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Abstract

Data augmentation plays a pivotal role in improving the performance of machine learning
models, especially in domains where data scarcity is a prevalent issue. In recent years, audio
classification has gained significant attention due to its wide range of applications, such as
speech analysis, music genre classification, and environmental sound analysis. However, the
limited availability of annotated audio data often poses a significant challenge in training
accurate and robust audio classifiers.
This paper focuses on the utilization of data augmentation techniques to address the data
scarcity problem in audio classification tasks. The objective is to enhance the generalization
capability of audio classifiers by artificially expanding the training dataset through various
augmentation strategies. The study explores techniques for applying the various available audio
augmentation methods such as time stretching, pitch shifting, noise injection, and spectrogram
manipulations.
This paper proposes an effective modification called Itermixup of well known data augmenta-
tion method Mixmatch. IterMixup uses the multiple iterations of the Mixup Functions using
different mixing ratios.The proposed augmentation technique are evaluated on the Urban-
Sound8K benchmark audio dataset using WideResNet, MobileNetv1 and VGG Neural Networks
for classification. The experimental results demonstrate the effectiveness of the proposed data
augmentation technique in improving the performance of audio classifiers across the Environ-
mental Sound Classification task.
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Chapter 1

Introduction

In recent years, the realm of audio processing and sound analysis has seen remarkable progress.
The advent and evolution of Machine Learning (ML) and Deep Learning (DL) techniques have
opened up numerous possibilities and unprecedented avenues in this sphere. The complexity
and variability of audio data, though, make it one of the most challenging data types to
analyze. A crucial factor that has proven to be highly effective in improving the performance
of these audio classification models is data augmentation.
Data augmentation is a strategy that allows us to significantly increase the diversity of data
available for training models, without actually collecting new data. In audio classification, it
involves the creation of synthetic audio data by adding modifications to the existing data, such
as time stretching, pitch shifting, adding noise, or changing volume levels[21]. The primary
goal of such techniques is to replicate the kind of variations that could potentially occur in
real-world data, thereby ensuring that the model is not only well-trained but is also robust and
versatile.
Data augmentation is widely used in machine learning and computer vision[13] to increase
the size and diversity of a training dataset by applying various transformations to the existing
data samples. The goal of data augmentation is to improve the generalization and robustness
of machine learning models by exposing them to a larger variety of data instances. Data
augmentation techniques manipulate the training data in ways that preserve the underlying
information while introducing realistic variations. This approach helps the model to learn more
invariant and robust features, enabling it to perform better on unseen examples during the
testing or deployment phase.
Despite the complexity of the task, audio data augmentation has emerged as a potential
game-changer in audio-related machine learning applications, contributing to advancements
in various sectors including healthcare[5], entertainment[23], surveillance[2], and more. How-
ever, understanding and effectively implementing these techniques requires a deep and broad
comprehension of both the theory and practical implications involved.By incorporating data
augmentation techniques into the training pipeline for audio classification, models can learn
more robust representations, generalize better, and achieve improved performance on unseen
audio samples, resulting in more accurate and reliable audio classification systems. In this
paper, the various technique of applying various well known data augmentation methods for
audio, such as Time Stretching, Pitch Shift, Occlusion, Speed Perturbation and CutOut. Here
we propose a new data augmentation technique inspired by Mixmatch and show that our pro-
posal increase the performance of the state-of-the-art Neural Network method for the audio
classification tasks.
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MixMatch[3] has proven to be a highly effective data augmentation approach in semi-supervised
learning for the audio classification task, specifically in image classification. MixMatch aug-
ments both labeled and unlabeled data by combining consistency regularization and mixup,
resulting in improved model performance with limited labeled data. Despite its success in im-
age tasks[3], there is a limited amount of research on MixMatch’s potential in the domain of
audio data augmentation.
By addressing the dearth of research in audio data augmentation, this thesis aims to contribute
to the advancement of audio classification models and foster wider adoption of semi-supervised
learning techniques in audio processing applications. IterMixup has the potential to empower
audio analysis across diverse domains and lay the foundation for more efficient and accurate
audio-based systems. We have also tried to improve the results by adding Time Stretching[19]
and Pitch Shifting[16] data augmentation methods.

In this paper the following research question are addressed,

1. What are the current state of the art methods for data augmentation for audio classifi-
cation task?

2. Does the performance of the current state-of-the-art methods improve using a new data
augmentation technique?

Contribution
In this paper we have researched the various data augmentation methods that are already
available and in common use for audio classification tasks. We have tried a novel experiment
using the state-of-the-art method to improve the results using one of the datasets used in the
same method.
Structure
The rest of the paper is structured as follows: Section 2 discusses the previous work on various
data augmentation methods. Section 3 discusses the various fundamentals used in the paper
like some relevant machine learning algorithms and the basic terminology is explained. Section
4 discusses the methods, setup, dataset and other aspects of the paper. Section 5 discusses
the contributions of this paper to the current methods.
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Chapter 2

Related Work

The main path for processing in Audio classification includes: data collection and pre-processing,
feature extraction , data augmentation, model selection, model architecture,and then train-
ing the model using the training data obtained from data augmentation, validation and then
evaluation. This is introduced in the paper by J. Solomon et al. [21] and Karol J. Picszak et
al.[19].
Although the signal classification for audio has its uniqueness, once it is converted to a 2-d
spectrum , we use image processing methods but with constraints by the fact that images are
mel-spectrograms instead of just images.

There are various data augmentation methods for images like random cropping, flipping rota-
tions etc. Some new methods like Cutout[7] and Random Erasing [26] have been introduced
to solve problems with computer vision. The network is made to focus on the whole image by
cutting out a part of the input image, so the accuracy of the method increases. There are also
some other methods which use linear mixing like Sample Pairing, Mixup and Between-class
learning. Random Erasing[26] was introduced recently where a random part of the image is
changed to random values or greyed out. This helps in creating a larger dataset for training
and testing while also improving the accuracy of the neural net. In [15], they have tried to
implement the Random erasing method on audio where they also introduce a new method
called Intra-Class Random erasing where they do now want good features to be lost while
performing Random Erasing. They Achieve this by exchanging a randomly selected region of
sample with a randomly selected sample of a different sample. This method has also shown
some improvement over the already improved Random Erasing. Another way of using Random
Erasing was proposed in [14] where they focus on learning robust features of the same class
by randomly exchanging randomly selected region from the images. Cutout[7] involves mask-
ing out (cutting out) random patches of pixels from an image during training. This process
encourages the model to focus on the remaining parts of the image and learn robust features,
improving its ability to generalize to new and unseen data.

Mixup[25] can also be used for Audio Classification[6]. But, the temporal nature of the speech
or audio signal need special augmentation methods for the audio signals like adding Gaussian
noise, time stretch and pitch shift. The latest addition to the augmentation methods for audio
signals is SpecAugment[18]. Google proposed SpecAugment[18] which uses time warping ,
frequency masking and time masking augment audio. The 2-dimensional spectrum diagram of
the audio signal is treated as an image with time on the x-axis and frequency on the y-axis.
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In [21] published in 2016, J.Salamon et al. proposed a neural network architecture for envi-
ronmental sound classification and data augmentation method for sound classification. The
deep convolutional neural network consists of 3 convolutional layers interleaved with 2 pooling
operations, followed by 2 fully connected (dense) layers. The input for the network are Time
Frequency patches (TF-pathces) which are extracted using Essentia [4]. For training, cross-
entropy loss is determined using stochastic gradient descent.
They tried 4 different deformations for audio augmentation resulting in 5 augmentation sets.
The deformations used were, Time Stretching, Pitch Shifting, Dynamic Range compression
and Background Noise. The improvement of not only due to the augmented dataset but the
combination of the augmented dataset and the deep convolutional model.
Another research paper by [1] et al. discussed the use of laboratory generated dataset. These
materials were selected to mimic the generation of squeaks and rattles from automobiles. Now
the dataset size was increased using data augmentation techniques like Pitch Shifting, adding
Background Noise and Time stretching. Then dataset was passed through a CNN architecture
containing 2 convolutional layers, max-pooling and 2 fully connected layers. Then the two fully
connected hidden layers have 5000 ReLU each for better feature processing and the output
layer has 8 classes. For both of the datasets the best accuracy was obtained by combining the
various data augmentation methods. The best accuracy was 97.1% and %97.7 for squeak and
rattle datasets respectively for the combined augmentation,

Loris Nanni et al. [17] have used various Data Augmentation approaches . 2The transforma-
tions done on the signals were speed scaling, pitch shift,volume change, random noise addition
and time shift. This generated abut 10 new signals for each training signal. They also did
applied some special augmentation techniques on spectrograms namely Random Shifts, Same-
ClassSum, Vocal Tract Length Normalization (VTLN), TimeShift, ImageWarp, RandomEMDA
AUgmenter (Equalized mixture Data Augmentation). Next they tried Signal Augmentation was
dome on the raw audio Signals they fallowing methods were applied Wow resampling, adding
noise, clipping, speedup, Harmonic Distortion, Gain,TimeShift, soundmix, DynamicRangeCom-
pression and Pitchshift. This resulted in 11 transformed versions of the input signal. The Used
the BIRDZ dataset and CAT sound dataset. They used CNNs which are already pretrained
like GoogleNEt and VGGNet. The results demonstrated that a combination of various data
augmentation methods maximize the performance of the model.

Tom Ko et al. have reported experiments with audio speed perturbation[12] which emulates
a combination of tempo perturbation and vocal tract length perturbation. The combination
of the above two mentioned methods performed better than them individually. For tempo
perturbation the given audio signal x(t) is multiplied by a factor α which gives us x(αt), by
using fourier transform on the resulting signal we can see that warping factor produces shifts
in the frequency components by an amount proportional to the frequency. The dataset used
was the gayle mandarin dataset.

Yidong Wang et al.have publisher a paper in 2022 which proposes a unified semi-supervised
learning benchmark called USB[24] for classification tasks in computer vision, natural language
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processing, and audio domains. The benchmark aims to enable consistent evaluation over mul-
tiple datasets from multiple domains and reduce the training cost to make the evaluation of
SSL more affordable. The authors evaluate 14 SSL algorithms on 15 tasks across domains
and find that pre-training techniques can be helpful in the SSL scenario because it can not
only accelerate the training but also improve the generalization performance. The paper also
provides an environmentally friendly and low-cost evaluation protocol with pre-training and
fine-tuning paradigm, reducing the cost of SSL experiments.

Yuan Gong proposed a novel self-supervised learning framework called Masked Spectrogram
Patch Modeling (MSPM)[8] for audio and speech classification. MSPM is a joint discrimina-
tive and generative framework that predicts a specific frequency band in a specific time range
given the neighboring band and time information. The proposed framework is evaluated on
various speech and audio tasks, including audio event classification, keyword spotting, speaker
identification, and speech emotion recognition. The experiments demonstrate that MSPM can
significantly outperform from-scratch models for all six benchmarks evaluated with an average
improvement of 60.9%. The proposed framework can reduce the need for large amounts of
labeled data for audio and speech classification.

Rongjie Huang et. al proposed a method called Make-An-Audio[11] for text-to-audio gen-
eration using prompt-enhanced diffusion models. The main challenges in audio generation are
the lack of high-quality text-audio datasets and the complexity of modeling long continuous
audio data. To address these challenges, the authors introduce a pseudo prompt enhance-
ment approach to construct natural languages that align well with audio, allowing the use of
unsupervised language-free data. They also use a spectrogram autoencoder to predict self-
supervised representations instead of waveforms, ensuring efficient compression and high-level
semantic understanding. The paper presents several key contributions, including the Make-An-
Audio method, which leverages latent diffusion with a spectrogram autoencoder for modeling
long continuous waveforms. They also investigate textual representation and highlight the ad-
vantages of contrastive language-audio pretraining. The paper evaluates Make-An-Audio and
demonstrates state-of-the-art results through quantitative and qualitative evaluations. Addi-
tionally, the authors generalize the model to X-to-Audio generation, enabling the generation
of high-definition, high-fidelity audios based on user-defined inputs.

David Bertholet et al.[3] introduced a new data augmentation method which is MixMatch.
The MixMatch algorithm has demonstrated state-of-the-art performance in semi-supervised
learning tasks and has proven to be effective in leveraging large amounts of unlabeled data
to enhance model performance with limited labeled data. It provides a holistic approach that
combines data augmentation, mixup, and consistency regularization to create more robust and
accurate pseudo-labels for the unlabeled data. Mixmatch gives us an accuracy of 82% which is
the state-of-the-art accuracy achieved on the UrbanSound8K dataset. In this paper, we have
tried to improve on Mixmatch by running the mixup function with multiple values of lambda.
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Chapter 3

Fundamentals

In this section we will talk about the background information and the measures that we have
used to evaluate the performance of the methods.

3.1 Evaluation Metrics

In most of the research about audio classification discussed in the 2 uses accuracy, error rate
and f-score as metrics to evaluate the performance of the model. To compare our results with
the models and methods discussed before, we are also using the same metrics for evaluation,
Accuracy
Accuracy for classification tasks is the ratio of correctly predicted classes to the the total
number of predictions. This can be shown by the formula below.

Accuracy =
Number of correct predictions

Total number of predictions

Error rate
Error rate is the degree of prediction error of a model made with respect to the true mode. It
can also be framed as ratio of incorrectly classified objects to the total number of classifications.

ErrorRate =
Number of incorrect classifications

Total number of classifications

From the above two equations, it can be deduced that:

Accuracy = 1− ErrorRate

Precision
Precision is a metric used to evaluate the performance of a machine learning or classification
model. It measures the accuracy of the positive predictions made by the model, i.e., the
proportion of true positive predictions among all positive predictions made by the model.
Where, True Positives (TP) are the instances that are correctly predicted as positive by the
model. False Positives (FP) are the instances that are incorrectly predicted as positive by the
model when they are actually negative.

Precision =
truePosities

truepositives+ falsepositives
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Recall
Recall, also known as sensitivity or true positive rate, is a metric used to evaluate the per-
formance of a machine learning or classification model. It measures the proportion of actual
positive instances that are correctly identified by the model. Where, True Positives (TP) are
the instances that are correctly predicted as positive by the model. False Negatives (FN) are
the instances that are incorrectly predicted as negative by the model when they are actually
positive.

Recall =
truepositives

truepositives+ falsenegatives

F-Score

3.2 Audio Data Representation

In this section we discuss the various audio representation techniques used in the experiments.
Waveform Representation
A waveform is a continuous representation of an audio signal over time. It is obtained by
plotting the amplitude of the audio signal against time. Waveform representation retains the
original time-domain information but can be challenging to work with directly due to its high
dimensionality. An example can be seen in 3.1

Figure 3.1: Audio Sample as a Waveform

Spectrograms
A spectrogram is a visual representation of the frequencies present in an audio signal over
time. It is obtained by applying the Fourier Transform to short segments of the audio signal.
Spectrograms provide a 2D representation where time is on the x-axis, frequency is on the
y-axis, and color represents the amplitude or energy of the frequency components. 3.2 is an
example of a spectrogram.
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Figure 3.2: Audio Sample as a Spectrogram

Mel-Spectrogram
A mel-spectrogram represents the frequencies over time. However, the frequency scale is
transformed to a mel scale, which is more aligned with human auditory perception. A mel-
spectrogram can be seen in 3.3

Figure 3.3: Spectrogram Adjusted to a mel scale

FFT
The Fast Fourier Transform (FFT) is a computational technique that converts an audio signal
from its time-domain representation into a frequency-domain representation. It achieves this
by breaking down the signal into different frequency components, revealing the distribution
of frequencies and their corresponding amplitudes. The result, known as the FFT spectrum,
showcases the strength of various frequencies within the signal. This representation is crucial for
tasks such as spectral analysis, music analysis, sound event detection, and audio classification,
where it allows for the identification of dominant frequencies, harmonics, and patterns in the
audio data.

3.3 Audio Data Augmentation Techniques

In this section we discuss, the various audio augmentation methods used in our experiments.
Occlusion
It consists of setting a segment of the waveform to zero. The size of the segment is randomly
chosen up to a user-defined maximum size. The position of the segment is also chosen ran-
domly. Occlusion is applied on the raw audio signal.
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CutOut[7]
It sets the values within a random rectangle area with the -80 dB value, which corresponds to
the silence energy level in our spectrograms. The length and width of the removed sections
are randomly chosen from a predefined interval and depend on the spectrogram size. This is
applied to log mel spectrograms

Speed Perturbation[12]
We resample the raw audio signal up (nearest-neighbor upsampling) or down (decimation)
according to a rate chosen randomly within a predefined interval. The resulting waveform is
either shorter or longer. Padding or cropping is randomly applied at the start and the end of
the stretched signal to keep the signal duration constant.

Pitch Shift[16]
Pitch shifting alters the perceived pitch of a sound without significantly changing its duration.
It involves modifying the frequency of the audio signal while compensating for changes in
playback speed to maintain the original duration. Techniques like resampling, phase vocoding,
and granular synthesis are used for pitch shifting. It finds applications in music production,
sound design, vocal processing, and audio manipulation, enabling tasks like creating harmonies,
changing musical keys, and adding unique effects to audio signals. Time Stretching[19]
Time Stretching is the process of altering the duration of an audio signal without impact-
ing its pitch. By expanding or compressing the time axis of an audio waveform, variations of
the original samples are created, aiding in enhancing the dataset’s diversity. This technique
is especially beneficial for models, making them more resilient to variations in speech rates
or musical tempos. Several algorithms, such as the phase vocoder and synchronized overlap-
add (SOLA), facilitate time stretching, ensuring minimal introduction of artifacts. While it’s
a potent augmentation method, careful application is crucial to avoid distortions and ensure
realistic audio representations.
When weak data augmentations are applied, it means that there is a 50% chance of the aug-
mentation to be applied to the signal. Similarly, when strong data augmentation techniques
are applies, there is a 100% chance that the data augmentation will be applied to a signal.
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Chapter 4

Methodology

4.1 Neural Networks

4.1.1 WideResNet

For this method we have used the same Neural Network that has been used by Leo Cances et
al.[6]. WideResNet-28-2 is a specific convolutional neural network architecture used for image
classification tasks.The architecture is an extension of the original ResNet model by Kaiming
He et al.[9], which introduced the concept of residual blocks to alleviate the vanishing gradient
problem in deep networks. WideResNet further improved the performance by increasing the
width (number of channels) of the layers while keeping the depth relatively shallow.
The notation ”WideResNet-28-2” refers to the specific configuration of the network:

Layer Architecture
input Log mel spectrogram
conv1 BasicBlock(32)

Max pool

block1
[BasicBlock(32)
BasicBlock(32)] x 4

block2
[BasicBlock(32)
BasicBlock(32)]x4

block3
[BasicBlock(32)
BasicBlock(32)] x4
Avg pool
ReLU
Linear

Table 4.1: WideResNet-28-2 Architecture

The overall architecture typically consists of several residual blocks with a set number of layers,
where each block contains two or more convolutional layers and a skip connection to retain the
learned features from the previous layers. The skip connections help in the efficient training of
deeper networks.
WideResNet-28-2 is known for its ability to achieve competitive accuracy on various image
classification datasets while being more computationally efficient than very deep networks like
ResNet-152. WideResNet-28-2 often achieves state-of-the-art performance on classification
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benchmarks, demonstrating its suitability for various tasks, and its transfer learning capability
enhances efficiency. Its performance is optimized through data augmentation techniques and
alignment with problem complexity and computational resources. The Wide-ResNet architec-
ture gives about 84% accuracy.

4.1.2 MobileNetV1

MobileNetV1[10] is a lightweight deep learning model architecture introduced by Google in
2017, primarily aimed at mobile and embedded vision applications. Its main innovation is the
use of depthwise separable convolutions, which significantly reduce the number of parameters
and computations compared to standard convolutions. This factorization of convolution oper-
ations into depthwise and pointwise convolutions allows MobileNetV1 to be highly efficient in
terms of both model size and speed. Additionally, the model introduces width and resolution
multipliers as hyperparameters to further adjust the model’s size and computational cost. The
specific configuration used for the MobileNetv1 can be seen below: MobileNetV1 has been

Layer Architecture
input log mel spectrogram
conv1 Basic Block (32)

Average Pooling

block1
[BasicBlock (32)
BasicBlock(32)] x1

block2
[BasicBlock (64)
BasicBlock(64)] x1

block3
[BasicBlock (128)
BasicBlock(256)] x1

block4
[BasicBlock(256)]x1
[(BasicBlock(512)]x5

block5
[(BasicBlock(512)
BasicBlock(1024)]x1
Mean Pooling
Max Pooling + Average Pooling
ReLU

Table 4.2: MobileNetv1 Architecture

widely adopted in scenarios where computational resources are limited but competitive accu-
racy is still desired. Using MobileNetV1 for audio classification might be unconventional, but
by converting audio data into a visual format, the model’s strengths in image classification
can be leveraged in the audio domain.

4.1.3 VGG

VGG[22] , developed by the Visual Geometry Group at the University of Oxford in 2014, is a
deep convolutional neural network designed for image classification. Renowned for its depth,
VGG architectures, particularly VGG16 and VGG19, consist of 16 and 19 layers respectively. The
model is characterized by its consistent use of 3x3 convolutional filters and 2x2 max-pooling
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operations. Despite its architectural simplicity, VGG achieved state-of-the-art performance on
the ImageNet challenge during its debut.
The configuration used for the task is: Owing to its ability to extract hierarchical features,

Layer Architecture
input Log mel spectrogram
conv1 Basic Block (64)

Max Pooling

block1
[BasicBlock (64)
BasicBlock(64)] x1

block2
[BasicBlock (128)
BasicBlock(128)
BasicBlock(128)] x1

block3
[BasicBlock (256)
BasicBlock(256)
BasicBlock(256)] x1

block4
[BasicBlock(512)
BasicBlock(512)
BasicBlock(512)]x1

block5
[BasicBlock(512)
BasicBlock(512)
BasicBlock(512)]x1
Max Pooling
Softmax

Table 4.3: VGG architecture

VGG remains a popular choice for transfer learning across various domains. However, its depth
and dense architecture can make it computationally demanding in terms of processing and
memory requirements.

4.2 Mixmatch

Mixmatch was first introduced by David Bertholot et al. [3]. It is a data augmentation method
that leverages both labeled and unlabeled data during the training process to improve the per-
formance of the model. The key idea is to create augmented samples from the unlabeled data
and then combine them with the augmented unlabeled data to create the pseudolabels. These
pseudolabels are then used along side the original labeled data to train the model. Both the
labeled and unlabeled data are augmented using strong data augmentation techniques, such
as Occlusion, CutOut, and Speed Perturbation as introduced in 3. Occlusion involves introduc-
ing occluding patches to the audio spectrogram, simulating real-world noise or obstructions.
CutOut entails masking out random patches of the spectrogram, encouraging the model to
focus on the remaining features. Speed Perturbation involves changing the playback speed
of the audio, capturing variations in speaking rate. These augmentation strategies introduce
realistic variations, enhancing the model’s ability to generalize across diverse audio instances
and improving its robustness against noise and distortions. During the learning phase, each
minibatch is composed of labeled xs and unlabeled xu samples in equivalent proportions. The
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first step consists of applying an augmentation to the labeled part of the mini-batch and K
augmentations to the unlabeled part in parallel. These K augmentations are sampled from the
three augmentations (weak).
Mixmatch uses a combination of data augmentation techniques and sharpening to create con-
sistent and reliable pseudolabels. The main steps involved in mixmatch are Data Augmentation,
Mixup, Consistency Regularization and Loss Function. This process, known as sharpening, en-
hances the accuracy and reliability of pseudo-labels, making them more informative for training.
Sharpening is particularly useful in semi-supervised learning scenarios like MixMatch, where it
improves the quality of model training by leveraging unlabeled data effectively.

Figure 4.1: Mixmatch Workflow

Data Augmentation: Both the labeled and unlabeled data are augmented using strong data
augmentation techniques. Augmentation helps in creating diverse samples, making the model
more robust.
Mixup: Mixup is applied to the labeled data, which involves mixing two examples (input,
target) together with a random weight to create a new augmented example. This encourages
the model to make predictions that are linearly interpolated between the target labels.
Consistency Regularization: The augmented unlabeled data is used to generate pseudo-labels
for the data points. The model’s predictions on the unlabeled data are sharpened (temperature
scaling) to make them more confident. This ensures that pseudo-labels are consistent and less
noisy.
Loss Function: The loss function combines the supervised cross-entropy loss for labeled data
and the unsupervised consistency loss for unlabeled data. The model is optimized to minimize
this combined loss. The loss function for labeled data (Ls) is calculated as

Ls =
1

BS

∑
(x′mix

s ,ymix
s )

CE(f(x′mix
s ), ymix

s )

and the loss for the unlabeled data can be calculated as:

Lu =
1

K.Bu

∑
(x′mix

u ,ŷmix
u )

CE(f(x′mix
u ), ŷmix

u )

Training: The model is trained using both labeled and pseudo-labeled data. The process of
creating pseudo-labels and updating the model is repeated in an iterative manner.
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4.3 Mixup

The main idea behind Mixup[25] is to augment the training data by creating new virtual
samples that are a linear combination of pairs of original samples and their corresponding
labels. This helps to regularize the model and improve its generalization ability. The method
is particularly effective when dealing with limited labeled data. For each training iteration (or
batch), randomly select two samples and their labels from the dataset. Create a new virtual
sample and label as a linear combination of the two selected samples and their labels. The
combination is defined as follows: Let x1 be the feature vector of the first sample. Let x2 be the
feature vector of the second sample. Let λ be a random value drawn from a Beta distribution
(usually with parameters α, α). The mixed input xmix is computed as:

xmix = λ ∗ x1 + (1− λ) ∗ x2

The mixed label ymix is computed similarly for categorical labels. Feed the mixed input x mix
through the model and obtain the model’s predicted output y pred mix. Calculate the loss
between the predicted output y pred mix and the mixed label ymix. This loss is used to
update the model’s parameters through backpropagation and gradient descent.The idea of
combining samples and labels through linear interpolation (controlled by the parameter λ)
encourages the model to learn more smoothly in the input space, making it robust to variations
and improving its generalization performance. The method effectively regularizes the model,
reducing overfitting and making it less prone to memorizing the training data.

4.4 Itermixup

MixMatch, the current state-of-the-art method for data augmentation in audio classification,
heavily relies on the mixup technique, particularly the parameter λ. The λ value, which lies
between 0 and 1, plays a pivotal role in determining the mixing ratio of two distinct samples
during augmentation. Specifically, when λ is closer to 1, the augmented sample predominantly
reflects the characteristics of the first sample. Conversely, a λ value nearing 0 means the
augmented sample will lean more towards the second sample’s attributes.
In the MixMatch method, a λ value of 0.75 is conventionally employed. However, this approach
might not harness the full potential of mixup, especially when considering the vast spectrum
of possible λ values and their respective mixing ratios. To address this and further improve on
the results obtained by the baseline methods, we have experimented with three distinct values
of λ - [0.25, 0.5, 0.75]. By iteratively employing mixup with this diverse range of λ values, our
proposed IterMixup function aims to generate a broader set of augmented samples, potentially
capturing a more comprehensive representation of the data’s inherent variations. This enriched
set of samples can offer the model a more robust learning experience, potentially leading to
enhanced performance.
Furthermore, the MixMatch method incorporates specific data augmentation techniques for
weak data augmentation, namely Occlusion, Speed Perturbation, and Cutout. These methods
have been meticulously chosen based on their widespread acclaim and proven effectiveness
in numerous research papers. Occlusion introduces parts of silence or masking certain audio
segments, providing a challenge for the model to predict based on incomplete data. Speed
Perturbation slightly alters the playback speed of the audio samples, ensuring the model is
robust to natural variations in speech or sound pace. Lastly, Cutout involves removing random
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sections of the spectrogram, compelling the model to make predictions even when parts of the
data are missing. Collectively, these techniques not only enhance the diversity of the training
data but also bolster the model’s resilience to various real-world scenarios and imperfections
in audio data.
By amalgamating the benefits of IterMixup with these tried-and-tested augmentation tech-
niques, we aspire to push the boundaries of what’s achievable in audio classification, striving
for even greater accuracy and generalization capabilities.

Figure 4.2: Itermixup integrating with Mixmatch

You can see how IterMixup is integrated with Mixmatch in the Figure ??.
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Chapter 5

Dataset

The UrbanSound8K[4] dataset consists of 8732 samples (both mono and stereo) belonging to
10 classes: “air conditioner”, “car horn”, “children playing”, “dog bark”, “drilling”, “engine
idling”, “gun shot”, “jackhammer”, “siren”, and “street music”. The classes are not balanced
in terms of overall recording lengths per class. Each track has variable length up to 4 seconds,
the native sample rate varies from 16kHz to 48kHz. The dataset was divided into 10 folds
by its authors that we used in current work to perform our evaluation. This dataset has been
widely used in research and also serves as a benchmark for evaluating the performance of any
audio classification model. It has been used in various studies related to machine learning, deep
learning feature extraction, audio signal processing and urban sound analysis. The dataset has
complete annotations for each audio excerpt. The annotations include the class label, event
start and end time inside the sample. These annotation help with the evaluation and bench
marking of the audio classification models. This dataset uses real world audio recording rather
than lab generated datasets like ESC-50 [20] which have more classes but are not useful in the
real world applications. The urban environments from which the recordings are sourced can
introduce more diverse and complex acoustic characteristics, potentially making the dataset
more challenging. Key features of the UrbanSound8K[4] dataset:

1. Number of Recordings: UrbanSound8K contains 8,732 audio clips, providing a larger
dataset size for training and evaluation.

2. Audio Clips: The dataset consists of 10 different classes of urban sounds, including
air conditioner, car horn, children playing, dog bark, drilling, engine idling, gunshot,
jackhammer, siren, and street music.

3. Duration: Each audio clip is 4 seconds long and is sampled at a rate of 44.1 kHz.

4. Audio Format: The audio clips are provided in WAV format, ensuring lossless and high-
fidelity representation of the sounds.

5. Real-world Recordings: The audio clips were recorded in diverse urban environments,
making the dataset representative of real-world urban soundscapes.

6. Class Imbalance: The dataset exhibits class imbalance, with some classes having more
instances than others. This characteristic poses a challenge for sound event classification
algorithms.

The majority of papers use accuracy, error rates and f-score as metrics while using this dataset
for the task of Environmental sound classification.
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Chapter 6

Experiments and Results

In this section we will discuss how the experiments were run, the hyperparamaters and the
results obtained.

6.1 Experimental Setup

We ran the experiment for the UrbanSound8K dataset using the WideResNet-28-2 model.
The experiment is a multiclass classification task for 10 classes of urban sounds. We ran
multiple experiments using 3 different models namely WideResNet-28-2, MobileNetv1, Vgg.
The experiments were conducted for the classification task for 10 classes on the UrbanSound8K
dataset. For the baseline we ran the code available from GitHub for mixmatch-mixup and
mixmatch+mixup with the 3 models. To improve on the results obtained by the baseline
methods, we have used 3 values of λ which are [0.25, 0.5, 0.75]. This will generate three
sets of augmented examples with varying degrees of interpolation between the original data
points. To implement this we run the mixup method 6 times instead of 2 since mixup runs
for both x and y. This creates 3 sets of augmented samples which all have different levels of
regularization. We chose the different values of lambda as 0.25, 0.5and0.75 it gives both the
the samples equal representation in the augmented samples. With 0.25 the second sample gets
more representation and with 0.75 the first sample gets more representation. When its 0.5,
both the the samples get equal representation in the augmented sample. This helps us create
more augmented samples which makes the model more robust and reliable as it introduces
diverse perturbations to the training data and encourages the model to learn from different
perspectives. The augmentation methods used for the weak and strong augmentations are
Occlusion, Speed perturbation and CutOut as explained in 3.3. We have also added some
more audio augmentation methods to our best result with IterMixup to check if adding Pitch
Shifting and Time Stretching helps us get even better results. All the experiments were run on
the Alice servers which are provided by the Leiden university. The server uses Intel Xeon Gold
6126 2.6GHz with 12 cores and PNY GeForce RTX 2080TI with 11GB memory This server
helps us run the experiments using multithreading which significantly decreases the training
time from about 30 minutes per epoch to 4-5 minutes.
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6.2 Results

The experiment in 6.1 gave the accuracy of our model as about 89%. It is a significant
improvement over the previous method as can be seen in the table below.

Model Method Error Rate Accuracy F-score

WideResNet

Mixmatch(no mixup) 20.42 79.58 0.84
Mixmatch+ mixup 18.02 81.98 0.88
Mixmatch + Itermixup 10.34 89.66 0.90
CNN (WideResNet-28-2) 15 85 0.85

MobileNetV1

Mixmatch(no mixup) 19.36 80.64 0.83
Mixmatch+ mixup 15.47 84.53 0.84
Mixmatch + Itermixup 13.4 86.6 0.88
CNN (MobileNetV1) 16.23 83.77 0.86

VGG

Mixmatch(no mixup) 20.22 79.78 0.85
Mixmatch+ mixup 18.59 81.41 0.88
Mixmatch + Itermixup 11.4 88.6 0.89
CNN (Vgg) 15.39 84.61 0.83

Table 6.1: Results for the Mixmatch with no mixup, Mixmatch, Mixmtach with IterMixup
data augmentation methods and only CNN on 3 different Convolutional Neural Networks
for the Audio Classification task

The results in Table 6.1can more easily be analyzed using the given graph in Graph 6.1.

Figure 6.1: Comparing results between the implemented models and the models used

In the table 6.2, there are the results for the model WideResNet, implementing different values
of λ for the Mixup and Itermixup method. This helps us understand the effects of the IterMixup
today and how the amount of λ values affects the training and learning process. We can see
where the differences in the results came from the following confusion matrices:

19



λ values Error Rate Accuracy F-score
[0.25] 15.27 84.73 0.78
[0.25,0.5] 17.69 82.31 0.81
[0.25,0.5,0.75] 10.34 89.66 0.90
[0.2,0.4,0.6,0.8] 10.49 89,51 0.81

Table 6.2: Comparison between different values of λ for the WideResNet model

(a) Mixmatch (b) Mixmatch with IterMixup

Figure 6.2: Model: WideResNet

(a) Mixmatch (b) Mixmatch with IterMixup

Figure 6.3: Model: MobileNetv1
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(a) Mixmatch (b) Mixmatch with IterMixup

Figure 6.4: Model: VGG

The above matrices demonstrate an improvement in the classes successfully predicted in each
of these models following the application of IterMixup. The matrices illustrate where the model
has improved by learning from more data produced by the IterMixup method in addition to
the MixMatch approach.

Mixmatch + IterMixup Error Rate Accuracy F-score
Occlusion, Speed Perturbation and CutOut 10.34 84.73 0.78
Occlusion, Speed Perturbation, CutOut, Pitch Shifting,Time Stretching 17.69 82.31 0.81

Table 6.3: Comparison of Mixmatch + IterMixup with 3 augemntation methods and 5
augmentation methods

In the Table 6.3 we can see there is only a slight increase in the accuracy even by adding Pitch
Shifting and Time Stretching in the mix.
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Chapter 7

Conclusion and Discussion

For answering the first question ”What are the current state of the art methods for data
augmentation for the audio classification task?” We can see in the paper [6] that the state
of the art method for this dataset is The Mixmatch method with Fixmatch + mixup com-
ing in very close. MM uses pseudo-labeling, with explicit entropy minimization, sharpening
in case of Mixmatch. In some other methods, no entropy minimization is used, the predic-
tions on the unlabeled part of the data are used as is for a consistency criterion between the
two collaborating networks. This method achieves about 82% accuracy for this classification
task. Mixmatch uses Mixup and consistency regularization which are two powerful techniques
that can improve model generalization. Mixup encourages the model to learn more robust
features by creating augmented examples that are combinations of multiple training samples.
Consistency regularization enforces the model’s predictions to be consistent when applied to
perturbed versions of the same input. MixMatch combines these two techniques, leveraging
their complementary benefits to enhance the model’s performance. This method is particularly
designed for semi-supervised learning, where the labeled data is limited, and the model needs
to utilize both labeled and unlabeled data for training. By using unlabeled data with con-
sistency regularization, MixMatch enables the model to leverage large amounts of unlabeled
data to improve performance. In datasets with class imbalance like the dataset we have used,
traditional data augmentation methods may not address the issue adequately. MixMatch can
help mitigate class imbalance by generating augmented examples for underrepresented classes,
promoting better class representation and reducing bias.

For answering our second question ”Is there a way to increase the performance of the current
methods using a new data augmentation technique?”. We tried to improve the current state-
of-the-art method which is Mixmatch by adding multiple iterations of mixup each of which
are using different values of lambda (λ) [0.25, 0.50, 0.75]. Using different lambda values for
Mixup results in a more diverse set of augmented examples. Each lambda value determines
the mixing ratio between two data points, and different ratios introduce distinct types of
perturbations. This diversity in augmentation helps the model to learn from a broader range
of data variations, leading to improved generalization. Running Mixup with multiple lambda
values enables the model to explore various regions of the data space more thoroughly. This
exploration can help the model identify challenging data instances and learn more meaningful
representations, leading to improved performance on complex or ambiguous samples. Running
Mixup with different lambda values allows for hyperparameter tuning of lambda. By experi-
menting with a range of lambda values, you can identify the most suitable lambda settings for
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your specific dataset and task. Different lambda values offer different levels of regularization
during training. Larger lambda values result in stronger regularization, which can be beneficial
for reducing overfitting. This improved method gives us the accuracy of about 90% which is
about a 7-8% increase from the original MixMatch method. So, to answer our question, Yes,
we can improve the original Mixmatch method by running the mixup iteratively.
To further improve upon MixMatch, we incorporated multiple iterations of mixup using varied
lambda λ values [0.25, 0.50, 0.75]. Different λ values introduce distinct perturbations, en-
hancing model generalization. This iterative mixup approach achieved about 90% accuracy on
the UrbanSound8K dataset, an 8% improvement over the original MixMatch. We tried adding
additional audio augmentations namely Time Stretching and Pitch Shifting. This helps the
model learn not a lot but makes the model feel more robust. UrbanSound8K, a widely-used
dataset for sound classification, comprises 10 classes from the urban sound taxonomy. Our
experiments utilized the updated mixup alongside the WideResNet-28-2 architecture. This
study both reviews and extends current audio classification data augmentation techniques.
Potential future research directions include exploring reinforcement or unsupervised learning
and fine-tuning mixup’s alpha values for task-specific optimization.

7.1 Future Work

In light of the advancements made in audio classification using the MixMatch approach, sev-
eral avenues present themselves for further exploration. The landscape of learning paradigms,
including Reinforcement Learning and Unsupervised Learning, remains largely untapped for au-
dio tasks and could yield insightful comparisons with current semi-supervised methodologies.
While the iterative mixup approach has shown promise, a comprehensive hyperparameter opti-
mization using methods like Bayesian Optimization might fine-tune the mixup’s λ values and
other model intricacies. The vast realm of deep learning offers alternative architectures, such
as Transformer-based models or Capsule Networks, which, when paired with ensemble tech-
niques, could elevate performance metrics. Leveraging pre-trained models from expansive audio
datasets, akin to the BERT model in NLP, and fine-tuning them for specific tasks like those in
UrbanSound8K might usher in significant improvements. The concept of audio embeddings,
borrowing inspiration from word embeddings in NLP, could encapsulate richer audio informa-
tion, enhancing classification efficacy. A multi-modal learning approach, integrating audio with
visual or textual data, can be a game-changer, especially in multifaceted environments. Vali-
dating models in real-world, noisy scenarios, possibly via deployment on IoT devices, remains
crucial for assessing practical applicability. The inclusion of attention mechanisms might refine
the model’s focus on pivotal audio segments, and sourcing additional labeled and unlabeled
data can bolster the semi-supervised paradigm, potentially pivoting towards weakly labeled
datasets. As we navigate these potential enhancements, the overarching goal remains to de-
velop audio classification models that are not only academically robust but also pragmatically
effective.
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