
Opleiding Informatica

Measuring functional volume of a general programming

language based on framework code

Yvo Hu

Thesis Supervisors:
Prof.dr.ir. J.M.W. Visser
Dr. W. Heijstek

Internship Supervisor:
Jeroen Meetsma

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 23/08/2023

www.liacs.leidenuniv.nl

Abstract

Background: Function Point Analysis (FPA) is a decades-old technique of software mea-
surement to measure the functional size of an application. Using these metrics, we are able
to gain powerful insights into estimating project effort and costs over a period of time. This
technique has traditionally always been done manually by software measurement experts,
this introduces subjectiveness into the measurements between individuals. We can limit the
amount of subjectiveness in these measurements by inventing algorithms that follow a strict
set of rules to apply the FPA techniques. This will be applied to code that utilizes REST
API and ORM design patterns. The algorithm itself will be developed using the development
framework of BonCode.
Objective: This thesis tries to establish whether or not a low-code model analysis can
be adapted to and applied to general programming-language code that makes use of JPA
annotations and the Spring framework
Methods: Our approach to this problem is by utilizing a proprietary development framework
in Java made specifically for code analysis. This framework allows us to analyze the parse tree
of a program written within a particular programming language, and gather metrics on the
source code based on various algorithms. Using this framework, we will be able to implement
an algorithm based on the official FPA specifications to count function points.
Results: The reports generated by our tool show results that are consistent with the specifi-
cations of the IFPUG FPA ISO standard[ISO09]. Furthermore, the benchmark experiments
show us that the upper bound of the time complexity is at most linear.
Conclusion: We have shown that automated FPA is indeed possible and feasible, but requires
us to recognize implementation-specific patterns within various development frameworks, and
invent algorithms to analyze each of these for every project to accurately apply the FPA
concepts to the source code.

2

Contents

1 Introduction 6
1.1 Background and context . 6
1.2 Research problem and questions . 6

2 Methodology 8
2.1 Problem identification and motivation . 8
2.2 Objectives of a solution . 8
2.3 Design and development . 9
2.4 Demonstration . 9
2.5 Evaluation . 9
2.6 Communication . 9

3 Literature Review 11
3.1 Benefits and challenges of FPA . 11
3.2 Existing research on automated FPA . 12
3.3 Gaps in the literature . 12

4 Definitions (FPA) 13
4.1 Record Element Type (RET) . 13
4.2 File Type Reference (FTR) . 13
4.3 Data Element Type (DET) . 13
4.4 Transaction DETs . 13
4.5 Data Functions . 14
4.6 Internal Logical File (ILF) . 14
4.7 External Interface File (EIF) . 15
4.8 Transactional Functions . 16
4.9 External Input (EI) . 16
4.10 External Output (EO) . 17
4.11 External Inquiry (EQ) . 18
4.12 Complexity Adjustment Factor . 19

5 Definitions (other) 19
5.1 Model View Controller (MVC) . 19
5.2 Representational State Transfer (REST) API . 20
5.3 Object Relational Mapping (ORM) . 20

6 Overview of the BonCode development framework 21
6.1 Token generation . 21
6.2 Syntax analysis and grammar construction . 21
6.3 Low-code implementation . 22

3

7 Design 23
7.1 Purpose . 23
7.2 Scope . 23
7.3 Internal Logical File Analyzer . 24
7.4 External Interface File Analyzer . 24
7.5 Transactional Functions Analyzer . 24

8 Implementation 26
8.1 Internal Logical File Analyzer . 26
8.2 External Interface File Analyzer . 28
8.3 Transaction Functions Analyzer . 28
8.4 Reporting . 30
8.5 Testing . 32

9 Experiments 35
9.1 Results . 35
9.2 Time Complexity . 37

10 Interpretation of results 42
10.1 Contributions to knowledge . 42
10.2 Limitations of the study . 42
10.3 Conclusion . 43
10.4 Final remarks and suggestions for future work . 43

11 Appendices 44

References 47

4

Acknowledgement

First and foremost, I want to thank my first thesis supervisor Prof.dr.ir. J.M.W. Visser for bringing
me in contact with the people at BonCode, and guiding me meticulously through the research
process. He has helped me shape the layout of the thesis and given me feedback on its contents.

Secondly, I want to thank the team at BonCode for their very thorough assistance during the span
of the internship. They guided me on a weekly basis through the whole problem statement and the
potential solutions whilst making use of their in-house development framework. I was able to learn
a lot about FPA, and their specific methods of software architecture.

5

1 Introduction

The purpose of this thesis is to provide a function point analysis (FPA) method based on framework
code for a general-purpose programming language. FPA is a frequently used method for software
estimation which counts the number of user inputs, outputs, inquiries, and files to estimate
the functional complexity of the software. However, because most FPA techniques are based on
functional requirements, they are difficult to utilize with computer languages that don’t have a
distinct user interface or interaction.

The framework code, which is code that follows a predefined template and serves as a foundation
for creating applications, will be leveraged by the suggested FPA approach. The suggested approach
will identify the functional point size of the code by gauging its complexity based on the inputs,
outputs, and processing logic through the analysis of the framework code. The approach will be
evaluated on a well-known programming language and one of its popular frameworks, and contrasted
with contemporary manual FPA approaches. This thesis will focus on the analysis of framework
code that readily allows for the development of design patterns such as Representational state
transfer API (REST API) and data persistence using Object Relational Mapping (ORM).
The findings of this study will advance the field of software estimation by offering a more automated,
standardized and effective method to measure software functionality. The FPA approach based on
framework code can be used to streamline collaboration between developers and determine the
time needed to create software applications, and in particular, calculate the functional volume of
each independent section of code.

1.1 Background and context

Function point analysis (FPA) is a software sizing and estimation technique that was developed in
the 1970s by Allan J. Albrecht of IBM [Alb79]. It is a widely recognized method for measuring
the functional size of software applications, which is important for estimating development effort,
project duration, and resource requirements.
FPA quantifies the functionality provided by a software application based on the number of inputs,
outputs, inquiries, and files that it processes. The technique has gained popularity over the years due
to its ability to provide a standardized and objective measure of software functionality. Additionally,
it can help to identify areas of software applications that are complex, error-prone, or require
improvement.
The company BonCode has developed an implementation of automated function point analysis
of the low-code platform of OutSystems. This enables them to efficiently measure various metrics
regarding FPA of various OutSystems projects.

1.2 Research problem and questions

The main goal of this thesis is to answer the following research question:

Can we design an implementation for measuring the functional volume of software
written in a general-purpose programming language using a development framework,
in line with the low-code implementation of the software company BonCode?

6

The aforementioned general-purpose programming language will be Java. The frameworks that we
will be focusing on in this thesis are Hibernate and the Spring framework. In addition to this, we
have also formulated three supporting sub-questions

• Is the method generalizable to several languages and frameworks?

• How accurate is this automated FPA tool compared to manual FPA techniques, and what
factors can impact the accuracy of the results?

• How feasible is the tool with respect to the time complexity of the algorithm?

7

2 Methodology

This section will outline the methodology being used to tackle the research question. It roughly
follows the Design Science research process which is a research approach that focuses on creating
and evaluating innovative solutions to complex problems. It aims to develop and validate new
design artifacts, such as models, methods, processes, and tools, that can be used to address practical
challenges [PTG+20].

2.1 Problem identification and motivation

While FPA has become a widely accepted technique for measuring software size and effort estimation,
it has its limitations. Most FPA techniques are based on functional requirements, which can make
it difficult to apply to software applications that lack a distinct user interface or interaction.
Additionally, FPA can be time-consuming and error-prone when performed manually, as it requires
a thorough understanding of the software application and its functionality.
To address these limitations, automated function point analysis (AFPA) tools have been devel-
oped [sco] [Bon]. These tools automate the process of function point counting, providing a faster,
more accurate, and consistent way of measuring the functional size of the software. AFPA tools
can also help to identify areas of software applications that are complex, error-prone, or require
improvement.
Overall, FPA and AFPA techniques are critical for software development teams to estimate the
effort required to develop or maintain software systems. By accurately estimating software size and
effort, teams can better plan and allocate resources, improve project outcomes, and increase the
overall quality of software development.

2.2 Objectives of a solution

The main objective of this research is to design and implement software that is able to determine
the functional volume of other software that utilizes the specific framework(s) that we are trying to
analyze and have designed an implementation for. In particular, our research aims to categorize
specific sections of code and attach a function point volume statistic to each of these. Additionally,
we want to be able to see where and what kinds of code components within the code section are
used to calculate this statistic and display these appropriately.

FPA provides a common language and framework for discussing the functional requirements
and complexity of software applications. This can help to facilitate communication and collab-
oration between developers, users, and other stakeholders involved in the software development
process. In particular, this program will be able to determine the functional size and complexity of
the software application, which can be used to estimate the cost, effort, and resources needed to
develop and maintain the software. By keeping track of this statistic, it can be used to plan and
manage software development projects more effectively by providing a quantitative estimate of
the software’s functional size and complexity. This can help to identify potential risks and ensure
that the project stays on track. By measuring this statistic over multiple time points within an
application’s development period, we are able to measure the productivity of software development
teams, as well as assess the quality of the software produced. This can help to identify areas for

8

improvement and ensure that the software meets the needs of its users. Overall, FPA is needed
to ensure that software development projects are successful, efficient, effective, and within the
prospected budget.

2.3 Design and development

To solve this problem, we will need to design and develop software to analyze relevant source code
and attach metrics to the aforementioned pieces of code.
Function Point Analysis is traditionally used as a manual way of counting the functional volume
of a piece of software based on the amount of business functionality an information system (as a
product) provides to a user. We will therefore need to translate this concept via an algorithmic
set of procedures to quantify the functionality of the software. The software may be written in
many different ways, i.e. there are equivalent solutions to achieve the same end result, but the code
always follows the same grammatical structure. Thus, we are able to recognize similar components
within the code. This is especially true in the case of framework code. Via this framework code,
and in particular, frameworks that allow for the development of REST API and data persistence
using ORM, we are able to relate similar concepts that are used within FPA.

We will make use of the proprietary software development framework of BonCode to help us
accomplish this goal. This framework is specifically designed for developers to analyze source code
and attach relevant metrics to the code based on the structure of the code.

2.4 Demonstration

The end result will be an extension of the code analysis tool developed by BonCode. It will run
alongside several other code analysis extensions to form a part of the complete code analysis
tool. Code segments will be visually displayed within the tool and properly annotated with the
corresponding function points and concepts within FPA to demonstrate the efficacy of the tool.

2.5 Evaluation

To evaluate the tool, we need to observe and measure how well the tool supports the aforemen-
tioned solution to the problem. We will compare the FPA metrics of the analyzed code with the
specifications in the relevant FPA literature.

Important metrics include the following:

• Inputs, Outputs

• Date element types, Record element types, File type references

• Functional points

2.6 Communication

The findings of this thesis should be of relevance to professionals active in the field of software
measurement. FPA is an integral part of it, and it would allow for a way to do FPA in a more

9

structured, consistent, and efficient manner. Consequentially, companies who utilize the services of
software measurement companies may benefit from improvements in FPA to more effectively gauge
the various metrics of FPA within their codebase.

10

3 Literature Review

In this section, we will discuss some definitions of function point analysis, background information,
and relevant literature.

3.1 Benefits and challenges of FPA

Benefits of Function Point Analysis [ISO09] [HK91] [Sym88]:

• Improved project estimation: Function Point Analysis helps to accurately estimate the size
and complexity of a software system, which is essential for project planning and budgeting.
This results in a more realistic and accurate project plan, which can help to avoid delays and
budget overruns.

• Improved communication: Function Point Analysis provides a common language for com-
municating the functional requirements of a software system between different stakeholders,
including developers, project managers, and business analysts. This improves communication
and ensures that all stakeholders have a clear understanding of the requirements.

• Improved productivity: Function Point Analysis helps to identify areas of the software system
that can be streamlined or automated, leading to improved productivity and efficiency. By
focusing on the functional requirements of the system, developers can optimize the system to
meet business needs.

• Improved quality: Function Point Analysis can help to identify functional requirements that
are not necessary or redundant, leading to a higher quality software system. By removing
unnecessary requirements, developers can focus on delivering a system that meets business
needs, while avoiding unnecessary complexity and costs.

Challenges of Function Point Analysis:

• Requires expert knowledge: Function Point Analysis requires expert knowledge and experience
to accurately identify and categorize the functional requirements of a software system. It
can be challenging for less experienced developers to accurately estimate functional points,
leading to inaccuracies in project estimation.

• Can be time-consuming: Function Point Analysis can be a time-consuming process, particularly
for larger and more complex software systems. This can lead to delays in project planning
and execution.

• May not be suitable for all software systems: Function Point Analysis may not be suitable for
all types of software systems, particularly those that have unique or custom requirements. It
may also be less effective for systems that are heavily reliant on technology or implementation
details.

In summary, Function Point Analysis is a valuable tool for measuring and managing the functional
requirements of software systems. It provides several benefits, including improved project estimation,
communication, productivity, and quality. However, it also has some challenges, including the need
for expert knowledge, time consumption, suitability for certain types of systems, and potential
customization requirements.

11

3.2 Existing research on automated FPA

There has been extensive research on Function Point Analysis (FPA) over the past several decades.
Much of this research has focused on the effectiveness of FPA as a software measurement technique
and its ability to accurately estimate software project effort, schedule, and cost [Ver02]. Some key
areas of research related to FPA include:

• Empirical studies: Several empirical studies have evaluated the effectiveness of FPA in
estimating software project effort, schedule, and cost. These studies have generally found that
FPA is a reliable and effective technique for software measurement [Fur97] [AR96].

• Comparison studies: Numerous studies [ZN12] [GTS+16] have compared FPA with other
software measurement techniques, such as Lines of Code (LOC), to determine their relative
effectiveness in estimating software project effort, schedule, and cost.

• Framework development: Research has been conducted to develop frameworks for using FPA
within specific domains, such as web development, embedded systems, and agile development.
These frameworks aim to provide guidance on how to apply FPA in these domains to improve
its effectiveness [FTB06] [MM93] [SC04] .

• FPA automation: Several studies have investigated the automation of FPA to improve its
efficiency and accuracy. These studies have developed automated tools for FPA and evaluated
their effectiveness in improving FPA accuracy and efficiency [FTB06].

3.3 Gaps in the literature

As FPA was designed very early on in the history of software estimation, little about future
developments have been taken into consideration in the design of FPA. This opens up various gaps
within the overall scope of FPA.

• Limited research on FPA in the context of automation. FPA has traditionally always been
done manually by software estimation experts. This practice has become more unfeasible
the bigger a project becomes. Therefore, various implementations have been made to try
and automate this process. These are based on UML diagrams or low-code implementations
such as OutSystems. There are however, a range of other different domains that are still yet
unexplored.

• Various standards: There are differences in the standardization of the application of FPA,
which can lead to variations in the results obtained by different practitioners using different
implementations of the different standards. There is a need for more centralized authority
and more research on how to standardize the application of FPA to improve its accuracy
and consistency. There are existing standardization bodies such as IFPUG, NESMA, and
COSMIC, though these all have their own standards (however small the differences may be).
Ideally, there would only need to be a single central authority on the standardization of FPA.

Addressing these gaps in the literature helps to improve the effectiveness and applicability of FPA
as a software measurement technique as a whole. In this thesis, we will try to address a gap in the
application of automated function point analysis, namely the analysis of software that is written in
a general-purpose programming language that utilizes REST API and ORM design patterns.

12

4 Definitions (FPA)

In the following section, we will define a list of terms that are commonly used within FPA. These
definitions are taken from the function point modeler manual [Fun], but these, in turn, follow
directly from the FPA standards as defined by the IFPUG [ISO09]

4.1 Record Element Type (RET)

A Record Element Type (RET) is a distinguishable subset of data elements found within either an
ILF or an EIF (these will be elaborated on in the upcoming sections). The most effective approach
is to examine logical clusters of data to aid in their identification. The concept of RET will receive
comprehensive coverage in the chapters dedicated to internal logical files and external interface
files.

Examples of a RET include other tables within a database that are being referenced within
a table via a foreign key.

4.2 File Type Reference (FTR)

An FTR is a file type referenced by a transaction. An FTR must also be an internal logical file or
an external interface file [ISO09].

Examples of an FTR are tables within a database that are being accessed by a transaction
function (discussed in a later section).

4.3 Data Element Type (DET)

A Data Element Type (DET) is a distinct, identifiable field that is not repeated in a recursive
manner. DETs encompass dynamic information rather than static content. Dynamic fields are either
extracted from a file or generated from other DETs found within a File Type Reference (FTR).
Moreover, a DET can trigger transactions or offer supplementary details concerning transactions.
In cases where a DET is recursive, only the initial instance of the DET is taken into account, not
every occurrence.

Examples of DETS are columns within a table of a database or input fields on a form.

DET RET FTR
ILF & EIF X X
TF X X

4.4 Transaction DETs

The following is a list of what things may be classified as a DET from a functional requirements
perspective as a user [ISO09].

13

• External Inputs: Data Input Fields, Error

• External Outputs: Data Fields on a Report, Calculated Values, Error Messages, and Column
Headings that are read from an ILF. An EQ and EO can have input and output sides.

• External Inquiries: Input Side - field used to search by, the click of the mouse. Output side -
displayed fields on a screen.

4.5 Data Functions

Data functions represent the functionality provided to the user to meet internal and external data
requirements. Data functions are either internal logical files or external interface files [ISO09].

4.6 Internal Logical File (ILF)

An Internal Logical File (ILF) is a user-identifiable collection of logically connected data or control
details that are confined within the application’s scope. The core objective of an ILF is to house
data that is managed through one or more elementary processes within the application being
evaluated. Moreover, for data or control information to qualify as an ILF, both of the subsequent
IFPUG counting rules must also be applicable [ISO09]:

• The group of data or control information is logical and user identifiable.

• The group of data is maintained through an elementary process within the application
boundary being counted.

Examples of ILFs Samples of things that can be ILFs include:

• Tables in a relational database.

• Flat files.

• Application control information, perhaps things like user preferences that are stored by the
application.

• Lightweight Directory Access Protocol data stores.

DETs
RETS 1-19 20-50 51+
1 L L A
2-5 L A H
6+ A H H

14

Complexity No. of Function
Points

Low (L) 7
Average (A) 10
High (H) 15

4.7 External Interface File (EIF)

An external interface file (EIF) designates a collection of logically linked data or control information
that can be identified by users. This collection is referenced by the application, yet it remains under
the jurisdiction of another application’s boundary. The core purpose of an EIF is to retain data
referred to by one or more elementary processes within the application’s boundary that’s being
assessed. Therefore, an EIF is counted for an application only if it exists within an Internal Logical
File (ILF) of another application.

DETs
RETS 1-19 20-50 51+
1 L L A
2-5 L A H
6+ A H H

Complexity No. of Function
Points

Low (L) 5
Average (A) 7
High (H) 10

15

4.8 Transactional Functions

Transactional functions pertain to the interactions between users and the application, leading to the
execution of specific data processing or transactions. These functions are classified according to the
primary user’s intention or objective while interacting with the software. Within FPA, transactional
functions fall into three distinct categories.

4.9 External Input (EI)

An external input (EI) denotes a basic procedure that handles data or control details originating
from beyond the application’s confines. The primary goal of an EI involves the management of
one or more Internal Logical Files (ILFs) and/or the potential modification of the system’s behavior.

Examples of EIs include [ISO09]:

• Data entry by users.

• Data or file feeds by external applications.

DETs
FTRs 1-4 5-15 16+
0-1 L L A
2 L A H
3+ A H H

Complexity No. of Function
Points

Low (L) 3
Average (A) 4
High (H) 6

16

4.10 External Output (EO)

An external output (EO) signifies a fundamental procedure that dispatches data or control details
beyond the confines of the application’s scope. The principal purpose of an external output is to
provide users with information through processing logic that extends beyond the mere retrieval
of data or control particulars. This processing logic must encompass at least one mathematical
formula or calculation or lead to the creation of derived data. Additionally, an external output
might oversee one or more Internal Logical Files (ILFs) and potentially impact the system’s behavior.

EO examples include [ISO09]:

• Reports created by the application being counted, where the reports include derived informa-
tion.

DETs
FTRs 1-5 6-19 20+
0-1 L L A
2-3 L A H
4+ A H H

Complexity No. of Function
Points

Low (L) 4
Average (A) 5
High (H) 7

17

4.11 External Inquiry (EQ)

An external inquiry (EQ) refers to a basic operation that transmits data or control details beyond
the confines of an application. The core purpose of an external inquiry is to furnish users with
information by fetching data or control specifics. These operations lack mathematical formulas
or computations in their processing logic, and they don’t generate any derived data. They don’t
maintain Internal Logical Files (ILFs) during processing, nor do they modify the system’s behavior.

Examples of EQs include [ISO09]:

• Reports created by the application being counted, where the report does not include any
derived data.

DETs
FTRs 1-5 6-19 20+
0-1 L L A
2-3 L A H
4+ A H H

Complexity No. of Function
Points

Low (L) 3
Average (A) 4
High (H) 6

18

4.12 Complexity Adjustment Factor

There also exists a concept called the ”Complexity Adjustment Factor”(CAF). It is a numerical
value that reflects the additional complexity and effort required to complete a software project due to
certain factors. The CAF is typically applied to adjust the estimated effort, time, or cost of a project.

The Complexity Adjustment Factor (CAF) consists of 14 ”General System Characteristics”, or
GSCs. These GSCs represent the characteristics of the application under consideration. Each is
weighted on a scale from 0 to 5. [Fun].

The GCSCs

• Data Communication

• Distributed data processing

• Performance

• Heavily used configuration

• Transaction rate

• Online data entry

• End-user efficiency

• Online update

• Complex processing

• Reusability

• Installation ease

• Operational ease

• Multiple sites

• Facilitate change

We will not be able to include this factor into our calculations because it is not purely dependent
on the written code, but a lot of external factors as well.

5 Definitions (other)

5.1 Model View Controller (MVC)

The MVC model is a design pattern frequently used in application development. Its use is to
separate the concerns of an application’s user interface, data management, and control logic.

19

5.2 Representational State Transfer (REST) API

A REST API is a set of conventions and guidelines for building and interacting with web services. It
is an architectural style for designing networked applications, particularly web services, that follows
a set of principles to create scaleable and efficient communication between different software systems.

REST APIs are based on the concept of resources, which are identified by Uniform Resource
Locators (URLs). Each resource represents a piece of data or functionality that can be accessed
and manipulated using standard HTTP methods such as GET, POST, PUT, and DELETE. These
methods correspond to actions like retrieving data, creating new data, updating data, and deleting
data, respectively.

5.3 Object Relational Mapping (ORM)

ORM stands as a collection of principles and methodologies designed to simplify the interaction
between object-oriented programming languages and relational database management systems.
The core objective of ORM is to close the divide between the object-oriented model utilized in
programming languages and the relational model that databases employ, characterized by tables,
rows, and columns. Within this framework, ORM tools offer a mechanism to depict database
tables as classes or objects, seamlessly linking their attributes to corresponding columns within the
database structure.

20

6 Overview of the BonCode development framework

The proprietary development framework of BonCode is a piece of software that has been maintained
and refined over many years. It is primarily written in Java and is a crucial part of numerous other
code analysis tools that they have developed. We will be using this development framework to
design and implement a version of automated function point analysis in Java with a contemporary
Java framework that persists data in some recognizable format and allows us to easily implement a
REST API.

The BonCode development framework closely resembles the formal definition of grammar in
the context of programming languages. It has a functionally similar working to some early stages
within a compiler but has a technically different design altogether. Because this development
framework is the intellectual property of BonCode, we will not be able to thoroughly dissect the
implementation details of the framework because of an NDA clause. We will however try to explain
the general workings of software in the upcoming sections.

6.1 Token generation

Similarly to a lexical analyzer in a conventional compiler, the development framework of BonCode
utilizes a token generation program to categorize each individual code component (i.e. a character,
or group of characters) and generates a corresponding token. Each token may correspond to multiple
code snippets that are each at least a single character long. An example of this are the operators
such as +, -, *, /, &&. All of these are recognized as the same type of token, namely the operator
token. The original information of the code snippet is retained whilst generating the token in case
it is needed to differentiate between these tokens in future analysis and to display for general
reporting.

6.2 Syntax analysis and grammar construction

And again, the development framework utilizes a syntax analyzer similar in functionality to a
syntax analyzer in a conventional compiler. However, we have to construct our own grammar for
the language beforehand. A more specific grammar for each implementation allows us to analyze
the syntax, but a singular grammar for the entire language has greater generalizability. This part
of the framework allows us to group an arbitrary number of tokens or constructs together in a
specified order, and simultaneously categorize them. These categories are also formally known
as constructs and may serve as building blocks for even higher-level constructs. The framework
allows us to fine-tune the exact construction of these constructs to a degree in which we are able to
analyze the code with a high if not total level of control. The constraints that we are able to put
on a construct include but are not limited to: The sequence of tokens/constructs, The number of
tokens/constructs, and the optional or mandatory occurrence of tokens/constructs.

Whenever a section of code is analyzed, it will try to match the highest-order construct, and
then try to match potential lower constructs. For example, there exists a class declaration [Wik23],
which is in its entirety a construct of its own, but it simultaneously contains constructs within itself
like its data members or method declarations. This information will be retained in the analysis so

21

that we know when and where to perform calculations based on this data.

6.3 Low-code implementation

The current low-code implementation focuses on OutSystems. OutSystems is a low-code application
development platform that enables organizations to build, deploy, and manage complex web and
mobile applications with minimal traditional hand-coding. It is designed to help businesses accelerate
their software development processes by providing visual development tools, pre-built components,
and a platform for managing the entire application lifecycle. All aspects of an OutSystems project
are defined in files within a structured format. BonCode has developed an AFPA implementation
to analyze these files and generate informative reports based on this analysis. The analysis of these
files also makes use of the same development framework that is used in this thesis.

22

7 Design

It is necessary to create a general outline for the automated function point analysis software. We,
therefore, need to design a blueprint to identify the key requirements and objectives of the software,
as well as to provide a clear and detailed process for achieving these goals. Function point analysis
is more commonly performed based on functional requirements, the product features, or the desired
operations of a program, rather than the technical specifications i.e. the underlying code. Regardless,
we will attempt to design an automated function point analysis program that utilizes the structure
of frameworks, with clear and concise code layouts, to develop a method to count functional points
within the code.

The main objective of this function point analysis tool will primarily focus on the functional-
ities within a web development framework, and in particular, the functionalities regarding database
persistence. The function point analysis concepts will therefore be applied in the context of server-
side web development, using the commonly used ORM and REST API architectural styles.

7.1 Purpose

The purpose of implementing AFPA is to streamline the function point analysis process and enhance
its reliability. By automating the counting and calculation of function points, AFPA reduces the
manual effort required and ensures consistent and accurate results. It enables organizations to
conduct function point analysis in a more efficient and cost-effective manner.

7.2 Scope

The scope of AFPA includes automating the various steps involved in function point analysis,
including function identification, counting, and reporting.

Ideally, we would like to incorporate every element of function point analysis into our implementa-
tion, but it is evident that not all frameworks are the same and may differ in the functionalities
that they are able to provide. Consequently, there may not be a relevant code structure to do such
an analysis on. Additionally, the design should be generalizable to multiple languages/frameworks,
so that it has a wider practical application, than just the implementation that this thesis is focused
on.

For a complete function point analysis, our design should incorporate the following elements:

• Internal Logical File Analyzer

• External Interface File Analyzer

• Transactional Functions Analyzer

23

7.3 Internal Logical File Analyzer

This component should be able to find the source code that manages all the data stores within an
application. A model type commonly represents a table in the application’s database.

Every internal logical file should ideally be separated into its own file. A common concrete example
of this in code would be a class declaration that acts as an entity, whilst its attributes act as its
properties. Consequently, there should be a clearly defined structure to demarcate the layout of the
entity and its properties. It is the application’s dynamic data structure, independent of the user
interface. It directly manages the data, logic, and rules of the application.

The properties of the entity should each be counted separately as a data element type, as each
of these signifies a column within a table. The exact way in which these columns are represented
within the code should be clearly demarcated, as there may also be some properties within the
code that are not directly used as columns.

Record element types may be represented as another attribute or a list of attributes within
the code. These must map to the source code of another entity in the same repository. The data
element types of these other entities are added to the overall sum of the original encompassing entity

In the context of function point analysis, the model may therefore be seen as an internal logical file,
as it directly serves as a data store for the application.

7.4 External Interface File Analyzer

As was detailed earlier, an external interface file is essentially an internal logical file that is main-
tained by another application. This means that there is no data persistence being done in the current
application, and no relevant source code for the data persistence in the application’s software. The
only way to obtain such data is via requests made to another application. This may be represented
by requests made to other servers. A common method to retrieve data from another server is by
making an HTTP request.

An example of this could be to recognize what kind of data the server receives. If the data
is neatly structured via common data formats such as JSON or XML, then we would be able to
gauge the different data element types and record element types of the data.

7.5 Transactional Functions Analyzer

This component should be able to find the source code that manages all the transactional functions
within an application. For this thesis, we try to apply FPA concepts in the context of a REST API
controller. The controller responds to the user input and performs interactions on the data model
objects. The controller receives the input, optionally validates it, and then passes the input to the
model.

These transactional functions could either be separated in their own file, or they should be

24

grouped together.
Conventionally, each model would have an associated controller; for example, if the application had
a Client model, it would typically have an associated controller as well.

The controller is typically structured as a class, with various similarly structured methods. Each of
these methods serves as a separate REST API endpoint, which is uniquely accessed using specific
Hypertext Transfer Protocol (HTTP) headers. The controller receives input from the user in the
form of HTTP requests via these endpoints, and may correspondingly create, read, update, or
delete something from the model.

As was explained earlier in the thesis, there are three types of transactional functions (EI, EO,
EQ). Depending on how the REST endpoints handle each of these HTTP requests, these may be
categorized differently. These are outlined as the following:

• External Input (EI):
The request updates or inserts data into the model without returning any other from the
model back to the user.

• External Output (EO):
The request retrieves data from the model, performs calculations and creates a derived result,
and returns it to the user.

• External Inquiry (EQ):
The request retrieves data from the model and returns it to the user.

If we try to apply function point analysis to these, then the REST API endpoints may be seen as
transactional functions.

25

8 Implementation

This section will detail the implementation of our automated function point analysis tool. The total
amount of code that has been written for the abstraction layer. The tool itself is written in Java,
and this specific implementation equals approximately 1200 lines.

As has been detailed in the previous chapter, this tool will concern itself with the back-end
of web applications utilizing the ORM and REST API design patterns. This drastically narrows
down the number of suitable software that we aim to analyze, and as such we will focus on software
that utilizes the following frameworks:

• Java Spring Framework

• Java Hibernate (JPA)

As is good practice with most software, it is a good idea to be generalizable. In addition to this,
there are also a few functionalities that are dependent on the development framework that we are
using. These are used to analyze the code structure in general and are not specific to function point
analysis in general, and are needed in a lot of different components.

Figure 1: BonCode specific implementation details of their development framework. This is needed
to analyze the relevant source files. This is both needed in the ILF analyzer, and the Transaction
Function analyzer

Therefore, we need to implement an abstraction layer like abstract classes to minimize code
duplication. This is to ensure that the code remains clean and more maintainable.

8.1 Internal Logical File Analyzer

There are a couple of things that should be common in all implementations of an internal logical file
analyzer. To count the function points of an internal logical file, we need to keep track of a couple
of metrics. These are the total record element types (totalRET) and the total data element types
(totalDET). Based on these values, we will be able to calculate the total function points(totalFP)
of an ILF.

This abstraction layer also shares similar methods between all implementations. It uses components
from the development framework to perform the necessary metrics of an internal logical file.

26

Figure 2: FPA relevant metrics to keep track of within the ILF analyzer class.

Figure 3: Methods of the ILF analyzer class.

• findInternalLogicalFile:
This method takes a parameter containing information about every source file, and depending
on its contents, decides whether this file is used for persistence, and may therefore be classified
as an internal logical file. If it is indeed classified as an internal logical file, it returns a
corresponding object which may be used in other methods.

We can find these files by searching for class declarations annotated with the entity an-
notation.

Figure 4: A code snippet that utilizes the Hibernate framework that our ILF analyzer can analyze.
The @Entity annotation marks a file as an ILF.

• calculateTotalDET ILF:
This method takes a valid object returned from the method findInternalLogicalFile and
performs calculations to count the total amount of data element types.

27

Once we’ve located the internal logical file, we can find its data element types by look-
ing for data members which have been annotated with the column annotation.

Figure 5: A code snippet that utilizes the Hibernate framework that our ILF analyzer can analyze.
It corresponds to a DET of an ILF.

• calculateTotalRET ILF:
This method takes a valid object returned from the method findInternalLogicalFile and
performs calculations to count the total amount of record element types.

Once we’ve located the internal logical file, we can find its record types by looking for
data members which have been annotated with the ”one to many annotation” or other similar
annotations.

Figure 6: A code snippet that utilizes the Hibernate framework that our ILF analyzer can analyze.
It corresponds to a RET.

8.2 External Interface File Analyzer

Though an EIF is a core concept used within FPA, we have not been able to relate to such a
concept within the utilized frameworks of this thesis. We have therefore not included it in our FPA
extension.

8.3 Transaction Functions Analyzer

Like internal logical files and external interface files, transaction functions are also one of the
measurement components used to assess the functional size of a software system. To quantify the
number of function points of a transaction function, we need to determine the amount of data
element types and file type references used within the transaction function.

Similarly to the ILF, we are able to utilize common functionalities and data members within
an abstraction layer to make the code more manageable. The most important ones have been listed
down below

28

Figure 7: Data members of the Transaction Function Analyzer (TFA) It keeps track of the transaction
type, the analyzed code snippet, and the relevant FPA metrics

Figure 8: The main methods of the TFA

• gatherUniqueTablesReferenced:
This method analyzes the transaction and uses a reference resolving technique to locate the
definition of all function calls. If a certain function call corresponds to a class that handles
transaction management, then the contents of this function may be analyzed to locate all
file-type references used within this method.

In this example, the function this.owners.findById(ownerId) may be classified as such a
function, and we are able to add the string ”owner” as a unique file type reference.

Figure 9: A code snippet that utilizes the Spring framework that our TF analyzer can analyze. It
corresponds to a transaction function

• retrieveInputs

29

Figure 10: A code snippet that utilizes the Spring framework that our TF analyzer can analyze.
This part is very implementation specific and may not occur in other frameworks. It is a SQL query
that allows us to extract referenced tables

This method analyzes the transaction and determines the inputs to the transaction function
based on the function parameters, which may then be counted as data element types. The
return value is a list of integers, each corresponding to a parameter in the transaction function.

In the following example, the transaction function contains several input parameters. We are
able to specifically handle input parameters that contain the Valid annotation and determine
the number of total data elements of this input by using reference resolving to find the class
definition of Owner and its corresponding data members which may be associated as data
element types based on the specific FPA implementation.

Figure 11: A code snippet that utilizes the Spring framework that our TF analyzer can analyze. It
contains an @Valid annotation. We know from the Spring documentation, that it validates whether
or not the resource contained within an HTTP request corresponds to the ORM design pattern

• gatherNrOfInputsFromIncomingReferences This function aggregates the total data
element types from each of the inputs returned by the function retrieveInputs and gives a
total of the whole transaction function.

8.4 Reporting

Thanks to the development framework, we are able to easily integrate our FPA extension with the
code analysis tool of BonCode. This allows us to easily annotate sections of code with relevant
metrics, and display them on a page.

• Trend The BonCode Analysis tool has provided us with a method to allow us to analyze
multiple snapshots of a code repository at different times. This allows us to track the
progression of the code repository with respect to the FPA metrics (and other metrics too)
for each unique folder and its subfolders.

• Internal Logical File The following picture shows the annotations as displayed within
the BonCode code analysis editor. According to the FPA specifications and specific to the
implementation using the spring framework, this piece of code should contain 7 function
points in correspondence with five DETs and two RETs. Three of the DETs and all two
RETs come from the Owner class. The DETs are data members which have been annotated

30

with the Column annotation. The one RET is a data member which has been annotated with
the OneToMany annotation in addition to the ILF itself which is also a RET.

Figure 12: The visual editor of BonCode that allows for dissection of the source code. It shows the
Owner Class

The other two DETs come from the derived base class Person, which also has Column
annotated data members.

• Transactional Functions Five DETs originate from the Owner parameter, that corresponds
to the Column annotated data members in the ILF. An additional DET is present because of
the RequestParam argument which is necessary for the endpoint.

31

Figure 13: The visual editor of BonCode that allows for dissection of the source code. It shows the
Person class upon which the Owner class is derived

Figure 14: The transactional functions are similarly annotated with these relevant metrics

8.5 Testing

During the development of this tool, many different components have been written to help concep-
tualize the tool. Some of these components are dependent on code that existed before the start of
this thesis within the BonCode development framework, and some have been newly developed to
aid specifically in the FPA. We will limit the testing to a select few which have been specifically
developed for this tool.

To ensure the correct behaviour during and after the software development process, we need
to apply some form of unit testing. We have applied this in some limited capacity.

All the tests will follow a similar layout to the one shown down below. Due to the intercon-

32

nected components with the development framework, we need to find the correct data and pass
complex objects as arguments to finally test the newly developed components.

Figure 15: In this case, we add some source code to the file SpringILFAnalyzer.javatest, instantiate
our analysis class, and test the result with an expected value

33

Similar unit tests have been made for the following functions:

34

9 Experiments

In this section, we will discuss the results obtained from the experiments.

9.1 Results

We have earlier shown fragments of how the tool functions when it is working as intended. However,
there are situations where the analysis will break down.

• Different approaches Like software in general, there are multiple possible ways to write
the same functionality. The Spring framework is no different, and that may pose a problem
in FPA. Between software repositories that use the Spring framework or Hibernate, there
may be a need to use different implementations for each one.

Figure 16: A code snippet of valid Hibernate code, but it is not analyzable for our current
implementation because we also require column annotations

Figure 17: A code snippet of valid Hibernate code, but it is not analyzable for our current
implementation because our column annotations lack arguments

• Lack of annotations/Usage of JavaBean, DTO: There is also a different possible
approach to using JPA annotations to aid in data persistence within Java. This approach
utilizes Java beans, which are used as a way to encapsulate data and provide getter and
setter methods for accessing and modifying that data. Similarly to the JPA annotated
classes, JavaBeans themselves do not directly handle data persistence and are often used
to represent data entities that need to be persisted in a storage medium like a database.
These can ultimately be mapped to database tables using ORM frameworks such as Hibernate.

Nonetheless, there may be a way to indeed analyze JavaBeans by filtering on specific class
names such as ”JavaBean”, and tracking its data members. Similarly, DTOs face the same

35

Figure 18: A code snippet of valid Java code, but it is not analyzable for our current implementation
because we require the usage of the Hibernate format

kind of problem where there is a lack of relevant annotations, even though they may be used
within REST endpoints to encapsulate the input data.

Figure 19: A code snippet of valid Spring code, but it is not analyzable for our current implementation
because it lacks annotations for the method arguments

• Multiple return values: A REST endpoint may have multiple possible branches within
the method to return a value. Each of these separate branches should likewise be counted as
separate transactions. This procedure doesn’t really work within the development framework,
and may actually be excessive function point counting. An alternative to this option would
be to rewrite the code so that each branch has its own endpoint. This is a common clean
code practice known as ”the single exit point law”. However, this would be the responsibility
of the developers themselves.

• Incomplete reference resolving 1: A common way to implement API endpoints within
the spring framework is using the ResponseEntity class. This class helps to manipulate return
headers and serves as a return value for the REST endpoint. Due to incomplete reference
resolving of the BonCode analysis tool, we are not able to access the type name within the
class to count the function points of this transaction.

• Incomplete reference resolving 2: Similarly to the previous example, due to incomplete

36

Figure 20: A code snippet of valid Spring code, but it is not analyzable for our current implementation
because our current implementation doesn’t support multiple return statements

referencing resolving, we are not able to access the type name within the List class to count
the DETs of the record element type ”Pet”.

9.2 Time Complexity

In Java, there is no direct library for measuring clock cycles, as it is a high-level language and its
primary focus is not on low-level hardware operations. We can, however, use the System.nanoTime()
method to gauge the time complexity of the FPA extension by differing the amount of code analyzed.
In all of the experiments, it seems that the time complexity of the tool is linear with regard to its
input size. There is, however, a constant component that varies depending on the system that runs
the tool.

Varying the size of a file containing the internal logical file: We will start our benchmark by
duplicating a piece of code that is determined to be analyzed by the FPA extension, in particular,
the ILF section.

37

Figure 21: A code snippet of valid Spring code, but it is not analyzable for our current implementation
because the reference resolving extension fails to locate the source of the class between the angle
brackets

Figure 22: A code snippet of valid Spring code, but it is not analyzable for our current implementation
because the reference resolving extension fails to locate the source of the class between the angle
brackets

Figure 23: The piece of code to be duplicated, and is (without empty lines) 13 lines long.

38

Figure 24: Isolated processing time of the FPA extension of 10 runs, with the amount of code
duplication on the y-axis, and processing time on the x-axis. Left: No transformation Right: Log2
transformation

Figure 25: Processing time of the complete analysis tool of 10 runs, with the amount of code
duplication on the y-axis, and processing time on the x-axis. Left: No transformation Right: Log2
transformation

39

Varying the size of a file containing the transaction functions. The next benchmark is similarly
about duplicating a piece of code that is determined to be analyzed by the FPA extension, but this
time it concerns the transaction functions.

Figure 26: The piece of code to be duplicated, and is (without empty lines) 72 lines long.

40

Figure 27: Isolated processing time of the FPA extension of 10 runs, with the amount of code
duplication on the y-axis, and processing time on the x-axis. Left: No transformation Right: Log2
transformation

Figure 28: Processing time of the complete analysis tool of 10 runs, with the amount of code
duplication on the y-axis, and processing time on the x-axis. Left: No transformation Right: Log2
transformation

41

10 Interpretation of results

As was shown earlier in the previous section, this tool is sufficient in analyzing FPA-related code
structures within the spring framework if the implementation of the tool matches the implementa-
tion of the framework within the source code. This may further be improved with the improvement
of the reference resolving algorithm of the BonCode tool. Additionally, the accuracy of the analysis
would be improved when developers adhere to the single exit point law. This would better reflect
the premise that there are multiple branches within the control flow of a method, and therefore
that they could be split into multiple transactions. Though, the accuracy would be dependent on
the comparison between the results that are generated by the tool, and the results that would be
calculated by software estimation experts. Would it be the case that these results differ greatly
from each other, then we can conclude that the tool is not very accurate. In this paper, we have
only eyeballed the results and are therefore limited in our conclusion.

There may also be multiple different approaches to implement the functionalities within the
framework. There are general structures within a framework, but there may also be variances in
which ones to use for each purpose. These variances should be kept in mind when developing the
analysis tool.

Moreover, the experiments show that the time complexity of the FPA processing tool is not
greater than the time complexity of the overall BonCode tool (or less than the greatest time
complexity of one of its other extensions). This makes it an overall feasible solution to do automated
function point analysis.

10.1 Contributions to knowledge

Function point analysis has been partially applied in the context of modern web development
frameworks, specifically those that use an ORM and REST API. development frameworks. This
function point analysis tool can feasibly automate the task of manual function point counting
ensuring a degree of standardization. Function points are generally counted over multiple points in
a period of time. This may especially save a great amount of time and effort in the function point
analysis of large software repositories,

10.2 Limitations of the study

The main limitations of this tool lie in the interpretation of function point analysis within web
development frameworks, and the functionality of the BonCode development framework.

Function point analysis was mainly developed from a functional requirements perspective, and
doesn’t constrain in what way the code must be written. This means that there are endless pos-
sibilities in how code can be written, and also endless possibilities in how it may be analyzed.
Additionally, not all concepts used within FPA may be applicable to a given framework. There
may therefore be slight differences in interpretations of where and how to assign these function
points to the source code.

42

Analyzing the source code in its entirety requires us to be able to find all the relevant rela-
tions within the source code. The BonCode development framework is quite extensive but is not
perfect. There are some issues with reference resolving. This may happen in the case of incomplete
reference resolving that has not been implemented as of yet like where we are not able to find the
corresponding source code of a class declaration for a given class instance. This means that we are
limited in our ability to analyze the contents of the source code, and consequently our ability to
assign a correct amount of function points.

As has been mentioned earlier in this thesis, function point analysis on framework code is very
implementation dependent. There are inevitably multiple ways to write the same piece of code
within a framework, so you will have to take into account all edge cases but might not be able to do so.

Also, because we are using a development framework, some components will inevitably be in-
tertwined with one another. The code analysis tools of BonCode all share a common grammar. It
is sometimes necessary to change this grammar to make it easier to develop the function point
analysis tool, but it may also break the analysis tools which are currently dependent on it. It is
therefore not feasible to alter this grammar too much unless you are able to update the other
now-broken tools appropriately, but this lies outside the scope of this thesis.
And finally, there is a limited number of publicly available software repositories that we are able to
find that utilize the relevant frameworks. The software repositories that we are able to find are often
very limited in functionality and size, and may not accurately represent real-world applications.

10.3 Conclusion

We have shown in this thesis that it is indeed possible to analyze the code structure of source code
that utilizes ORM and REST API design patterns and apply function point analysis to it. It is,
however, very implementation specific and varies greatly depending on which type of framework
the software use.

10.4 Final remarks and suggestions for future work

Future frameworks could be designed to keep in mind function point analysis principles. This would
enable software measurement companies to more easily implement software measurements including
function point analysis.

The current function point analysis tool may be refined be more abstract and generalizable.
The current version allows for multiple languages and their various respective frameworks to per-
form a rudimentary function point analysis (depending on the completeness of the implementation).
It currently doesn’t account for the complexity adjustment factor, so future improvements to this
tool should take this into account.

It currently allows for the function point analysis of software that utilizes ORM and REST
API design patterns, but it may be expanded upon to allow for the analysis of software that uses
other design patterns like Simple Object Access Protocol(SOAP) or data mapper.

43

11 Appendices

• Source code for the example git repository on which the implementation is based in section 8:
https://github.com/spring-projects/spring-petclinic

Raw data of the graphs shown in section 9.2

44

45

References

[Alb79] Allan J. Albrecht. Measuring application development productivity. In Proceedings of
IBM Applications Development Symposium, page 83, Monterey, October 1979.

[AR96] A. Abran and P.N. Robillard. Function points analysis: an empirical study of its
measurement processes. IEEE Transactions on Software Engineering, 22(12):895–910,
1996.

[Bon] BonCode. Outsystems. Accessed: August 21, 2023.

[FTB06] Piero Fraternali, Massimo Tisi, and Aldo Bongio. Automating function point analysis
with model driven development. In Proceedings of the 2006 Conference of the Center
for Advanced Studies on Collaborative Research, CASCON ’06, page 18–es, USA, 2006.
IBM Corp.

[Fun] Function Point Modeler. http://www.functionpointmodeler.com/fpm-infocenter/
index.jsp?topic=%2Fcom.functionpointmodeler.fpm.help%2Fditafiles%

2FgettingStarted%2Fgs-04.html. [Online; accessed 7-August-2023].

[Fur97] S. Furey. Why we should use function points [software metrics]. IEEE Software, 14(2):28–,
1997.

[GTS+16] Sanjali Gupta, Sarthak Tiwari, H. Singh, Ayush Shukla, and H. S. Raghuvanshi. A
comparison between various software cost estimation models. International journal of
emerging trends in science and technology, 03:4771–4776, 2016.

[HK91] F.J. Heemstra and R.J. Kusters. Function point analysis : evaluation of a software cost
estimation model. European Journal of Information Systems, 1(4):229–237, 1991.

[ISO09] Software and systems engineering — Software measurement — IFPUG functional size
measurement method 2009. Standard, International Organization for Standardization,
Geneva, CH, December 2009.

[MM93] Jack E. Matson and Joseph M. Mellichamp. An object-oriented tool for function point
analysis. Expert Systems, 10(1):3–14, 1993.

[PTG+20] Ken Peffers, Tuure Tuunanen, Charles E. Gengler, Matti Rossi, Wendy Hui, Ville
Virtanen, and Johanna Bragge. Design science research process: A model for producing
and presenting information systems research. CoRR, abs/2006.02763, 2020.

[SC04] R. Sanches and E. D. Candido. Estimating the size of web applications by using
a simplified function point method. In Web Congress, Joint Conference Brazilian
Symposium on Multimedia and the Web amp; Latin America, pages 98–105, Los Alamitos,
CA, USA, oct 2004. IEEE Computer Society.

[sco] ScopeMaster. https://www.scopemaster.com/. Accessed: August 21, 2023.

[Sym88] C.R. Symons. Function point analysis: difficulties and improvements. IEEE Transactions
on Software Engineering, 14(1):2–11, 1988.

46

http://www.functionpointmodeler.com/fpm-infocenter/index.jsp?topic=%2Fcom.functionpointmodeler.fpm.help%2Fditafiles%2FgettingStarted%2Fgs-04.html
http://www.functionpointmodeler.com/fpm-infocenter/index.jsp?topic=%2Fcom.functionpointmodeler.fpm.help%2Fditafiles%2FgettingStarted%2Fgs-04.html
http://www.functionpointmodeler.com/fpm-infocenter/index.jsp?topic=%2Fcom.functionpointmodeler.fpm.help%2Fditafiles%2FgettingStarted%2Fgs-04.html
https://www.scopemaster.com/

[Ver02] June Verner. Function Point Analysis. John Wiley Sons, Ltd, 2002.

[Wik23] Wikipedia contributors. Class (computer programming) — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Class_(computer_

programming)&oldid=1167836020, 2023. [Online; accessed 6-August-2023].

[ZN12] Syeda Binish Zahra and Mohsin Nazir. A review of comparison among software estimation
techniques. 2012.

47

https://en.wikipedia.org/w/index.php?title=Class_(computer_programming)&oldid=1167836020
https://en.wikipedia.org/w/index.php?title=Class_(computer_programming)&oldid=1167836020

	Introduction
	Background and context
	Research problem and questions

	Methodology
	Problem identification and motivation
	Objectives of a solution
	Design and development
	Demonstration
	Evaluation
	Communication

	Literature Review
	Benefits and challenges of FPA
	Existing research on automated FPA
	Gaps in the literature

	Definitions (FPA)
	Record Element Type (RET)
	File Type Reference (FTR)
	Data Element Type (DET)
	Transaction DETs
	Data Functions
	Internal Logical File (ILF)
	External Interface File (EIF)
	Transactional Functions
	External Input (EI)
	External Output (EO)
	External Inquiry (EQ)
	Complexity Adjustment Factor

	Definitions (other)
	Model View Controller (MVC)
	Representational State Transfer (REST) API
	Object Relational Mapping (ORM)

	Overview of the BonCode development framework
	Token generation
	Syntax analysis and grammar construction
	Low-code implementation

	Design
	Purpose
	Scope
	Internal Logical File Analyzer
	External Interface File Analyzer
	Transactional Functions Analyzer

	Implementation
	Internal Logical File Analyzer
	External Interface File Analyzer
	Transaction Functions Analyzer
	Reporting
	Testing

	Experiments
	Results
	Time Complexity

	Interpretation of results
	Contributions to knowledge
	Limitations of the study
	Conclusion
	Final remarks and suggestions for future work

	Appendices
	References

