopt DevOps processes, as well as a way of measuring success during a DevOps
transformation”, and it is a framework commonly used within the literature to describe the key
components of DevOps [25]. Culture component emphasizes on the previously mentioned ideol-
ogy that collaboration between “Dev” and “Ops” is necessary, and lays the foundation within
an organization for DevOps to exist in the first place [26]. Moving away from project-oriented
teams to product-oriented teams; establishing shared responsibility across teams and making
them autonomous can foster such a culture [21], [27]. Automation component describes the need
to replace the “manual error-prone repetitive tasks” with right tools [21], [27]. Doing so leads
to faster execution of business processes, and enables establishing of many important practices
associated with DevOps, such as continuous deployment, infrastructure as code, configuration
as code [26]. DevOps practices find their origin in Lean and Agile, so the Lean component
describes some key aspects of DevOps which are shared with Lean [3]. Namely, reducing work
in progress (WIP) by reducing batch sizes is a principle of Lean, and it is also done so within
DevOps by the means of breaking down software features and functionalities and shipping them
individually [26]. Measurement component is about the “monitoring high-level business metrics
[...] per unit time” [21]. Monitoring of such metrics are important to not only give the team key
information about their processes, but to other stakeholders that may be involved with the soft-
ware product(s) as well, which can help organizations make better and more informed decisions
[25], [26]. Sharing component is tightly connected to the Culture component and it describes
the importance of sharing across teams to break down business silos and promote collaboration
[26]. Sharing knowledge across teams via tools encourage collaboration directly; while sharing
of responsibilities brings teams closer with successful releases [21], [3].

There are two notable books related to DevOps: “The DevOps Handbook” [28] and “Accel-
erate” [3], both of which are co-authored by Jez Humble, the primary creator of the CALMS
framework. “The DevOps Handbook”, as it’s name implies, describes and defines all that is
DevOps. More specifically, it talks about “the theory, principles, and practices [practitioners]
need to successfully start [their] DevOps initiative and achieve [their] desired outcomes” [28].
This is based on a wide collection of literature regarding technology and management, studies on
organizations both done by authors and from literature, practical work done by authors within

5

organizations undergoing DevOps transformations, interviews done with relevant practitioners,
and analyses of case studies [28].

In the “Accelerate” book, the authors analyse a significant amount of data collected over
“many years” and using this data, they “measure and quantify software delivery performance,
its impact on organizational performance, and the various capabilities that contribute to these
outcomes” [3]. The capabilities are listed under 5 main categories: Cultural, Continuous Delivery,
Architecture, Product and Process, and Lean Management and Monitoring. These two books
turned out to be very valuable sources for this research, as it can be seen in later chapters.

Offerman et al. identified 14 of the most common DevOps practices [26], which are represented
in table 2.1. These practices are in line with the aforementioned CALMS framework, so they
provide a good foundation of knowledge to improve upon a DevOps maturity model.

Practice
1 Automated and continuous deployment throughout entire pipeline
2 Make small and continuous releases
3 Developers get feedback based on releases
4 Create development sandboxes for minimum code deployment
5 Everything is stored as code and under version control
6 Integrated configuration management

7
Automated and continuous testing in development and staging
environments

8 Reduce the time it takes to test, validate and QA code
9 Code reviews are change based

10
Automated and continuous monitoring of applications and re-
sources

11
Automated dashboards that include health checks and perfor-
mance

12
Support configurable logging that can optionally be turned on/off
as needed

13 Use trunk-based development over long-lived feature branches
14 Use Test driven Development where all code has unit tests

Table 2.1: Most common DevOps practices according to Offerman et al. [26]

2.2 DevOps maturity

According to Mettler, in the space of information systems, maturity is about measuring of the
ability of an organization’s progress in their selected discipline, towards “accomplishing of a
target from an initial to a desired or normally occuring end stage”; and maturity assessment
models (or just “maturity models”) are tools to measure the stages such organizations are in
[29]. According to our research of literature, this definition of maturity and maturity models can
also apply to the DevOps maturity and DevOps maturity models. Following are the literature
related to DevOps maturity and DevOps maturity models reviewed.

An article on DevOps practices, which serves as an “ancestor” for this study is the one by Of-
ferman, Blinde and colleagues [26]. The article’s main focus in on DevOps practices, but several
key findings related to maturity are there in the form of practices correlations to maturity. The
practices were already listed in 2.1. Out of the 14 practices defined by the authors, while all the

6

practices are positively correlated with DevOps maturity, practices such as “automated testing
in environments”, “automated continuous deployments”, “automated and continuous monitor-
ing”, and “configuration management” have the strongest correlations, whereas “sandboxes for
minimum deployment”, “trunk-based development”, “trying to reduce time to test/QA” have
the weakest. In this study, the perceived DevOps maturity of organizations were measured based
on Eficode’s DevOps maturity model [30]. The authors justify this choice of maturity model by
stating that it is in line with the CALMS framework. The thesis paper by Blinde preceding this
article features 47 practices, among which the 14 practices featured in the article are also present
[31].

The research done by Zarour and colleagues compares 7 DevOps maturity models based on
their application, levels and dimensions; and the maturity model developed by Eficode is one of
these models [9], [30]. The authors do recommend this model, stating it as a “comprehensive
and promising” model, alongside the model developed by Bucena [32]. According to the authors,
both models share important similarities in their dimensions and levels.

Eficode’s model (as shown in Figure 2.1), is a DevOps maturity model that features 7 di-
mensions (“Organization and Culture”, “Environments and Release”, “Builds and Continuous
Integration”, “Quality Assurance”, “Visibility and Reporting”, “Technologies and Architecture”,
and one unlabelled dimension on starting new projects), and 4 levels (numbered from 1 to 4, 1
being the lowest and 4 the highest) [30]. For each dimension/level pair, a basic description of
how related activities are supposed to look like is given, and organizations are meant to pick
the description that best fits them for each dimension, which results in their assessed level of
maturity across 7 different dimensions. This means that it is possible to be at different levels in
each dimension.

Figure 2.1: The Eficode’s maturity model [30]

7

One notable maturity model which was also featured in the paper by Zarour et al. was the
one presented in the paper by Feijter et al. [33] [9]. It was the only DevOps maturity model
we could identify which was explicitly based on capabilities. You can find the maturity model
in Figure 2.2. This maturity model has 3 main categories (which are referred as “perspectives”
in the paper), namely these are: “Culture and Collaboration”; “Product, Process and Quality”;
and “Foundation”. These categories can be thought as the equivalent of “dimensions” featured
in Eficode’s model. The authors came up with this based on a “DevOps competence model”
they have developed, which in turn was created based on numerous literature and was further
validated by expert interviews. Under each of these 3 categories there are some “focus areas”,
which can be thought as the DevOps practices organizations should possess. For each focus
area there are a number of capabilities (represented by capital letters A,B,C and so on). The
development of a capability within a single focus area depends on the existence of previous
capability (i.e. there is no way to possess capability B without possessing capability A first),
and the current state of a capability regarding each focus area determines the maturity “level”
an organization is at for that particular focus area. It is possible to be at different levels across
different focus areas.

The authors of this paper also highlight a key underlying problem with many DevOps matu-
rity models which were based on Capability Maturity Model (CMM), such as the other maturity
models featured in the paper by Zarour et al., and that is the fact that “no step by step guide
is incorporated [within these models] that shows a growth path to become more mature” [9],
[33]. While the maturity model proposed by the authors seems to be addressing this particular
problem by the means of utilizing focus areas and capabilities; and is the only DevOps maturity
model that actively feature capabilities according to our literature review, it has its flaws and
doesn’t address some other problems. We will be discussing about what these flaws and problems
are in future chapters, and will also discuss about what could be utilized from this particular
model and the paper associated with it, for the context of our research.

The article by Marnewick and Langerman gives valuable insights into the problems/benefits
associated with DevOps maturity and current maturity models [34]. Through a case study,
the authors reached the consensus that utilizing a DevOps maturity model does not increase
organizational performance on its own, and it should be used in conjunction with other strategies.
Furthermore they stated that “organizations are better off creating their own models based on the
various models available”. One important thing to note here is that the authors did indeed create
their own DevOps maturity for their case study, but they also self-reported that their model did
not really align with any of the 7 “mainstream” models referred by Zarour and colleagues, so
their findings should be evaluated with caution [9]. Regardless, the authors do acknowledge that
a maturity model was helpful (albeit, not sufficient) to drive organizational change; and that
“various actions” did have a positive impact on the dimensions stated by their maturity model
[34].

A literature review of DevOps and DevOps practices by Ali and colleagues gives a good
review of some DevOps literature, and the authors also highlight some topics they identified
based on the quantity of the literature they reviewed [35]. Firstly, they state the significance of
the relation between DevOps and digital transformation paradigm; and state that the existing
literature focuses on “tools, practices and the lack of standards”, but there doesn’t appear to
be much focus on “adapting DevOps to an active IT ecosystem”, and on adoption of some
emerging technologies and what they could mean for DevOps. There is no mention of DevOps
literature regarding DevOps maturity in this review, which may suggest that there is lack of such
literature in comparison to other stated DevOps topics. The overall consensus of authors is that
while DevOps is continuing to gain popularity both in practice and in research, at least for the
latter, “its concepts and implementations are still cloudy, and doing its execution in routine is

8

Figure 2.2: The final maturity model developed by Feijter et al. [33]

not well-versed”.
In summary, according to our review of the literature on DevOps maturity, it is safe to say that

a gap in research exists regarding some topics. Namely, how the DevOps maturity assessment
of an organization gathered by utilizing a DevOps maturity model should be translated into
their practical work to improve their maturity, and exploring the potential usefulness of existing
DevOps maturity models are such topics. Thus we will try to address these topics with this
research.

2.3 Organizational capabilities and routines

Salvato’s articles [36], [4] on organizational capabilities and routines provides valuable insights.
One article is about the “microfoundation of routines and capabilities”; and the other is a research
done under an organization to get a deep understanding of capabilities related to their new
product development process, and the insights gained from it. According to Salvato’s research,
“microactivities” carried out by individuals (i.e. day-to-day routines) are central in shaping
the core capabilities of organizations [4]. Furthermore, the term “capabilities” are sometimes
used as a “black-box” phrase to describe organizations’ abilities to enable firm-level outcomes;
and routines are reduced to building blocks of capabilities [4], [36]. However Salvato argues
that routines and capabilities have a more complex, fine-grained and multi-layered nature than
that [36]. Salvato defines capabilities as “collections of routines characterized by evident firm-
level purpose” and states that they enable organizations to “reliably perform and extend its
characteristic output actions” [36].

9

Feldman and Pentland has made an important conceptualizing of routines by describing
them from the perspective of two aspects, ostensive and performative [6]. The ostensive aspect
denotes the descriptions of patterns (which may not always be written) that is used to carry
out a task; while the performative aspect denotes the actual activities done by individuals at
specific times and places in the name of carrying out said task. Authors argue that traditionally,
the ostensive aspect has been widely assumed as the whole routine, which led to organizations
putting too much emphasis on stabilizing their routines. Whereas the authors believe that
understanding of this distinct aspects can lead to routines being leveraged as tools to drive
change within organizations. This conceptualization of ostensive and performative aspects give
more information to understanding of the aforementioned “multi-level” perspective of routines.
This conceptualization is still used in current day literature.

Dynamic capabilities are no doubt an important consideration when talking about organiza-
tional capabilities. Teece defined dynamic capabilities as “the firm’s ability to integrate, build,
and reconfigure internal and external resources/competences[/capabilities] to address and shape
rapidly changing business environments” [5]. Teece has long argued that dynamic capabilities
are a source of competitive advantage [5]; and he shares the same belief with Salvato, in that he
argues dynamic capabilities have a multi-layered nature [37]. In his recent article he specifically
talks about how organizations with a strong dynamic capabilities reflect this strength in their
business model; and conversely, how a good business model enables strong dynamic capabilities
to be built [37].

A review of empirical studies on DevOps capabilities [8] and the “Design and validation of a
capability measurement instrument for DevOps teams” paper [2] by Plant and colleagues gives
great insights into many topics related to DevOps and capabilities related to DevOps (especially
dynamic capabilities). There are many great findings, and here are some that can be considered
important to this research:

• “Present DevOps maturity models are primarily focused on mapping capabilities to ma-
turity levels, but did not investigate the potential ways in which a capability may be
implemented” [2].

• The current DevOps maturity models does not appear to utilize organizational capabilities
and routines to an in-depth level [2], [9].

• DevOps teams need to develop their dynamic capabilities on two levels: business-related
and technology-related capabilities [2], [8].

• To achieve competitive advantage, DevOps teams need to develop some capabilities, given
under 3 main categories: Organizational enabler capabilities, Dynamic DevOps team ca-
pabilities (capabilities belonging to this category are separated as business related or tech-
nology related), and DevOps outcome capabilities [8].

As a result of their work, Plant and colleagues have developed a “capability measurement
instrument” [2]. In the process they have also defined a list of capabilities and practices asso-
ciated with these capabilities, utilizing the CALMS framework while doing so. This list is the
most comprehensive one (featured in a published article), we have identified regarding DevOps
capabilities and practices. You can find this list in figure 2.3.

Another useful literature review is the one by Schilke and colleagues, which is on dynamic
capabilities [7]. Authors believe that the research on the topic of “dynamic capabilities” has
grown substantially and the topic has reached a certain level of maturity, since there is a sub-
stantial amount of empirical research and that the definition of dynamic capabilities remains

10

Figure 2.3: The list of capabilities and practices as featured in Plant et al. [2]

11

fairly consistent across literature (unlike DevOps literature as indicated by Ali and colleagues as
mentioned earlier [35]).

Klievink and Janssen indicated that some stage models, which is a category of models most
DevOps maturity models are also a part of, “does not include the dynamic capabilities needed
by organizations to transform from one stage to the next stage” [38]. Though it’s important to
mention that this research in question was not related to DevOps, it did bring up some interesting
questions related to our research. What if having a high DevOps maturity level (according to
an established model) does not mean one (“one” as an organization) does not possess enough
dynamic capabilities (and how can we define “enough” based on maturity?). Conversely, what if
one does possess “enough” dynamic capabilities but does not have a high level of maturity? It is
reasonable to assume that these could be possible, given the amount of research (or lack thereof)
exploring DevOps maturity and dynamic capabilities, as pointed out within the research of Plant
et al. earlier [8], [2].

12

Chapter 3

Problem Statement

The literature has shown us that, DevOps maturity models doesn’t seem to be actively utilizing
capabilities in order to lay down a path to achieve a certain level of maturity [2], [33], [38]. The
only DevOps maturity model we have found that do utilize capabilities, focuses on mapping
capabilities to certain maturity levels [33]. However, existing literature indicates the maturity
models that do utilize capabilities doesn’t even do so to an in-depth level; and that no maturity
models investigate how capabilities could be implemented in practice [2], [8], [9]. Furthermore, the
meaning behind the terms “capabilities” and “routines” are reduced to the ability of organizations
to achieve a certain outcome, while some researchers argue that they have a much more complex,
fine-grained and multi-layered nature [4], [36], [37]. There is also the consideration to dynamic
capabilities. Even though the relationship between dynamic capabilities and DevOps have been
explored in literature and is shown to be significant, according to our knowledge, there is no
maturity model that features dynamic capabilities [2], [9].

Thus we recognize multiple problems. The first problem is that understanding what exact
capabilities and routines organizations need and addressing improvement/development of such
capabilities and routines may not always be so obvious following an assessment using an existing
maturity model (this problem is shortly referred as the “actionability problem” throughout the
paper). Analysing maturity models from the capabilities and routines perspective may help
understanding this problem, and it may help organizations improve their capabilities and move
from one stage to another in a given maturity model as a result; it would also make the link
between the stages of maturity models and the capabilities and routines apparent. It may also
help addressing the underlying “maturity models not being sufficient to drive organizational
changes” problem stated by some researchers [34]. The second problem is regarding dynamic
capabilities. As mentioned earlier, despite the importance of dynamic capabilities to DevOps,
as highlighted in literature, there is a scarcity of implementations of dynamic capabilities within
existing DevOps maturity models [2], [8]. This could result in potential disparities between the
assessed DevOps maturity of organizations and their actual DevOps maturity, depending on the
dynamic capabilities they possess. To resolve this, we need to explore how dynamic capabilities
could be featured in maturity models; and our final maturity model needs to utilize dynamic
capabilities.

3.1 Research question

As explained, within the realm of DevOps, maturity models have not been created with a thor-
ough analysis of capabilities. As such, we believe it is important to see whether using a perspec-

13

tive that utilizes capabilities will yield different implications for DevOps, both in research and
in practice. Therefore, the main research question (RQ for short) is expressed as follows:

“RQ: How can the lens of capabilities improve current DevOps maturity models?”

This main research question covers a large area of topics and is inherently difficult to answer
on its own. Therefore, to help answering it, we will try to answer some guiding questions (GQ for
short) which are less complex in nature, and will give us a narrowed down scope. This enables
us to focus on certain topics, which when taken together helps us answer the main research
question. The guiding questions are as follows:

“GQ1: What are the organizational capabilities and routines that are related to DevOps?”

Answering GQ1 will give us a thorough understanding of the organizational capabilities and
routines associated with DevOps. This is to ensure a good foundational knowledge base is es-
tablished before focusing on a maturity model to improve.

“GQ2: How do organizations move from one maturity level to another?”

Answering GQ2 will give us information on how we should design our model such that the
information related to the capabilities and routines are in-parallel with the maturity progression
of the model. Furthermore, such information should feature suggestions that would help orga-
nizations improve their capabilities and increase the maturity, and answering GQ2 can directly
contribute to such suggestions.

“GQ3: How does a maturity model that utilizes organizational capabilities and routines fare
in practice?”

After GQ3 is answered using the model created as a result of our research, an understanding
of how practical the model is in solving the problems we have identified; and an understanding
of how such a model can be improved will be established.

14

Chapter 4

Methodology

The research method we will employ to answer our research question is the design research.
Design research is defined as “the study, research, and investigation of the artificial made by
human beings, and the way these activities have been directed either in academic studies or
manufacturing organizations” [39]. So, given the practical nature of DevOps and our research,
it is appropriate to utilize this method, since we.want to not only design but also validate our
proposed model.

As Salvato indicated in his research, to get a deep, multilevel understanding of routines and
capabilities within an organization, it would be needed to observe data collected over a long
period of time [36]. However, we don’t intend to do that. The reasoning behind why we are
not doing it is because we are not trying to unbox the concept of capabilities and routines, and
we’re only trying to understand how this concept would relate to DevOps maturity and maturity
models. In other words, our research is in more line with focusing more on the aforementioned
ostensive aspect of capabilities and routines rather than the performative aspect [6]. This is also
the reason why we are using a design research methodology. We are seeking to get different
perspectives of numerous experts from different organizations, rather than doing an extensive
case study within a single organization.

As mentioned earlier, the maturity model developed by Feijter et al. was already made
with capabilities in mind, and it was the only DevOps maturity model in the literature that
we could find which was also proven by a case study [33]. We have found it appropriate to
analyse this model in more detail and arrived at some findings associated with the model that
could be problematic for our research. There are two main problems we have identified. The first
problem is that the 3 categories (i.e. “perspectives”), the focus areas and capabilities may not be
exactly in line with the aforementioned CALMS framework or the common practices identified
by Offerman et al. [26]. Furthermore, instead of using an existing framework like CALMS as
a foundation for their research, Feijter et al. compiled a list of “Drivers” of DevOps within
organizations based on various literature and their interviews, and used that as their foundation
[33]. You can see these drivers in figure 4.1. Some of these drivers appear to correspond to some
of the components of CALMS, such as “Culture” and “Automation” but it can’t be safely claimed
that the model is in line with the CALMS framework or any other established framework used to
describe DevOps. The second problem is that there is no consideration to dynamic capabilities
at all. So, the maturity model created by Feijter et al. could be a good starting point, but it is
incomplete for our purpose.

In addition to these two main problems, there also two minor problems. First is that, the
authors have self-reported a large number of interviewees were employees of a single organization

15

Figure 4.1: The drivers used by Feijter et al.

(since this research was done under one organization); and since these interviews were used to
validate and improve upon their maturity model, the final maturity model is tailored towards
that particular organization and may not fit the need of other organizations [33]. The second
problem is that the model is inherently a more complex and vastly different maturity model
compared to the existing alternatives, which may cause the model to not be understood and
used correctly by practitioners [9].

4.1 Interview Guide

We planned to conduct two cycles of semi-structured interviews with industry professionals
experienced with DevOps. In the first cycle, we intended to focus on understanding what DevOps
practices are executed, how DevOps maturity is currently viewed within organizations, and what
the design requirements for a maturity model should be. You can see the set of questions we
asked in the first cycle of interviews in Appendix A. After the first cycle of interviews ended,
we have used literature and the insights we gathered from these interviews to make an informed
choice with selecting a maturity model to improve on, and what those improvements could look
like (these insights and improvements are talked extensively within future chapters).

In this first cycle of interviews we have primarily used the DevOps practices featured in the
work of Plant et al. (figure 2.3) and secondarily the DevOps practices featured in the work of
Offerman et al. (table 2.1), when asking questions to our interviewees about their practices.

After we had our improved version of the model, we planned to conduct a second round of
interviews with a set of industry practitioners that included the same set of industry practitioners
from the first interviews, plus some additional interviewees. In the second round of interviews
we intended to assess the maturity of our interviewee’s systems when we look at it with the lens
of capabilities and routines to see how well our improved maturity model held up in practice,
and whether it helped addressing the problems listed in our problem statement. To do this, we
intended to evaluate our proposed model by the means of brainstorming with our interviewees
around topics which are most relevant to the interviewee and the model (the exact set of questions
are given in Appendix A). After the second cycle of interviews ended, we have analysed the results
and presented our findings in the upcoming chapters.

We intended to collect both qualitative and quantitative data for this study, but we expected
the former to outweigh the latter. The quantitative parts were anticipated to be related to get
an assessment of DevOps maturity using the rating system used in our model. Qualitative parts
were anticipated to be related to get more elaboration on the quantitative questions, and to get
an idea of interviewees’ routines and capabilities within their organizations.

16

4.1.1 Population

Given the intent behind the interviews is about learning about what the practitioners who do
DevOps actually do within their respective organizations (i.e. their routines/practices), our main
demographic for targeting potential interviewees are those that are actively engaged in building
software and are following DevOps methodology to some extent, since such people can comment
about what they actually do on a daily basis, and we will see how those comments relates to
what we know about DevOps capabilities, routines and practices in theory that we have covered.

The people who fit that criteria typically identify as a “DevOps Engineer” (or a “Software
engineer/developer” who does DevOps). High-level executives are not a part of our focus, as
they are typically not actively involved in the development of software; but those who are in
intermediary managerial positions where there is an active involvement with the development of
software are suitable, provided they work in a DevOps manner. Some titles for the people who
fit the latter description are: “Tech lead”, “Lead Engineer”, “Team Lead”; but they can also
identify simply as “DevOps Engineer”s. These people in intermediary managerial positions are
also suitable for our research since they are also actively engaged with the software development
process, as such, they have the necessary technical knowledge associated with the DevOps capa-
bilities. The DevOps Engineers who do not have managerial duties naturally also possess such
knowledge. On the other hand, high-level executives (e.g. “C-level” executives) do not have such
knowledge as they are typically not directly involved with the software development process, but
rather focus more on the business-related duties.

The level of seniority is of no concern to the research, but the time the interviewees have spent
working on their current function and the current organization is, since if the interviewees don’t
have enough experience within the organization/the function, they may have limited knowledge
of the practices being followed in the organization and as such, their knowledge will not be of
much use to our research. We have determined that for our candidates, both the experience
within the current work function and the experience within the current company should be at
least a year.

In addition to our main focus we are also targeting those who are not directly involved with the
software development, but provide some additional services to teams within organizations who
do, by the means of providing information and assistance related to DevOps/Agile methodologies
and practices. Such people typically have titles such as “DevOps Coach”, “DevOps Consultant”,
“Agile Coach” or “Agile Consultant”. The people who work in such positions typically have
some prior experience working in a DevOps setting and since their work typically involves trying
to make teams operate in a way that is in line with the DevOps way of working, they can also
provide some information on DevOps practices.

Since we expect the comments from “DevOps Engineer”s regarding their work to be more
practical in nature, the main priority lies there, as our main purpose with the interviews (espe-
cially in the first round) is to learn more about the routines in practice. However, coaches/consul-
tants often use maturity models or other means of assessment tools to understand about their
teams/clients (whereas the “DevOps Engineers” are more or less the “subject” of such assess-
ments and not the actual user), so their input on maturity models could be very useful and vastly
different from engineers.

17

Chapter 5

Results

5.1 Interviewee Sample

Our sample for the first round of interviews consists of 10 people in total. 9 of these people
identify as “DevOps Engineer”s, and 1 person identifies as a “DevOps Coach”. We have reached
out to approximately 160 people identifying as a “DevOps Engineer”, and approximately 40
people identifying as a “DevOps Coach” using the means of personal networks and LinkedIn.
This results in a 5.625% response rate for DevOps engineers and a 2.5% response rate for DevOps
coaches (approx.).

Out of the nine DevOps engineers, two have extensive experience within their organization
(15+ years), five have 2 to 10 years experience within their organization, two have 1 to 2 years of
experience within their organization. The single DevOps coach in our sample has 1 to 2 years of
experience working as a DevOps coach with 15+ years of prior experience working as a Software
Engineer (but not as a DevOps engineer during all those years, as DevOps wasn’t even around
15 years ago).

For the second round of interviews, the sample consisted of 11 people. 8 of these participants
were participants from the last round. The 3 new participants all identify as a “DevOps Engi-
neer”. The single “DevOps Coach” was present in the second round as well, so this makes our
sample 10 “DevOps Engineer”s and one “DevOps Coach”. All 3 of the new participants were
among the same 160 people we have reached out within the first round. The participants were
unable to attend the first round due to personal matters, but were able to attend the second
round. This boosted the response rate of DevOps engineers to 6.25% for the second round. Two
of the new participants have 2 to 5 years experience within their organization, and one has 15+
years of experience. The two participants from the first round, who dropped out of the second
round both had 15+ years of experience.

All the participants were working in organizations headquartered in Europe at the time of
the interviews. The distribution among the European countries will not be given for to keep the
anonymity of participants and their organizations. More details about the participants will also
not be given for the same reason.

The overview of the sample is also represented in table 5.1

18

First Round Second Round
Number of Participants 10 11
Participant title (number
of participants with title)

DevOps Engineer (9)
DevOps Coach (1)

DevOps Engineer (10)
DevOps Coach (1)

Participant experience in
their current organization
and function expressed in
years (number of partici-
pants with experience)

15+ (3)
2-10 (5)
1-2 (2)

15+ (2)
2-10 (7)
1-2 (2)

Table 5.1: Overview of sample

5.2 Insights from first interviews

Following our first round of interviews we have gathered many valuable insights and observations.
The insights are listed in this section in no particular order.

In total, 6 of the 10 participants commented about their experiences with maturity assess-
ments; all 6 of these participants had experience being assessed with one, but one participant
had experience as an assessor as well (this was the participant that identified as a DevOps
coach). The remaining 4 out of the 10 participants did not have any experience with maturity
assessments.

None of the participants had experience using a mainstream DevOps maturity model (e.g.
one of the models featured in the works of Zarour et al. or a similar model) [9]. The mean
of assessment for the participants was instead by answering questions typically provided by a
“lead/manager” or an “agile/devops coach” present within the organization. The questions can
be provided in the form of a filled questionnaire or by talking to people directly.

When it comes to being assessed, the shared consensus among 5 out of the 6 participants
experienced with maturity assessments is that people are bothered when the assessment takes too
long and/or is too complex, regardless of the mean of assessment. The remaining 1 participant
did not comment on their feelings with their experience.

2 of the 6 participants had positive experiences with maturity assessments, and achieved
various improvements following these assessments, while 4 of the participants commented that
there weren’t any meaningful improvements following the assessment. The 2 participants with
positive experiences both noted that the assessments took place periodically (periods expressed
in months) and the intent of assessment was self improvement (both on an individual level
and on a team level). On the other hand, among those who had negative experiences with
maturity assessments, 3 participants noted that the assessments did not take place periodically
(i.e. assessment occurred only a single time), and one participant noted that the period of
assessment was expressed in years (one and a half year to be exact). When it comes to the intent
behind these assessments, among those 4 participants, 2 noted that they did it because they were
asked to carry out the assessment as requested by their higher-ups, and 2 noted that they did it
as per recommendation from someone within their network.

One of the most significant observations is that all 6 participants noted that doing a maturity
assessment does not directly inform the users about what to improve to increase maturity. This
confirms that the actionability problem we have highlighted within our problem statement is
in fact a problem encountered in the practice. Furthermore, all 10 participants agree that
improving/adopting the practices listed would help their organizations be more mature. This
confirms that introducing capabilities in a model could be a practical solution to address the
actionability problem.

19

When talking about self-empowerment within teams, 3 of the 10 participants noted that they
may have “too much” autonomy, and 1 participant noted that they had a experienced a similar
problem in the past. The participants talked about the various problems they faced regarding
different areas. Such problems mentioned are related to management and the culture within
the organization (the Lean and Culture dimensions of CALMS). More specifically, indecisiveness
regarding decision-making, and non-standardized and unregulated use of tools across different
teams are the problems mentioned by the participants. One participant also talked about more
problems such as different teams having drastically different approaches to deployment and
testing, and even with their way of working (agile vs waterfall); which are not just related
to the Lean and Culture dimensions but also the Automation dimension of CALMS.

Participants were also asked to self-assess their own maturity, without the use of a model, and
speculatively, in order to get insights as to how they view themselves when it comes to maturity.
3 participants noted that it’s difficult to be completely mature regarding any practice/dimension
at any given time, as what’s considered mature is constantly changing.

When we consider the participants’ comments about their practices and try to hypothetically
assess their maturity using a maturity model (i.e. thinking about where would they place within
a maturity model based on their comments), it is difficult to assess their level of maturity in any
dimension, since their descriptions often make it such that they are not at an exact level but
rather somewhere between two distinct levels.

One participant had extensive knowledge about tools, and could talk about their own tools
elaborately, and knew which tools on the market could benefit them in what kind of manner,
this may indicate proficiency related to certain technical practices. On the other hand, another
one of the participants admitted to using tools and adapting practices that “came along with
the tools”, which may indicate they are not as proficient when it comes to the same practices.
Therefore, approach to tools may also be relevant to maturity.

As shown in the interview guide, one of our discussion points was about the evolution, the
adoption and the order of importance related to the practices. All participants comments indicate
that all the practices, even the ones featured across different CALMS dimensions, are related to
one another. This is not surprising, however such relations were not the primary emphasis of the
interviews, as such, more exploration to these relations will be needed.

Furthermore, the participants’ remarks on practices indicate that all the practices are meant
to be adopted and evolved together. The concept of “continuous improvement” was explicitly
mentioned by five of the participants during this part of the interviews, and the shared belief
between the participants was that as long as there was “continuous improvement” on all fronts
(i.e. with all CALMS dimensions), then their organization was on the right direction.

That being said, an important thing to note was that there were differences between some
participants’ choices as to what practices are considered more important than others regarding
adoption/improvement of practices. For example, one of the participants put the highest impor-
tance on the practices under the monitoring dimension of CALMS (especially the centralized log-
ging practice), while another put the highest importance on the practices under the automation
dimension (especially practices that are related to increasing the reliability of their deployment
processes such as automated deployment); even though both of these participants were among the
aforementioned five participants who explicitly talked about “continuous improvement”. That’s
not to say that these participants only care about these particular dimensions and not the others,
it only shows that a difference in priorities can exist. The reason behind why these differences
are in place will be discussed in the next chapter.

20

5.3 Improved Maturity Model

After completing the first round of interviews, we took an existing DevOps maturity model and
improved it based on our findings and the literature. In this section, we will describe the model,
how to use it, and the design choices behind the model and how we have came to create it.

5.3.1 Description of the model

Our model with all its pages is featured in Appendix B. On the first page that the user sees, we
feature the maturity model of Eficode without any changes (see 2.1). As explained earlier in the
literature chapter, Eficode’s model features 6 dimensions (“Organization and Culture”, “Envi-
ronments and Release”, “Builds and Continuous Integration”, “Quality Assurance”, “Visibility
and Reporting”, “Technologies and Architecture”), and 4 levels (numbered from 1 to 4, 1 being
the lowest and 4 the highest). For each dimension/level pair, a broad description of how related
activities are supposed to look like is given, and users are meant to pick the description that best
fits them for each dimension, which results in their assessed level of maturity across 6 different
dimensions. In addition to the 6 listed dimensions, there is also one unlabeled dimension at the
top. This dimension is primarily on the difficulty regarding starting new development projects.
For future reference this dimension will be called “Starting new projects”, and all the other
dimension except this one will be called “the main dimensions”.

For each of the main dimensions, a button is placed on their labels such that when the
user clicks them, they move to a different page featuring a list of capabilities relating to the
dimension. Such capabilities are listed under 4 different “capability categories”: “Cultural ca-
pabilities” (corresponding to “Organization and Culture” dimension, figure 5.1), “Continuous
Delivery capabilities” (corresponding to all three dimensions of “Environments and Release”,
“Builds and Continuous Integration”, and “Quality Assurance”, figure B.9 in the Appendix),
“Lean Management and Monitoring capabilities” (corresponding to “Visibility and Reporting”,
figure B.24 in the Appendix), and “Architectural capabilities” (corresponding to “Technologies
and Architecture” dimension, figure B.20 in the Appendix).

For example, when the user clicks on the “Organization and Culture” dimension, they will
move to the page featuring the Cultural capabilities, as shown in figure 5.1.

In each of these lists of capabilities, various number of capabilities are featured. The capa-
bilities associated with each capability category is given in table 5.2. The user can click on the
arrow symbol next to a capability (see figure 5.1) to move to a different page, featuring more
in-depth information about the capability.

For example, if the user clicks on the arrow symbol next to the “Fostering and enabling team
experimentation” they will move to a page featuring more information related to this capability,
as shown in figure 5.2.

Within the capability specific pages, information is provided under 3 separate blocks that
are referred as “sections”. Under the first section, a description of the capability and the typical
work that entails it is given. This section is titled either “What is [x]?”, where x is the name
of the capability, or “What is this about?”; with the exception to “Encouraging and supporting
learning” capability, where the title is “Approach to learning”. This section is also referred as
the “what” section.

Proceeding with the previous example of “Fostering and enabling team experimentation”, in
this section, what the work related to team experimentation entails is described (see figure 5.2).

Under the second section, reasons as to why the organizations should have this capability is
given. Such reasoning is all taken from literature (more information on these literature is given
in section 5.3.3), but for the sake of visuals within the model, these are not cited within the

21

Category Capability
Cultural Supporting a generative culture
Cultural Encouraging and supporting learning
Cultural Facilitating collaboration among teams
Cultural Increasing job satisfaction
Cultural Embodying transformational leadership
Cultural Fostering and enabling team experimentation
Continuous Delivery Using version control for all production artifacts
Continuous Delivery Automated deployment
Continuous Delivery Implementing Continuous Integration
Continuous Delivery Trunk-based development
Continuous Delivery Implementing Test Automation
Continuous Delivery Supporting test data management
Continuous Delivery “Shifting left” on security
Continuous Delivery Implementing Continuous Delivery
Continuous Delivery Gathering and implementing customer feedback
Continuous Delivery Working in small batches
Architecture Loosely coupled architecture
Architecture Architecting for empowered teams
Lean Mgmt and Monitor-
ing

Lightweight change approval processes

Lean Mgmt and Monitor-
ing

Monitoring across application and infrastruc-
ture to inform business decisions

Lean Mgmt and Monitor-
ing

Proactive system health checks

Lean Mgmt and Monitor-
ing

Using Work-in-process (WIP) limits to manage
work

Lean Mgmt and Monitor-
ing

Visualizing work to monitor quality and com-
municate within the team

Lean Mgmt and Monitor-
ing

Making the flow of work visible through the
value stream

Table 5.2: Capabilities featured in the model

22

Supporting a generative culture

Encouraging and supporting learning

Facilitating collaboration among teams

Increasing job satisfaction

Embodying transformational leadership

Capabilities you need (Cultural)

Fostering and enabling team experimentation

Figure 5.1: List of Cultural capabilities

23

What is team experimentation?

Team experimentation is the ability of developers to try out
new ideas and create and update specifications during the
development process, without requiring approval from
outside of the team, which allows them to innovate quickly
and create value.

Why do you need this?

If a development team isn’t allowed, without authorization
from some outside body, to change requirements or
specifications in response to what they discover, their
ability to innovate is sharply inhibited.

Research shows that the ability of teams to try out new
ideas and create and update specifications during the
development process, without requiring the approval of
people outside the team, is an important factor in
predicting organizational performance as measured in
terms of profitability, productivity, and market share.

First steps to team experimentation:

As a prerequisite, experimentation should be combined
with working in small batches, incorporating

customer feedback, and making the flow of work visible.
This ensures that your teams are making well-reasoned,
informed choices about the design, development, and
delivery of work, and changing it based on feedback; not
intuition or “because they feel like it”. This also ensures that
the informed decisions they make are communicated
throughout the organization. That increases the probability
that the ideas and features they build will deliver value to
customers and the organization.

When it comes to your software, you can look into the use
of feature toggles to enable/disable experimental features
easily, without having to branch out from your trunk/main in
the process and evading any potential merging conflicts
that could have risen as a result.

Fostering and enabling team
experimentation

Figure 5.2: Capability specific page of the “Fostering and enabling team experimentation”

24

text. The title for this section is “Why do you need this?”, and the section is also referred as
the “why” section.

For example, for “Fostering and enabling team experimentation”, team experimentation’s
relation to innovation, and how it impacts organizational performance is mentioned as to why
organizations should establish this capability (see figure 5.2).

The third and the last section describes the first steps to adopting the capability in question,
how it should be like in the long run, the best practices regarding the capability and common
pitfalls. The title for this section is “First step to [x]”, where x is the name of the capability;
and the section is also referred as the “first steps” section.

with the “Fostering and enabling team experimentation” example, the suggestions given are
to establish some of the related capabilities in order to ensure the experiments are based on well-
reasoned choices rather than intuition, and the use of feature toggles with software development
to quickly enable and disable experimental features (see figure 5.2).

The “what” section is not present in the following capabilities: “Facilitating collaboration
among teams”, “Increasing job satisfaction”, “Using version control for all production artifacts”,
“Automated deployment”, “Supporting test data management”, “Gathering and implementing
customer feedback”, “Working in small batches”, “Architecting for empowered teams”, “Visu-
alizing work to monitor quality and communicate within the team”, “Making the flow of work
visible through the value stream”. The reasoning for this is given in section 5.3.3.

In some of the pages containing detailed information about a specific capability, under the
“why” section and/or the “first steps” section; there are references to specific capabilities and/or
capability categories, highlighted in bold text. These texts are also clickable by the user, and
doing so will lead the user to the page related to the specific capability or the capability category
that was clicked on.

As seen in figure 5.2, within the “first steps” section in the page of “Fostering and enabling
team experimentation”, there are links to the pages of “Working in small bathes”, “Gathering
and implementing customer feedback”, and “Making the flow of work visible through the value
stream” capabilities.

There are also two additional pages specific to two different capabilities. In the page related
to the “Loosely coupled architecture” capability and the page related to the “Making the flow of
work visible through the value stream” capability, there are certain pieces of text highlighted in
yellow. Clicking on these leads the user to a page featuring further information to the highlighted
topic, along with provided visuals (figures B.22, and B.31 in the Appendix).

5.3.2 How to use the model

As described earlier, with Eficode’s model, the users are expected to assess themselves by picking
the description that best fits them for each dimension, which results in their assessed level of
maturity across various dimensions. As we’ve took this model as our basis, this fundamental use
still holds true; the users are still expected to assess themselves for each dimension. However,
the capabilities that we have introduced provides more information regarding each dimension,
as such the users will be able to make more accurate assessments.

We believe that the best way to use the model is as follows: First the user is expected to
set their sights to one of the main dimensions (any of the 6 labelled dimensions), then click on
the dimension name to view the list of capabilities regarding that dimension. The users are
then expected to view the capabilities, and get further information on any of the capabilities
that strike them the most. We encourage the users to primarily focus on capabilities that they
do not already possess, or the capabilities that they have plans for adopting/improving; as the
information provided within the “first steps” sections can be very beneficial for establishing these

25

capabilities. The users can of course get information on the capabilities that they possess as well,
and they can benefit from doing so by comparing the current state of their capability with what’s
described, or seeing the best practices and the ideal long term state regarding the capability.

After getting capability specific information regarding a dimension, the users are expected
to go back to the first page (featuring the original model of Eficode, figure B.1), and (in order
of importance), based on the information regarding the capabilities that they have viewed, and
based on the basic information provided within each level, the users should give themselves a
rating between 1 and 4 for that particular dimension. When giving themselves a rating, if the
user feels torn between two levels, or feels close to a certain level but not quite there yet, they
can give themselves a fractional rating as well (e.g. there is no strict requirement to be a level 2
or level 3 if the user feels somewhere in between, and they can simply be a level “2.5”; or if they
feel close to level 3 but not exactly three, they can be level “3.9”). This is in place because we
have found from our first round of interviews that the descriptions of the users on their practices
often do not perfectly match with the level descriptions given in one level or another; doing
assessments this way also makes them more “dynamic” (more information will be provided on
this in the next section).

The process then should repeat until the users gives themselves a rating for each of the main
dimensions.

Afterwards, the user should look at the unlabelled dimension (“starting new projects” di-
mension) and give themselves a rating between level 1 and level 4, again with the option to have
a fractional rating. The rating that the user gives themselves regarding this dimension should
be representative of the ratings related to the main dimensions (i.e. the rating for the “starting
new projects” dimension should be within 1 point range of the average rating across the main
dimensions). If that’s not the case, then either the user have not rated themselves honestly
regarding one or multiple dimensions; or it can’t be claimed that the organization that the user
belongs in is doing DevOps. This marks the end of a single use of the model.

That being said, it is important to note that the model should not be used only once. One
of the key insights from our first round of interviews was that the people who have achieved
improvements following maturity assessments (i.e. the “successful practitioners”), did two things
different compared to the people who did not see such improvements (i.e. the “unsuccessful
practitioners”). Firstly, the successful practitioners have not assessed only a single time, but
multiple times, and periodically. Each organization’s rate of development is different, therefore
it’s hard to set exact limits on such periods; but our findings indicate that the period of these
assessments should at least be expressed in months and not years, and it should stay at a
relatively consistent pace (i.e. assessments are to be scheduled and performed on time, and not
to be performed only when teams feel ready for it). Secondly, the intent behind the assessments
with the successful practitioners was self-improvement, both on an individual level and on a team
level; while unsuccessful practitioners did such assessments either because they were ordered
to do so by their higher-ups, or because they were influenced by someone within a different
organization to do so. So each time the users use the model, their intent should be on self-
improvement. Organizations can have different views on what they see as improvement; but as
a suggestion, the users can try to identify certain capabilities to improve upon and/or adopt
capabilities not currently present. They can do so by focusing on the dimensions they score the
lowest, and looking at the capabilities related to that particular dimension; though, there isn’t a
strict requirement to focus on the dimension they score the lowest, and they can choose to focus
on other dimensions if they have good reasons for doing so. In any case, the next time the users
use the model, they should see whether they are on the right track with the capabilities they
have chosen to improve/adopt, and whether they score higher than the last time they have used
the model, on dimensions related to these capabilities.

26

5.3.3 Designing the model

We have started our journey to design the model by selecting a base model to improve upon. Two
candidates stood out from the rest, one of them was Eficode’s model, the other was the model of
Feijter et al. [30] [33]. As mentioned in earlier chapters, Eficode’s model was already supported
as a useful model by Zarour and colleagues, and was prevalent within other literature (including
the work of Offerman et al., which we have utilized for the first round of interviews) [9], [26]. As
mentioned earlier, the model of Feijter et al. was the only DevOps maturity model we have found
to feature capabilities, but it had its flaws (see chapter 4 for more information). Furthermore,
we have thought that the complexity of the model could be a problem but we weren’t sure how
big of a problem that would be for practitioners. One of the key findings from our first round
of interviews showed that all the participants experienced with maturity assessments indicated
that they were bothered when the assessment procedure was too complicated; showing that
this complexity problem was more important than we initially thought. This pushed us to use
Eficode’s model instead of the model of Feijter et al. as our base model to improve upon.

After making the decision to go through with Eficode’s model, we have decided to finalize
the list of capabilities to feature in the model. We have previously used the practices and the
capabilities featured in the works of Plant et al. and Offerman et al. for our first round of
the interviews. We have classified these practices and capabilities under 4 main categories, with
respect to the CALMS framework. The categories are “Culture and Sharing”, “Automation”,
“Monitoring”, and “Agile/Lean”. We have combined the “Culture” and the “Sharing” categories
together as the similarities of practices shared between the two made it reasonable to do so; and
we have added “Agile” to the “Lean” for the same reason.

As a result of the first round of interviews, we have gathered some valuable data on these
capabilities and practices. Then, using the aforementioned 4 categories, we have created some
codings on our interview transcripts. You can find all of these codings under their respective
categories in figures 5.3, 5.4, 5.5, 5.6. The unique discussions related to each coding is counted
and the frequencies are shown in figures 5.7, 5.8, 5.9, 5.10.

After we had our data available, we tried to came up with a solution that was helpful to
solve the problems we have tried to address, was easy to implement within the Eficode’s model
seamlessly, and also was easy to use. Unable to come up with such a solution, we have gone back
into the literature to help us.

On this journey, we have dived deeper into the “Accelerate” book which we have looked into
before [3]. As explained earlier within the literature chapter, Accelerate talked about DevOps
capabilities, and was also co-authored by the primary creator of the CALMS framework. In the
book, there are 24 capabilities, listed under 5 categories: “Cultural”, “Continuous Delivery”,
“Architecture”, “Product and Process”, and “Lean Management and Monitoring”. In the book,
when describing the capabilities featured, the focus is on the best practices and routines related
to these capabilities, why such practices and routines are better, and how can organizations
implement them; so the explanations are geared towards practical use. Whereas within the
works of Plant et al. and Offerman et al., the capabilities and the practices are described in a
way that is capturing all that is done related to these capabilities and practices, which provided
a broad perspective of these capabilities and practices [2], [26]. This broad perspective turned
out to be great to set a basis for discussion for our first round of interviews, since it allowed
more room for participants to relate to certain capabilities and practices, while not leading them
towards certain directions that could result in bias. On the other hand, they weren’t very useful
when it came to improving Eficode’s model. This practical approach within the Accelerate book
was exactly what we could use. Knowing Eficode’s model was made with respect to CALMS
framework was another reason to use the capabilities from Accelerate [26]. So, we tried to came

27

Figure 5.3: The codings related to culture and sharing

Figure 5.4: The codings related to automation

28

Figure 5.5: The codings related to monitoring

Figure 5.6: The codings related to agile/lean

29

Figure 5.7: The frequency of codings related to culture and sharing

Figure 5.8: The frequency of codings related to automation

30

Figure 5.9: The frequency of codings related to monitoring

Figure 5.10: The frequency of codings related to agile/lean

31

Eficode Dimension
Organization and Culture
Environments and Release
Builds and Continuous Integration
Quality Assurance
Visibility and Reporting
Technologies and Architecture

Table 5.3: Eficode dimensions and their assigned colors for mapping capabilities

up with a solution to feature the capabilities given in the Accelerate book within the model.
For such a solution, we have started by mapping the capabilities featured in Accelerate with

the dimensions of Eficode’s model (see table 5.3 and 5.4). As you can see with these mappings,
mapping to “Organization and Culture”, “Visibility and Reporting”, and the “Technologies
and Architecture” dimensions were straightforward, as the capabilities for these were all under
their respective capability categories (“Cultural”, “Lean management and monitoring”, “Ar-
chitecture”). However with “Continuous Delivery capabilities” and the “Product and Process
capabilities” a solution wasn’t so obvious.

With the “Continuous Delivery capabilities”, we have decided to group the “Builds and
Continuous Integration”, “Environments and Release”, and the “Quality Assurance” dimensions
together and map the capabilities to all three at once, instead of separating them; and assigning
them to the “Continuous Delivery capabilities”. These capabilities are highly related to one
another anyway (you can observe such connections within specific capability pages featured in
the Appendix), further making this grouping decision sensible.

With the “Product and Process capabilities”, it was apparent that all 4 capabilities were
related to a different Eficode dimension, so, we have decided to map each of these specific
capabilities to the dimension they related to. This solution seemed like the most straightforward
choice, as the alternatives would have been either having to group them together with a different
category of capabilities, which wasn’t ideal because none of the capabilities heavily related to
another category of capabilities; or we would need to create a new dimension within the Eficode
model, which wasn’t ideal either because it would mean directly altering the foundational model
of our choice that we have selected based on literature.

After mapping the capabilities, we had to decide on the information that we would feature
within the pages of each specific capability. We had already decided to use Accelerate book as
our primary source for such information, but we have also consulted the “DevOps Handbook” at
times where we needed more in-depth information regarding capabilities [3] [28]. Furthermore,
we were aware that we needed to feature the information in a condensed manner to avoid it
making the model complex. This led us the idea to categorize our information and limit it to
certain and specific sections:

The “first steps” section was rather trivial to come up with, as it was necessary to feature
the practical information that would benefit the users. Such information was also abundant
within the Accelerate book, so all the practical information in all capabilities are coming from
the Accelerate book. As mentioned earlier, these information describes the first steps needed to
adopt a particular capability, what the users can do in the longer term related to this capability,
the best practices, common pitfalls and links to related capabilities (if any exists).

There was also a need to explain the rationale behind why the users should adopt these
capabilities in the first place, which resulted in the creation of the “why” section. For many of
the capabilities, the Accelerate book gives the scientific reasoning as to why these capabilities are

32

Accelerate Category Capability
Cultural Supporting a generative culture
Cultural Encouraging and supporting learning
Cultural Facilitating collaboration among teams
Cultural Increasing job satisfaction
Cultural Embodying transformational leadership
Continuous Delivery Using version control for all production artifacts
Continuous Delivery Automated deployment
Continuous Delivery Implementing Continuous Integration
Continuous Delivery Trunk-based development
Continuous Delivery Implementing Test Automation
Continuous Delivery Supporting test data management
Continuous Delivery “Shifting left” on security
Continuous Delivery Implementing Continuous Delivery
Architecture Loosely coupled architecture
Architecture Architecting for empowered teams
Product and Process Gathering and implementing customer feedback

Product and Process
Making the flow of work visible through the
value stream

Product and Process Working in small batches
Product and Process Fostering and enabling team experimentation
Lean Mgmt and Monitor-
ing

Lightweight change approval processes

Lean Mgmt and Monitor-
ing

Monitoring across application and infrastruc-
ture to inform business decisions

Lean Mgmt and Monitor-
ing

Proactive system health checks

Lean Mgmt and Monitor-
ing

Using Work-in-process (WIP) limits to manage
work

Lean Mgmt and Monitor-
ing

Visualizing work to monitor quality and com-
municate within the team

Table 5.4: Capabilities featured in the Accelerate book, along with its mapping to Eficode
dimensions

33

Capability Related Codings

Supporting a generative culture
Goal-oriented culture, Continuous Improvement,
Bureaucracy

Encouraging and supporting learn-
ing

Continuous Learning, Information sharing, Oppor-
tunity Scouting, Team experimentation, Continuous
Improvement

Facilitating collaboration among
teams

Sharing Priorities, Team alignment, Problem recog-
nition and solving, Decision making

Increasing job satisfaction Self-organizing, Tool selection

Embodying transformational lead-
ership

Continuous Improvement, Continuous Learning, In-
formation sharing, Opportunity Scouting, Problem
recognition and solving, Change readiness

Fostering and enabling team exper-
imentation

Team experimentation, Requirements management,
Opportunity Scouting, Change readiness, Decision
making

Table 5.5: Mapping of codings to “Cultural” Capabilities

the better solutions, so the information on these are also primarily coming from the Accelerate
book, and secondarily from the DevOps Handbook.

In addition to this, we have anticipated that some of the capabilities may not be well un-
derstood or known by the general audience, as such, the “what” section was created to inform
any potential users about what a specific capability entails. The information given in these
are also taken primarily using the Accelerate, and secondarily the DevOps Handbook; but the
information coming from the latter primarily lies within these sections. The “what” section is
not present in some of the capabilities as mentioned earlier. The reason for this is because such
capabilities are either self-explanatory by their titles alone, or the information given under the
other two sections (the “why” section and the “first steps” section) makes it trivial what the
capability is about. The exact list of capabilities not to feature this section is given in section
5.3.1.

The information provided within the capability specific pages were also done with respect to
the insights on the practices and capabilities gathered from the first round of interviews. Tables
5.5, 5.6, 5.7, 5.8 shows the mapping between all the capabilities featured in the model and the
codings that correspond to the various capabilities and practices discussed in the first round of
interviews.

One insight from our first round of interviews was that there were significant connections
between the practices that the participants talked about, but we were unable to make meaningful
relations between such connections as we did not focus on those at the time. As we have
dived deeper into our insights and the literature; and filled the capabilities with more and more
information as a result, the connections between the capabilities also became more and more
apparent. As such, we have decided to feature links between capabilities that relate to each
other, and highlighted such links with texts written in bold. We have established these links
based on literature and our findings from the first round of interviews. You can observe the links
between the capabilities within the specific capability pages featured in the Appendix; and also
within the tables mapping the codings and capabilities.

Another thing that became apparent was the need to feature visual aid within certain ca-
pabilities, but we did not want to put such visuals directly within the capability specific pages,
as it would take a lot of space and reduce ease of use. As such, we have decided to highlight

34

Capability Related Codings
Using version control for all produc-
tion artifacts

Configuration management, Infrastructure provi-
sioning, Automated builds

Automated deployment
Automated builds, Automated recovery, Continuous
Deployment, Containerization

Implementing Continuous Integra-
tion

Automated builds, Automated test, Continuous In-
tegration

Trunk-based development Continuous Deployment
Implementing Test Automation Automated test, Feedback mechanisms
Supporting test data management Automated test

“Shifting left” on security
Compliance/security, Feedback mechanisms, Auto-
mated Test

Implementing Continuous Delivery
Automated builds, Automated Test, Continuous De-
ployment, Continuous Integration, Continuous Im-
provement, Feedback mechanisms

Gathering and implementing cus-
tomer feedback

Customer feedback, Continuous Integration,
Product-oriented team setup

Working in small batches
Continuous Deployment, Continuous Improvement,
Product-oriented team setup, Continuous Learning,
Feedback mechanisms

Table 5.6: Mapping of codings to “Continuous Delivery” Capabilities

Capability Related Codings

Loosely coupled architecture
Microservice/modular architecture, Infrastructure
provisioning, Cross-functional team setup, Change
readiness,

Architecting for empowered teams
Self-organizing, Compliance/security, Tool selection,
Product-oriented team setup

Table 5.7: Mapping of codings to “Architectural” Capabilities

Capability Related Codings

Lightweight change approval pro-
cesses

Incident Handling, Managing changes, Change readi-
ness, Compliance/security, Self-organizing, Bureau-
cracy

Monitoring across application and
infrastructure to inform business de-
cisions

Monitoring customer systems, Centralized logging,
System monitoring, Problem recognition and solv-
ing, Decision making,

Proactive system health checks System monitoring, Problem recognition and solving
Using Work-in-process (WIP) limits
to manage work

Kanban, Eliminating waste, Feedback mechanisms

Visualizing work to monitor quality
and communicate within the team

Kanban, Feedback mechanisms, Sharing priorities

Making the flow of work visible
through the value stream

Continuous Improvement, Sharing Priorities, Team
alignment, Product-oriented team setup, Cross-
functional team setup, Goal-oriented culture, Re-
quirements management

Table 5.8: Mapping of codings to “Lean Mgmgt and Monitoring” Capabilities

35

certain parts of the text with a different color and add links to them, connecting them with a
different page that feature the visuals that we wanted the users to see (i.e. the “Loosely coupled
architecture” capability and the “Making the flow of work visible through the value stream”
capability, as described in section 5.3.1. See Figures B.22, and B.31).

As mentioned earlier, making the model simple was an important consideration. Eficode’s
model was quite simple, but obviously, introducing capabilities to the model were expected to
increase its complexity; so, we tried to make the model as simple as we can, the most significant
design choice in this regard is giving the users the freedom to view the capabilities that they
choose, instead of requiring them to check every capability.

Making the model simple was not our only requirement though, as it needed to address the
problems we were trying to solve as well. The actionability problem was one of the key issues
that we were trying to address with our improved model, and our first round of interviews
proved it to be a real problem encountered in practice. The capabilities we have introduced
to the model act as the solution to this problem. The capabilities provide additional layers of
information to make these assessments more accurate and easier for the users. The capability
specific information enables the users to see how they can improve regarding a specific capability,
or adopt in the first place. As a result, this well help the users improve their maturity.

The second problem we needed to address was that our model needed to utilize dynamic
capabilities. The works of Plant et al. showed us that “it is possible to define a specific set
of capabilities that are relevant to DevOps teams but that any measurement instrument of
capabilities will need to capture various configurations of the same capability in order to account
for their idiosyncratic implementation”; which meant that in order to feature capabilities, we
had to capture “numerous possible configurations of a capability instead of merely assessing
whether a capability is performed at a sufficient level or not” [2]. This is in fact in line with what
we have done within our “first steps” sections, as the information about the ideal state of the
capabilities, both in the short and the longer terms, the best practices and the common pitfalls
serve a foundation of information that cover numerous possible configurations for a capability.
The users being able to rate themselves fractionally instead of having to adhere to strict levels
also relates to this; as doing so enables the users to identify themselves in a wider spectrum
according to the various states of their capabilities, hence more configurations of capabilities are
covered.

5.4 Insights from second interviews

After we had finalized our maturity model, we have started the second round of interview to
validate it. Following are the insights we have gathered as a result of these interviews:

One of the aspects we have checked for validation within our model was how well the partici-
pants could relate to the information provided in the model, especially the information that was
given within the capability specific pages. Out of the 11 participants, 6 participants explicitly
said that the suggestions given within the capability specific pages (in the “first steps” sections)
were exactly in line with their own personal experiences. While the remaining 5 participants did
not made such a statement explicitly, they could all relate to the information given in multiple
specific capability pages that we have covered during our assessment and found the suggestions
sensible.

6 out of the 11 participants explicitly noted that the suggestions given in the specific capa-
bility pages were helpful to improve themselves regarding those particular capabilities, and that
implementing those suggestions would lead them to an increased maturity (and as a result would
lead to higher scores on the model). The remaining 5 participants did not explicitly state that

36

because they have found such suggestions rather trivial, but that still showed that they agreed
with these suggestions.

5 out of the 11 participants noted that there was a mismatch between the information that
was provided with the basic level descriptions regarding a particular dimension on the first page
of the model (i.e. Eficode’s original model), and the capabilities that corresponded to that
dimension. This problem applied to all dimensions, but it was especially prevalent with the
Visibility and Reporting dimension and the Lean Management and Monitoring capabilities that
corresponded to it, as the participants noted that the basic level descriptions did not mention
anything related to Lean Management at all; and regarding monitoring, the descriptions did not
capture all the information related to the associated capabilities.

3 participants commented on the fact that being able to rate themselves fractionally made
the assessment easier for them.

2 participants differed from the others in the way that they were a part of a DevOps team,
but the organization had also separate development and operations teams as well. This way of
doing DevOps isn’t inherently wrong but it’s different than the “traditional” DevOps described
earlier within the literature chapter. In this setting, the DevOps team act as a bridge between the
development and operations teams (which are 2 separate teams apart from the DevOps team and
each other). The DevOps team’s work still entails development and operations work to support
those teams just like in a traditional setting, but also they handle most of the unplanned work
that is not directly linked with operations, and problems that are inherently complex to solve,
in order to reduce the workload on development and operations. These participants found that
the model didn’t capture their needs fully. One participant noted that for their case, central-
ized logging and alerting based on metrics (which were both mentioned within the “Monitoring
across infrastructure and application to inform business decisions” capability) is “as important
as Continuous Delivery” and that these two practices could have been separate capabilities on
their own. The other participant noted that they did not think about the business side at all and
they did not find related suggestions helpful for them (e.g. doing monitoring across different lay-
ers, including business, as described in the “Monitoring across infrastructure and application to
inform business decisions” capability); since, in their case, the business requirements are handled
by the development teams and they received only technical requirements.

The participant that had the highest maturity among all have scored at least a 3 on all
dimensions, and they were the only participant to score a 4 on the “Builds and Continuous
Integration”, and the “Environments and Release” dimensions. This participant was able to
identify strongly with nearly all of the capabilities and was among the 6 participants that found
the suggestions helpful and in-line with their own experiences. This participant also brought up
a lot of interesting ideas regarding the “Facilitating collaboration among the teams” capability
(under “Organization and Culture” dimension) that we didn’t see before in our sources. One of
the suggestions given within this capability is to encourage people in the organization to move
between teams (see figure B.5). The participant argued that the teams within an organization
create a sub-culture over time, and when the sub-culture is “better” than the overall culture of the
organization, that creates a comfort zone for the individuals in the teams, and such individuals
don’t like to make such moves and move outside of their comfort zone. They also said that if
those individuals do indeed move to different teams with a “worse” sub-culture and succeed to
establish the better sub-culture from their previous team there, that’s very beneficial for the
organization, but there is no guarantee that those individuals would succeed, and that they are
more likely to end up becoming part of that worse sub-culture. This participant also noted that
doing a systematic review of the state of their work made them think about the “big picture”,
which is something they don’t get to do often as they get caught up in their work.

The only participant to identify as a DevOps coach, which in turn had practical experience

37

using maturity models, commented that the model provided a lot of information in a dense
manner, which they personally liked, as they noted that most practitioners don’t want to read
literature extensively.

There were also some miscellaneous comments on the user experience and user interface.
One participant said that it would be better if the “starting new projects” dimension had a
label. Another participant noted that they would have liked to see a “connection map” of
sorts, showing all the capabilities and the connections between the capabilities that have a link
among each other (the connections which are indicated by bold text in capability specific pages).
Another participant said that there could be a checkbox/point system implemented within the
capability specific pages and that the users could have a score with the capabilities themselves
too, which they believed would make the experience more concrete.

38

Chapter 6

Discussion

In this chapter we will discuss about out the insights we have gathered from our interviews, and
the limitations of our research.

6.1 Implications of the insights on the model

6.1.1 Problems addressed by the model

One of the insights from our first round of interviews was that a lot of practitioners didn’t like
to be a part of assessments that were rather complex. As described in section 5.3, we have tried
to make our model as simple as possible while trying to address the problems we have identified.
As shown from the insights from the second round of interviews, all the participants could relate
to the information given in the model. Furthermore, the comments of the DevOps coach who
had practical experience using models to make maturity assessments, made remarks on how the
model provided information in a compact manner. Considering these insights, it can be claimed
that our model was validated as “easy to use”.

As presented initially within our problem statement and mentioned throughout the paper
multiple times, the “actionability problem” was one of the primary problems we have tried
to address with our model. As mentioned earlier, the second round of interviews showed us
that 6 out of 11 participants found the suggestions given in the model helpful, and agreed that
implementing those solutions would indeed help them improve their maturity (and as a result
these improvements would reflect on the model with increased scores). As a specific example, one
of the insights from our first round was that multiple participants had problems with “too much”
autonomy, we tried to address this problem by featuring information on how the degree of freedom
should be handled within related capabilities (“Increasing job satisfaction” and “Architecting for
empowered teams” are such capabilities, see figures B.6 and B.23). In the second round, the same
participants suffering from this problem has found the suggestions featured helpful. Therefore, it
can be claimed that our model was moderately successful in addressing the actionability problem,
but it could use further improvements. More specifically, if we recall that the remaining 5 out
of 11 participants found the suggestions quite trivial, and that the highest scoring participants’
comments has revealed a perspective to one of the capabilities that we did not consider before,
it could be argued that the information given in the model is not complete for all capabilities,
and could benefit from a refinement that would make it more extensive. This would of course,
require further literature and/or practical research. Furthermore, it is important to note that
doing so would highly likely be at the expense of some increased complexity.

39

The other main problem we tried to address was featuring dynamic capabilities within our
maturity model. As we tried to explain in this paper earlier, there isn’t a list of dynamic
capabilities that we can feature in our model and be done with it (i.e. they are dynamic). As
mentioned in section 5.3.3, when designing our model, we tried to capture “numerous possible
configurations of a capability” for every capability that we featured, which we believed would
make our model “dynamic” as a result [2]. All the participants in the second round being able
to easily relate to the information provided and discuss about certain capabilities, despite the
participants having various differences (with regards to industry, technologies and tools used,
assessed maturity, individual seniority, years of experience within the organization, and more
information that wasn’t available to us. We could not disclose all of these information for the
sake of anonymity of our participants), do lead us to believe that our model can be claimed as
one that features dynamic capabilities. Furthermore, we have previously argued that users being
able to rate themselves fractionally was also related to this problem. If we recall that the second
round of interviews showed that 3 participants explicitly stating that they liked being able to
fractionally rate themselves, this makes our claim stronger.

As mentioned earlier, the participant who have scored the highest noted that using our model
made them think about the “big picture”, and said that it isn’t something that they don’t get
to do often as they get caught up in their work. This is a common benefit shared across all
maturity models and is not explicit to our model, as pointed out by Marnewick and Langerman
[34]. However, this participant had no previous experience doing a maturity assessment, and
them making this statement led us to believe that even the organizations with high DevOps
maturity could benefit from performing a maturity assessment if they haven’t done so before.

6.1.2 Points of improvement

One problem the second round of interviews showed us was that the 5 participants noted about
the mismatch between the basic level descriptions and the capabilities featured in the model.
We have previously argued that both the Eficode model and the capabilities featured in the
Accelerate book (and even the practices we have used for our first round of interview with the
works of Plant et al. and Offerman et al.) were in-line with the CALMS framework. We believed
since all the information was rooted in the same framework there wouldn’t be such a mismatch.
Furthermore, we tried to make a meaningful mapping between the two categories of capabilities
as described earlier. We did not modify the basic level descriptions given in the Eficode’s model,
since, as also mentioned in section 5.3.3, we did not want to make any direct changes to the
Eficode’s model itself, because one of the reasons why we chose Eficode as our foundational
model was that it was supported by literature, and altering the model would be conflicting with
this reason of choice. One potential solution to address this “mismatch problem” could be to add
more information to all the capabilities featured in the model by providing basic level descriptions
for each of them, (i.e. 4 descriptions for each level, for each capability). This way, the connection
between the foundational model and the capabilities will be emphasized. An alternative solution
could be to implement the basic level descriptions for each of the capabilities while removing the
foundational model altogether, and performing the assessment by giving a rating for each of the
capabilities. Another solution is to redesign the Eficode model, or make a foundational model
from scratch, in order to make the base model more in-line with the capabilities, and keep the
information about the capabilities the same.

The second round of interviews also revealed that 2 participants that worked in an “alterna-
tive” DevOps manner, where development and operations teams were not working together as a
single team (i.e. the “traditional” or “typical” way of doing DevOps), but there was an interme-
diate DevOps team that acted as a “bridge” between the two. The insights gathered from these

40

2 participants not only made the aforementioned “mismatch problem” more pronounced, but
also they have made different remarks than the rest of the participants, showing that our model
might not be well suited towards individuals working in a DevOps manner like this (i.e. “DevOps
as an external party” as mentioned in [22]). The exact manner in which our participants was
doing DevOps was of no consideration to our research, so it is hard to reach any meaningful
conclusions on which kind of DevOps team structure our model is best suited for.

We claim that the comments on the user experience and user interface can be disregarded, as
they were vastly different from each other and were most likely dependent on personal preferences
of particular participants.

6.2 Implications of the insights on DevOps practices

6.2.1 What practices are the most popular?

As shown earlier in section 5.3.3, we have created some codings on the DevOps practices that
were discussed in the first round of interviews. As it can be seen with the frequencies, the
practices related to the “Culture” and “Automation” categories were more extensively discussed
compared to “Monitoring” and “Agile/Lean” categories.

With “Culture”, the most discussed practice was “self-organizing”, with “continuous im-
provement”, “tool selection” and “decision making” sharing a close second. Among these, “self-
organizing”, “tool selection” and “decision making” are all related to the “self-empowerment”
capability as given by Plant et al. [2]. Regarding this capability, some of the participants talked
about how they were suffering from “too-much autonomy”. As shown earlier, we have tried to
address this problem with our model via the suggestions given with related capabilities, and the
second round of interviews confirmed that the suggestions were meaningful in order to address
it. One important thing to note about this particular issue was that we had not observed this
problem explicitly mentioned in the literature we have covered. The literature typically talks
about how “traditional” organizations limit autonomy, then how and why the autonomy of teams
should be increased; but the problem we identified showed the other extreme [28]. Considering
digital transformation and DevOps transformation journeys are a common trend within the soft-
ware industry nowadays [35], [20]; this problem may appear more and more in the upcoming
years within organizations looking to change their cultural practices. As such, future research
could seek to explore and address this problem in more detail.

As for “continuous improvement”, we have already mentioned about how practitioners be-
lieved continuous improvement regarding every dimension was essential in order to progress and
mature as an organization. One participant in particular had great comments related to this,
stating that “people underestimate 2 things, the amount of change that is necessary and the
amount of change that’s possible” and that “continuous improvement is not only possible, it’s
necessary”.

With “Autonomy”, the most discussed practice was “containerization”. Participants who
have been using containers or sought to integrate containers into their work within the near
future, talked about just how much the speed of their deployment increases with the use of
containers. The literature is also in-line with these remarks of participants [3], [26]. The shared
belief between literature and practitioners is that containerization is the most useful practice
to implement regarding continuous and/or automated deployment, until the “new best thing”
comes to existence and replaces containers. Containerization is mentioned in the model on the
capability specific page of “automated deployment”.

With “Agile/Lean”, there weren’t any big difference with the most discussed practices, but
for the least discussed, “eliminating waste” stood out among the “Agile/Lean” practices. Fur-

41

thermore, the use of “Kanban boards” shared the second place with “incident handling”, as
the least discussed practice among “Agile/Lean” practices. Lean is significantly characterized
by eliminating waste and Kanban boards, so considering that, it’s reasonable to assume that
our set of participants did not identify with the Lean as strongly as they could identify with
other Agile methodologies (e.g. Agile defined by the “Agile manifesto”, Scrum). It’s hard to
draw definite conclusions from this, as the “least discussed” topics may have been discussed less
simply because some other topics were more interesting to talk about for the participants, but
there is a probability that the DevOps practitioners of today do not strongly identify with the
Lean methodology.

With “Monitoring”, there weren’t any big differences among the practices that were discussed
when it came to frequency.

6.2.2 Adoption and Evolution of practices

In the first round of interviews, we had talked to our participants about the evolution, the
adoption and the order of importance of related to the practices. We have previously stated that
the shared opinion of our participants was that all the practices are meant to be adopted and
evolved together. This actually turned out to be a little surprising, because one popular view of
DevOps, both in scientific and gray literature, primarily defines DevOps as a cultural movement,
and argues that developing cultural practices is a foundation for other aspects of DevOps (i.e.
“dimensions” as defined in CALMS) to be built on [40], [41]. Our participants sharing the
belief that continuous improvement regarding every dimension is necessary to establish DevOps
practices shows that this “culture as a foundation” view might be inaccurate.

It is perhaps more accurate to view each dimension of CALMS as equally important and try
to develop capabilities related to them at the same time. This not only ensures that organizations
are not experiencing any bottlenecks in their performances by a single dimension, but according
to one of our participants, doing so “creates more opportunities for synergies”, where the positive
intricate relationships between capabilities are realized.

In the model, we tried to highlight such relationships we could identify, using our interviews
and the literature; but to fully show these relationships and what the benefits of realizing them
would bring, the capabilities should be analyzed with a stronger focus, utilizing the “multilevel”
description of capabilities, as shown earlier within the paper [36] [4].

With regards to our sample, we have argued that the level of seniority was of no concern to
our research, but the years of experience within their current work function and the organization
was. The reasoning for this is that the participants needed some experience to learn about
their organizations’ capabilities, and this learning could be done at any seniority level. This
approach indeed turned out to be true, as the participants who had more years of experience
within their work function and their organization was more confident in talking about the state
of the capabilities compared to those who had less years of experience; even though the former
had less total years of work experience (i.e. lower level of seniority) than the latter. That’s not
to say that the “less confident” individuals made no meaningful remarks, it’s just that they were
more hesitant in talking about subjects that required prior information they didn’t possess (e.g.
with evolution of practices, you need to have a good understanding of the previous state of the
practices to talk about what they evolved into). As stated earlier, all the participants have at
least 1 year of experience within their current work function and organization.

42

6.2.3 Order of importance of practices

We have previously stated that there were differences as to which dimension of CALMS and the
practices associated with these dimensions the participants prioritized when it came to adopt-
ing/improving them. For example, we have stated that the two participants working in an
“alternative” DevOps team structure (where their DevOps team acted as “bridge” between sep-
arate “dev” and “ops” teams) emphasized how important monitoring and some of the associated
practices (e.g. centralized logging) was for them. Overall, the rest of the participants did not
comment on this importance as strongly, but there were differences as to what they prioritized the
most. As an example, a participant put their highest importance on practices related to automa-
tion dimension (e.g. automated deployment), stating that the reliability of their deployments
was the most important aspect of their work.

These differences in priorities can be attributed to various factors. Such factors that was
apparent for us on an organizational level were differences in industry, organization size, team
size, team structure, technologies and tools used, and the location of the organization; and on an
individual level there were differences in seniority, years of experience within the organization,
work function, and years of experience within the function. Although we have covered some
of these in our sample description, we cannot disclose details regarding all of these factors to
keep our participants data anonymous. However, the deeper reasons as to why such differences in
priorities exist, whether it relates to practitioners’ team structure, and why these two participants
strongly prioritized monitoring remains to be seen.

To summarize, the various settings different organizations operate in makes them have dif-
ferent priorities with their DevOps journey; but they can still unite on the fact that continuous
improvement regarding all dimensions is needed. This finding is also in line with the findings
described in the Accelerate book [3]. We believe this is why all our participants could relate
to the information given in the model despite their differences; and it’s interesting to think
about whether they could still relate to the information just as well, if we used another DevOps
maturity model that didn’t utilize capabilities.

6.2.4 Approach to tools

In our insights from our first round we have argued that the approach of participants to tools
might be relevant to maturity. Further research into literature showed that this was indeed the
case, the particular tools that are used by high-performers are talked extensively on the paper
by Blinde [31]. Despite that fact, we did not feature any tool by name in our model, because
specific tools are tied with certain best practices, but there are always alternatives when it comes
to tooling [31]. Also, as seen, different organizations have different needs, so a certain tool that
is useful for a particular organization might not be useful for another.

6.3 Answering the research question

The main research question was established as:

“RQ: How can the lens of capabilities (including dynamic capabilities) improve current De-
vOps maturity models?”

We have introduced 5 guiding questions in order to make the RQ easier to answer.

43

“GQ1: What are the organizational capabilities and routines that are related to DevOps?”

In order to answer GQ1, we have thoroughly analysed the available literature on DevOps,
as shown in the Literature chapter. As mentioned multiple times throughout the paper and
emphasized in section 5.3.3, the works of Offerman et al. and the works of Plant et al. was the
most notable sources in order to establish our fundamental knowledge of the capabilities and
routines related to DevOps [26], [31], [8], [2]. Establishing this fundamental base of knowledge
helped us prepare for the first round of interviews as well. Furthermore, a big aspect to this
first round of interviews was also in regards to contributing to this fundamental knowledge base;
since seeing the perspectives of practitioners brought an understanding of the practical side of
DevOps capabilities to our knowledge base.

Understanding which organizational capabilities and routines are used in DevOps wasn’t not
enough, as it was also necessary to learn what capabilities and routines are utilized by high-
performers to be able to discern between the “good” and “bad” practices, technologies, ways of
working, and all the other aspects of capabilities and routines; so that meaningful suggestions
can be provided within our model. In order to do this, we have looked at the literature; and also
created and analysed some codings on our first round of interviews, as emphasized in section 5.3.
The most notable literary works that helped us in this regard was the Accelerate book and the
DevOps Handbook [3], [28]. The capabilities and practices featured in the model, which origi-
nate from these books and the codings can be provided as the answer to the GQ1 (see table 5.2).

“GQ2: How do organizations move from one maturity level to another?”

Answering this question was important to make our model function properly. Our first round
of interviews showed that implementing suggestions on how to adopt/improve capabilities could
help organizations increase their maturity. However prior to seeing how such suggestions could
be featured in a model, we have realized that we needed to select a base model to improve upon.
Previous analysis of literature gave us 2 prime candidates of DevOps maturity models to select
such a base model: Eficode’s model and the model of Feijter et al. [30], [33]. As mentioned in
chapter 4, and section 5.3; after analyzing both models based on the information provided by
literature and based on the insights we have gathered after the first round, we have decided to
improve upon the Eficode’s model.

Based on literature and our findings/codings from the first round of interviews, we have
designed our model such that the information given about the capabilities are corresponding
to the the different levels of dimensions; and the suggestions given related to these capabilities
are helpful to increase the DevOps maturity of the organization of the users. The details on
the design choices are discussed in section 5.3.3. Our second round of interviews validated that
implementing these suggestions could help organizations increase their maturity (i.e. move from
one maturity level to another). This validation was further emphasized with GQ3.

“GQ3: How does a maturity model that utilizes organizational capabilities and routines fare
in practice?”

We had introduced two primary problems with our research. The first problem was that,
in mainstream DevOps maturity models, understanding what capabilities and routines organi-
zations needed to adopt or improve upon wasn’t clear. We have referred to this problem as
the “actionability problem” throughout the paper and tried to address it with our model. Our
second round of interviews showed us that 6 out of 11 participants found the suggestions given
in the model helpful. While the remaining 5 participants did not found such suggestions imprac-

44

tical, they have found them trivial. This means that our model was moderately successful in
addressing the actionability problem.

The second problem we introduced was that, according to our analysis of the literature, the
mainstream DevOps maturity models weren’t made with dynamic capabilities in mind. We tried
to explore how dynamic capabilities could be featured in a DevOps maturity model and tried to
implement what we have learned into our model. We have tried to make our model “dynamic”
as per the information that was found in the literature, and the remarks of participants in the
second round confirmed that our model was practically dynamic. We have discussed about these
results and their implications in further detail in the Discussion chapter.

We claim that the improved model fared successful in addressing the problems we had intro-
duced, based on the data gathered from the validation round. That being said, our research also
had some limitations; and also lead to some unanswered questions and improvement points that
could be researched further. All of these are discussed in the next sections.

6.4 Limitations

In addition to the limitations revealed with our model with the second round of interviews as
discussed earlier, there are also other limitations with our research.

We have previously featured literature that claimed DevOps maturity models are not sufficient
to drive organizational changes [34]. We have indeed confirmed this with the insights we have
gathered, and as described in section 5.3.2 earlier, it was argued that all DevOps maturity models
should be used with respect to two important factors: regular and periodic use (periods expressed
in months), and use with the intention to self-improve. However, we had only a single round of
interviews to validate our model. As such, we weren’t able to do periodic assessments, and we
also didn’t get to see whether our participants try to implement the suggestions that they were
given; so we are limited in our ability in seeing how our model performs in an ideal practical
setting.

One of our key sources for this research, the Accelerate book, also has criticisms of maturity
models [3]. In the book, it is claimed that the mainstream maturity models (which do not feature
capabilities to an in-depth level) only help organizations reach a ‘mature state and “declare
themselves done with their journey”, while the technology and business landscape continue to
evolve [3]. As shown in our insights, we had participants also making remarks parallel to these
criticisms, arguing that it’s difficult to be completely mature (i.e. level 4 for our model) regarding
any dimension since what’s considered mature is constantly changing, and that there is always
room for improvement with regards to any dimension or capability. This criticism coming from
both academic and practical sides shows us that maturity models are inherently not built to last.
However it is also known (and also proven with our research) that when used correctly, maturity
models do in-fact help organizations improve, so an intermediate solution could be to update
maturity models regularly.

Potential threats to validity of research design are another aspect of limitations with our
research, since we have also used research design as our methodology. Such threats are expressed
as external or internal factors [42]. The external factors that are relevant for us are biases that
are potentially involved. Primarily, these biases are sampling bias and non-response bias. As
shown earlier, our sample size for the interviews was 10 and 11 people for the first and second
rounds respectively, and all the participants except one were working as DevOps Engineers, and
one participant was working as a DevOps coach. Furthermore, if we recall that we had response
rates of 5.625% and 6.25% for DevOps engineers for the first and second round respectively; and
a 2.5% response rate for DevOps coaches, our sample might not be representative of the actual

45

population, and the non-respondent population might have had different insights we couldn’t
have captured.

For internal factors, there are two main concerns. The first concern is related to the instru-
mentation [42]. Ideally the instrumentation should be consistent, and even though we had used
the same model for every interview in the second round, there were differences in the capabilities
that were covered as part of our discussions with the participants. This was the intended use,
as explained in the section 5.3.2, because covering the capabilities that the participants were
looking to adopt/improve on, so that they can benefit from the suggestions is the idea behind
the model. However, the set of capabilities that fit that description was naturally different for
each participant. It remains to be seen whether the results would be the same if we were to cover
the same exact set of capabilities in every interview, but doing so would be against the intended
use of the model and wouldn’t be practical for the participants, so we didn’t do it that way. The
second internal concern is related to the effects of “testing” on the outcomes of the validation
round [42]. As explained, we had discussed about various capabilities and practices in the first
round. There is a possibility that some participants may have picked up on the best practices
and related capabilities; and during the second round, used that knowledge to get a higher score
with the model regardless of whether their organization actually possessed these capabilities and
best practices, consciously or subconsciously.

46

Chapter 7

Conclusion

As part of this research we tried to see how capabilities could be integrated into a DevOps
maturity model and established our research question as “How can the lens of capabilities improve
current DevOps maturity models?”. Capabilities were integrated into a DevOps maturity model
such that the information about them are provided in a manner where first, they are described;
second, reasons as to why these capabilities should be present in organizations are given; and
third, practical suggestions such as how to establish these capabilities in the short term, how
they should be like in the long term, best practices and common pitfalls are given.

The capabilities in the model fall under 4 ”capability categories”: (“Cultural”, “Continuous
Delivery”, “Architectural”, “Lean Management and Monitoring”). These categories correspond
to 6 dimensions of the original model (Eficode’s model). These dimensions are “Organization
and Culture”, “Environments and Release”, “Builds and Continuous Integration”, “Quality As-
surance”, “Visibility and Reporting”, and “Technologies and Architecture”.

A design research methodology was used to develop and validate this model. As part of
this, a first round of interviews was conducted to learn about the DevOps practices and ap-
proach to maturity assessments of DevOps practitioners. Following these interviews, Eficode’s
DevOps maturity model was selected as the base model to improve upon and using the data
gathered from the interviews and literature, the improvements were implemented on this model.
A second round of interviews was carried out to validate the model, and it was found that the
model was moderately successful in showing practitioners which capabilities and routines their
organizations needed to adopt or improve in order to increase their maturity, and how such im-
provements/adoptions can be made (this problem was mentioned as the “actionability problem”).
It was also found that the model was easy to use and was practically “dynamic”.

There were also problems revealed with the second round of interviews. Firstly, connection
between the original model and the capabilities featured in it didn’t match perfectly; secondly,
it was found that the information on some of the capabilities weren’t complete; lastly, the model
was found to be not suited perfectly for DevOps practitioners who were doing DevOps using an
“alternative” team structure, where the DevOps team acted a bridge between development and
operations teams.

There were also other findings regarding maturity assessments and DevOps practices.
For maturity assessments, it is found that the maturity assessments lead to improvements

only when two criteria regarding the assessment is satisfied. The first criteria is regarding doing
multiple assessments, periodically. The periods should be expressed in months, not years, and
the assessments should be scheduled and executed with no/minimal delays. The second criteria
is having an intention to improve, where certain goals are set as a result of the assessment; and

47

when the assessment is performed, seeing whether these goals are met and whether the maturity
scores on the dimensions related to these goals have improved from the last time the assessment
was performed. When the assessment is done a single time, or with long/spontaneous periods;
or when there is no intention to “beat your personal best”, doing maturity assessments (with or
without the use of a maturity model) does not lead to any practical benefits such as improvements
to organizational performance.

For DevOps practices, it is found that the capabilities and practices related to the “Cul-
ture” dimension of DevOps do not act as a foundation for the other dimensions (dimensions
as per the definition of CALMS framework are “Culture”, “Automation”, “Lean”, “Measur-
ing/Monitoring”, “Sharing”), which is contrary to what some experts argue [40]. Instead, our
findings show that all the dimensions are related to one another and the practices related to
them are meant to be adopted and evolved together.

“Self-organizing”, “continuous improvement” and ”containerization” were found to be some
of the most popular practices related to DevOps. For “self-organizing” in particular, multiple
participants from our interviews talked about their experience having “too much autonomy”,
which was interesting since the literature usually talks about how and why organizations should
seek to increase the autonomy of their teams [3]. Practices associated with the Lean methodology
were the least discussed within our interviews, which may suggest that the DevOps practitioners
are straying away from the Lean methodology.

When it comes to the order of importance of DevOps practices, it was found that the afore-
mentioned DevOps practitioners who were doing DevOps using an “alternative” team structure
strongly prioritized monitoring the most. While the rest of the participants’ opinions differed,
they did not comment on this importance as strongly. These differences in priorities likely depend
on both organizational factors (e.g. industry) and individual factors (e.g. personal experiences).
The more in-depth reasons as to why such differences in priorities exist were not a part of this
research.

To conclude, capabilities were found to be a practical solution to improve a DevOps maturity
model, enabling practitioners to access specific information regarding different aspects of software
development easily. The research and the model that was created was mostly successful in
addressing the problems that were introduced, but it also generated some questions and some
improvement points related to the model were revealed, which could be researched further.

7.1 Future Work

As mentioned multiple times throughout this paper, our insights revealed that maturity models
should be used periodically and with “an intent to improve”, but as described earlier, we didn’t
do that as part of our research. Furthermore, in our “Methodology” chapter, we have argued that
to get a deep, multilevel understanding of routines and capabilities in a particular organization,
data should be collected over a long period of time; but that we did not intend to do that as we
only needed to focus on the ostensive aspect of capabilities for our research [36], [6]. In the light of
these findings and the literature, it would be certainly interesting to see how our model holds up
in practice, when it is used in an empirical study within a single organization over a long period,
multiple times, and with an intent to improve. Seeing the performative aspect of capabilities
for that particular organization and how that performative aspect relates to our model and the
capabilities featured within it would be a great progression for this research. Another aspect to
such a research could be to identify and explain the complex relationship between capabilities.
Even though we tried to highlight all the connections we could identify between the capabilities,
doing such a study and establishing a deeper understanding of capabilities could make these

48

connections even more pronounced and might even bring up new connections that we couldn’t
identify with our research.

Overall, we believe that our model is a better and improved version of the Eficode’s model and
could serve as an example to those who develop maturity models, especially on how to feature
capabilities.

Even though our model can be deemed as successful, it’s not flawless. As such, another
research topic could be to improve our model even further. We have already mentioned about
some potential improvement ideas in the previous chapter. One of those ideas is regarding
expanding on capabilities by refining the information provided within the model so that more
details about the capabilities are covered, and the model is more “complete” as a result. Another
improvement idea is to try and address the aforementioned “mismatch problem”; we have already
mentioned about some potential solutions that could be implemented to address it earlier. Yet
another improvement idea is exploring how the model could be altered for DevOps teams working
with “alternative” DevOps team structures (see [22]), since we discussed that our model might
not be ideal for such teams.

As described in the limitations, both the literature and our findings indicate that the “ever-
changing nature of technology and business landscape”, makes DevOps maturity models outdated
over time [3]. Researching on the best way to make maturity models remain up-to-date with
the latest practices and technologies; and trying to find how capabilities should evolve within
maturity models could be another interesting topic.

49

Bibliography

[1] Christof Ebert et al. “DevOps”. In: Ieee Software 33.3 (2016), pp. 94–100.

[2] Olivia H Plant, Jos van Hillegersberg, and Adina Aldea. “Design and Validation of a
Capability Measurement Instrument for DevOps Teams”. In: International Conference on
Agile Software Development. Springer, Cham. 2022, pp. 151–167.

[3] Jez Humble and Gene Kim. Accelerate: The science of lean software and devops: Building
and scaling high performing technology organizations. IT Revolution, 2018.

[4] Carlo Salvato. “Capabilities unveiled: The role of ordinary activities in the evolution of
product development processes”. In: Organization science 20.2 (2009), pp. 384–409.

[5] David J Teece, Gary Pisano, and Amy Shuen. “Dynamic capabilities and strategic man-
agement”. In: Strategic management journal 18.7 (1997), pp. 509–533.

[6] Martha S Feldman and Brian T Pentland. “Reconceptualizing organizational routines as a
source of flexibility and change”. In: Administrative science quarterly 48.1 (2003), pp. 94–
118.

[7] Oliver Schilke, Songcui Hu, and Constance E Helfat. “Quo vadis, dynamic capabilities? A
content-analytic review of the current state of knowledge and recommendations for future
research”. In: Academy of management annals 12.1 (2018), pp. 390–439.

[8] Olivia H Plant, Jos van Hillegersberg, and Adina Aldea. “How DevOps capabilities leverage
firm competitive advantage: A systematic review of empirical evidence”. In: 2021 IEEE
23rd Conference on Business Informatics (CBI). Vol. 1. IEEE. 2021, pp. 141–150.

[9] Mohammad Zarour et al. “A research on DevOps maturity models”. In: Int. J. Recent
Technol. Eng 8.3 (2019), pp. 4854–4862.

[10] Karim Sabbagh et al. “Maximizing the impact of digitization”. In: The global information
technology report 2012 (2012), pp. 121–133.

[11] Michael Gebhart, Pascal Giessler, and Sebastian Abeck. “Challenges of the digital trans-
formation in software engineering”. In: ICSEA 2016 149 (2016).

[12] Mohammad Khoshgoftar and Omar Osman. “Comparison of maturity models”. In: 2009
2nd IEEE International Conference on Computer Science and Information Technology.
IEEE. 2009, pp. 297–301.

[13] Maximilian Röglinger, Jens Pöppelbuß, and Jörg Becker. “Maturity models in business
process management”. In: Business process management journal 18.2 (2012), pp. 328–346.

[14] G Bou Ghantous and Asif Gill. “DevOps: Concepts, practices, tools, benefits and chal-
lenges”. In: PACIS2017 (2017).

[15] Stuart Galup, Ronald Dattero, and Jing Quan. “What do agile, lean, and ITIL mean to
DevOps?” In: Communications of the ACM 63.10 (2020), pp. 48–53.

50

[16] What is agile? url: https://learn.microsoft.com/en-us/devops/plan/what-is-
agile.

[17] Ahmed Bahaa Farid, Yehia Mostafa Helmy, and Mahmoud Mohamed Bahloul. “Enhanc-
ing lean software development by using DevOps practices”. In: International Journal of
Advanced Computer Science and Applications 8.7 (2017).

[18] Jez Humble, Joanne Molesky, and Barry O’Reilly. Lean enterprise. ” O’Reilly Media, Inc.”,
2020.

[19] Jason Sharp and Jeffry Babb. “Is Information Systems late to the party? The current state
of DevOps research in the Association for Information Systems eLibrary”. In: (2018).

[20] Ina M Sebastian et al. “How big old companies navigate digital transformation”. In: Strate-
gic information management. Routledge, 2020, pp. 133–150.

[21] Jez Humble and Joanne Molesky. “Why enterprises must adopt devops to enable continuous
delivery”. In: Cutter IT Journal 24.8 (2011), p. 6.

[22] Shana Vu. The importance of devops team structure. url: https://www.atlassian.com/
devops/frameworks/team-structure.

[23] Jez Humble and David Farley. Continuous delivery: reliable software releases through build,
test, and deployment automation. Pearson Education, 2010.

[24] Erik van Ommeren et al. “Design to Disrupt”. In: ().

[25] Ian Buchanan. CALMS framework. url: https://www.atlassian.com/devops/frameworks/
calms-framework.

[26] Tyron Offerman et al. “A Study of Adoption and Effects of DevOps Practices”. In: arXiv
preprint arXiv:2211.09390 (2022).

[27] Jens Smeds, Kristian Nybom, and Ivan Porres. “DevOps: a definition and perceived adop-
tion impediments”. In: Agile Processes in Software Engineering and Extreme Programming:
16th International Conference, XP 2015, Helsinki, Finland, May 25-29, 2015, Proceedings
16. Springer. 2015, pp. 166–177.

[28] Gene Kim et al. The DevOps handbook: How to create world-class agility, reliability, &
security in technology organizations. IT Revolution, 2021.

[29] Tobias Mettler. “Maturity assessment models: a design science research approach”. In:
International Journal of Society Systems Science 3.1-2 (2011), pp. 81–98.

[30] Eficode. Devops: Eficode quick guide. 2020. url: https://www.eficode.com/hubfs/
documents/Eficode-English-Devops-Guide.pdf?hsLang=en.

[31] Robert Blinde. “DevOps Unravelled: A Study on the Effects of Practices and Technologies
on Organisational Performance”. In: (2022).

[32] Ineta Bucena and Marite Kirikova. “Simplifying the DevOps Adoption Process.” In: BIR
Workshops. 2017, pp. 1–15.

[33] Rico Feijter et al. “Towards the adoption of DevOps in software product organizations: A
Maturity Model Approach”. In: Technical Report Series UU-CS-2017-009 (2017).

[34] Carl Marnewick and Josef Langerman. “DevOps and organizational performance: The fal-
lacy of chasing maturity”. In: IEEE Software 38.5 (2020), pp. 48–55.

[35] Shahid Ali et al. “DevOps in Practice a Systematic Literature Review”. In: Journal of
Information & Communication Technology (JICT) 16.1 (2022).

51

https://learn.microsoft.com/en-us/devops/plan/what-is-agile
https://learn.microsoft.com/en-us/devops/plan/what-is-agile
https://www.atlassian.com/devops/frameworks/team-structure
https://www.atlassian.com/devops/frameworks/team-structure
https://www.atlassian.com/devops/frameworks/calms-framework
https://www.atlassian.com/devops/frameworks/calms-framework
https://www.eficode.com/hubfs/documents/Eficode-English-Devops-Guide.pdf?hsLang=en
https://www.eficode.com/hubfs/documents/Eficode-English-Devops-Guide.pdf?hsLang=en

[36] Carlo Salvato and Claus Rerup. “Beyond collective entities: Multilevel research on organi-
zational routines and capabilities”. In: Journal of management 37.2 (2011), pp. 468–490.

[37] David J Teece. “Business models and dynamic capabilities”. In: Long range planning 51.1
(2018), pp. 40–49.

[38] Bram Klievink and Marijn Janssen. “Realizing joined-up government — Dynamic capa-
bilities and stage models for transformation”. In: Government information quarterly 26.2
(2009), pp. 275–284.

[39] Nigan Bayazit. “Investigating design: A review of forty years of design research”. In: Design
issues 20.1 (2004), pp. 16–29.

[40] Mandi Walls. Building a DevOps culture. ” O’Reilly Media, Inc.”, 2013.

[41] Introduce the foundation pillars of DevOps. url: https://learn.microsoft.com/en-
us/training/modules/introduce-foundation-pillars-devops/.

[42] Chong-ho Yu and Barbara Ohlund. Threats to validity of research design. 2010.

52

https://learn.microsoft.com/en-us/training/modules/introduce-foundation-pillars-devops/
https://learn.microsoft.com/en-us/training/modules/introduce-foundation-pillars-devops/

Appendix A

Questions used in the interviews

A.1 Questions for the first cycle

A.1.1 General questions

1. Can you introduce yourself?

2. Ask the following questions if not already answered:

• What department are you in?

• What is your function?

• How long have you been working for this organization?

• How long have you been working in your current function?

A.1.2 Practices

The following questions will be asked utilizing practices featured in the works of Plant et al. and
Offerman et al. (see figure 2.3 and table 2.1)

1. Which of these practices do you also follow within your organization?

2. How would you assess your maturity level with these practices?

3. What practices did you first adopt and develop? What did these practices evolve into?

4. In what order did you develop these practices?

5. How did you embed these practices then?

6. How do you embed new practices now? Is there a dedicated process for adoption of new
practices?

A.1.3 Experience with maturity models

1. Have you used a maturity model (for DevOps or for another use) before? If so, please
comment on your experience.

2. What were/are the requirements for selecting and using a model?

53

3. Ask the following if not already answered:

• Who executes the assessment of maturity?

• Is the assessment on a team-level or for the entire organization?

A.2 Questions for the second cycle

The questions for the second cycle were created following the creation of the maturity model.
The model is described in the “Results” chapter.

A.2.1 General questions

These questions will be asked if the participant is not familiar with the research (i.e. they were
not part of the first round of the interview). If they are, the interview will start with the next
set of questions.

1. Can you introduce yourself?

2. Ask the following questions if not already answered:

• What department are you in?

• What is your function?

• How long have you been working for this organization?

• How long have you been working in your current function?

A.2.2 Maturity Model - Assessment

Using the maturity model we have created, participant will be guided and their maturity will
be assessed for each dimension. In order to do this, first we will discuss about the various capa-
bilities related to a particular dimension, then we will ask the participants to assess themselves
regarding that dimension; we then move on to another dimension and repeat the process until all
of dimensions are covered. For more information, see the “How to use the model” section (sec-
tion 5.3.2). Following are the questions that will be asked for each dimension: (As a reminder,
dimensions as featured in Eficode maturity model are: “Organization and Culture”, “Environ-
ments and Release”, “Builds and Continuous Integration”, “Quality Assurance”, “Visibility and
Reporting”, “Technologies and Architecture”).

1. What are some of the practices you do related to this dimension? (If participant also
participated in the first round, then we already have existing information about their
practices and may skip this question for some dimensions). After learning about their
practices (if we don’t already know about them from the first round), we intend to talk
about capabilities that they may be lacking or need improving.

2. Which capabilities regarding this dimension are you looking to adopt/ improve? How are
you going to do this? (As part of the maturity model we will already have some suggestions,
so the intent behind this question is about setting a basis for discussion. We also guide the
participants who have also participated in the first round towards some specific capabilities,
as we have prior knowledge on what they can benefit from the most).

3. Which of these level descriptions do you relate to the strongest, regarding this dimension?

54

A.2.3 Maturity Model - Feedback

1. Do you think implementing the suggestions provided for specific capabilities will bring
value to your organization (and improve your maturity)?

2. Do you think the suggestions given in the model are reasonable to implement for your case?
If not, why?

3. What can you recommend to improve on this model?

55

Appendix B

Improved Maturity Model

56

Figure B.1: First page of the model (Eficode)

57

Supporting a generative culture

Encouraging and supporting learning

Facilitating collaboration among teams

Increasing job satisfaction

Embodying transformational leadership

Capabilities you need (Cultural)

Fostering and enabling team experimentation

Figure B.2: List of Cultural capabilities

58

What is a “generative” culture?

A generative culture primarily revolves around having a
goal-oriented focus organization wide, and optimizing
performance. The other types of culture are “bureaucratic”
(rule-oriented) and “pathological” (power-oriented).

Why do you need this?

Culture directly impacts organizational performance and
software delivery performance. A generative culture also
helps decreasing burnout.

First steps to establish a generative culture:

Directly changing how people think is not easy. Instead
focus on trying to change what people actually do, and
they will adopt the necessary mentality that accompanies
the task along the way. Existing research shows that
adopting practices related to continuous delivery and lean
management helps achieving a generative culture.

Supporting a generative culture

Figure B.3: Cultural capability 1 - Supporting a generative culture

59

Approach to learning

Is learning considered essential for continued progress in
your organization, or is it considered more as an
investment? If it is closer to the latter, reconsidering your
approach to learning may bring great benefits to you.

Why do you need this?

A good “climate” for learning is highly correlated with
software delivery performance.

First steps to encourage learning:

Creating resources for learning by setting a training
budget, or allowing a portion of work time for exploration of
side projects, then internally advocating the use for such
resources is a good start for establishing a climate of
learning.

If these are already in place, you can expand on learning
further by creating spaces to share experiences of such
learning journeys (e.g. weekly talks, demo days, forums).
This way the teams would also get to learn from each
other.

Making it safe to fail during these learning journeys is
highly important, since if failures are punished, people will
be inclined not to try new things. Instead try approaching
learning as opportunities to improve by holding blameless
postmortems, so that people will be comfortable with
taking (reasonable) risks.

Existing research shows that adopting practices related to
continuous delivery and lean management helps enabling
learning and experimentation.

Encouraging and supporting learning

Figure B.4: Cultural capability 2 - Encouraging and supporting learning

60

First steps to facilitate collaboration:

Building trust between teams is a fundamental for
collaboration, but it takes time. Trust is built on keeping
promises, open communication and behaving predictably
even in stressful situations.

Actively seeking and encouraging work that facilitates
collaboration, such as having workshops/events that forces
teams to work together (e.g. disaster recovery testing
exercises) can be a good place to start establishing some
trust and collaboration between different teams.

In longer term, encouraging your employees to move
between different teams/departments (especially if they
make it explicit that they want to do so), can bring a lot of
valuable information to both teams/departments; as the
employees who move bring information about the
processes they had and the challenges they faced in their
previous team to their new team; and the members of the
previous team have an easy connection to the new team
for future collaboration.

Facilitating collaboration among teams

Why do you need this?

In a “generative” culture, collaboration is more effective,
and there is a higher level of trust across the organization.
As such, the level of collaboration and trust directly reflects
how “good” the culture is.

Having a high level of trust and collaboration can result in
higher quality decision-making, since availability of
information is better for making decisions, and the
decisions are more easily reverted if they turn out to be
wrong since teams would be more open and transparent
about them. The problems are would also be more rapidly
discovered and addressed.

Cross-functional collaboration (collaboration among
different teams) is also highly correlated with software
delivery performance.

Figure B.5: Cultural capability 3 - Facilitating collaboration among teams

61

Why do you need this?

When employees are satisfied, they are more engaged with
their work, and employee engagement is directly predictive
of business outcomes. Companies with highly engaged
workers grew revenues two and a half times as much as
those with low engagement levels.

This engagement can only be achieved when employees
identify strongly with company’s purpose. If people are
treated merely as expendable resources, they will not
strongly identify with their work. A strong level of identity
can be achieved when employees see the connection
between the work they do and its positive impact on the
customers. This in turn leads to better software delivery
performance and organizational performance.

First steps to increase job satisfaction:

Increasing employee engagement doesn’t happen
overnight, and it cannot be forced.

However, in addition to being highly engaged with their
work, people who are satisfied with their work are also
given the tools and resources to do their work, and their
job makes good use of their personal skills and abilities.

For the short term, try to empower your teams by giving
them the choice to select their own tools, as having
freedom in how you work contributes to job satisfaction.

For the long term, seek to increase employee engagement.
Employee engagement significantly correlates with the
extent to which the organization collects customer
feedback and uses it to inform the design of products and
features; and the ability of teams to visualize and
understand the flow of products or features through
development all the way to the customer. Capabilities
related to lean management and monitoring tell you how
you can achieve this.

Increasing job satisfaction

Figure B.6: Cultural capability 4 - Increasing job satisfaction

62

What is “transformational leadership”?

Transformational leadership means leaders inspiring and

motivating followers to achieve higher performance by

appealing to their values and sense of purpose, facilitating
wide-scale organizational change.

Transformational leadership is characterized by 5
dimensions: Vision, Inspirational communication,
Intellectual stimulation, Supportive leadership, and
Personal recognition.

Why do you need this?

Transformational leaders influence and enable practices
related to continuous delivery and lean management,
which are also influencers for many other practices and
performance metrics, such as software delivery
performance and organizational performance.

How to embody transformational leadership:

Vision: The leader has a clear understanding of where the
team and the organization is going, and where he/she
wants them to be in the future.

Inspirational communication: The leader says things that
make employees proud to be a part of the organization and
encourages people to see changing environments as
opportunities to learn and improve.

Intellectual stimulation: The leader challenges the
employees to think about old problems in new ways, has
ideas that forces others to think about their assumptions
towards their work, and about things that were not
questioned before.

Supportive leadership: The leader behaves according to
employees’ personal needs/feelings; and gives
consideration to the interests of employees.

Personal recognition: The leader acknowledges
improvement in the quality of work, and compliments
outstanding work.

Embodying transformational leadership

Figure B.7: Cultural capability 5 - Embodying transformational leadership

63

What is team experimentation?

Team experimentation is the ability of developers to try out
new ideas and create and update specifications during the
development process, without requiring approval from
outside of the team, which allows them to innovate quickly
and create value.

Why do you need this?

If a development team isn’t allowed, without authorization
from some outside body, to change requirements or
specifications in response to what they discover, their
ability to innovate is sharply inhibited.

Research shows that the ability of teams to try out new
ideas and create and update specifications during the
development process, without requiring the approval of
people outside the team, is an important factor in
predicting organizational performance as measured in
terms of profitability, productivity, and market share.

First steps to team experimentation:

As a prerequisite, experimentation should be combined
with working in small batches, incorporating

customer feedback, and making the flow of work visible.
This ensures that your teams are making well-reasoned,
informed choices about the design, development, and
delivery of work, and changing it based on feedback; not
intuition or “because they feel like it”. This also ensures that
the informed decisions they make are communicated
throughout the organization. That increases the probability
that the ideas and features they build will deliver value to
customers and the organization.

When it comes to your software, you can look into the use
of feature toggles to enable/disable experimental features
easily, without having to branch out from your trunk/main in
the process and evading any potential merging conflicts
that could have risen as a result.

Fostering and enabling team
experimentation

Figure B.8: Cultural capability 6 - Fostering and enabling team experimentation

64

Using version control for all production artifacts

Automated deployment

Implementing Continuous Integration

Trunk-based development

Implementing Test Automation

Supporting test data management

“Shifting left” on security

Implementing Continuous Delivery

Capabilities you need (Continuous

Delivery)

Gathering and implementing customer feedback

Working in small batches

Figure B.9: List of Continuous Delivery capabilities

65

Why do you need this?

Keeping application code, system configurations,
application configurations, and scripts for automating build
and configurations in version control predict IT
performance and form a key component of continuous
delivery. Surprisingly, keeping system and application
configurations in version control is more highly correlated
with software delivery performance than keeping
application code in version control.

Configuration is normally considered a secondary to

application code in configuration management, but
research shows that this is a misconception.

First steps to increasing use of version control:

If you are not already using a version control tool for your
configurations and for your automation scripts, think about
how you can do it. It may be difficult to migrate all of them
in one go, so plan ahead by deciding on what can and/or
should be moved first, and what can be moved later, then
do the migration gradually.

Using version control for all production
artifacts

Figure B.10: Continuous Delivery capability 1 - Using version control for all production artifacts

66

Why do you need this?

When compared to low performers, the high performers
have
 46 times more frequent code deployment
 440 times faster lead time from commit to deplo
 170 times faster mean time to recover from downtim
 5 times lower change failure rate (1/5 as likely for a

change to fail)

Automated deployment is one of the key capabilities to
achieving such software delivery performances.

First steps to achieving automated deployment:

Look at what is done manually within your deployment
process and see if you can automate them, or maybe even
remove them. Some examples of manual steps are
 Packaging code in ways suitable for deploymen
 Creating pre-configured virtual machine images or

container
 Automating the deployment and configuration of

middlewar
 Copying packages or files onto production server
 Restarting servers, applications, or service
 Generating configuration files from template
 Running automated smoke tests to make sure the

system is working and correctly configure
 Scripting and automating database migrations

In the longer run, you should make sure that the
deployment experience is low-risk and consistent, by
smoke-testing your deployments, and by deploying the
same way to every environment (development/test/
production/+).

Automated deployment

Figure B.11: Continuous Delivery capability 2 - Automated deployment

67

Why do you need this?

Many software development teams are used to developing
features on branches for days or even weeks. Integrating
all these branches requires significant time and rework.

Decreasing the amount of time it takes for such work can
be achieved via CI and it is one of the key capabilities to
achieving high software delivery performance.

First steps to implementing Continuous Integration:

High-performing teams keep branches short-lived (less
than one day’s work) and integrate them into trunk/master
frequently. Each change triggers a build process that
includes running unit tests. If any part of this process fails,
developers fix it immediately.

Adopting trunk-based development practices is a good
place to start reducing the amount of work required for
integration, and increase the rate at which you develop.

You have to make sure to do automated testing soon
afterwards; since if you only do trunk-based development
and do not automate your testing, you will not be able to
put most of your work into production-environments, and
the increased rate of development will leave you with more
code you have to test than you initially started with.

Implementing Continuous Integration
What is Continuous Integration?

Continuous integration (CI) is a development practice
where code is regularly checked in, and each check-in
triggers a set of quick tests to discover serious
regressions, which developers fix immediately. The CI
process creates canonical builds and packages that are
ultimately deployed and released.

Figure B.12: Continuous Delivery capability 3 - Implementing Continuous Integration

68

What is trunk-based development?

Trunk-based development is a version control management
practice where developers merge small, frequent updates
to a core “trunk” or main branch.

Why do you need this?

Developing off trunk/master rather than on long-lived
feature branches correlates with higher software delivery
performance. Teams that do well typically have fewer than
three active branches at any time, and their branches have
very short lifetimes (less than a day) before being merged
into trunk. As a result they never have “code freeze” or
stabilization periods where no one can check in code or do
pull requests due to merging conflicts. It’s also worth noting
that these results are independent of team size,
organization size, or industry.

First steps to implementing trunk-based development:

As a rule of thumb, your branching strategy should involve
merging into trunk/main at least daily (the only exception to
this is if you have a project whose contributors are not
working on it full-time).

If you think you cannot do trunk-based development due to
“the nature of your work being too complex” or a similar
reason; first, look into adopting practices related to

working in small batches.

Trunk-based development

Figure B.13: Continuous Delivery capability 4 - Trunk-based development

69

What is test automation?

Test automation is a practice where software tests are run
automatically (not manually) continuously throughout the
development process. Effective test suites are reliable, that
is, tests find real failures and only pass releasable code.
Note that developers should be primarily responsible for
creation and maintenance of automated test suites.

Why do you need this?

Testing is not something that should only start once a
feature or a release is “dev complete.” Because testing is
so essential, it should be done all the time as an integral
part of the development process. Automated unit and
acceptance tests should run against every commit to
version control to give developers fast feedback on their
changes.

Developers should be able to run all automated tests on
their workstations in order to triage and fix defects. Testers
(if they are separate from developers) should be
performing exploratory testing continuously against the
latest builds to come out of CI. No one should be saying
they are “done” with any work until all relevant automated
tests have been written and are passing.

First steps to implementing test automation:

Research shows that you need to pay attention to two main
factors when implementing test automation:

1 - Making sure automated tests are reliable. When tests
are complete, there should be no doubt about whether the
software is releasable or not; and when there is a test
failure, there should be no doubt that there is indeed a real
defect (i.e. there should be no false positives and
negatives). A short term solution to ensure reliability is to
put unreliable tests in a “quarantine suite” that is run
independently from the rest.

2 - Developers should be able to create and maintain
acceptance tests, and they should be able to reproduce
and fix them on their workstations. Interestingly enough,
having automated tests created and maintained by QA or
an outsourced party is not correlated with IT performance.
This doesn’t necessarily mean you should get rid of testers,
as they can work alongside developers with the
aforementioned tasks, and can also perform testing that
has to be done manually such as exploratory or usability
testing.

Also make sure the test data is handled well by adopting
practices related to test data management.

Implementing Test Automation

Figure B.14: Continuous Delivery capability 5 - Implementing Test Automation

70

Why do you need this?

When creating automated tests, managing test data can be
hard. Successful teams have adequate test data to run
their fully automated test suites and could acquire test data
for running automated tests on demand. In addition, test
data is not a limit on the automated tests they could run.

First steps to supporting test data management:

Having adequate data to run your test suite, the ability to
acquire necessary data on demand, the ability to condition
your test data in your pipeline, and making sure that the
data is not limiting the amount of tests you can run are
some practices that are considered effective.

However, be wary that teams should minimize, whenever
possible, the amount of test data needed to run automated
tests. So in an ideal setting, you should be able to “make
the most” out of the smallest set of data that enables these
aforementioned practices.

Supporting test data management

Figure B.15: Continuous Delivery capability 6 - Supporting test data management

71

What is “shifting left” on security?

Shifting left on security is about bringing security, and
security teams, in process with software delivery rather
than as a downstream phase.

Why do you need this?

High-performing teams are more likely to incorporate
information security (infosec) into the delivery process.
Infosec personnel provides feedback at every step of the
software delivery lifecycle, from design through demos to
helping with test automation. However, they do so in a way
that does not slow down the development process,
integrating security concerns into the daily work of teams.

In fact, integrating these security practices contributes to
higher software delivery performance. Furthermore, it also
improves security quality, and organizations spend
significantly less time remediating about security issues.

First steps to shifting left on security:

You can start by making sure information security teams
provide pre-approved, easy-to-consume libraries, packages,
toolchains, and processes available for developers and IT
operations to use in their work. Try to also think about how
you can change the security reviews such that they will not
obstruct the development process

In longer term, look to integrate your infosec team(s) directly
into your team(s) handling development and operations; so
that infosec experts can contribute to the process of
designing applications, attend and give feedback on
software demos, and ensure that security features are
tested as part of your automated tests.

“Shifting left” on security

Figure B.16: Continuous Delivery capability 7 - Shifting left on security

72

What is Continuous Delivery?

Continuous Delivery (CD) is a development practice where
software is in a deployable state throughout its lifecycle,
and the team prioritizes keeping the software in a
deployable state over working on new features. Fast
feedback on the quality and deployability of the system is
available to all team members, and when they get reports
that the system isn’t deployable, fixes are made quickly.
Finally, the system can be deployed to production or end
users at any time, on demand.

Why do you need this?

CD impacts a lot of areas related to work, and not only the
technical ones. CD directly impacts software delivery
performance, organizational performance, all the technical
capabilities, and even some of the cultural capabilities such
as having a “generative” culture and job satisfaction.
Having “good” CD also leads to less burnout, less rework,
and less “deployment pain” (i.e. complex deployments and/
or deployments that must be performed outside of
business hours).

First steps to implementing CD:

There is no quick solution to implement CD; however these
3 capabilities can be thought of as the technical
foundations to achieve CD:

1 - Using version control for all production artifacts

2 - Continuous Integration

3 - Continuous (and ideally automated) testing

When you achieve a good level of proficiency on these 3
capabilities you can safely say that you are continuously
delivering.

As previously emphasized, CD is not just about the
technical capabilities. In its core, CD is about building
quality “in”, working in small batches, automating repetitive
tasks, pursuing continuous improvement, and sharing
responsibility across the organization. All capabilities are
about making sure these values are realized.

Implementing Continuous Delivery

Figure B.17: Continuous Delivery capability 8 - Implementing Continuous Delivery

73

Why do you need this?

Whether organizations actively and regularly seek
customer feedback and incorporate this feedback into the
design of their products is important to software delivery
performance.

First steps to gathering and implementing customer
feedback:

Gathering customer feedback includes 3 main practices

 Actively seeking customer insights on the quality of
products and feature

 Using this feedback to inform the design of products
and feature

 Regularly collecting customer satisfaction metrics

Directly asking customers/users for feedback is not
enough, since that can result in biased data. Think about
how you can gather insights on customer behaviors by
implementing data collection methods such as A/B testing,
user behavior tracking, heat-maps and so on. Afterwards,
try to translate the insights gathered from these into
visualizations so that your teams will all be on the same
page (e.g. customer journey maps, empathy maps). When
you end up with a useful process for handling customer
feedback, think about how you can integrate this process
into your regular work.

Gathering and implementing customer
feedback

Figure B.18: Continuous Delivery capability 9 - Gathering and implementing customer feedback

74

Why do you need this?

Working in small batches enables short lead times and
faster feedback loops.

In software organizations, the ability to work and deliver in
small batches is especially important because it allows
teams to gather user feedback quickly using techniques
integrate user research into product development and
delivery.

First steps to working in small batches:

Teams should slice work into small pieces that can be
completed in a week or less. The key is to have work
decomposed into small features that allow for rapid
development, instead of developing complex features on
branches and releasing them infrequently. This idea can be
applied at the feature and the product level. (e.g. An MVP is
a prototype of a product with just enough features to
enable validated learning about the product and its
business model.)

Working in small batches

Figure B.19: Continuous Delivery capability 10 - Working in small batches

75

Loosely coupled architecture

Architecting for empowered teams

Capabilities you need (Architecture)

Figure B.20: List of Architectural capabilities

76

What is loosely coupled architecture?

The more loosely coupled an architecture is, the more
teams can test and deploy their applications on demand,
without requiring orchestration with other services. Having
a loosely coupled architecture allows your teams to work
independently, without relying on other teams for support
and services, which in turn enables them to work quickly
and deliver value to the organization.

Why do you need this?

In teams which scored highly on architectural capabilities,

little communication is required between delivery teams to
get their work done, and the architecture of the system is
designed to enable teams to test, deploy, and change their
systems without dependencies on other teams. In other
words, architecture and teams are loosely coupled. The
benefits cannot be reaped effectively if there is a mismatch
in the architecture of the teams and the architecture of the
system, meaning that you shouldn’t have a loosely coupled
system architecture if you do not have the team/
organization structure to match it.

Research shows that, if a loosely coupled architecture with
an organizational structure to match is in place, two
important things happen: First, better software delivery
performance is achieved, increasing both tempo and
stability while reducing the burnout and the pain of
deployment. Second, you can substantially grow the

size of your engineering organization and increase
productivity exponentially at the same time.

First steps to a loosely coupled architecture:

Loosely coupled architectures are characterized by
“deployability” and “testability”; where deployment of an
application can be done independently of other
applications/services it depends on; and testing can be
done without requiring an integrated environment.

In 2023, the most effective way to achieve a loosely
coupled system architecture is by having a modular
architecture, or a microservice architecture. If you have a
monolithic architecture, look to transform your architecture
into a one that is loosely coupled. When doing such a
transformation, plan ahead by deciding on what can and/or
should be transformed first, and what can be transformed
later, and do it gradually. With microservices, pay attention
to your use of them. If you require all the microservices to
be deployed, then you do not have a loosely coupled
architecture.

To enable such system architectures, it must also be
ensured that delivery teams are cross-functional, with all
the skills necessary to design, develop, test, deploy, and
operate the system on the same team. Check out the
cultural capabilities, which enable a loosely coupled
organization and team structure.

Loosely coupled architecture

Figure B.21: Architecture capability 1 - Loosely coupled architecture

77

The traditional view of scaling software development
teams states that while adding developers to a team may
increase overall productivity, individual developer
productivity will in fact decrease due to communication and
integration overheads. However, when looking at number of
deploys per day per developer for respondents who deploy
at least once per day, research shows that:
 Low performers deploy with decreasing frequency
 Medium performers deploy at a constant frequency
 High performers deploy at a exponentially increasing

frequency.

Exponential Scaling

Figure B.22: Exponential scaling description

78

Why do you need this?

Research shows that teams that can choose which tools to
use do better at continuous delivery and, in turn, drive
better software development and delivery performance. No
one knows better than practitioners what they need to be
effective.

First steps to architecting for empowered teams:

You can start by making sure that your employees can
select their own tools, or at least select from a list of tools
(which has multiple options for a single work function) that
you endorse and use within your organization. If
standardization of tools is a “must”, make sure that
procurement and finance are acting in the interests of your
teams and not the other way around.

You can also make “building security in” easier by
ensuring information security teams pre-approve of the
tools, libraries, packages and processes that could be
featured in such lists.

Ultimately, keep in mind that what tools and technologies
are being used is irrelevant if the people who must use
them hate using them, or if such tools don’t achieve the
outcomes you desire. Enabling teams to make changes to
their product and/or services without depending on other
teams and/or services should be the main goal.

Architecting for empowered teams

Figure B.23: Architecture capability 2 - Architecting for empowered teams

79

Lightweight change approval processes

Monitoring across application and infrastructure to inform
business decisions

Proactive system health checks

Using Work-in-process (WIP) limits to manage work

Visualizing work to monitor quality and communicate
within the team

Capabilities you need (Lean

Management and Monitoring)

Making the flow of work visible through the value stream

Figure B.24: List of Lean Management and Monitoring capabilities

80

What is are lightweight change approval processes?

Lightweight change approval processes are based on
intrateam communication and peer review, (e.g. pair
programming) rather than using external change approval
boards (CABs).

Why do you need this?

In large organizations, there can be processes related to
change management that takes days or even weeks,
requiring each change to be reviewed by a CAB.

Surprisingly, research shows that having a CAB perform
approvals does not significantly result in increased stability
of production systems, and only results in decreased IT
performance, meaning that you are better off using no
change approval process than having a CAB. Furthermore,
having lightweight change approval processes produces
superior IT performance.

First steps to lightweight change approval processes:

What research shows is clear, if you have CABs, you need
to get rid of them. If there is no way to get rid of them (due
to security concerns or any reason that you have no control
over), profiling your changes as high-risk or low-risk, and
making sure that CABs only get to approve high-risk
changes might improve your IT performance.

Effective risk management is more about governance than
it is about change management. Such teams responsible
for handling risks should be monitoring delivery
performance and try to help teams improve by
implementing practices that they are lacking.

In the longer term, doing no change approval processes is
not necessarily a bad thing, but it’s clear that having some
sort of lightweight change approval process such as pair
programming or any other process that forces team
members to review their peer’s work brings some benefits.

Lightweight change approval processes

Figure B.25: Lean Management and Monitoring capability 1 - Lightweight change approval
processes

81

What is this about?

Use data from application and infrastructure monitoring
tools to take action and make business decisions. This
goes beyond paging people when things go wrong.

First steps to monitoring across application to inform
business decisions:

To enable this disciplined problem-solving behavior,
systems should be designed such that they are continually
creating “telemetry”, which is an automated
communications process by which measurements and
other data are collected at remote points and are
subsequently transmitted to receiving equipment for
monitoring. There are two main requirements to creating a
system with telemetry
 Data collection at the business logic, application, and

environments layer
 An event router responsible for storing events and

metrics (centralized logging)

Some examples metrics you can monitor at different levels
 Business level: Number of sales transactions, revenue of

sales transactions, user sign-ups, churn rate, A/B
testing result

 Application level: Transaction times, user response
times, application fault

 Infrastructure level: Web server traffic, CPU load, disk
usag

 Deployment pipeline level: Build pipeline status (e.g.
“red” or “green” for various automated test suites),
change deployment lead times, deployment
frequencies, test environment promotions, environment
status

After you establish a system with good telemetry, you can
expand on monitoring further by using it to anticipate
problems before they occur with proactive monitoring.

Monitoring across application and
infrastructure to inform business decisions

Why do you need this?

Monitoring ensures that your services are correctly working
in production, and when problems do occur, makes it
possible to quickly determine what is going wrong and
make informed decisions on how best to fix it, ideally long
before customers are impacted.

Figure B.26: Lean Management and Monitoring capability 2 - Monitoring across application and
infrastructure to inform business decisions

82

What is this about?

After you establish a “good” monitoring system, you can
expand on it further by looking for signals hidden in your
monitoring data and averting failures before they occur.

Why do you need this?

Proactive monitoring is strongly related not only to
software delivery performance and organizational
performance, but also job satisfaction; as it makes you
avoid stressful problems for your employees.

First steps to implementing proactive monitoring:

Looking at means and standard deviations in key data that
is of importance to your business value can be a good
place to start; you can then set up alerts for some
undesirable outcomes that might arise. Keep in mind of the
edge cases, e.g. “seasonal” data that follows a regular
pattern may trigger alerts regularly.

As you get more advanced, you can look for implementing
anomaly detection algorithms using machine learning.

Proactive system health checks

Figure B.27: Lean Management and Monitoring capability 3 - Proactive monitoring

83

What is this about?

The use of work-in-process (WIP) limits to manage the flow
of work is a common practice within Lean. They are used to
ensure that teams don’t become overburdened (which may
lead to longer lead times) and to expose obstacles to flow.

First steps to using WIP limits to manage work:

Studies have shown that the time to complete even simple
tasks, such as sorting geometric shapes, significantly
degrades when multitasking. Multitasking can be limited
with the use of visualizing work (e.g. with a kanban board)
to manage the work.

Going with the kanban board example, limits can be set by
codifying and enforcing WIP (work in process) limits for
each “column” or “work center”, that puts an upper limit on
the number of cards that can be in a column.

For example, assume that a WIP limit of three cards is set
for testing. When there are already three cards in the test
lane, no new cards can be added to the lane unless a card
is completed or removed from the “in work” column and put
back into queue (i.e., putting the card back to the column
to the left). Nothing can be worked on until it is first
represented in a work card, reinforcing that all work must
be made visible.

By limiting WIP, you also make it easier to see problems
that prevent the completion of work. If you are waiting on
someone else, you have more incentive to help that task
being carried out to completion rather than start a new
work item.

Using Work-in-process (WIP) limits to
manage work

Why do you need this?

When used effectively, this drives process improvement,
increases throughput, and makes constraints visible in the
system.

WIP limits on their own do not strongly predict delivery
performance. It’s only when they’re combined with the use
of visual displays and have a feedback loop from
production monitoring tools back to delivery teams or the
business that we see a strong effect. When these
capabilities are together, there is a much stronger positive
effect on software delivery performance.

WIP is also a good indicator of lead time, by making the
actual time it takes for specific work items visible.

Figure B.28: Lean Management and Monitoring capability 4 - Using WIP limits to manage work

84

Why do you need this?

A significant difference between technology and most
other value streams is that the work is “invisible”. In the
technology value stream, it’s not easy to see where the
bottlenecks are. To help see where work is flowing well and
where work is queued or stalled, visualization of work is
necessary.

Visual displays, such as dashboards or internal websites,
used to monitor quality and work in process contributes to
software delivery performance.

First steps to visualizing work:

If you are not already visualizing your work, you can look to
use visual work boards such as kanban boards or sprint
planning boards, digitally or physically.

In such boards, work is typically represented on “cards”
and each card is referred as a “work item”. Cards start on
the left side of the board and move to the right as they
progress from one “work center” to another, where work
centers describe the current state of the work, such as
“done” or “doing”. On the far left there is typically a backlog
where work items are pulled from, and on the far right is
“done” or “in production”.

Visualizing work to monitor quality and
communicate within the team

Figure B.29: Lean Management and Monitoring capability 5 - Visualizing work to monitor
quality and communicate within the team

85

Why do you need this?

Teams should have a good understanding of and visibility
into the flow of work from the business all the way through
to customers (i.e. the value stream), including the status of
products and features. Research has found this has a
positive impact on IT performance.

First steps to making flow of work visible through the value
steam:

In value streams of any complexity, no one person knows
all the work that must be performed in order to create
value for the customer since the work is often performed
by different teams who may be distant from each other. As
a result, you must identify all the members of the value
stream who are responsible.

This can be done by , where you
visualize the flow of value within your delivery system.
Value steam maps can help you easily identify bottlenecks
and where re-works take place. You can then act on these
to try to improve your delivery process.

You should seek improvement by agreeing on a shared
goal, keeping the improvement planning horizon relatively
short, and reserving 20% of capacity for non-functional
requirements and reducing technical debt

Visualizing the value stream and making it visible for
everyone can also help different and distant teams
understand each other more.

“value stream mapping”

Making the flow of work visible through
the value stream

Figure B.30: Lean Management and Monitoring capability 6 - Making the flow of work visible
through the value stream

86

You can see that Lead time, Value added time, and the
percent complete and accurate values involved with each
step of the value stream. In this example, the %C/A rates
are perceived as low.

Value Stream Mapping

Figure B.31: Value stream mapping description

87

	Introduction
	Document Structure

	Literature
	DevOps
	DevOps maturity
	Organizational capabilities and routines

	Problem Statement
	Research question

	Methodology
	Interview Guide

	Results
	Interviewee Sample
	Insights from first interviews
	Improved Maturity Model
	Insights from second interviews

	Discussion
	Implications of the insights on the model
	Implications of the insights on DevOps practices
	Answering the research question
	Limitations

	Conclusion
	Future Work

	Questions used in the interviews
	Questions for the first cycle
	Questions for the second cycle

	Improved Maturity Model

