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1 Abstract

In recent years, technological advancements have pushed generative neural
networks to unprecedented capabilities. Technologies capable of generating
deepfakes and media content have emerged, facilitating the creation of hyper-
realistic manipulated images, videos, and audio, to such an extent that they
can deceive even the most discerning audience. Currently, the proliferation
of face forgery synthesis methods has allowed individuals to exploit them for
malicious purposes, including defamation and social disruption. The forensics
community has been actively trying to develop methods to counter syntheti-
cally generated media, especially for face forgery detection. However, the key
limitation of this task is the difficulty to achieve robust generalization per-
formance beyond the training data. In an attempt to make a contribution to
the field, we investigate the generalization capabilities of CLIP, a language-
vision pre-trained model, for the task of deepfake detection, as it has not
been researched previously. Through our exploration, we discover that CLIP
already possesses inherent knowledge regarding deepfakes. However, we ac-
knowledge that its performance is inadequate for the task when compared to
the current State-Of-The-Art (SOTA) methods in the field. To address this,
we propose a fine-tuning method, tailored for zero-shot language-vision mod-
els such as CLIP, on datasets with a limited number of classes. This method
proves to be effective in enhancing the overall performance of the model
and attaining SOTA generalization results on widely used deepfake detection
benchmarking datasets, that are prevalent in the literature. In addition, the
advantages and limitations of the proposed method are examined, providing
recommendations and procedures to further enhance robustness and overall
performance. By doing so, we hope to contribute to the ongoing advance-
ments in deepfake detection, facilitating the development of more effective
and reliable methods in this crucial domain.
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2 Introduction

The power of generative models and their integration into big commercial
products has greatly increased in recent years, making the technology ex-
tremely accessible to anyone, leading to an abuse of synthetic media, specif-
ically deepfakes. Artificially generated content has revolutionized the way
we create and consume media, but also presents significant ethical and se-
curity concerns, as it has the potential to manipulate and distort reality.
This issue has been addressed multiple times in works such as [Wojewidka,
2020, Wæver and Buzan, 2020, Hancock and Bailenson, 2021]. With deep-
fakes becoming increasingly sophisticated, it is critical to develop effective
methods for detecting artificially generated images and videos.

At first glance, face forgery detection can appear as a simple classification
problem that can be solved with traditional computer vision techniques. That
is only partly true. The biggest limitation these approaches face is their
generalization capability, usually performing extremely well for data of the
same distribution as that trained upon, yet very poorly when faced with
samples of different synthesis methods. The forensics community has been
actively trying to find countermeasures to the generalization problem. While
early work depended heavily on detecting the discrepancies in consecutive
video frames, such as [Li et al., 2018, Yang et al., 2019], attention also
shifted to detecting deepfakes from single images. Some examples of this
line of work are [Cao et al., 2022, Kim et al., 2021, Sun et al., 2022]. Of
course, however, multi-frame-based approaches are still extremely popular,
with [Guan et al., 2022] being one of the identified State-Of-The-Art (SOTA)
methods in this line of work.

To the best of our knowledge however, none of the methods for deepfake
detection currently available has tried to exploit the semantic understanding
and generalization capabilities possible through natural language processing
(NLP). Recent breakthroughs and advancements of language modeling show
that when these networks are paired with substantial computational power
and extensive text corpora, they can reach impressive generalization capa-
bilities in various tasks, without being explicitly trained on any of them. In
addition, following the recent advances and success of multi-modal architec-
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tures, the main question we are trying to answer in this research is if the field
of deepfake detection can exploit the conceptual nature of language learned
by language-vision models, to improve generalization capabilities.

The proposed method in this work is based on the joint image and text
representation learning paradigm introduced by [Radford et al., 2021], called
Contrastive Language Image Pre-training (CLIP). The core concept of this
method is to train an image and a text encoder simultaneously to produce
similar embeddings, by learning to predict the correct image-description pairs
in a batch. Since our problem setting is binary, we propose a novel adaptation
to the original pre-training method to fine-tune CLIP on downstream tasks,
where the number of classes is limited.

To understand the effects of text in the classification task we carry out various
experiments, suggesting that taking advantage of the semantic understand-
ing of text and generalization of pre-trained language-vision models, can be
beneficial for deepfake detection. We show that it is possible for these kinds
of architectures to reach SOTA generalization performance without many
of the hustles other vision-only methods may rely on, such as heavy pre-
processing of the data or complex losses to capture inconsistencies in images
or sequential frames. In addition, we perform different studies that show that
the original CLIP model is not robust enough to perform well on the task of
deepfake detection and that a proper fine-tuning method is required to im-
prove performance. Finally, an extensive discussion is made on the collected
results and on possible improvements to the current approach.

This work aims to explore neural network generalization capabilities on out-
of-distribution (OOD) data while contributing to the advancement of syn-
thetic media detection, making safety-critical applications more robust to
possible novel media manipulation techniques.

The outline of this document is as follows. The next Section 3, introduces
the related work and the current SOTA approaches for the task of face
forgery detection, highlighting strengths and weaknesses of each method. In
Section 4 we present the fundamental work related to our method. That
includes a subsection dedicated to the Transformer network, as it is the basis
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for our approach’s text and image encoders, and a sub-section analyzing
the advancements of language-vision models. In Section 5 we introduce the
datasets used for our experiments, which are some of the most commonly
found in the literature. Section 6 describes the CLIP method and how it is
utilized for the task of deepfake detection, while in Section 7 we describe the
experimental setup. In Section 8 the experiments and results are presented.
This Section is divided into multiple sub-sections, each exploring a specific
aspect of the method. First, we experiment with the original model to get
a grasp of the default capabilities and limitations of CLIP. Then we try to
extract as much performance as possible to compare it with other SOTA
methods. Finally, we further explore the behavior of our text embeddings to
see if any additional conclusions can be drawn. Section 11 summarizes all our
findings, drawing the last conclusions on the work, while, Section 10 discusses
in depth the limitations of our current method and speculates on possible
resolutions and relevant future work. Finally, an appendix with supplementary
material referenced throughout the document has been included, following
the Bibliography section.

Throughout the document the following terms will be used interchangeably:
deepfake - face forgery - modified or fake image to represent any image
that has been manipulated to hide the original identity. Genuine image - real
or authentic image are terms used to represent samples of true identities.
We will also be referring to neural network as simply network or model. In
addition, the term target is used to indicate the sample whose face will be
swapped with the identity of the source face (a different face image that will
be used to modify the target image).

In summary, the contributions mentioned below are made in this work. We
demonstrate the comparable generalization performance of CLIP, a zero-
shot language-vision model, to CNN-based models fine-tuned on the task of
deepfake detection, without the need for specific optimizations or fine-tuning
processes, but simply by querying the model with adequate descriptions.
We introduce a fine-tuning paradigm for language-vision models similar to
CLIP, suited for datasets with a limited number of classes, that addresses
the problem of collisions during training caused by the absence of unique
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image-text pairs. The approach improves both in-distribution performance
and generalization performance on other data distributions. The achieved
results are State-Of-The-Art and comparable to the best available methods
in the field. Finally, we suggest that sufficiently robust text features have the
potential to significantly influence the overall performance of the fine-tuned
vision model, leading to results comparable to the State-Of-The-Art, without
relying on the pre-trained weights for the vision encoder.

All the code used for this research is available for research purposes on the
following link.
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2.1 Research question

Synthetic media presents significant ethical and security concerns. Most cur-
rent detection approaches are unable to generalize properly to unseen or novel
synthesis techniques. As they lack semantic understanding, they rely upon
features learned from the visual artifacts of the training samples. Therefore
the following question arises:

Can the generalization of face forgery detection be improved by exploiting
the semantic understanding and generalization capabilities of pre-trained

language-vision models?

With the above inquiry representing the main research question of this work,
the following sub-questions arise, in an attempt to understand in more depth
the capabilities of the proposed approach:

• Do language-vision models (CLIP in our case) innately possess knowl-
edge of deepfakes and to what degree can they recognize them?

• Can the performance of the network be improved compared to the
baseline (zero-shot) capabilities and how?

• How does our approach compare to the currently available SOTA face
forgery detection methods?

• What limitations arise with this specific approach?

The first sub-question is addressed through various experiments conducted
in Section 8.1 and partially in Section 8.2 where the default capabilities of
the CLIP network are explored. The second sub-question primarily concerns
the fine-tuning method proposed in Section 6, while the third sub-question is
addressed in Section 8.3. Finally, Section 10 is dedicated to examining all the
limitations encountered in order to answer the last sub-question, while also
introducing possible solutions and relevant future work. All sub-questions are
also addressed in Section 11, summing up our work.
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3 Related work & Motivation

Since face forgery can have such a profound social impact, the forensics
community has been very active in the continuous development of solutions.
[Rossler et al., 2019] introduced a benchmark dataset of deepfake videos,
which quickly became a widely utilized resource across literature, enabling a
more precise evaluation of performance and comparison among the different
methods.

In an effort to accelerate the development of novel face forgery detection
approaches, [Dolhansky et al., 2020] released another challenging dataset for
detecting manipulated media, known as the DFDC dataset. The dataset was
used in a competition sponsored by Facebook, Microsoft, and other partners,
offering prizes up to 500,000$ for the best-performing algorithm. Around the
same time, [Li et al., 2020d] proposed the CelebDF dataset, which also
became a very valuable resource for the forensics community.

In most algorithms, identifying the discrepancies and inconsistencies of faces,
also known as artifacts, is the key to classifying images as real or fake. In
work such as [Li et al., 2018, Yang et al., 2019, Haliassos et al., 2021]
this task is modeled through the detection of biological artifacts, such as
inconsistencies in eye blinking, head poses and mouth movement, along the
temporal dimension, by concatenating sequential video frames. In contrast,
[Tariq et al., 2019] suggest detecting fake GAN-generated images, as well
as human-generated deepfakes, with different pre-processing techniques that
analyze the statistical features of single images. In the work of [Zhang et al.,
2019, Durall et al., 2020, Qian et al., 2020, Wang et al., 2020] the fact
that CNN-generated images create anomalies in the frequency spectrum is
exploited.

Although these approaches achieve impressive results when the inputs are of
the same distribution as those used during training, they struggle to general-
ize to novel or different deepfake synthesis methods. For this specific reason,
many authors shifted their attention to developing methods with general-
ization in mind, proposing techniques aiming to improve classifier detection
on novel or different deepfake types than those trained on. [Khodabakhsh
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et al., 2020] model the problem from the perspective of anomaly detection.
The anomaly detector network is trained on pristine data only and learns
to predict the conditional probabilities of observing a pixel given all pixels
preceding it. The extracted features of the model are then used to train a
simple classification model with good generalization capabilities across dif-
ferent deepfake synthesis methods. Similarly, [Tariq et al., 2020, Tariq et al.,
2021] describe different data-driven methods that do not rely upon arti-
facts of specific generation techniques. In the first approach, a Convolutional
LSTM-based Residual Network takes as input a sequence of consecutive video
frames to learn temporal information, allowing it to detect unnatural-looking
artifacts between frames. The second proposed approach expands upon the
previous one by adding spatial information as well as temporal, yielding good
results at the time, especially for high-quality deepfakes.

Another common approach across the literature for improving generaliza-
tion is using data augmentation techniques. [Yang and Lim, 2020] propose
a method to generate samples of a similar distribution to that of a given
one-shot image example. The newly generated samples can later be used as
augmented training samples for fine-tuning on the downstream classification
task. [Chen et al., 2022a] propose to improve the generalization of deep-
fake detectors with the help of adversarial data augmentation and training,
achieving great results for both low and high image resolutions.

In another line of work, the attention mechanism of Transformer networks
is exploited for the generalization task. [Zhao et al., 2021] argue that the
discrepancies between real and fake faces are usually very subtle, proposing a
novel deepfake detection model architecture based on the attention mecha-
nism. [Wang and Deng, 2021] utilize an attention-based data augmentation
mechanism to guide the detector to refine and enlarge its attention. By
”erasing” the most influential areas in an image, with respect to the atten-
tion matrix, the model is trained to capture other subtle inconsistencies which
may have not been detected previously and may lead to correct classification.

Other solutions for the generalization problem include [Kim et al., 2021],
where the authors propose a domain adaptation framework, with a teacher-
student paradigm, used to mitigate the problem of catastrophic forgetting,
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during fine-tuning on novel deepfake instances. This method improves com-
putational efficiency while also preserving the original’s model performance.
In another interesting approach proposed by [Zhu et al., 2021], face images
are disentangled into their 3D counterparts of geometry and lighting features,
achieving great results on specific datasets and synthesis methods.

Some more recent publications expand and improve on the methods pre-
sented until now. For example, [Chen et al., 2022b] introduce yet another
data-augmentation learning paradigm, based on synthesizing pseudo-training
samples similar to the input image, which are used at test-time to fine-tune
the model, before determining the final prediction. [Cao et al., 2022] pro-
pose another anomaly detection reconstruction approach, based on a joint
reconstruction-classification training paradigm, under the assumption that
the reconstruction of genuine faces can enhance the learned representa-
tions to be aware of forgery patterns, improving both the IN-distribution1

and Out-Of-Distribution2 detection tasks compared to the baseline model.
[Zhuang et al., 2022] again exploit the attention mechanism of Transformer
architectures to model an unsupervised training paradigm centered around
detecting inconsistencies for single images. [Guan et al., 2022] adopt a local-
to-global learning paradigm exploiting attention and temporal information
within local image patch sequences. This approach is regarded as one of
the best-performing methods for multi-frame deepfake detection in the cur-
rent literature. However, the main limitation of this approach, is the perfor-
mance uncertainty for single images, as experiments were carried out with
sequential frames as input. Finally, [Shiohara et al., 2022] introduces a data
augmentation-based training paradigm, that depends on synthetic images
generated by blending together a pair of pristine images. To the best of our
knowledge, it is the best-performing generalization approach currently devel-
oped for the purpose of single-image deepfake detection, not depending on a
sequence of frames to capture temporal information. However, the training

1In-Distribution refers to samples with the same distribution as that of the training
data

2Out-Of-Distribution (OOD) refers to samples with a different data distribution
than what used for training. In our case, face forgeries types are not included in the
FaceForensics++ dataset, Celeb-DF, and DFDC.
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paradigm requires pairs of pristine images and their deepfake counterpart,
together with landmarks of the face features to execute the blending be-
tween real images, which can be very limiting, making it very hard to apply
to real-world data where such information is usually not available.

An alternative field of research for face forgery detection has focused on
the contrastive learning paradigm. [Sun et al., 2022] introduce the Dual
Contrastive Learning paradigm for the task of face forgery, based on con-
structing and comparing hard image pairs. [Dong et al., 2023] propose a
mixed contrastive and data augmentation approach based on RGB and SRM
features to try and improve textural and semantic information.

Despite the existence of a wide range of deepfake detection methodologies,
to the best of our knowledge, none of them tries to leverage the semantic
understanding of concepts around deepfakes through text and NLP. This
raises an open question regarding whether the generalization abilities of pre-
trained image-language models can be effectively utilized to enhance the
detection of facial forgeries.

In the existing literature, there is a noticeable gap where deepfake detec-
tion methodologies have not explored the potential of leveraging semantic
understanding of deepfake concepts through text and natural language pro-
cessing (NLP). This raises an open question regarding the extent to which
pre-trained image-language models can be effectively employed to improve
the generalization capability and robustness of face forgery detection. Our
work fills this gap in the existing literature by examining CLIP’s potential for
deepfake detection and proposing a novel fine-tuning method to improve its
performance in this domain.

4 Background Work

4.1 Attention is all you need

Transformer models were introduced by [Vaswani et al., 2017] in 2017 for
the task of machine translation and have since revolutionized the field of
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natural language processing (NLP), quickly becoming the State-Of-The-Art
architecture for many tasks, such as text generation and question answering.

Positional
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Figure 1: Architecture of the Transformer network. The left part of the figure
represents the encoder stack, while the right side is the decoded part of the
network.

4.1.1 Architecture

At the highest level, Transformer architectures are composed of an encoder
and a decoder network and are based on the self-attention mechanism. Self-
attention allows the network to weigh the importance of the different parts
of an input sequence when making predictions. Unlike Recurrent Neural Net-
works (RNNs) and similar architectures created to process sequential data,
Transformers are better at modeling long-range dependencies and have the
ability to process the entire input sequence in parallel, making them extremely
efficient during training. During inference, on the other hand, the model be-
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haves in an auto-regressive manner and uses the previously generated values
as additional input to generate the next one.

Given a sequence of inputs x = (x1, ..., xn), the encoder learns to map them
to a sequence of continuous representations z = (z1, ..., zn). The encoded
sequence is then fed to the decoder, which produces a sequence of tokens
y = (y1, ..., yn), one by one. A representation of the Transformer architecture
has been included in Figure 1. Both the encoder and the decoder networks
follow the overall architecture of using stacked self-attention layers followed
by fully connected layers.

The encoder consists of N stacked layers. Every layer is composed of two
sub-layers, the first being the multi-head self-attention layer and the second
being a position-wise fully connected feed forward layer. Around every stack
of sub-layers, a residual connection is added as described in [He et al., 2016],
followed by a layer normalization as described in [Ba et al., 2016]. The overall
output from each sub-layer can be therefore summarized by the following
equation LayerNorm(x+ sublayer(x)).

The decoder similarly to the encoder network is also a stack of N identi-
cal layers. Differently from the encoder, it introduces a third sub-layer that
performs the multi-head attention on the output of the encoder and the
currently generated sequence and is positioned between the first muti-head
attention (attending to the decoded output) and the feed-forward layer. As in
the encoder, a residual connection around each sub-layer is used, followed by
a layer normalization. Differently from the encoder’s attention, in the decoder
we introduce the concept of masked attention, to prevent the mechanism to
attend to positions following the one being predicted.

4.1.2 Attention mechanism

The attention function can be thought of as the process of understanding
which part of the input the model should focus on. The attention mechanism
used in [Vaswani et al., 2017], is called the scaled dot-product attention, and
the process is represented in Figure 2a. The input consists in a set of queries q,
keys k, and values v which are all embedded vectors of the input sequence.
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Figure 2: Representation of the attention mechanism used in Transformer
networks.

The queries and keys have the same dimension dk, while the values have
dimension dv. Since this operation is parallelizable, the attention function
can be performed for multiple sets of (q, k, v) as one big operation between
matrices (Q,K, V ), resulting in the following equation:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

) · V (1)

The term
√
dk is a scaling term used to normalize the dot-product when

using larger latent representations dk for the queries q and keys k.

In the original publication of [Vaswani et al., 2017], the authors found it
effective to repeat the calculation of attention for a number h of projections
of (Q,K, V ). This process allows the Transformer to learn different inter-
dependencies and relations between words. Given the dimensions of a single
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attention function for queries, keys and values of dimension dmodel, we can
define the following matrices to represent the parameters used for the h
projections of the input sequence: WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk ,

W V
i ∈ Rdmodel×dv where i = 1, .., h. Given the weight matrices the calculation

of the complete multi-head attention is given by the two following equations:

headi = Attention(QWQ
i , KWK

i , V WW
i ) (2)

MultiHead(Q,K, V ) = Concat(head1, .., headh) ·WO (3)

where WO ∈ Rhḋk×dmodel is the last linear layer as shown in Figure 2b,
that takes the concatenated multi-head attention and projects it back to the
correct dimension for the next layer.

4.1.3 Positional Encoding

The model requires positional information relative to the sequence, to make
use of its order. That is achieved through two sine and cosine functions as
below:

PE(pos,2i) = sin(pos/10, 0002i/dmodel) (4)

PE(pos,2i+1) = cos(pos/10, 0002i/dmodel) (5)

where pos represents the position, while i is the dimension.

4.1.4 Feed-Forward Network

The last sub-layer in the encoder and decoder blocks is a fully connected
feed-forward layer, that consists of two linear layers with a RELU activation
function in between. The input and the output dimension of the feed-forward
layer is dmodel and the hidden layer has a dimension dff . The output of the
feed-forward network is represented by the following equation:

FFN(x) = max(0, xẆ1 + b1) ·W2 + b2 (6)
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where the W1 and W2 represent the weight matrices of the two layers and
b1 and b2 represent the bias terms related to the two layers.

4.1.5 Operation sequence

In this section, the high-level flow of data inside the Transformer network for
a sequence-to-sequence task, such as translation from English to French, is
described. Given a sequential input, each element of the sequence is embed-
ded with the added positional encodings and is passed to the first encoder
block. The encoder calculates the multi-head attention and adds the result to
the output of the residual connection. The vector is normalized through layer
normalization and is therefore passed through a feed-forward network. The
output is yet again summed to the residual connection and layer-normalized.
This routine is repeated N times, where N is the number of encoder blocks.

Once the input has been passed through all the encoder layers, a final con-
nection connects the output of the last encoder block to every decoder block.
The decoder starts the autoregressive process by attending to the output-
generated embeddings, which, at the first iteration corresponds to the [SOS]
token.

This layer is called the Masked Multi-Head Attention because during train-
ing, the whole output sequence is known and therefore its prediction can
be parallelized. Passing the whole output sequence to the first sub-block
of the decoder allows us to predict all the positions simultaneously. Conse-
quently, masking has to be used when calculating the attention, to prevent
the decoder from attending to parts of the sequence after the position being
predicted. The masking is done by setting the values of the Q · K matrix
corresponding to the connections expressing the relation of words in future
positions to −∞, before the softmax step. This method of training is called
Teacher Forcing and is used to train efficiently Transformers while preserving
the autoregressive capability of the model.

Consequently, the same operations as in the encoder’s first sub-block are
performed, until the next block, which is called the Eencoder-Decoder At-
tention” block. Here, attention is calculated between the queries of the pre-
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vious decoder sub-block and the keys and values of the final encoder block.
The output is then again added to the residual connection and everything is
normalized and fed to the feed-forward sub-block. This step concludes the
first iteration of the decoder block, which is then repeated N times.

The output of the last decoder block is passed to a linear layer, representing
the size of the target vocabulary (e.g. the number of French words in the
translation task previously mentioned), and a Softmax operation is applied,
transforming the outputs into probability distributions, where each value rep-
resents the probability of the token in the vocabulary to be the next in the
output sequence.

4.2 Large language models (LLMs) in computer vi-
sion tasks

Transformer architectures introduced from [Vaswani et al., 2017] have heavily
revolutionized the field of Natural Language Processing (NLP), while also
making their way into the field of computer vision, as explained by the survey
of [Jia et al., 2022]. The works of [Dosovitskiy et al., 2020, Liu et al., 2021]
can be considered some very popular examples of attention architectures
developed for computer vision.

Another significant factor for NLP development has been pre-training meth-
ods, that learn directly from massive amounts of raw text, such as [Dai and
Le, 2015, Peters et al., 2018, Devlin et al., 2018]. These methods, such
as autoregressive and masked language modeling, have shown remarkable
capabilities by leveraging task-agnostic objectives on large-scale datasets.

Subsequently, the development of the sequence-to-sequence paradigm [Mc-
Cann et al., 2018, Radford et al., 2019, Raffel et al., 2020] further enabled
task-agnostic architectures to transfer knowledge to downstream tasks, with-
out specialized customization and fine-tuning. Training paradigms such as
supervised fine-tuning (SFT) and reinforcement learning from human feed-
back (RLHF) [Howard and Ruder, 2018, Stiennon et al., 2020, Köpf et al.,
2023] have also been under development for NLP, making the networks more
robust and adaptable to human-machine interactions.
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On the other hand, common generalization techniques in computer vision
have mainly depended on self-supervised learning approaches, where, models
learn visual representations by solving pretext tasks on unlabeled images (e.g.
context prediction, colorization, jigsaw puzzles, etc.) as in [Henaff, 2020,
Chen et al., 2020b, He et al., 2020, Grill et al., 2020], usually done on big
crowd-labeled datasets such as ImageNet [Deng et al., 2009]. Another very
common approach for learning visual features is contrastive learning, where
the embeddings of different image classes are pushed farther away, while
images of the same class are pushed closer to each other in the latent space.
[He et al., 2020, Chen et al., 2020a, Khosla et al., 2020, Han et al., 2021]
are some example works in the field of contrastive learning.

While the above vision methods have shown success, they lack a semantic
understanding of concepts as they rely primarily on visual patterns. Inspired
by the success of pre-training methods in NLP, researchers have also explored
the potential of vision-and-language pre-training. Early work by Mori et al.
[Mori et al., 1999] proposed a two-process method, the first dividing images
into sub-images with keywords, while the second carrying out the vector
quantization of the sub-images. This method showed that each sub-image
can be correlated to a set of words selected from words assigned to the orig-
inal image. Quattoni et al. [Quattoni et al., 2007] presented a method for
learning representations from large quantities of unlabeled images with as-
sociated captions. [Srivastava et al., 2017] proposed a learning approach for
multi-modal data using Deep Boltzmann Machines. Joulin et al. in [Joulin
et al., 2016] further investigated deep representation learning, by training
multi-modal networks to predict a bag of words extracted from the cap-
tions of the YFCC100M [Thomee et al., 2016] image-caption dataset, with
a weakly supervised learning approach. Overall, these studies demonstrated
the usefulness of pre-training text for learning image representations.

Nevertheless, it is important to note that pre-training models using natural
language supervision for image representation learning has been challenging.
Although, [Li et al., 2017] showed promising results by predicting phrase n-
grams related to images, the zero-shot performance on common benchmark
datasets was relatively low compared to alternative approaches. In a similar
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fashion, [Mahajan et al., 2018] tried to push the limits of weakly supervised
learning by training models to predict Instagram hashtags on billions of im-
ages, resulting in an effective pre-training technique. For both the approaches
mentioned above, however, the number of classes has to be defined a pri-
ori and lack a mechanism for dynamic outputs, limiting their generalization
capabilities.

In some more recent work of [Li et al., 2020a], both visual and text contents
are fed into a multi-layer Transformer for cross-modal pre-training, including
multiple tasks to learn context-aware representations. In a different approach,
[Li et al., 2020c] suggest using object tags detected in images as anchor
points to significantly ease the learning of text-image alignments. As most of
the previously cited methods require big amounts of data and training time,
an effort to improve the training efficiency of language-vision models was
done by [Desai and Johnson, 2021], who explored a training paradigm based
on images and dense captions pairs. Similarly, [Zhang et al., 2022] explain
ConVIRT, an unsupervised strategy to learn medical visual representations,
by exploiting naturally occurring paired descriptive text, requiring a fraction
of the data used by previous approaches in the medical field. Finally, one of
the most known and recent language-vision training paradigms is the Con-
trastive Language Image Pretraining (CLIP) introduced by [Radford et al.,
2021]. This model is a simplified version of the ConVIRT approach (which
was in the pre-print stage when CLIP was being developed). Both CLIP and
ConVIRT are trained to maximize the agreement between the true image-
text pairs by using bidirectional losses. Overall, the field of language-vision
models is still evolving, with ongoing research exploring different open roads.

5 Datasets

With the increasing emergency of AI-manipulated videos, several publicly
available datasets have been contributed by academia and industry, in order
to promote the development of deepfake detection solutions. Many of these
datasets are also described in the work of [Almars, 2021]. For our experi-
ments, the datasets presented below are used.
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5.1 FaceForensics++ (FF++)

This benchmark dataset was proposed by [Rossler et al., 2019] and con-
sists of 1000 video sequences manipulated with the following face forgery
approaches: Deepfake [Karras et al., 2019a], Face2Face [Thies et al., 2016],
FaceSwap [Dale et al., 2011, Garrido et al., 2014] and NeuralTextures [Thies
et al., 2019].

The videos in the dataset were compressed with a H.264 codec, on two
different compression levels. High-quality compression is denoted with HQ,
indicating a constant quantization rate of 23, and low-quality compression
LQ, created with a quantization parameter equal to 40. The HQ videos
compose around 35% of the total dataset, around 50% are LQ, and the
remaining ones are videos that were not compressed, denoted as Raw.

For every manipulated video sequence, the pristine source and masks indi-
cating the pixels that were modified are also included in the dataset. The
dataset was collected from YouTube videos of mostly frontal faces without
any occlusion, allowing the creation of automated and realistic face forgeries.
Finally, the dataset is fairly balanced with respect to gender.

5.2 Celeb-DF

This is a video benchmark dataset, proposed by [Li et al., 2020d]. It contains
590 pristine videos and 5,639 DeepFake videos (more than 2 million frames)
generated with an improved version of the DeepFaceLab framework, proposed
in [Perov et al., 2020]. The enhanced version of the algorithm used to create
the deepfakes, improved the original resolution of the synthesized faces to
256x256 pixels, the color mismatch between the source and target faces, the
accuracy of face masks for applying the deepfake, and the temporal flickering
across frames.

The videos are sourced from YouTube and feature 59 celebrities of differ-
ent genders, ages, and ethnic groups. The original videos come in various
aspect ratios and resolutions, but the deepfake videos are standardized to
a resolution of 256x256 pixels. All the videos are converted to MPEG4.0

23



format.

5.3 Deepfake Detection Challenge Dataset (DFDC)

The Deepfake Detection Challenge Dataset (DFDC) is, to the best of our
knowledge, the largest dataset publicly available of face swap videos. It was
created as a joint effort by Facebook (currently Meta) and other industry
leaders, in order to accelerate the development of methods that tackled face
forgery, by sponsoring a public Kaggle competition.

It is available in two formats, the Preview and the Full dataset, developed
from [Dolhansky et al., 2019, Dolhansky et al., 2020]. The Preview version
consists of 5,000 videos and features two modification algorithms while the
Full dataset contains 124,000 videos created with eight modification algo-
rithms. The video sequences were created by 3,426 paid actors that gave their
consent to have their faces manipulated by machine learning techniques. The
source videos were pre-processed with face tracking and the faces resized to
256x256 pixels. The target videos were generated with multiple face swap
methods, including FSGAN [Nirkin et al., 2019] and StyleGAN [Karras et al.,
2019b].

6 Research methods

6.1 Original CLIP pretraining method

The general idea of the Contrastive Language Image Pre-training (CLIP)
paradigm is to train a text encoder and an image encoder to produce similar
embeddings.

Let N denote the size of a batch of images xi ∈ RN×C×H×W , aligned with
the corresponding batch N of text descriptions xt ∈ RN×T . C represents
the channel dimension, H the height and W the width of the image, while
T is the sequence length of the tokenized text. Aligned, meaning that every
image and text pair have the same index in the corresponding batches. The
first step towards training our model is to obtain feature representations of
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Figure 3: Figure taken from the original work of [Radford et al., 2021] where
the CLIP model is introduced. Sub-figure (1) represents the contrastive pre-
training where the model’s image and text encoders are trained jointly to
produce similar embeddings, by learning to predict the correct image-text
pairs of a batch of images and descriptions.
Sub-figures (2) and (3) represent the inference step, where a zero-shot clas-
sifier is constructed by embedding all the descriptions and predicting which
of them is more similar to the image embedding.

the data by passing it through two independent encoders characterized by
the following notations:

Ei : RN×C×H×W −→ RN×c×h×w (7)

Et : RN×T −→ RN×S (8)

Notation 7 refers to the image encoder, while notation 8 refers to the text
encoder. S is the dimension of the extracted text features and c, h and w
are the image feature dimensions. We represent the outputs of this step as
Ei(xi) for the image features and as Et(xt) for the text features.

Now let Xi = c× h× w represent the dimension of the features of a single
image, collapsed on one dimension. We can therefore use two linear layers,
Wi ∈ RXi×M and Wt ∈ RS×M to project our extracted features to a common
dimension M .
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The transformation to the common dimension is done by taking the L2 norm
of the dot product between the encoded inputs and the weight matrices as
such:

Ie = ||Ei(xi) ·Wi|| ∈ RN×emb (9)

Te = ||Et(xt) ·Wt|| ∈ RN×emb (10)

where Ie and Te represent the image and text embeddings projected on the
common dimension M . Finally, given the temperature parameter t optimized
during training, the similarities can be calculated with the dot product be-
tween the embeddings, with the following formula:

Sim = (Ie · Te)× et ∈ RN×N (11)

Let now L = diag(N) be a diagonal matrix of shape N×N with the correct
image-text pairs in its diagonal. In order to calculate the bidirectional loss we
first calculate the image and text cross-entropy losses separately, as below:

Limg = − 1

N

N∑
n=1

[
N∑
d=1

(lnd × log snd)

]
(12)

Ltxt = − 1

N

N∑
n=1

[
N∑
d=1

(
lnd × log sTnd

)]
(13)

where, Limg represents the image part of the loss and Ltxt the text loss.
The equations are almost identical. The outer sum goes over all images in
the batch and the second summation runs over all classes, or in our case,
the text descriptions. The term lnd represents the correct label for image n
and description d, snd represents the similarity for image n and description
d. The difference in the two equations lies in the term sTnd, which represents
the elements of the transposed similarity matrix SimT . This is possible since
our Sim matrix is square and the label matrix is diagonal, creating the
bidirectional loss. To complete the process and allow for the optimization
step, we calculate the mean of Limg and Ltxt, as shown in Equation 14
below.

loss = (Limg + Ltxt)/2 (14)
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A visual representation of the original CLIP method can be found in Figure
3.

6.2 Finetuning CLIP for deepfake detection
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Figure 4: The Figure represents the adaptation of the CLIP paradigm when
fine-tuned on a binary problem. Sub-figure (1) depicts the fine-tuning process,
where real and deepfake pairs of image-text sets are used to optimize the
similarity of the embeddings related to the two classes. Sub-figure (2) depicts
the inference process, where the same labels as those optimized in the fine-
tuning step (1) are used to collect predictions.

While some recent work exists on efforts to fine-tune zero-shot models on tra-
ditional classification downstream tasks, they mainly focus on using teacher-
student training paradigms where CLIP is the teacher model or fine-tuning
only the vision encoder.

For example, [Wang et al., 2022] propose a teacher-student method to dis-
till knowledge from the pre-trained CLIP model (teacher) on existing ar-
chitectures (student). Although this method does not directly fine-tune the
language-vision model, it shows promising results both in few-shot3 and fully-

3few-shot learning refers to training or fine-tuning a model on a low number of
samples
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supervised learning settings.

In the work of [Dong et al., 2022], the authors fine-tune the vision encoder
of CLIP on the ImageNet dataset and argue that, although special atten-
tion is required when choosing the hyper-parameters and in the fine-tuning
procedure, CLIP itself can be a strong fine-tuner and achieve SOTA results.

In another approach described in the work of [Wortsman et al., 2022], the
authors argue that when the visual encoder of language-vision models is fine-
tuned, generalization performance is lost under distribution shifts and propose
a weight ensemble method, between the pre-trained weights and the fine-
tuned weights, achieving higher robustness while preserving the performance
in the in-distribution data.

However, since the text features for deepfake detection do not appear to be
totally refined yet, as it will be shown from the experiments of Sub-sections
8.1 and 8.2, a method is required to push higher the overall performance of
the model when using the correct descriptions associated with the task.

In some more recent work, the authors of [Goyal et al., 2023], experiment
with linear probing 4 and full fine-tuning of image and text, similar to what
required from our problem setting, discovering that by also fine-tuning the
text encoder, it was possible to gain additional performance on the overall
results. A limitation that this work mentions is that collisions of the same
class are possible in the same mini-batch during training. However, even with
collisions, their fine-tuning method was able to outperform the baseline. As
an effort to further improve performance, they experiment with masking out
the terms in the loss relative to collisions, however, resulting in decreased
performance of the model.

In order to finetune the CLIP pre-trained model with the text encoder, we use
a different approach from the one presented above, suited for our downstream
task of deepfake detection, addressing the limitation of collisions in the batch.
In addition, similarly to what is done in [Goyal et al., 2023], our method
uses the contrastive loss utilized in the original CLIP pre-training method of

4linear probing refers to learning a linear classifier on top of the features of another
model.
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[Radford et al., 2021] and can sample different descriptions related to the
same class.

To make our method work, the model is fed with a batch n of pairs of
images (with their descriptions), one of a genuine and one of a manipulated
face, and the contrastive loss is calculated separately for each of the pairs,
as done in the original CLIP pre-training method, but with only two samples
per batch. Assuming a batch size N of 2, for Equations 12 and 13, we can
use them to calculate n loss terms, one for each pair and apply Equation 14
to calculate the total loss for each pair. Finally, the mean over all the losses
of the batch is calculated for the optimization step, resulting in the following
loss:

loss =
1

n

n∑
i=1

[
(Liimg

+ Litxt)/2
]

(15)

A representation of the modified method used for deepfake detection is avail-
able in Figure 4.

This approach can easily be extended to accommodate any limited number of
classes N , through two methods. The first one follows a similar process as the
one described above, with the distinction that, at each step, two image-text
pairs of different classes are sampled randomly from all the possible classes.
Optimization is then possible in the same way as what is presented in the
above binary adaptation of CLIP. A slightly different approach, potentially
more computationally efficient, would be to use a subset n of the original
classes N , as to calculate and optimize similarities between n unique classes
instead of only two, at every step. The approaches mentioned are very similar
to the original pre-training method but are adapted to work with a limited
and arbitrary number of classes instead of unique image-text pairs, avoiding
collisions.

As far as the descriptions are concerned, this approach can work with com-
pletely different descriptions for each image, a batch of descriptions for each
class, or simply one description per class, allowing a lot of flexibility. For the
second case, where we have a batch of descriptions for every class, we can
sample a different description at each training step.
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7 Experiemntal Setup

In order to assess the generalizability capabilities of our models, the Face-
Forensics++ (HQ) dataset was used for training, and generalization per-
formance was assessed on Celeb-DF and DFDC unless otherwise specified.
This approach aligns with previous practices in the field, allowing for direct
comparisons with other State-Of-The-Art methodologies in the subsequent
experiments.

To properly utilize the datasets for both training and evaluation, several pre-
processing steps were undertaken, to convert the data from short videos to
individual images, as required by our method. For the FaceForensics++ (HQ)
dataset, 15% of the videos were allocated for testing purposes. In contrast,
the train and test video splits for the Celeb-DF and DFDC (Preview) datasets
were pre-defined and provided with the structure of the datasets.

To ensure consistency across all datasets, a frame-by-frame filtering process
was applied to extract face images from every video sample. The procedure
involved employing the Dlib Python library [King, 2009] through a two-step
operation. Initially, the Dlib face detection algorithm was utilized to detect
faces within each frame. Only frames where the face was predicted with an
accuracy exceeding 95% were retained. Subsequently, the bounding boxes
generated by the face detection algorithm were utilized to filter out any face
with a resolution lower than 95x95 pixels. The resulting count of samples from
these operations is outlined in Table 1 for the FaceForensics++ dataset and
in Table 2 for the Celeb-DF and DFDC datasets.

Due to the substantial volume of collected samples, a constraint was applied
for training our configurations, limiting the number of samples to 10,000
genuine images and 10,000 deepfake images. These images were randomly
and uniformly sampled from the respective subsets of the dataset for both
training and evaluation purposes. Specifically, a total of 10,000 images from
the youtube subset and 2,500 images from each deepfake subset mentioned
in Table 1 of the FaceForensics++ dataset were selected. For model testing
following the training phase, 40,000 images were sampled from every dataset,
equally split into 20,000 real and 20,000 deepfake images. These images were
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FaceForensics++

Real Fake

Dataset Train Test Train Test

youtube 139,908 23,379

Deepfake 138,200 23,130

Faceswap 111,361 18,421

Face2Face 138,574 22,864

NeuralTexture 110,955 18,719

Table 1: Dataset splits for the FaceForensics++ dataset. The values reported
are the result of a train and test video split of 85% and 15% respectively,
following a filtering operation, with the Dlib python library. The filtering
operation consisted of two steps. Firstly, we filter out the frames that were
predicted to contain a face with an accuracy lower than 95% from the Dlib
network, and secondly, by using Dlib’s predicted bounding boxes around face
images, we filter out any frames with faces smaller than 95x95 pixels.

utilized to calculate the statistics presented in the experiment tables.

The CLIP model utilized in this study is the ViT-L/14 architecture, as orig-
inally presented by OpenAI in their publication [Radford et al., 2021]. This
model comprises approximately 470 million parameters. The image encoder
adheres to the architectural design of the ViT-Large model proposed in
[Dosovitskiy et al., 2020], employing 14x14 patches and incorporating an
additional layer normalization step after combining the positional encodings
with the embeddings. In this work, the vision encoder consists of N layers,
specifically 12 in our case, with a dimension dmodel of 1024. The MLP hid-
den size dff is set to 4096, and the model employs 16 attention heads h.
Before being passed into the Vision Transformer, the images undergo pre-
processing transformations. This involves resizing the images to 224 pixels
with bicubic interpolation, followed by a center crop of dimensions 224x224.
Subsequently, the images are rescaled to values between 0 and 1 and nor-
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Celeb-DF DFDC

Train Test Train Test

Real 289,716 70,154 561,044 68,971

Fake 2,013,957 130,659 2,874,521 130,659

Table 2: Dataset splits for the Out-Of-Distribution datasets. Celeb-DF and
DFDC already provide the train and test splits of the videos. All the videos
were filtered similarly to what was done for the FaceForensics++ dataset.

malized using the mean values (0.481, 0.457, 0.408) and standard deviation
values (0.268, 0.261, 0.275).

The text encoder in our network adheres to the architecture outlined in
[Vaswani et al., 2017], incorporating the modifications proposed in [Radford
et al., 2019]. Notably, the layer normalization is relocated to the beginning
of each sub-layer, and an additional layer normalization is introduced after
the final self-attention layer. Moreover, the weight initialization is scaled by a
factor of 1/n, where n represents the number of layers with residual connec-
tions. The Transformer employed consists of N layers, specifically 12 layers
in our configuration. It operates with a dimension dmodel of 768, an MLP di-
mension dff of 3072, and utilizes 8 attention heads h. Each text description
undergoes encoding using a lower-cased byte pair encoding (BPE) approach,
employing a vocabulary size of 49,152. Additionally, a maximum sequence
length is imposed, of 76 tokens. The resulting sequences are enclosed with
[SOS] (start of sequence) and [EOF] (end of sequence) tokens.

Regarding the text descriptions utilized for training our configurations, they
were not included in any of the datasets and were therefore generated man-
ually. For configurations denoted with the ”1desc” suffix, the following de-
scription was employed for genuine face images: ”The image of a person.”
For deepfake images, the description used was ”The image of a deepfake.”
In contrast, configurations labeled with the ”10desc” and ”550desc” suffixes
correspond to the multi-description setups. These configurations involve a
total of 10 and 550 pairs of real and fake descriptions respectively, which
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were sampled using ChatGPT and subsequently refined manually where nec-
essary. The main objective of these descriptions was to encompass a general
description of genuine and deepfake images, ensuring sufficient coverage of
semantic features. The specific content of the descriptions was not critical,
as long as they captured the essence behind the concepts of genuine and
deepfake images. The prompts employed to generate the 1100 descriptions
can be found in Appendix A, specifically in Table 9. Additionally, all descrip-
tions are available in the GitHub repository associated with this document.
Moreover, the descriptions for the 10desc configuration were manually se-
lected from the descriptions within the 550desc configuration. The details
of the chosen descriptions for genuine and deepfake images of configuration
10desc can be found in Table 10 and Table 11 in Appendix A.

During the training of multi-description configurations, a sampling strategy
is employed where two descriptions (one for genuine and one for manipu-
lated images) are randomly selected from our lists for each batch of images.
These descriptions are then appended to the corresponding real-deepfake
image pairs. Consequently, the optimization step is performed similarly to
having one description per class, but with multiple descriptions contributing
to the training of the model. For testing and inference, the procedure for
the 1desc configurations is straightforward. The same descriptions used dur-
ing training are employed, and the probability distribution over the logits for
each image is calculated using the Softmax function. However, for the multi-
description configurations, a different evaluation approach is implemented.
Firstly, the logits of each image are computed for all the descriptions used
during training. Subsequently, the mean value of the genuine and deepfake
logits is calculated separately. Following this step, the probability distributions
for the image being real or fake can be determined, similar to the 1desc con-
figurations, using the Softmax function. Furthermore, the multi-description
configurations were evaluated using top-k sampling. After gathering the log-
its from all descriptions, the top K highest values are retained, and only
those logits are considered for the final class prediction.

Due to computational limitations, the tuning of hyperparameters was con-
ducted with limited prior experimentation. All configurations were trained
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using a batch size of 16 and the Adam optimizer with a high decoupled
weight decay value of 0.2, following the approach described in [Loshchilov
and Hutter, 2017]. The beta values for the optimizer were set to (0.9, 0.98),
and the epsilon value was fixed at 1e-6. During training, the learning rate was
dynamically adjusted using a linear warm-up and cosine annealing scheduler.
Specifically, a warm-up phase consisting of 10,000 steps was implemented to
linearly increase the learning rate from 0 to 6e-7 for the 1desc configuration
and up to 8e-7 for the multi-description configurations. These learning rate
values were determined to yield the best performance. Subsequently, the co-
sine annealing was carried out over 10,000 steps. In each warm-up and cosine
annealing cycle, the peak learning rate was set to half of the previous cycle’s
peak learning rate. The training process included a stopping criterion based
on the validation loss. If the validation loss did not improve by a minimum of
5% over three consecutive epochs, training was halted. This threshold was
determined empirically during the hyperparameter tuning phase. For the final
tests, the weights selected were those associated with the lowest validation
loss value on the FaceForensics++ dataset during training.

In Section 8.1, an Xception network was trained [Chollet, 2017] as an ad-
ditional baseline comparison, as it is widely utilized in face forgery detec-
tion. Our specific implementation was pre-trained on the ImageNet dataset,
achieving a top-1 precision of 78.89% and a top-5 precision of 94.29%. The
training process of the Xception model closely resembled that of the 1desc
configuration, with the adjustment in the weight decay of the optimizer,
lowered to 1e-5.

All experiments were conducted on an RTX 2080 Ti GPU, with each con-
figuration requiring approximately 15 hours to train using our current im-
plementation. To ensure the reliability and consistency of the results, every
experiment was repeated three times using different random seeds. The re-
ported results represent the best performance obtained among the multiple
runs.

The main evaluation metric used in our experiments is the Area Under the
Curve (AUC) score of the Receiver Operating Characteristic (ROC) curve.
The AUC score is a comprehensive metric for evaluating the generalization
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capabilities of a model in a binary classification setting, as it provides a
measure of the model’s ability to distinguish and separate two classes. To
comprehend the AUC metric, it is necessary to understand the ROC curve.
The ROC curve illustrates the performance of a binary classifier across various
discrimination thresholds. It is created by plotting the True Positive Rate
(TPR) against the False Positive Rate (FPR) at different threshold settings.
The AUC value represents the area under the ROC curve, which serves as an
indicator of the classifier’s discriminatory power. A perfect classifier achieves
an AUC value of 1, indicating a perfect separation between the two classes,
while a value of 0.5 suggests that performance is equivalent to a random
classifier. To enhance readability in the upcoming tables, the AUC values are
presented as percentages (AUC%), obtained by multiplying the AUC score
by 100. This conversion facilitates the interpretation of results.

Furthermore, in certain experiments, Precision is also reported as a sup-
plementary metric. Precision is calculated by dividing the number of true
positives by the sum of true positives and false positives.

8 Experiments & Results

8.1 Zero-shot experiments

Due to the lack of public disclosure regarding the data on which CLIP was
trained, the model was treated as a black box to explore its potential in the
deepfake detection task.

To assess CLIP’s semantic understanding of deepfakes, some initial inference
experiments were conducted using the default weights provided by OpenAI,
on the FaceForensics++, Celeb-DF, and DFDC datasets. The results of these
zero-shot experiments are summarized in Table 3.

The zero-shot experiments of Table 3 indicate that CLIP performs similarly to
the Xception architecture fine-tuned from ImageNet weights, on the CelebDF
and DFDC datasets. However, there is a noticeable performance difference
on the FaceForensics++ dataset, which is expected since the Xception model
was specifically trained on that data distribution. Furthermore, a comparison
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between the ”1desc” and ”550desc” configurations reveals a 5% performance
improvement for the ”550desc” configuration, achieving an average AUC%
of 64.16% compared to 59.23% for the ”1desc” configuration.

Figure 5 on the other hand, provides an overview of the CLIP model’s behav-
ior when top-k sampling is applied to the 1,100 total labels in the ”550desc”
configuration. Performance tends to improve as more descriptions are consid-
ered. The performance pattern remains consistent across datasets, with the
best results observed on the FF++ dataset, followed by the DFDC dataset,
and Celeb-DF consistently posing the most significant challenge for the CLIP
pre-trained network, when queried with multiple descriptions. Additional de-
tails and calculated values regarding the top-k experiment can be found in
Table 12 in Appendix B.

Method
AUC %

AVG%
FF++ CelebDF DFDC

Xception 98.41 53.43 60.78 70.87

CLIP (zero-shot - 1desc) 63.99 58.43 55.27 59.23

CLIP (zero-shot - 550desc) 78.11 52.13 62.29 64.18

Table 3: Benchmark experiments on the zero-shot capabilities of CLIP on
the deepfake detection task.

As observed in Table 3 and Figure 5, the performance of CLIP depends heavily
on the descriptions used. In the 1desc configuration CLIP achieves a higher
AUC% value than the DFDC dataset, which is not the case for the 550desc
configuration. This behavior is also observed in the qualitative experiment
represented by Figure 6 and Table 4. The experiment consisted in sampling
a random genuine face and a deepfake and observing the performance under
two different sets of real-fake descriptions. The text descriptions and their
relative performance are described in Table 4 while the images used can
be found in Figure 6. The experiment showcases the fact that although
the semantic meaning of the two pair of descriptions is similar, the results
obtained when querying the CLIP model are completely opposite.
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Figure 5: Zero-shot performance of the pretrained CLIP model with the
550desc descriptions configuration. The plot shows that the performance
improves by increasing the number of descriptions considered.

8.2 Vision encoder reset experiments

To better perceive the contribution of the text encoder’s semantic under-
standing, several fine-tuning experiments were conducted on CLIP, with the
vision encoder weights re-initialized. The weights of the text encoder were
kept frozen during training to preserve the initial semantic understanding
and structure. The aim of this experiment was to maximize the influence
of the text descriptions on the network while minimizing the contribution
of the pre-trained visual encoder. The configurations were named after the
description pairs used during training and are as follows:

• 1desc: The descriptions used are ”The image of a person.” and ”The
image of a deepfake.”, as described in Section 7.

• 550desc: This experiment used the 550 descriptions explained previ-
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(a) Image of a genuine non-
manipulated face, sampled from
the FaceForensics++ dataset.

(b) Image of a face manipu-
lated with the Deepfake tech-
nique, sampled from the Face-
Forensics++ dataset.

Figure 6: Samples used to qualitatively test the effectiveness of descriptions
for the task of deepfake detection.

Method
Real Image Fake Image

% Real % Fake % Real % Fake

Zero-shot
bad descriptions 7.37 92.63 62.60 37.38

good descriptions 87.30 12.68 8.15 91.85

Table 4: Performance of the zero-shot CLIP model with different descrip-
tions. The bad descriptions represent the descriptions that lead to the wrong
classification of the samples and are the following: ”Facial details in the im-
age appear consistent and realistic, suggesting an authentic portrayal.” and
”The image shows signs of facial manipulation, giving the impression of an
artificially altered appearance.”. The good descriptions, on the other hand,
lead to a correct classification of the samples and are the following: ”The
image showcases genuine facial features, reflecting an authentic representa-
tion.” and ”The image has been generated artificially, raising doubts about
its authenticity.”.
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ously, as it showed the best performance in the zero-shot experiments.

• catDog: The descriptions used were ”The image of a cat.” for real
face images and ”The image of a dog.” for deepfake images.

• carMoto: The descriptions used were ”The image of a car.” for real
face images and ”The image of a motorcycle.” for deepfake images.

• FlakeBall: The descriptions for this configuration were ”The image of
a paintball.” for real face images and ”The image of a cornflake.” for
deepfake images.

The results summarized in Table 5 show that the text descriptions used in
training can have a significant impact on the features learned by the visual
model, thus influencing the overall performance. The best-performing config-
uration is the carMoto, with more than 5% increased AUC% over the 1desc
and 550desc configurations reaching the second and third best performance
respectively. Differently from the zero-shot experiments, the 1desc configu-
ration performs slightly better than the multi-description configuration.
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Method
AUC %

AVG %
FF++ CelebDF DFDC

Xception 98.41 1 53.43 60.78 70.87

CLIP (zero-shot - 1desc) 63.99 58.43 55.27 59.23

CLIP (zero-shot - 550desc) 78.11 52.13 62.29 64.18

CLIP (FlakeBall) 86.59 64.65 61.76 71.00

CLIP (catDog) 79.48 58.50 59.39 65.79

CLIP (carMoto) 97.79 2 87.41 1 78.09 1 87.76 1

CLIP (1desc) 97.39 3 74.79 3 72.10 2 81.43 2

CLIP (550desc) 95.48 77.41 2 69.95 3 80.95 3

Table 5: Experiments on the CLIP model with reset vision weights and frozen
text encoder weights. The first two rows are the experiments seen in Table
3 and have been reported here as a comparison. The last column reports the
average performance between all three datasets. The descriptions for each
fine-tuned CLIP configuration can be found in Sub-section 8.2.
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8.3 State-Of-The-Art comparison

For the experiments in this section, both the image and text encoders were
fine-tuned to compare the proposed approach with other State-Of-The-Art
(SOTA) methods. Table 6 presents the results of the cross-dataset evalua-
tion.

The results show that the 1desc configuration, which uses a single descrip-
tion, outperforms the multi-description configurations, aligning with the find-
ings in Section 8.2. The 1desc configuration also exhibited faster convergence
during training compared to the multi-description configurations, making it
more computationally efficient. Additionally, the ”carMoto” configuration
trained in Section 8.2 achieves similar performance to the fully fine-tuned
1desc configuration, indicating that it is possible to achieve high performance
without tuning the text encoder or relying on pre-trained visual features.

The results on the out-of-distribution datasets show that CLIP can achieve
SOTA performance, comparable to some of the best methods available, such
as [Shiohara et al., 2022, Guan et al., 2022, Li et al., 2020b]. However,
on the in-distribution dataset, CLIP’s performance remains slightly below
the average. The detailed performance on the in-distribution dataset can be
found in Table 13 of Appendix B. The performance is fairly balanced with
respect to the manipulation techniques, with the NeuralTexture one being
the most challenging. However, it is important to note that the focus of this
work is primarily on performance across different data distributions, rather
than in the specific In-Distribution task.

The FaceForensics++ dataset was further utilized to conduct experiments
using the Leave-Out-One method. In this experiment, the model was trained
on all manipulation methods of the FF++ dataset, except one, and evaluated
on the excluded method. The summarized results are presented in Table 7,
where each AUC% column represents the deepfake detection dataset used
for cross-evaluation, excluded from the training phase.

The experiment yields highly positive results, with the proposed CLIP method
outperforming most other state-of-the-art (SOTA) approaches. Averaging
over the datasets, the SBI method achieves a mean AUC value of 99.64%,
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Method
AUC %

AVG%
FF++ Celeb-DF DFDC

Face X-ray [Li et al., 2020b] 99.17 80.58 80.92 3 86.89

OST [Chen et al., 2022b] 98.2 74.8 83.3 2 85.43

DCL [Sun et al., 2022] 99.30 82.30 76.71 86.10

UIA-ViT [Zhuang et al., 2022] 99.33 82.41 75.80 85.84

SBI [Shiohara et al., 2022] 99.64 93.18 1 86.15 1 92.99 1

LTTD * [Guan et al., 2022] 99.4 89.3 2 80.4 89.7 2

CRGB [Dong et al., 2023] 99.3 82.3 73.3 84.96

CLIP (1desc) 98.68 86.68 3 79.09 88.15 3

CLIP (10desc) 97.81 80.26 76.45 84.84

CLIP (550desc) 97.71 80.84 76.03 84.86

CLIP (carMoto) 97.79 87.41 78.09 87.76

Table 6: Cross-dataset evaluation experiments of the fully fine-tuned CLIP
models compared with other SOTA methods. The results of each specific
approach have been taken directly from their original publication. The last
row corresponds to the vision reset experiment presented in Section 8.2 and
has been reported here for comparison, as it provided one of the best results.
The highlighted results indicate the top three configurations for each dataset.
Methods with a * next to their names indicate multi-frame methods that
evaluate each video as a whole.

while CLIP closely follows with an average of 96.27%. The next best-performing
method, UIA-ViT, attains an average AUC value of 86.1%.

It is worth noting that the most challenging dataset for CLIP was the one gen-
erated using the NeuralTexture manipulation method. This aligns with the
findings on the In-Distribution dataset presented in Table 13 of Appendix B,
which demonstrates the challenging nature of the NeuralTexture manipula-
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tion method. Overall, the results obtained from this experiment are consistent
with the performance observed in the previous experiment of Table 6, with
the CLIP method closely matching the performance of the best-performing
SOTA approaches.

Method
AUC %

DF F2F FS NT

LTW [Sun et al., 2021] 92.70 80.20 64.00 77.30

DCL [Sun et al., 2022] 94.90 82.93 - -

UIA-ViT [Zhuang et al., 2022] 96.70 3 94.20 3 70.70 3 82.80 3

SBI [Shiohara et al., 2022] 99.99 1 99.88 1 99.91 1 98.79 1

CRGB [Dong et al., 2023] 94.10 81.40 65.60 79.20

CLIP (1desc) 98.58 2 98.49 2 97.71 2 90.33 2

Table 7: Leave-Out-One experiment, where each column represents the
dataset left out of training and evaluated on: DF: Deepfake, F2F: Face2Face,
FS: FaceSwap, NT: NeuralTexture. The results of other methods were taken
from their original publications.
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8.4 Similarity of embeddings

In this section, we conduct an analysis of the 10desc configuration, which
was trained in Section 8.3, in order to investigate the behavior of the text
embeddings, relative to the descriptions used during the fine-tuning process.
The descriptions relevant to the configuration have been included in Table 10
and Table 11 of Appendix A. The primary objective of this experiment was to
examine the behavior of the embeddings by measuring their cosine similarity
before and after the fine-tuning procedure. The results were calculated and
visualized in the form of heatmaps in Figure 7. The mean values of the plots
have also been summarized in Table 8 to facilitate the comparison between
heatmaps.

The first row of heatmaps in Figure 7 represents the cosine similarities of
the embeddings prior to the fine-tuning process. From the visualizations, it is
evident that both the real and fake descriptions exhibit considerable similarity
with each other.

Furthermore, by examining the embeddings after the fine-tuning process in
the second row of the heatmaps, we observe that the patterns detected
before fine-tuning mainly remain preserved, with some subtle differences.
Specifically, we notice a slight decrease in the intensity of similarities between
the embeddings of real and fake descriptions. Additionally, we observe that
the embeddings corresponding to descriptions of real faces exhibit a higher
degree of similarity compared to the non-fine-tuned similarities. Similarly, the
similarity of the embeddings related to the deepfake descriptions manifests
an increase after fine-tuning.
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(a) Cosine similarity of
the real descriptions
for the zero-shot CLIP
model.

(b) Cosine similarity of
the zero-shot CLIP net-
work, between genuine
descriptions on the x
axis and deepfake ones
on the y axis.

(c) Cosine similarity of
the deepfake descrip-
tions for the zero-shot
CLIP model

(d) Cosine similarity of
the real descriptions for
the finetuned 10desc
CLIP model.

(e) Cosine similarity of
the finetuned 10desc
CLIP network, between
genuine descriptions on
the x axis and deepfake
ones on the y axis.

(f) Cosine similarity of
the fake descriptions for
the finetuned 10desc
CLIP model.

Figure 7: Cosine similarities of the embeddings of the real and fake descrip-
tions. The range of the values is between (0,1), with higher values meaning
higher similarity.
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Method
Similarity

Real/Real Real/Fake Fake/Fake

CLIP (zero-shot - 10desc) 0.83 0.78 0.85

CLIP (10desc) 0.88 0.74 0.89

Table 8: Mean cosine similarity of the embeddings of the descriptions used to
finetune the 10desc configuration. Higher values mean higher overall mean
similarity between the compared embeddings.
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9 Discussion

9.1 Zero-shot experiments

It is hypothesized that CLIP possesses semantic understanding of deepfakes
from text, but the visual features have not been trained with enough data
to accurately classify an image as genuine or fake. Another qualitative ex-
periment conducted in the early stages of working with CLIP supports this
hypothesis. The experiment involved an image consisting of two parts: an
authentic person on the right side and the corresponding deepfake on the
left side. Multiple descriptions were provided to the model to confuse it.
CLIP consistently chose the deepfake description that best matched the im-
age. However, when each sub-part of the image was queried separately, CLIP
failed to recognize which face was the deepfake, incorrectly predicting the
real face as a deepfake and the fake face as genuine. The image related to
this experiment can be found in Figure 8 of Appendix B.

Additionally, the experiments conducted in Sub-section 8.1 demonstrate that
the pre-trained zero-shot model can achieve improved performance when
multiple descriptions are used during inference. It is speculated that the
image-text pairs representing deepfakes in the pre-training phase may have
been focused around descriptions containing synonymous terms to ”deep-
fake”, such as ”artificially created image”, ”spoofing attempt”, ”manipu-
lated image”, or similar phrases. Therefore, relying on only one description
is insufficient to capture all the relevant knowledge of the model regarding
what is real and what is fake, specifically for face forgery detection.

The findings from the multi-description configuration in Table 3 and Figure
5 align with some of the experiments in Section ”Prompt Engineering and
Ensembling” of the original CLIP publication [Radford et al., 2021]. The au-
thors discovered that the model performed better when the descriptions were
engineered to match the dataset’s context. For instance, using the template
”label, a type of food” yielded better results than ”An image of a label”
for the classes in the Food101 dataset. Similarly, the performance of CLIP
in deepfake detection heavily depends on the choice of descriptions. These
results can also be seen as analogous to the ensembling experiments in the
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original CLIP paper, where multiple zero-shot classifiers with slightly differ-
ent contextual descriptions were ensembled by averaging the embeddings.
In our case, we average the logits of a single model, resulting in a similar
performance improvement compared to using a single description.

Discovering the most effective method for prompting CLIP to achieve optimal
results, however, remains a challenging task. While the top-k experiments in
Figure 12 and Table 12 demonstrate that performance generally improves as
more descriptions are used, there are noticeable fluctuations in the results.
These fluctuations may be attributed to certain descriptions being inadequate
in relation to the information encountered during the pre-training phase. In
other words, not all descriptions may accurately capture the relevant knowl-
edge required for deepfake detection, as also demonstrated in the qualitative
experiment of Section 8.1. As a result, finding the right amount and quality
of descriptions that align with the model’s pre-training data is crucial for
achieving consistent and improved performance.

9.2 Vision encoder reset experiments

The results of the fine-tuning experiments in Section 8.2 indicate that the
choice of text descriptions can greatly influence the features learned by the
visual model, and subsequently, the model’s performance when fine-tuning.
The best-performing configuration is the carMoto experiment, even though
the first two deepfake configurations could be considered better suited for
the task.

This outcome raises the hypothesis that, given the low robustness of the
model for deepfake detection, as seen in Section 8.1, it is possible that
features related to other descriptions align well with the task, leading to the
carMoto configuration’s superior performance compared to the 1desc and
550desc configurations in the fine-tuning process.

Moreover, the experiment demonstrates that it is possible to learn robust
visual features for downstream tasks even without pre-trained vision weights.
This eliminates the constraint of relying on aligned visual and language fea-
tures from pre-training on image-text pairs. However, it highlights the ne-
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cessity of finding appropriate descriptions for the specific downstream task.

Notably, despite the low robustness of the model in deepfake detection, as
observed in Section 8.2, fine-tuning with the proposed method yields promis-
ing results. All fine-tuned configurations achieve an improvement in average
AUC% performance over the zero-shot CLIP experiments of Section 8.1.

In contrast to the experiments in Section 8.1, the 1desc configuration per-
forms slightly better than the 550desc configuration when fine-tuned. This
suggests that in the fine-tuning process, a single description may capture
relevant knowledge more effectively than using a larger set of descriptions,
for datasets with a limited number of classes.

In summary, the results of these fine-tuning experiments highlight the signif-
icant impact of text descriptions on the learned visual features and overall
performance. Additionally, the unexpected outcome of the carMoto experi-
ment showcases that alignment of features related to different descriptions,
unrelated to deepfake detection have the potential to guide the performance
of the fine-tuning process, although a way to identify the optimal descriptions
for a downstream classification task is needed.

9.3 State-Of-The-Art comparison

The experiments of Section 8.3 yielded some highly encouraging results for
the Out-Of-Distribution datasets, with CLIP achieving State-Of-The-Art per-
formance that is on par with the achievements of previous works such as
[Shiohara et al., 2022, Guan et al., 2022, Li et al., 2020b]. Compared to
other methodologies, however, CLIP offers additional flexibility especially for
real-world data, as it does not rely on specific meta-data information during
training.

Although CLIP’s In-Distribution performance is slightly below the average
compared to other methods, in all the fine-tuned configurations, this can pos-
sibly be attributed to the limited hyper-parameter tuning. The In-Distribution
performance of the 1desc configuration is also reported in Table 13 of Ap-
pendix B. The results demonstrate a fairly balanced performance across the
different manipulation techniques, with the NeuralTextures being the most
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challenging. It is important to note however, that the investigation of In-
Distribution performance was not extensively pursued in this work, as our
primary focus was the generalization performance of the method on data
distributions different from the training set.

In addition to the observations made in Section 8.2, the table highlights
that the ”1desc” configuration performs better than the configurations with
multiple descriptions. This finding suggests that it is easier and more efficient
for the network to align all features towards a single description, given our
fine-tuning method, for the classification task.

In addition, the ”carMoto” configuration trained in Section 8.2 is able to at-
tain similar results to the ”1desc” configuration while simplifying the training
process. This configuration eliminates the requirement for tuning the text en-
coder, which can be a resource-intensive task. Additionally, it hypothetically
removes the reliance on pre-trained and aligned visual features from the vi-
sion encoder, simplifying the requirements of the fine-tuning method. This
could allow us to train from scratch visual encoders, for downstream tasks,
by aligning them to large language models, pre-trained on billions of data
samples, possibly leading to even better generalization. This however is only
a hypothesis and would require validation by trying to align arbitrary pre-
trained text encoders to image encoders, by solely adjusting the weights of
the image encoder.

It is important to note that the comparisons made in Section 8.3 are based
on the results reported in the original publications of each method. This ap-
proach was chosen for the following two reasons. Firstly, the field of deepfake
detection encompasses a wide range of methods, each with its own specific
data splitting and preprocessing requirements, making it impractical to val-
idate and test all of them. Secondly, it is assumed that the authors of each
method made thorough experimentation to optimize their algorithms and
provide reliable results. In addition, careful consideration was given to ensure
a fair comparison with our proposed method. The compared methods were
selected based on the highest reported results that were compatible with our
experimental setup of training on the FaceForensics++ (HQ) dataset and
evaluating on DFDC and Celeb-DF datasets, as it was the most common
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experiment observed in other works. In the literature, the number of samples
used for the evaluation was found to range from 32 to 110 frames per video
(estimated at around 20,000 to 60,000 images per dataset). As the value
used is mainly arbitrary and can also depend on the method, the thresh-
old of 20,000 images per dataset was chosen as no significant difference in
performance was noticed over using more frames.

In response to concerns about the fairness of our results, it is worth consid-
ering the possibility of CLIP being pre-trained on similar data distributions as
those used in our evaluations. While this is a valid point, it is important to
note that the learned features of CLIP alone are insufficient without leverag-
ing them effectively through appropriate descriptions. As demonstrated from
the zero-shot experiments, achieving good results requires careful prompt
engineering, a task that can quickly become overwhelming and challenging,
due to the multitude of concepts and terms, around deepfake detection, that
need to be considered. Therefore, alternative approaches, such as the fine-
tuning method proposed in this work, are necessary to effectively utilize the
pre-trained knowledge of CLIP in a specific downstream task.

9.4 Similarity of embeddings

The experiments conducted in Section 8.4 show that the fine-tuning method
introduced some subtle distinctions between the embeddings of real and
fake descriptions, making them less similar in latent space. On the other
hand, the embeddings of real face descriptions were effectively brought closer
together in latent space. Similarly, the embeddings associated with deepfake
descriptions also exhibited a higher degree of similarity after fine-tuning. The
above properties can also be considered an additional indicator that the fine-
tuning process is functioning properly.

Although there may be a slight decrease in the similarity between real and
fake descriptions after the fine-tuning, it is important to note that the rel-
ative difference is minimal, with only a 4% change. This indicates that the
embeddings of real and fake descriptions remain relatively close in the latent
space even after fine-tuning. Furthermore, this observation suggests that the
fine-tuning procedure does not significantly alter the relative similarities be-
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tween the embeddings. The underlying relationships among the descriptions
are largely preserved, indicating the robustness of the fine-tuning process in
maintaining the overall structure of the embedding space.

However, this observed behavior poses a challenge in our case, as ideally, we
would prefer the features corresponding to authentic faces and deepfakes to
be further apart in the latent space. This separation could help minimize any
overlap between the two classes, leading to improved classification perfor-
mance. One of the main factors contributing to this behavior is the similarity
between the features learned from the visual encoder for real and forged
images. Due to the highly overlapping distributions of the two classes, the
visual encoder tends to produce similar representations for both types of im-
ages. Additionally, since the text encoder is trained to generate embeddings
similar to those of the visual encoder, this further contributes to pushing
the descriptions of our supposedly ”different” classes closer together in the
latent space.

To mitigate this issue, one could make use of contrastive learning train-
ing paradigms, which have shown great success in improving the separation
among classes in latent space, therefore leading to improved performance.
The works of [Dong and Shen, 2018, Sun et al., 2020] can be considered
some notable contributions in the field that could be adapted into the CLIP
fine-tuning method.
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10 Limitations & Future work

Although CLIP has demonstrated great potential in generalizing deepfake
detection, several limitations have been identified in the current approach.
Resolving these limitations could lead to performance improvements and
enhance the robustness of face forgery detection.

One limitation pertains to the sampling of descriptions, both for the zero-
shot classification task and for the fine-tuning procedure. The experiments
conducted in Sub-section 8.1 and 8.2 revealed that different descriptions
have varying effects on the classification task of deepfake detection. Optimal
sampling of descriptions specific to each downstream task could significantly
enhance the interaction with language-vision models and improve overall per-
formance. Furthermore, investigating the properties of the text embeddings
that enabled the carMoto configuration of Section 8.2 to perform similarly
to the jointly trained image and text encoders of Section 8.3 could facili-
tate the fine-tuning of language-vision networks and reduce computational
requirements.

Additionally, the descriptions used in the 10desc and 550desc configurations
aimed to capture the main distinction between real and fake images with-
out addressing specific characteristics or artifacts found in each individual
image. A more effective approach, resembling the pre-training method used
in CLIP, would involve including image-text samples with highly informative
descriptions of why an image is a deepfake. These descriptions could address
attributes such as artifacts or the specific generation technique employed. By
combining text descriptions of facial features that CLIP already understands
well with motivations for identifying fakes, the model could potentially learn
more robust features for discriminating between real and fake images. This
method would allow the use of multiple image-text samples during training
and eliminate collisions, aligning with the original pre-training methodology.

Moreover, training CLIP to discriminate not only between real and deepfake
faces but also between real and artificially generated images more broadly
could be beneficial to improve generalization. This approach would aim to
develop robust features capable of recognizing fake images and artifacts,
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independent of the subject represented.

Given the observed similarity in embeddings between real and fake images,
which can be attributed to the considerable overlap between the data distri-
butions of the two classes, it could be beneficial to enhance the separation
between the two classes in latent space. One potential approach to achieve
this would be to incorporate a contrastive loss term into the training process,
aiming to maximize the dissimilarity between embeddings of real and fake
image pairs. Contrastive learning has already demonstrated its effectiveness
in the domain of deepfake detection, as explored in the work of [Sun et al.,
2022].

Another method that is effective for improving the performance of machine
learning methods is ensemble learning, introduced in machine learning by
the work of [Breiman, 1996]. In the context of CLIP, ensemble learning could
involve using multiple fine-tuned models and averaging the logits for real and
fake classes. Additionally, exploring the impact of ensembling when multiple
CLIP models are fine-tuned solely on the vision encoder with different real-
fake descriptions could yield valuable insights. The utilization of ensembling
was also found to improve performance in the zero-shot setting in the work
of [Radford et al., 2021].

Finally, as CLIP does not require any specific training setup, it could be
combined with other deepfake detection methods such as [Shiohara et al.,
2022].
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11 Conclusions

The aim of this research was to study the impact of vision-language pre-
training for the task of face forgery detection and compare the performance
to other SOTA methods that mainly rely on visual features. Overall, the
conclusion can be drawn that language-vision pre-trained networks can have
a beneficial impact in the field of face forgery detection.

In summary, the following contributions are made by our research:

• Firstly, we demonstrate that CLIP can achieve comparable general-
ization performance to CNN-based models fine-tuned specifically to
the task of deepfake detection, by querying the model with various
descriptions, without requiring additional optimizations or fine-tuning
processes.

• Secondly, we introduce a fine-tuning paradigm for language-vision mod-
els, similar to CLIP, that is well-suited for datasets with a limited num-
ber of classes. This paradigm addresses the problem of collisions during
training that may arise due to the lack of unique image-text pairs.

• Additionally, we achieve State-Of-The-Art results in the task of deep-
fake detection when pairing our method with a pre-trained CLIP model,
demonstrating its effectiveness and competitive performance.

• Finally, we suggest that robust text features have the potential to
significantly influence the overall performance of a fine-tuned vision
model. Potentially, with adequate descriptions, any pre-trained text
encoder model can be used to fine-tune a visual encoder and achieve
State-Of-The-Art performance in downstream tasks.

Going into more detail, the generalization performance observed in the orig-
inal publication of CLIP in the work of [Radford et al., 2021], was similarly
translated in the deepfake detection task. As the authors of CLIP argue,
CLIP can match the performance of strong fully-supervised baselines in a
zero-shot setting, however, the performance is well below the overall SOTA
performance in most downstream tasks. In the same way, the zero-shot gen-
eralization performance of CLIP presented in Table 3 is able to match that
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of the baseline Xception network.

Additionally, the 550desc experiment, together with the top-k one in Section
8.1, show that it is possible to gain additional performance in the zero-shot
setting, by using multiple descriptions of the same class. The reason be-
hind this behavior could be that during the pre-training phase, the model
encountered deepfakes, but in text-image pairs with different kinds of de-
scriptions, possibly mentioning manipulation, artificially generated images or
similar terms instead of the specific term deepfake. Therefore, one simple
description around deepfakes is not enough to encompass all the features
relevant to non-genuine images, thus explaining the performance gain when
using multiple descriptions focusing on multiple terms around the concept of
face forgery. This behavior is explained in the original [Radford et al., 2021]
where it is stated that CLIP can struggle with polysemy (words that can
have different meanings in different contexts) and synonyms (different words
that have similar meanings) and employ ensembling techniques to mitigate
the issue.

From the above observations, it is therefore clear that the original CLIP
model was exposed to instances of deepfake image-text pairs in the pre-
training phase and that there is semantic understanding around the concept
of face forgery. However, the overall zero-shot performance is well below the
SOTA methods presented in Table 6, suggesting that the features are not
robust enough to correctly classify most images. Nevertheless, we show that
it is possible to fine-tune CLIP to datasets with a limited number of classes,
without depending on unique image-text pairs, with a novel adaptation of
the original pre-training algorithm from [Radford et al., 2021] that overcomes
the problem of collision, and can use multiple descriptions for each class.

The fine-tuned configurations seen in Section 6 managed to train successfully,
achieving SOTA results while relaxing the number of constrictions required
for training, compared to other SOTA face forgery approaches. Our best-
trained model achieves an average AUC% score of 88.15%, while the best
overall approach to the best of our knowledge, achieves an average AUC%
score of 89.7%. This method of fine-tuning seems promising since generaliza-
tion under distribution shifts (in this case the DFDC and Celeb-DF evaluation
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datasets) was not harmed, but rather improved significantly. The fact that
the 1desc and the 550desc configurations presented in Sub-section 8.3 pro-
vided better results than those in Sub-section 8.2 with frozen text encoder
weights, further supports that further investigation is required to understand
the limitations of this fine-tuning method compared to only fine-tuning the
visual encoder of CLIP models as commonly done. It would be interesting to
benchmark the proposed approach on common datasets such as ImageNet
to compare it with the current SOTA.

In addition, we demonstrate that it is also possible to achieve SOTA results
only by training the image encoder, as seen from the carMoto experiment
in Section 8.2. Although the reason behind this behavior is not completely
clear, the features of the descriptions used in the carMoto experiments, ”The
image of a car.” used for genuine images and ”The image of a motorcycle.”
for deepfake images, appear to be more suited than the features extracted
from the descriptions of deepfakes and genuine face images, used in the 1desc
and 550desc configurations of the same section. Nevertheless, two things can
be deduced from this experiment.

Firstly, robust enough text features can potentially guide the overall perfor-
mance of the fine-tuned model, and given performance will depend on the
text features used, for the specific downstream task. Secondly, we mention in
Section 8.2 that to reach SOTA results it is not required to have a pre-trained
visual encoder that can produce similar features to the text encoder. This
statement suggests that it would be possible to take any text encoder and
use it to train a visual encoder from scratch to produce similar embeddings
with those of the text encoder, for a given downstream task, and be able to
reach SOTA generalization performance regardless. The approach would be
also similar to the work of [Jia et al., 2021], where the authors experimented
with aligning various image and text encoders with a noisy image-description
pair dataset, of over one billion samples, similar to how it is done in [Rad-
ford et al., 2021], and benchmark the zero-shot performance on different
downstream tasks. Also, it must be noted that this approach would require a
method to find suitable descriptions for the specific downstream task, some-
thing that is not addressed in our work.
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In addition, an important observation must be acknowledged, regarding train-
ing a CLIP model from scratch with our adaptation, as it was not achieved.
Our intuition relies on the fact that Transformer models are more effective
the more data is used for training. For this reason, trying to train a CLIP
network from scratch with such a low amount of text descriptions as in
configurations 1desc and 550desc is not effective.

As a final note, we want to highlight that employing natural language pro-
cessing techniques for improving the generalization performance of computer
vision tasks is promising. For tasks where mathematical modeling of loss func-
tions that can express the underlying problem is particularly challenging, as
in the task of deepfake detection, language could be used as a proxy.
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[Thies et al., 2019] Thies, J., Zollhöfer, M., and Nießner, M. (2019). De-
ferred neural rendering: Image synthesis using neural textures. ACM Trans-
actions on Graphics (TOG), pages 1–12.

[Thies et al., 2016] Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C.,
and Niessner, M. (2016). Face2face: Real-time face capture and reen-
actment of rgb videos. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2387–2395.

[Thomee et al., 2016] Thomee, B., Shamma, D. A., Friedland, G., Elizalde,
B., Ni, K., Poland, D., Borth, D., and Li, L.-J. (2016). Yfcc100m: The
new data in multimedia research. Proceedings of the ACM International
Conference on Multimedia, pages 64––73.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser,  L., and Polosukhin, I. (2017). Atten-
tion is all you need. Advances in Neural Information Processing Systems
(NeurIPS) (NeurIPS), 30.

[Wang and Deng, 2021] Wang, C. and Deng, W. (2021). Representative
forgery mining for fake face detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
14923–14932.

[Wang et al., 2020] Wang, S.-Y., Wang, O., Zhang, R., Owens, A., and
Efros, A. A. (2020). Cnn-generated images are surprisingly easy to spot...
for now. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 8695–8704.

[Wang et al., 2022] Wang, Z., Codella, N., Chen, Y.-C., Zhou, L., Yang, J.,
Dai, X., Xiao, B., You, H., Chang, S.-F., and Yuan, L. (2022). Clip-
td: Clip targeted distillation for vision-language tasks. arXiv preprint
arXiv:2201.05729.

[Wojewidka, 2020] Wojewidka, J. (2020). The deepfake threat to face bio-
metrics. Biometric Technology Today, 2020(2):5–7.

68



[Wortsman et al., 2022] Wortsman, M., Ilharco, G., Kim, J. W., Li, M.,
Kornblith, S., Roelofs, R., Lopes, R. G., Hajishirzi, H., Farhadi, A.,
Namkoong, H., et al. (2022). Robust fine-tuning of zero-shot models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7959–7971.

[Wæver and Buzan, 2020] Wæver, O. and Buzan, B. (2020). Racism and
responsibility – the critical limits of deepfake methodology in security stud-
ies: A reply to howell and richter-montpetit. Security Dialogue, 51(4):386–
394.

[Yang and Lim, 2020] Yang, C. and Lim, S.-N. (2020). One-shot domain
adaptation for face generation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 5921–
5930.

[Yang et al., 2019] Yang, X., Li, Y., and Lyu, S. (2019). Exposing deep
fakes using inconsistent head poses. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 8261–8265.

[Zhang et al., 2019] Zhang, X., Karaman, S., and Chang, S.-F. (2019). De-
tecting and simulating artifacts in gan fake images. In IEEE International
Workshop on Information Forensics and Security (WIFS), pages 1–6.

[Zhang et al., 2022] Zhang, Y., Jiang, H., Miura, Y., Manning, C. D., and
Langlotz, C. P. (2022). Contrastive learning of medical visual represen-
tations from paired images and text. In Machine Learning for Healthcare
Conference, pages 2–25.

[Zhao et al., 2021] Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., and
Yu, N. (2021). Multi-attentional deepfake detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2185–2194.

[Zhu et al., 2021] Zhu, X., Wang, H., Fei, H., Lei, Z., and Li, S. Z. (2021).
Face forgery detection by 3d decomposition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2929–2939.

69



[Zhuang et al., 2022] Zhuang, W., Chu, Q., Tan, Z., Liu, Q., Yuan, H.,
Miao, C., Luo, Z., and Yu, N. (2022). Uia-vit: Unsupervised inconsistency-
aware method based on vision transformer for face forgery detection. In
Proceedings of the European Conference on Computer Vision (ECCV),
pages 391–407.

70



A Datasets

The following appendix presents complementary information about the datasets
used to train our models. The prompts used to sample the descriptions of
configurations 550desc and 10desc from ChatGPT have been reported in
Table 9. The prompts were used in succession in the same chat and the out-
puts were manually inspected and adjusted wherever required. In Table 10
the sub-sample of the descriptions used for the 10desc configuration trained
in Section 8.3 can be found.

B Additional results

This appendix provides supplementary material and additional findings rela-
tive to the experiments in the main document. In Figure 8 we find the image
relative to the preliminary experiment described in Section 8.1, showing that
CLIP has knowledge of deepfakes. Table 12 outlines the exact values of the
top-k experiment, showing that using more descriptions when using CLIP
is beneficial in a zero-shot setting. In Table 13 the In-Distribution results of
configuration 1desc trained in Sub-Section 8.3 are reported. In the Table, the
AUC and precision percentage scores are reported, showing that performance
is fairly consistent around the manipulation techniques trained on, with the
NeuralTextures dataset being the most challenging.
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Prompt to sample 550 deepfake descriptions

Create descriptions for different deepfake / modified or artificially
created images. The descriptions should look like this:

• ”The image exhibits inconsistencies in facial features, hinting
at potential deepfake manipulation.”

• ”The image shows signs of facial manipulation, giving the
impression of an artificially altered appearance.”

• ”The image has been generated artificially”
• ”The face in the image has been modified”
• ”The image has been modified to hide the original face in the
image”

• ”The image is a spoofing attempt to bypass face forgery recog-
nition”

• ”The image has small inconsistencies in the face, hinting that
it has been modified to hide the original identity of the per-
son.”

The prompts need to be applicable to any image. It is recommended
to keep them a bit vague and not go into much detail on why
a specific image might be fake. That means no assumptions that
artifacts are in a specific place in the face or similar. Create 550 of
these descriptions.

Prompt to sample 550 genuine descriptions

Now create 550 similar descriptions for real images that don’t have
any signs of modifications or of being deepfakes.

Table 9: Prompts to sample deepfake and genuine descriptions from Chat-
GPT. The two prompts are used in succession in the same chat as the second
prompt depends on the description of the first one.
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Descriptions used for genuine non-manipulated images

1. The image of an unaltered, authentic person.
2. The picture shows a real face that has not been modified or

altered.
3. An image of a genuine person with no inconsistencies around

the face.
4. A photograph that shows no signs of digital manipulation,

reflecting its authenticity.
5. The image captures a natural and unaltered representation of

the person’s face.
6. An image that shows no signs of digital tampering, editing,

or manipulation, reflecting its authenticity.
7. A photo of a genuine person with no indications of synthetic

changes or unnatural adjustments.
8. A picture of a real person where the identity has not been

altered.
9. The image shows a person’s unaltered face, reflecting their

true identity.
10. Facial features in the image exhibit natural proportions and

symmetry, indicating no modifications.

Table 10: List of real descriptions used to train the multi-label 10desc con-
figuration.
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Descriptions used for deepfake images

1. There are inconsistencies in the facial details, suggesting the
possibility of a deepfake.

2. The person portrayed in the image appears unreal, possibly
due to facial modifications.

3. It seems that the image undergoes digital modification, par-
ticularly in the face region.

4. Certain aspects of the face in the image appear unnaturally
generated, indicating potential deepfake techniques.

5. The image exhibits inconsistencies in the facial structure, im-
plying potential digital manipulation.

6. The facial details in the image raise suspicions of artificial
manipulation, possibly through deepfake techniques.

7. The image displays irregularities in the facial proportions,
hinting at potential digital manipulation.

8. It seems that the face in the image has been digitally morphed
or transformed, indicating potential manipulation.

9. It seems that the face in the image has undergone digital
manipulation to resemble someone else.

10. The image presents anomalies in the facial symmetry, casting
doubt on the authenticity of the face.

Table 11: List of deepfake descriptions used to train the multi-label 10desc
configuration.
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Figure 8: An image example used to understand how much knowledge the
CLIP pre-trained model possesses about face forgeries. On the left side, we
see the deepfake while on the right side the face of the genuine person. The
model always chose the most correct deepfake description when the image
was passed as is. However, the model was not able to correctly classify which
image was real and which one was a deepfake when the two parts of the
image were passed separately. This experiment sustains the hypothesis that
CLIP has been pre-trained on some examples of deepfakes, understanding
the concept, but not having robust enough visual features to recognize them
consistently.
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Method
AUC %

FF++ CelebDF DFDC

CLIP (top-3) 50.09 50.04 50.29

CLIP (top-10) 50.22 50.06 50.26

CLIP (top-50) 54.21 49.43 50.98

CLIP (top-100) 61.64 49.01 49.69

CLIP (top-200) 64.01 47.97 52.09

CLIP (top-300) 61.60 49.04 53.41

CLIP (top-400) 60.53 51.28 54.24

CLIP (top-500) 64.51 52.21 55.68

CLIP (top-600) 69.48 52.29 57.24

CLIP (top-700) 72.18 51.81 58.74

CLIP (top-800) 75.06 51.31 61.09

CLIP (top-900) 78.37 52.76 64.25

CLIP (top-1000) 77.16 53.18 64.69

CLIP (top-1100) 78.11 52.13 62.29

Table 12: Benchmark experiments on the zero-shot capabilities of CLIP, for
550 descriptions with top-k sampling.

Method
DF FS F2F NT

AUC Prec AUC Prec AUC Prec AUC Prec

CLIP (1desc) 98.59 92.69 98.42 92.40 98.76 93.37 97.15 90.62

Table 13: In-Distribution results of the 1desc configuration for each specific
manipulation technique. The columns correspond to the following manipula-
tion techniques of the FF++ datasets: DF: Deepfakes, FS: FaceSwap, F2F:
Face2Face, NT: NeuralTexture. The Prec columns represent precision on the
given dataset.
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