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Abstract

In this study, the causal relationship between meaning space and various language metrics
including topsim, bosdis, posdis, and mutual information was examined. The findings indicate
that the pressure to generalize to new inputs may not necessarily drive the development of
a compositional language. While meaning space does seem to influence mutual information
and generalization to some degree, the relationship between topographic similarity and
mutual information wasn’t conclusively positive. This leads to a hypothesis that agents
might develop holistic languages, which differ fundamentally from compositional languages.
Theresults align with prior research, suggesting that group size, rather than meaning space,
influences compositionality due to increased input variability. While topsim and posdis
displayed correlated behaviors, bosdis deviated, highlighting its unique property. The insights
shed light on the nuances of language emergence and the complexities surrounding metrics
like bosdis, posdis, and topsim. This work sets a foundation for future exploration into how
disentanglement metrics can better measure language properties.
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1 Introduction

The field of language emergence studies and describes how language emerged and came into
existence. Both linguistics [Cro08, MM12] and artificial intelligence researchers [MCH+20] are
concerned with studying the field of language emergence. On the one hand, artificially reproducing
language emergence may help to understand the evolution of human languages. On the other
hand, language is known to be structured and compositional [Bic07], and imitating such properties
would enhance machine learning representations. Namely, natural language requires constructing
hierarchical structures, and artificial neural networks are known to be able to capture hierarchical
structures and features [MCH+20]. This can be shown in convolutional neural networks, where
features are extracted hierarchically, similarly to the human brain[AAS20]. Research in language
emergence could lead to architectures that could capture such properties in language.

By means of language games, experiments are done in experiments with human participants and
computational simulations, such as Lewis’ referential game [Ste12]. Participants or agents are
instructed to complete a task in a language game, where language is necessary to succeed. However,
subjects in language games are not allowed to use existing languages and are sometimes limited in
the symbols that they can use. Emergent communication among humans and artificial agents do not
share the same properties yet and also seem to show critical mismatches in the literature [GRR22].
Experimental data [LB20, RMLA19a, GRR22] shows that in contrast to natural language, which
is characterized by complex grammatical structures and syntactic rules, artificial neural networks
used in agent models may produce a language that does not always adhere to the same principles
governing human languages. Specifically, emergent languages from artificial agents do not show the
same structure or patterns as in human experiments.

When expressing complex concepts there is need for compositionality. Natural languages supply this
requirement, as they typically provide the means to craft messages that refer to complex concepts.
This is achieved through the systematic combination of expressions. Such a structure does not
only supports the communication of multifaceted ideas but also underscores the rich interplay
of semantics and syntax within human language [LHTC18, LB19]. Some researchers in language
emergence seems to agree that compositionality is a required property for a language to handle
unseen inputs [CLL+19, RMLA19a, Mar03, FL02]. However, emergent language researchers are
also interested in how information is entangled in messages [CKB+20]. For instance, in the sentence
”She paints the wall”, ”paints” is a verb or function, and ”She” and ”the wall” are arguments. The
compositionality here involves more than just putting words together; it’s about the relationship
and interaction between the words. As such, in addition to compositionality it could be valuable
in language emergence research to capture which properties certain symbols have in relation to
attributes of objects.

Current research in language emergence focuses on investigating language and population prop-
erties, particularly their influence on generalization and language acquisition [GRR23]. Such
properties are population size and input variability, which have been investigated by Raviv et al.
[RMLA19b, RMLA19a] in experiments with human participants. The presented study aims to
investigate the role of growing input variability in the acquisition of language in artificial agents.
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Research by Raviv et al. [RMLA19b] has shown that when populations are larger they tend to have
more systematic languages. This is due to the fact that languages in larger communities are under
pressure for compression, such that they are more grammatical and easier to memorize in a large
population. Raviv et al. also reasons that larger communities tend to handle larger input variability
better. In other words, larger population size and a larger meaning space seem to play a role in
the systematicity of a language. In this work, we empirically show, by means of computational
experiments, that a growing meaning size indeed contributes to the systematicity of language. We
show this by analysing the development of compositional structure in the evolving communication
systems and reporting the results and the communication success rate of the language games.

2 Related Work

2.1 Compressibility Pressures

Galke et al. [GRR22] present three important phenomena that relate to the emergence of language,
which have been confirmed experimentally in human studies:

1. Ease of learning compositional languages, how easy it is for a newly initialized agent to learn
the emerged language.

2. Compositionality aids generalization and convergence of emergent languages

3. Larger population generally develops more structured languages

The presented paper will focus on one of these aspects, how compositionality aids generalization of
emergent languages.

Socio-demographic factors have long been assumed to play an important factor in language evo-
lution [LD10]. One of these socio-demographic factors is population size. Global cross-linguistic
studies have found that larger populations tend to have languages with more systematic structures
[LD10]. This effect has also been confirmed experimentally, where groups with more interacting
participants created more systematic languages [RMLA19b]. The observed results can be explained
due to the presence of compression pressures during the interaction. As group size grows, recalling
partner-specific variations poses greater difficulty due to memory constraints. Consequently, bigger
groups tend towards more easily interpretable languages [GRR22].

In earlier work, Raviv et al. [RMLA19b] conducted research to test the effect of group size and input
variability on systematicity in a language. Two groups, one group consisting of four people and one
group consisting of eight people, participated in a signaling game. Each group was shown several
scenes, which they had to describe to each other using non-existent symbols (words). Following
the descriptions, participants needed to select the correct scenes according to some descriptions
provided by their group member. In the study Raviv et al. showed that growing group size and input
variability facilitates systemacity in a language. In addition, they showed that a close relationship
exists between linguistic structure and comprehensibility of a language.
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Similarly, Raviv et al. [RMLA19a] conducted a meta-analysis, where they studied the effect of a
growing meaning space and growing group size on compositionality. The results confirmed the
findings in the previous study [RMLA19b], where it was shown that a growing group size facilitates
compositionality. However, a significant effect from a growing meaning space on compositionality
was not shown. Therefore, it seems growing group size is a stronger pressure for compositionality
compared to a growing meaning space. However, both factors were studied simultaneously in one
experimental set-up, and whether growing meaning spaces can boost the emergence of compositional
structure in absence of a growing group size remains unknown. Finally, while other researchers
[SKO04, AMPS08] have found that new learners are necessary for the formation of linguistic
structure in a language, the meta-analysis [RMLA19a] showed this is not necessary. Therefore, it is
justified to perform experiments using agent pairs, instead of larger groups.

2.2 Language Properties

As there is a need to capture properties of emergent languages, several metrics have been proposed
in order to capture such metrics. Topographic similarity [BK06] is often used in language emergence
studies as a way to quantify compostionality [CKB+20, LHTC18]. The metric can detect the
tendency for messages with similar meanings to be in similar form. However Chaabouni et al.
[CKB+20] have pointed out there is no correlation between compositionality and the generaliz-
ability of new inputs for in language. Nonetheless, generalization of new inputs is seen as one
of the core attributes of compositionality in natural languages [PW10]. Even though the results
by Chaabouni et al. [CKB+20] show that compositionality is not necessary for a language to be
generalizable, the general consensus is that compositional languages do support generalization
[PW10, KCS08, GRR22]. This suggests, that the need to generalize is not sufficient for a language
to be compositional. In conclusion, it can be said that compositionality makes it very likely for a
language to be generalizable and thus is highly desired for language.

Several other metrics have been proposed in order to analyse what establishes compositionality
in emergent languages [CKB+20, XNR22]. Taking inspiration from the representation learning
literature [XNR22], Chaabouni et al. [CKB+20] propose that looking at disentanglement in learned
representations could be of use. Messages in natural languages entangle information about concepts.
Thus, studying how concepts are encoded in a message by disentangling the messages could give
more insight in how different properties could arise. Consequently, using this inspiration Chaabouni
et al. [CKB+20] introduced two new measures to capture disentanglement in a language. Positional
disentanglement (posdis) and bag of Symbols disentanglement (bosdis). While, they were unable to
show that disentanglement is strongly correlated with topographic similarity, they did observe that
similar behaviour between the two. This is not surprising as topographic similarity is an agnostic
measure and does not fully capture compositionality [CKB+20]. Given this understanding, it is
sensible to use posdis and bosdis for analysis in emergent languagues.

2.3 Computational Modelling

Computational modeling has long been used to study language evolution [Ste12, KO21, KCS08].
Recent research has focused on the application of advanced machine learning methods such as
deep neural networks and reinforcement learning algorithms to study emerging communication
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patterns in multi-agent systems [LB20]. This approach enables analysis of the dynamics at play
when multiple agents interact through learned signals, providing new insights into how populations
might coordinate their behavior under different conditions [GRR22].

In most computational experiments either symbolic or visual inputs have been used to study lan-
guage emergence [LHTC18]. Most studies employ either some type of Recurrent Neural Networks
(RNN) [RHW85], such as LSTMs or GRUs [AS17], or Autoencoder models as architectures for
multi-agent systems. Training is usually carried out utilizing REINFORCE or Gumbel-Softmax
optimization for efficient agent coordination [GRR22].

In recent studies, the majority of investigations of computational language emergence have relied
on Lewis’ reference game as a means of evaluating language emergence [GRR22]. In the context
of a Lewis game, the first participant (the speaker) perceives a randomly selected object within
its environment. The aim of the speaker is to describe this object to the second participant (the
listener), which needs to reconstruct the description in order to find the object. The success of this
game is quantified by how well the pair is able to reconstruct the original object [Ste12]. However,
variants of the Lewis game have also been presented. One such is the variant proposed by [KO21].
Compared to referential games wherein full information about the observations is available to
all participants, the modified version features partial and disjoint knowledge possessed by the
agents. As such, the focus of communication shifts to conveying the limited data obtained through
respective incomplete perceptions.

Agent architecture, game design, input, and training protocol are the building pillars of a compu-
tational language emergence experiment [GRR22, GRR23]. However, the experiments also need
to be analyzed. For this reason, researchers have used measures to analyze language emergence
experiments to capture linguistic properties or generalization [CKB+20].

3 Method

3.1 Game Design

For the game design an existing framework, EGG, from Meta AI [KCBB19] has been used. The
framework contains several language games which can be used to simulate language emergence
among neural agents. Several other research papers have used this framework as well to study
language emergence. [CKB+20, KCBB20] making it relevant to work in this framework.

The language game of choice for this research is the Object’s game [LHTC18], which is a type of
referential game similar to the Lewis’ game [Ste12]. The Object’s game consists of a speaker and
listener which are able to perceive an observation. The speaker selects a random object from a set
of objects from the observation and sends out a message to the listener, which in turn tried to find
the selected object.

In each trial in the game, two agents perceive several discrete objects: A target oT , a set of distractors
OD, and a message i ∈ I. The task of the game is to choose the correct target object according to
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some message M.

Agent Each agent pair is initialized newly at the start of a new game. An agent pair is denoted
by a tuple G = (Gs,Gl). Where Gs and Gl represent the listener and speaker agent respectfully.

Actions Consider an environment where the action space is divided into a message action space
Am and a decision action space Ad, such that Ad ∪ Am = A and Ad ∩ Am = ∅.
A speaker and listener pair G = (Gs,Gl) is initialized at the beginning of a round. The speaker Gs

takes observations as inputs and sends a discrete message m ∈ Am to the the listener Gl as output.
The listener Gl observes the state of the environment and receives a message m from the speaker.
According to m, the listener acts and decides what the correct object is with the action d ∈ Ad.

The communication is successful between the pair G if d maps to the target T . Finally, both the
speaker and the listener in a pair have access to the full state information of the objects in the
environment.

Objects We consider an object o ∈ O as a discrete vector of length N and where the entries are
ni ∈ N , where i ∈ M . Here, N denotes the attributes of an object and M denotes the values the
attributes can take. Consequently, MN = |O| objects can be constructed.

State and observation Consider a state-tuple s, such that s = (oT ,OD), where {oT ,OD} ∈ O.
oT denotes the target object and OD denotes the set of distractor objects. Given the state s the
speaker generates an appropriate message m ∈ Am to forward to the listener. Both agents have
access to the full state information.

communication success rate To evaluate whether a language L has converged and commu-
nication success rate is used. Communication success rate is defined as the success rate of the
listener selecting the the target object oT .

3.2 Metrics

As there is a need to measure language properties of a language L, inspiration is taken from earlier
research that proposes the use of three metrics [CKB+20]. The metrics include posdis, topsim and
bosdis

Topographic similarity (Topsim) Compositionality is considered crucial for generalization in a
language [Mar03, FL02]. Therefore, Topsim [BK06] is used as a measure to capture compositionality.
Topsim tests whether objects that are close to each other are also closely mapped in the message
space. This is achieved by computing the Spearman correlation between the pairwise distances
between object space and message space. We formally define Topsim by 1:

Topsim = ρ = 1− 6
∑n

i=1(roi − rmi)
2

n(n2 − 1)
(1)
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We denote, n = |O| is the total number of objects being compared. oi and mi are the set of distances
between distances and objects respectfully. In addition, roi denotes the rank of the pairwise distance
of the i-th object pair in the object space. Similarly, rmi denots the rank of the pairwise distance
of the i-th message pair in the message space. A higher value of ρ indicates a higher topographic
similarity, as it means the ranks of the distances in the two spaces are more closely correlated.

Positional disentanglement (Posdis) Posdis [CKB+20] measures whether symbols in specific
positions tend to univocally refer to the values of a specific attribute. This attribute is often
encountered in natural language structures. For instance, take yellow square. The first symbol
yellow refers to square in this example and is used as an adjective. Posdis tries to find structures
like this in messages. Let’s denote sj : aj1 as the j-th symbol of a message and as the attribute
with the highest mutual information. Likewise, aj2 is the attribute with the second highest mutual
information. Finally, H(sj) is the entropy of the j-th symbol in a message m, which is used as
normalizing term. Posdis, is in turn defined as 2.

Posdis = 1/clen

clen∑
j=1

I
(
sj; a

j
1

)
− I

(
sj; a

j
2

)
H (sj)

(2)

Bag of symbols disentanglement (Bosdis) Posdis assumes that every symbol in a specific
message refers to something else. However, we can imagine languages where that is not the case. For
example, in English order of symbols does not always change the semantic meaning of a sentence,
i.e. bees and birds and birds and bees are semantically the same. Bosdis[CKB+20] captures the
tendency of symbols to refer to distinct meanings. Let nj be the count of the j-th symbol in a
message. Finally, bosdis is defined as 3.

Bosdis = 1/cvoc

cvoc∑
j=1

I
(
nj; a

j
1

)
− I

(
nj; a

j
2

)
H (nj)

(3)

Generalization Generalization captures how well agents are able to generalize unseen objects.
This is computed by taking the average test accuracy of various communication channels between
an agent-pair (c, s)

3.3 Training and architecture

Speaker The training consists of n episodes ∈ N. During each episode, one agent is initialized
as speaker. Next, the speaker processes several discretely valued object-vectors o ∈ O into an
embedding using either an vanilla-RNN, LSTM or GRU, which in turn outputs a message m ∈ A.

Listener Similarly to the speaker in 3.3 the listener processes the observations in the same
manner. However, instead of outputting a message m the listener processes the message m forwards
it to the hidden layers and outputs an action d ∈ Ad with the highest probability.
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Architecture Both agents are implemented with two GRUs. The sender processes the target
object through a linear transformation and feeds it forward into the GRU. Using Gumbel-Softmax,
it then generates a message m that is passed to the receiver. The receiver processes message m
through a GRU, which in turn creates an latent embedding of the target message m. Additionally,
the listener processes the target vector oT and a set of distractor vectors OD. For each object vector
in the environment and the message embedding a pair is constructed for which a similarity score is
calculated using the dot product. Following, the similarity score is used by the listener to select an
object.

Training During training, messages are generated by the speaker and propagated to the listener
through a communication channel. Using a message m and a decision ad is selected. The loss is
calculated with cross-entropy loss over the target objects and the selected object as this this helps
with measuring the distribution of objects in the environment. Gradients are calculated using
Gumbel-softmax relaxation [JGP16], which are used for reparametrization of the architectures of
the agents. In addition, for loss optimization backpropagation is used and minimized through an
Adam optimizer.

3.4 Experiments

In this work we aim to understand whether there is an effect between the increase of meaning space
on compositionality of a language. To test this the following experimental setup has been performed.

There is a need to increase the meaning space in the referential game. To achieve this we simply
adjust a single parameter in the experiment. Objects in the game are constructed using a discrete
vector of length N , such that the entries yield values ni ∈ N , where i ∈ M and N ∈ N. An entry
ni can yield a value ranging from 0 to N . In the proposed experimental setup N = 4. This leads to
a configuration of the game where M4 objects can be constructed.

For every experimental run we change M 10 times during a trial. The agents are trained for 30
epochs, after which we freeze and save the weights of the agents. Accuracy and linguistic metrics
are outputted to a csv file as well as the messages that are outputted and objects vectors in the
environment. Following, new objects are introduced by scaling M and the game is continued with an
increase in meaning space. The vocabulary size lvoc = 500, epoch length lepochs = 20, message length
lm = 6 and the number of distractors ldist = 9 are kept constant. In addition, the hyperparameters
are kept constant as well, where the learning rate and batch size for the Adam optimizer is 0.001 and
a 32 respectively. Finally, 30 trials are performed to ensure a sufficient amount data for which we an
analysis has been performed. Hyperparameters search has not performed as the hyperparameters
from the original paper have been used [LB20].

4 Results

Effect of meaning space Averaged accuracy, topsim, bosdis, posdis and mutual information are
reported in table 1. For a confidence interval of 95% a linear regression analysis has been performed
for which the fitted curves can be found in figure 1. In addition, the slope coefficients, p-values of
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Table 1: Results of running the Object’s game with agent pairs. Language metrics and test accuracy
are reported when scaling meaning space averaged over 30 runs.

Meaning Space 16 81 256 625 1.296 2.401 10.000 50.625 160.000 810.000

Accuracy 0.75 0.93 0.94 0.94 0.93 0.93 0.93 0.92 0.92 0.92
Topsim 0.46 0.32 0.27 0.22 0.20 0.18 0.15 0.12 0.11 0.09
Bosdis 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05
Posdis 0.19 0.09 0.05 0.04 0.04 0.05 0.03 0.04 0.04 0.04
Mutual information 6.39 6.86 6.94 6.81 6.81 6.87 7.22 6.72 6.94 7.11

the variables and R2 are reported. Meaning space fails to explain all the variation in the metrics, as
can be shown by the low R2. While the effect of meaning space on mutual information is minimal,
there seems to be a causal relationship between the two.

In figure 2 the Spearman-correlation between the metrics are portrayed in a heatmap. All the
reported correlations yield a p-value of p < 0.05, except for the correlation between meaning
space and accuracy, and accuracy and bosdis, which have a p-value of 0.289 and 0.130 respectfully.
Consistent with findings from previous research as highlighted by Chaabouni et al. [CKB+20],
there appears to be little correlation between topsim and bosdis with generalization. However, a
strong negative correlation can be found between generalization and posdis. In addition, A strong
of positive correlation between Mutual information and meaning space can be found. Furthermore,
a strong correlation between generalization and mutual information is observed. Finally, the results
show that mutual information is strongly negatively correlated with topsim, posdis and bosdis.

In addition, the results in figure 1 shows that generalization is strongly correlated with a scaling of
the meaning space as can be shown by the increase in average accuracy on the test.
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(a) Linear regression model for the predictor
meaning space and outcome topograhic similar-
ity (topsim)

(b) Linear regression model for the predictor
meaning space and outcome positional disentan-
glement (posdis)

(c) Linear regression model for the predictor
meaning space and outcome bag of symbols dis-
entanglement (bosdis)

(d) Linear regression model for the predictor
meaning space and outcome accuracy

(e) Linear regression model for the predictor
meaning space and outcome mutual information

Figure 1: Linear regression models for meaning spaces predicting one of the language language
metrics and test accuracy. Reported metrics are averaged over 30 runs in addition a log(10) scale is
used to capture the rapid changes in meaning space.
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Figure 2: Spearman correlations between the variables meaning spaces, accuracy, topographic
similarity, positional disentanglement, bag of symbol disentanglement and mutual information.
Reported correlations are statistically significant (p < 0.05), with exception of meaning space and
accuracy, and accuracy and bosdis.
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Role of compositionality measures The analyses failed to show a positive causal effect
between meaning space and topsim shown by the regression analysis in figure 1a and the Spearman-
correlation analysis in figure 2. This raises the question how other compositionality measures behave
in regard to topsim. The Spearman-correlation analysis has already shown that there appears to be
a correlation between posdis and topsim, and between bosdis and topsim. Whether the portrayed
relationships also account for causality remains unclear. For this reason, an additional multiple
regression analysis has been performed to assess the importance of the variables. The results are
presented in figure 3, for which we obtain the following statistics in table 2.

Figure 3: Multiple linear regression model with posdis and bosdis as predictors for topsim. Posdis
shows a highly predictive relationship with topsim, whereas bosdis does not show a highly predictive
relationship with topsim.

Table 2: Parameters for the multiple linear regression model using predictor variables posdis and
bosdis, with topsim as the outcome variable.

β posdis β bosdis p-value posdis p-value bosdis R2 confidence level
0.963 0.213 ∼0.000 0.322 0.374 95%

The presented regression model shows a significant positive relationship between posdis and topsim
(β ≈ 0.963, p ≈ 0.000). On the other hand, the regression model was unable to find a significant
relationship between bosdis and topsim (β ≈ 0.213, p ≈ 0.322). Finally, the variables of the
regression model do not account for all the variation in the data as can be shown by squared R
value.

5 Conclusions and Further Research

The results from the experimental setup failed to show a strong causal relationship between meaning
space and the language metrics, topsim, bosdis, posdis and mutual information. This suggests that
the need to generalize to new inputs does not appear to be a sufficient pressure to to develop a
compositional language. However, while the effect is not strong, meaning space does appear to
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influence generalization and mutual information slightly. An increase in mutual information can
be explained by two things. First, the rise in mutual information could be attributed to increased
compositionality in the emergent language. Second, it might be the result of agents developing
holistic languages at some point in the experimental setup. The latter explanation seems more
plausible as the results show that topographic similarity and mutual information are not strongly
positively correlated. In many languages, high mutual information might suggest that words are
related in a compositional manner (e.g., ”blue” might frequently occur with ”sky”). However,
in a holistic language, this is not the case. Instead, words with high mutual information might
frequently appear in the same situations or contexts, even if they do not share semantic components.

The results in this work are parallel to the work done by Raviv et al. [RMLA19a, RMLA19b]. The
researchers were not able to observe a causal effect between meaning space and compositionality,
whilst there seemed to be an effect between group size and compositionality. This suggests that
increasing group size is a sufficient compressibility pressure to increase compositionality. The effect
could be explained due to an increase in input variability. When populations increase in size different
styles or dialects can emerge [CT17]. In turn, language learners get exposed to this variability and
are under pressure to develop a language that is robust. Moreover, increasing meaning space had
not been individually studied before. Here we find no positive relationship between scaling meaning
space and its effect on topsim.

In addition, bosdis did not seem to have a significant relationship with topsim, whereas, a significant
relationship between posdis and topsim was observed. Even though all three measures capture
compositionality in a different way bosdis seemed to capture an exclusive property. The difference
is not surprising due to the definition of of the measures. Posdis captures the tendencies for symbols
in specific positions to refer to another symbol, while topsim captures the tendency for semantically
similar messages to be in similar form. The type of compositionality bosdis captures is different
given by its definition 2. The nature of bosdis is rooted in the concept of permutation invariance; it
is primarily concerned with the mere presence or absence of symbols, rather than their sequential
arrangement. On the other hand, posdis and topsim are sensitive to the arrangement of symbols.
This difference underlies the observed deviation in behavior among the three metrics.

There are a number of shortcomings in the study’s design and execution. Firstly, the research was
constrained by the limited size of the population tested. A larger population size could increase
the internal validity of the study. Furthermore, the reporting methodology was not as detailed as
wanted. Due to the usage of the EGG framework, presenting the measures for each epoch was not
achieved. Only the test measures after 50 training epochs were presented, which might not capture
the full dynamism of the system under study. Lastly, an opportunity was missed in not utilizing
unsupervised learning methods. By clustering the latent representations or messages of the agents,
we could have delved deeper into the changes and patterns that might emerge when scaling the
meaning space. This kind of analysis has been done previously by [KO21]. These oversights, while
highlighting areas for improvement, also underscore the potential avenues for future research.

In conclusion, an increase in meaning space is not sufficient for increased compositionality. Addi-
tionally, languages with high communication success rate are not necessarily highly compositional.
The experimental setup showed that high communication success rate could also be caused by
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holistic languages. Finally, we find parallels between the disentanglement metrics bosdis and posdis,
and topsim. However, bosdis seems to behave differently from posdis and topsim. While this work
was not able to replicate the results of Raviv et al. [RMLA19b], it provides an opportunity to
redirect our attention to study different compressibility pressures in language emergence.

Finally, the disentanglement metrics are a promising new direction of measuring language properties
such as compositionality. In future work, it would be valuable how we can ensure disentanglement
occurs and how these metrics would behave in different experimental setups. Another promising
direction is to use architectures that are able to capture disentanglement. Inspiration can be taken
from the various ideas that have been proposed in recent years in the representation learning
literature. For example, architectures have been introduced that are able to capture interpretable
factorised latent representations[HMP+16, XNR22] in visual data.
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7 Code repository

The code and data can be found in the following repository:
https://github.com/imnublet/growing_meaning_spaces
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