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Abstract

The Vehicle Routing Problem with Time Windows (VRPTW) is an important class of

transportation problems with significant applications in real-world logistics and trans-

portation. This paper introduces a novel approach known as the hybrid multi-objective

evolutionary algorithm, which integrates similarity measurement, local search meth-

ods, and a non-dominated sorting selection operator to tackle this issue. Its perfor-

mance is tested on two datasets, one being the benchmark dataset Solomon’s bench-

mark instance for VRPTW, and the other consisting of 45 instances from the real-world

dataset 2021 Amazon Last Mile Routing Research Challenge. The outcomes showcase

that our algorithm outperforms state-of-the-art approaches, underscoring its suitabil-

ity for real-world applications. Our code is available on GitHub1.

KEYWORDS: Vehicle routing problem with time windows, Multiobjective optimiza-

tion, Evolutionary algorithms

1https://github.com/hwqddddd/MasterThesis
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Chapter 1

Introduction

The vehicle routing problem (VRP) has emerged as a paramount and extensively

investigated combinatorial optimization problem over the last several decades. Its

pertinence is underscored by many real-world applications across domains such as

supply chain management, transportation, production management, and so on [17,

19]. This intricate problem involves efficiently delivering specified merchandise to

clientele, endeavoring to minimize expenses while accommodating diverse objectives

and constraints. The journey commences and concludes at a singular depot location.

The Vehicle Routing Problem (VRP) is categorized as anNP-hard problem, stemming

from its relationship with the traveling salesman problem [7].

The VRP has several well-known variants, each introducing specific complexities

and constraints to the basic problem. For example, Capacitated VRP (CVRP) is the

variant that each vehicle has a limited capacity to carry goods. Multi-Depot VRP

(MDVRP) is the variant in that multiple depots are available, and vehicles must be

assigned to these depots while optimizing routes and satisfying customer demands.

The Vehicle Routing Problem with Time Windows (VRPTW) is a specific variation

of the VRP where customers have specified time windows and vehicles have limited

capacity. This variant is highly relevant to real-life applications [23]. As an extension

of the classic VRP, the VRPTW introduces an additional temporal dimension that

encapsulates the time constraints associated with the delivery or service windows at

customer locations. This augmentation reflects the realistic constraints faced by mod-

ern logistics and distribution systems, where punctuality in deliveries and services is

imperative.

The VRPTW has garnered substantial attention within the academic and indus-
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trial domains due to its profound implications for enhancing operational efficiency,

reducing transportation costs, and ameliorating environmental impacts. The aim of

VRPTW is to identify a collection of routes that collectively incur the lowest expenses,

encompassing factors such as the number of vehicles used, overall travel distance, and

etc. This cost calculation also encompasses penalties associated with instances where

vehicles arrive excessively early or late. This is particularly pertinent since our ap-

proach considers time windows as flexible constraints, permitting slight violations

while incurring penalties. The overarching goal is to minimize all these costs simulta-

neously. Therefore, the VRPTW could formulate as a Multi-objective Optimization

Problem (MOP). Castro-Gutierrez et al. [4] defined 5 common objectives for the

multi-objective VRPTW problem, which are the objective for this paper. The set of

objectives comprises the following five facets: minimizing the count of vehicles/routes,

the cumulative travel distance covered by all vehicles, the makespan, which represents

the longest travel time among all routes, the overall waiting time attributed to early

arrivals, and the collective delay time resulting from late arrivals.

The multi-objective VRPTW problem, commonly denoted as MOVRPTW, ad-

dresses the need to furnish a spectrum of solutions that capture the intricate trade-offs

between objectives, diverging from the standard approach of producing a solitary solu-

tion [13]. Despite the existence of various meta-heuristic methods proposed to tackle

this intricate problem, this study primarily focuses on multi-objective evolutionary

algorithms (MOEAs). MOEAs are known for their effectiveness in handling Multi-

Objective Problems (MOPs), as delineated by He et al. [16]. This choice is based on

the fundamental characteristics of MOEAs, which rely on a population-based nature.

This approach enables a comprehensive and diverse approximation of the Pareto Front

(PF), which is a crucial aspect in MOP. MOEAs are one type of evolutionary algo-

rithm (EA), which is inspired by the principles of Darwinian evolution and natural

selection. The evolutionary process employs these mechanisms to select and propa-

gate a new ensemble of individuals, distinguished by their enhanced quality to the

preceding generation.

Despite the effectiveness of MOEAs in addressing complex optimization problems,

they are not immune to certain challenges. One key challenge lies in maintaining

population diversity throughout the evolutionary process. As MOEAs evolve solutions

toward the Pareto Front, there is a risk of convergence to a limited set of solutions,

neglecting potentially valuable areas of the solution space. Moreover, MOEAs can

sometimes struggle with premature convergence, where the algorithm gets trapped in

local optima and fails to explore promising regions that might lead to better solutions.
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To mitigate these challenges and enhance the performance of MOEAs in the context

of the Multi-Objective Vehicle Routing Problem with Time Windows (MOVRPTW),

this study introduces several contributions.

• A new mechanism called similarity measurement [13] is added to MOEA to

maintain diversity for the population.

• After evolution, a local search method is used to find a better solution that

prevents to stuck in the local optimal.

The rest of this paper is structured as follows: Chapter 2 presents the background of

this problem, which includes previous studies in this field, the definitions of VRPTW,

and the preliminary concept of the multi-objective problem. Chapter 3 then explains

the proposed hybrid multi-objective evolutionary algorithm for the VRPTW problem

and outlines the experimental design of this paper. The results of the experiments

are provided in Chapter 4. Finally, Chapter 5 concludes with the findings and future

work in this area.
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Chapter 2

Background

2.1 Related Work

This section offers a concise summary of the proposed methodologies for tackling the

Vehicle Routing Problem with Time Windows (VRPTW).

Numerous investigations have approached the VRPTW as a single-objective prob-

lem, often focused on minimizing the total distance. For instance, Brandão de Oliveira

et al. [3] utilized simulated annealing, while Ursani et al. [30] employed a genetic algo-

rithm to reduce overall travel distance. However, confining the problem to a solitary

objective overlooks the intricate intricacies inherent in practical real-world situations.

Moreover, a subgroup of researchers has expanded their investigations to encompass

dual objectives within the VRPTW context, aiming to minimize both the number of

vehicles and the total travel distance simultaneously. Noteworthy in this regard is

the work of Gong et al. [15], which introduces a discrete particle swarm optimization

methodology employing a weighted sum approach to combine these objectives into a

singular weighted objective function. Nonetheless, the efficacy of such techniques is

impeded by the challenge of judiciously assigning weights to objectives.

As previously mentioned, it is more advantageous to view VRPTW as a multi-

objective challenge, given the nature of its complexity. In existing literature, nu-

merous studies have employed either generic or hybrid Multi-Objective Evolutionary

Algorithms (MOEAs) to address the MOVRPTW and its diverse iterations. Tan et

al. [28] introduced a hybridized multi-objective evolutionary algorithm, with a par-

ticular emphasis on addressing a problem involving only two objectives. Another

notable contribution comes from Rahoual et al. [24], who present a multi-criteria
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genetic algorithm, derived from the principles of NSGA (Non-dominated Sorting Ge-

netic Algorithm) [26], tailored to tackle the VRPTW. Jozefowiez et al. [18] proposed

parallel and hybrid models combined with Elitist Diversification, tabu search, and

evolutionary algorithm to tackle the VRP. Similarly, Garcia-Najera et al. [13] in-

troduced a multi-objective evolutionary algorithm. This approach, notable for its

incorporation of solution similarity measurement techniques, was designed for the Ca-

pacitated VRPTW (CVRPTW). However, they considered three objectives, including

the number of vehicles, the total time, and the total distance. Baños et al. [2] con-

tributed a novel multi-objective framework, employing a multi-start simulated anneal-

ing strategy named multi-start multi-objective evolutionary algorithm with simulated

annealing (MMOEASA) to unravel the complexities of the Multi-Objective VRPTW

(MOVRPTW). Most of these works used the well-known benchmark data set called

Solomon’s instance [25]. Nonetheless, Castro-Gutierrez et al. [4] claim that Solomon’s

dataset may not ideally align with the requisites of the MOPVRPTW, due to the

emergence of relatively weak dependence relationships among the distinct objectives.

So we not only tested our algorithm on Solomon’s instance but also conducted experi-

ments on the latest data set from Amazon Last Mile Routing Research Challenge [21].

The data provided by Amazon are all real paths in real life, which can better reflect

the real situation.

Some researchers tried to combine MOEA with local search methods to obtain bet-

ter results. Zhou and Wang [33] introduced a novel algorithm based on local search for

the MOVRPTW, they developed 5 local search methods to tackle each objective, and

they are applied to randomly generated solutions iteratively. Subsequently, Srivastava

et al. [27] present an algorithm based on NSGA-II with objective-specific variation op-

erators to deal with MOVRPTW. Zhang et al. [32] develop multi-objective local search

(MOLS) algorithms, and enhance MOLS to MOLS+ for the VRP with outsourcing

and profit balancing.

Our work contrasts through the introduction of distinctive elements. Specifically,

our approach integrates multi-objective evolutionary algorithms with a novel similar-

ity measurement mechanism, which contributes to preserving population diversity. We

extend the optimization process by integrating a post-evolution local search method

designed to prevent premature convergence and refine solutions. Moreover, our study

capitalizes on the latest data set from Amazon [21] to conduct comprehensive empir-

ical assessments. In doing so, we bridge the gap between theoretical methodologies

and real-world applications, leveraging authentic path data to more accurately mirror

practical contexts within the realm of vehicle routing.
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2.2 Preliminary

In this section, we present the formal definition of the VRPTW and introduce some

preliminary concepts related to Multiple-Objective Problems (MOP).

2.2.1 Definition of VRPTW

This thesis uses the same formulation and conventions as presented in [13] and [33].

The VRPTW can be modeled as a graph G, there is a set of vertices V = {0, ..., N},
each vertex signifies a customer location, where vertex 0 is the depot. Edges E =

{(0, i), ..., (i, j)} connecting the vertices correspond to potential routes that vehicles

can take to reach customers. Every customer i is situated at coordinates (xi, yi),

accompanied by a distinct demand for goods denoted as gi > 0, and subjected to a

time window constraint [bi, ei] that dictates when service should occur. This temporal

constraint mandates that the respective customer’s requirements are met within the

stipulated time window. Additionally, each customer involves a service time si req-

uisite for unloading deliveries. The depot is the central station where every vehicle

departs and returns with the same capacity C ≥ max {gi : i ∈ V}, is located at (x0, y0),

possessing a demand g0 = 0, and a time window [0, e0 ≥ max {ei : i ∈ V}]. Let dij

and tij denote distance and travel time from customer i to customer j, respectively.

Figure 2.1: Routes representation in VRPTW.

The primary goal of the VRPTW involves determining a collection of m routes,

denoted as R = {r1, ..., rm}, that collectively incur the minimal cost. These routes
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should adhere to specific conditions: every customer must be serviced exactly once

by a single vehicle, and each individual route rj must initiate and terminate at the

designated depot. Let rj =< c(1, j), ..., c(Nj , j) > denote the sequence of customer

that visited in jth route which has Nj customers, and c(i, j) is the ith customer in jth

route. Notably, the cumulative demand across this route must not surpass the capacity

of the respective vehicle. Moreover, the depot represents c(0, j) = c(Nj + 1, j) = 0.

Figure 2.1 shows an example while m = 3 routes of R = {r1, r2, r3}. Therefore, the

distance traveled, denoted as Dj , for the jth route is defined as follows:

Dj =

Nj∑
i=0

dc(i,j)c(i+1,j) (2.1)

In this context, the notation dc(i,j)c(i+1,j) symbolizes the distance from customer i to

the subsequent customer i + 1 within jth route. To compute the relevant cost, it’s

essential to take into account ac(i,j) as the arrival time and lc(i,j) as the departure

time of vehicle j at customer i. The calculation of vehicle j’s arrival time at customer

i follows this equation:

ac(i,j) = lc(i−1,j) + tc(i−1,j),c(i,j) (2.2)

where lc(0,j) is set to 0, as it signifies the vehicle’s departure from the depot at time

0. Additionally, tc(i−1,j),c(i,j) signifies the time taken for travel from customer i− 1 to

customer i.

When the vehicle reaches the customer before the designated service time, it is

required to wait, resulting in waiting time. The waiting time experienced by vehicle j

at customer i can be expressed as follows:

wc(i,j) =

0, if ac(i,j) ≥ bc(i,j)

bc(i,j) − ac(i,j), if ac(i,j) < bc(i,j)
(2.3)

Subsequently, the departure time of vehicle j from customer i is

lc(i,j) = ac(i,j) + wc(i,j) + sc(i,j). (2.4)
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The overall travel time for route rj can be calculated as:

Tj =

Nj∑
i=0

(tc(i,j),c(i+1,j) + wc(i+1,j) + sc(i+1,j)) (2.5)

where sc(i+1,j) signifies the service time of customer i + 1 on route j, and it’s worth

noting that wc(Nj+1,j) = sc(Nj+1,j) = 0, as the depot’s service and waiting times are

both 0. The cumulative waiting time for route rj is then computed as:

Wj =

Nj∑
i=1

wc(i,j). (2.6)

Two distinct variations of VRPTW exist. The initial variant enforces hard time

windows, where the vehicle’s arrival after the customer’s time window closure is pro-

hibited [13, 28]. However, this strict constraint may not accurately represent real-world

scenarios. In reality, factors beyond control, such as road conditions and customer-

related variables, can significantly impact arrival times [29]. The second variant in-

volves VRP with soft time windows, permitting deviations from the specified time

windows and finding utility in numerous real-world contexts, as evidenced by [11, 22].

Notably, the adoption of soft time windows can lead to feasible solutions where the

application of a hard time windows approach may falter [11]. In this study, our focus

is on VRP with soft time windows, where vehicle arrival after the designated time

window conclusion could result in delays. In this context, the delay time of vehicle j

at customer i is calculated as:

delayc(i,j) =

0, if ac(i,j) ≤ ec(i,j)

ac(i,j) − ec(i,j), otherwise.
(2.7)

and the overall delay time for the route rj is

Delayj =

Nj∑
i=1

delayc(i,j). (2.8)

The objectives of VRPTW problem can be defined as follows, each of which should

be minimized:

f1 (number of vehicles):

f1 =| R |= m; (2.9)
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f2 (total travel distance):

f2 =

m∑
i=1

Dj ; (2.10)

f3 (longest travel time among all routes):

f3 = max{Tj | j = 1, ...,m}; (2.11)

f4 (accumulated waiting time resulting from early arrivals):

f4 =

m∑
i=1

Wj ; (2.12)

f5 (accumulated delay time caused by late arrivals):

f5 =

m∑
i=1

Delayj ; (2.13)

The constraint in VRPTW is that the combined demand of all customers in a route

rj must not exceed the capacity of the vehicle:

Nj∑
i=1

gc(i,j) ≤ C ∀j = 1, ...,m. (2.14)

Therefore, the VRPTW with five objectives could be summarized as

minf = {f1, f2, f3, f4, f5} (2.15)

subject to Equation 2.14.

2.2.2 Multi-objective optimization problems

A MOP can be described as:

arg minxF (x) = {f1(x), ..., fn(X)} x ∈ X (2.16)

subject to constraints, where X denotes the decision variable space. F : X → Rn

consist of n objective functions that conflict with each other. Let x, y ∈ X , x ≺ y

represents solution x dominates solution y, iif fi(x) ≤ fi(y)∀i ∈ {1, ..., n}, and fi(x) <

fi(y)∃i ∈ {1, ..., n}. A solution x⋆ is Pareto optimal if there is no solution x ∈ X

9
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dominates x⋆. The collection of all optimal solutions denoted by x⋆ forms the Pareto

set, while the array of objective vectors corresponding to these solutions is referred to

as the Pareto front [5].

Assessing the effectiveness of algorithms in a MOP can be quite challenging. Be-

cause MOPs are not like single-objective problems that can be judged according to one

indicator, MOPs need to consider a whole set of solutions, which means is essential

to find appropriate performance metrics. Many studies proposed metrics to overcome

this issue, from which hypervolume [35] and coverage [34] are used in this paper.
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Chapter 3

Experiment

3.1 The hybrid multi-objective evolutionary algo-

rithm

In this section, we introduce our hybrid multi-objective evolutionary algorithm (HMOEA)

as a solution strategy for addressing the MOVRPTW. The algorithm we propose is

founded on the framework of Evolutionary Algorithms (EAs), which belong to a cat-

egory of optimization methods inspired by the principles of natural evolution and

genetics. These EAs establish an analogy between biological evolution and the opti-

mization process, employing concepts such as selection, reproduction, mutation, and

recombination to guide the evolution of a population of potential solutions toward

improved outcomes across successive generations.

Our proposed methodology addresses the MOVRPTW challenge by seamlessly

integrating Multi-Objective Evolutionary Algorithms (MOEAs) with an innovative

similarity measurement mechanism and a local search approach. This integration

is poised to optimize the delicate trade-offs among competing objectives, ultimately

aiming to augment the efficiency of route planning while maintaining adherence to

stringent vehicle capacity and time windows constraints. The sequential workflow of

the proposed algorithm is visually depicted in Figure 3.1, while the precise operational

details are outlined in the algorithmic representation provided in Algorithm 1.

The algorithm commences its journey with the initiation and evaluation of a pop-

ulation, embarking on a cyclic loop that continues until a designated number of gen-

erations is reached. Operating within this loop, the algorithm harnesses a hybrid
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methodology that combines selection, crossover, mutation, local search, and similarity

measurement. This orchestration iteratively evolves a diverse population of prospec-

tive solutions tailored to the intricate contours of the MOVRPTW challenge.

The forthcoming subsections will delve into comprehensive elucidations of these

intricacies, furnishing a thorough understanding of the algorithm’s inner workings and

its efficacy in solving the MOVRPTW challenge.

Figure 3.1: The process of the HMOEA.

3.1.1 Initial population

Population initialization marks the initial stage of EAs. The population is constituted

by a collection of individuals, representing potential solutions to the problem at hand.

Each individual comprises a randomly generated sequence of visited customers along

a route. This can be visualized in Figure 3.2, where the length of the individual aligns

with the number of customers present on the route.

Figure 3.2: Individual representation.

According to the capacity of the vehicle, we start from the depot, and from each

added customer’s demand, when the load exceeds the capacity, this sub-route is fin-

ished. We repeat until we reach the end of the sequence of customers, then the

sequence divides into several sub-sequence, as shown in Figure 3.3. The count of

sub-routes corresponds to the number of vehicles.
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Algorithm 1: Hybrid multi-objective evolutionary algorithm

Input: Population size p, Crossover rate ϵ, Number of generation NG

1 population← initialize(p);
2 fitness ← evaluate(population);
3 G ← 0;
4 while G < NG do
5 offspring ← selection(population)
6 for ind1 ∈ offspring do
7 simi← 1;
8 for i ∈ random.sample(offspring, 5) do
9 temp ← similarityMeasurement(ind1, i);

10 if temp < simi then
11 simi = temp;
12 ind2 ← i;

13 end

14 end
15 if random < ϵ then
16 crossover(ind1, ind2);
17 end
18 mutate(ind1);
19 mutate(ind2);

20 end
21 2-Opt(population);
22 population ← selection(population+ offspring);
23 G ← G+ 1;

24 end
25 return population

3.1.2 Fitness evaluation

It’s crucial in EA to evaluate every individual’s fitness in each generation. Unlike

single-objective problems, the fitness function could be straightforwardly calculated

by one objective like total distance, in multi-objective problems, we first need to com-

pute each objective including the number of vehicles m, the entire distance
∑m

i=1 Dj ,

the longest travel time among all routes max{Tj | j = 1, ...,m}, the total waiting

time
∑m

i=1 Wj , and the total delay time
∑m

i=1 Delayj and store them in a tuple. Non-

dominance sorting criterion of Deb et al. [8] proposed an approach to make a trade-off

between all the objectives. This is the chosen selection approach employed by this al-

gorithm. By leveraging this criterion, MOEAs can effectively balance convergence and

diversity, explore the Pareto Front more comprehensively, and produce high-quality
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Figure 3.3: Route representation.

solutions that cater to a wide range of objectives and preferences.

3.1.3 Similarity Measurement

Maintaining diversity within the population is a critical aspect of evolutionary algo-

rithms. Success hinges on preventing premature convergence by striking a balance

between exploration and exploitation [10], these concepts play crucial roles in finding

optimal solutions efficiently and effectively in complex search spaces. And for MOPs,

population diversity is of utmost importance. Ensuring that the final population en-

compasses the entire Pareto front, rather than just a portion of it, is a crucial goal

[13].

To tackle this challenge, Garcia-Najera et al. [13] introduced a similarity measure-

ment mechanism aimed at preserving population diversity. Their approach has been

demonstrated to exhibit favorable performance outcomes. The concept is rooted in

Jaccard’s similarity coefficient, which quantifies the proportion of common elements

between the sets relative to the total number of distinct elements present in both sets.

[12]. The similarity between set A and set B is

J(A,B) =
|A ∩B|
|A ∪B|

. (3.1)

To apply this measure in the context of VRPTW, each individual is regarded as a set

of edges (c(i, j), c(i+1, j)). As a result, the similarity between solution X and solution

Y is determined by the proportion of common edges to the total number of edges in

the two solutions.

SXY =

∑
i,j∈V(i, j)X · (i, j)Y∑

i,j∈V sign((i, j)X + (i, j)Y )
, (3.2)
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where (i, j)X denote the edge (i, j) of solution X, (i, j)X = 1 means the arc exists,

otherwise (i, j)X = 0, (i, j) and (j, i) consider as two different edges. The sign function

returns 1 if the sum is positive, −1 if the sum is negative, and 0 if the sum is zero.

Thus if X and Y have every edges in common, SXY = 1, while if X and Y have

nothing in common, SXY = 0.

3.1.4 Parents selection

Some traditional methods in EA to select parents are tournament selection, keep

best selection, and proportional roulette selection. Similarity measurement is used to

select parents for every individual in the population. For each individual, we randomly

sample five individuals to do similarity matching and chose the least similar individual

as its mating parent. Doing so can enable each individual to mate with the one that

is least similar to them, resulting in a greater diversity of offspring, thereby making

the entire population more heterogeneous.

3.1.5 Recombination

Recombination is the process in evolutionary algorithms whereby offspring are gener-

ated through the crossover of parent individuals, with a certain recombination proba-

bility ϵ of occurrence. For the recombination method, we used ordered crossover (OX)

[14] since this method could always provide valid and feasible outcomes. This could

help us calculate the fitness of the individual without checking if is valid or not.

The OX (Order Crossover) process is shown in Figure 3.4 involves initially having

two parents. Two crossover points a, b are randomly selected to divide them into

three parts: left, middle, and right. Offspring2 inherits the middle part [2,4,9] from

parent1, while the left and right parts are inherited from parent2. This is accomplished

by removing [2, 4, 9] from parent2 and filling in the remaining numbers, starting from

location b+ 1. The same operation is performed on offspring1.

Figure 3.4: Illustration of OX operator.
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3.1.6 Mutation

Mutation is another method used to increase the diversity of a population after off-

spring generation, it occurs with a certain mutation probability σ. And in this paper,

we employed the swap method. Specifically, the operation involves exchanging two

random customers, the example is shown in Figure 3.5.

Figure 3.5: Illustration of swap mutation operator.

3.1.7 Selection

The final step of each evolution round is the selection process, where we aggregate

the populations of both parents and offspring to select p individuals using the non-

dominated sorting approach and the crowding distance comparison from NSGA-II [8].

The concept of non-dominated sorting organizes individuals into distinct fronts accord-

ing to their dominance relationships. The first front comprises individuals that aren’t

dominated by any other members of the population. The second front encompasses in-

dividuals dominated by the first front, yet they themselves do not dominate any other

individuals. The sorting continues until all individuals are assigned. And crowding

distance is calculated within each front and represents how crowded or sparse the so-

lutions are in the objective space. During selection, solutions with greater crowding

distances are favored, as they indicate less congested regions and offer a more accurate

representation of the Pareto front [8].

3.1.8 Local search method

An approach to integrate the local search algorithm with the evolutionary algorithm

involves applying it to individuals within the population subsequent to the processes

of recombination and mutation [20]. Regarding the local search methods, we experi-

mented with 2-opt, 3-opt, relocate, and Tabu search. Among them, the 3-opt, relocate,

and Tabu search demonstrated suboptimal performance. Therefore, we ultimately se-

lected the 2-opt method.

The original 2-opt algorithm [6] would compare every possible solution to find the

best, which is time-consuming. In this thesis, we employed a modified version of 2-

opt, where a random individual from the final evolved population was selected. The

specific procedure involved randomly choosing two customers within two sub-routs
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and performing an exchange. This exchange process was iterated five times to identify

the individual with the highest fitness. The process is depicted in Figure 3.6.

Figure 3.6: Illustration of 2-opt local search method.

3.2 Experiments design

This section describes the experimental strategy used to assess the effectiveness of

the algorithm. It covers aspects such as the utilized datasets, performance evaluation

metrics, and the established baseline.

The Python implementation of the HMOEA was executed on a personal computer.

The system utilized for conducting all experiments consisted of a 2.30 GHz Intel Core

i5 processor and 16 GB of RAM. The experiments are tested on two data sets, the first

one is the VRPTW benchmark instance called Solomon’s instance [25], and the other

one is the real-world routing data set provided by Amazon [21]. The experimental

configurations encompassed specific parameter settings: the number of generation NG

is 100, the Population size p is 100, the mutation rate σ is 0.1, and the crossover rate ϵ

is 0.85. Subsequent to a series of experiments, it was determined that these parameter

values yielded improved outcomes.

The baseline and the HMOEA have each been run ten times on each instance

independently in order to produce accurate data.

3.2.1 Data sets

The conducted experiments were applied to two distinct datasets: the initial dataset

being Solomon’s instance, a recognized benchmark for the VRPTW [25], and the

second dataset being a real-world routing dataset furnished by Amazon [21].

1. Solomon’s benchmark instances

Solomon’s standard public benchmark set [25], which includes 56 instances of

size N = 100 available from Solomon’s website1. They are well-established and

1http://w.cba.neu.edu/ msolomon/problems.htm
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widely recognized in the research community. They have been extensively stud-

ied, which allows for direct comparisons between different algorithms and meth-

ods across a common set of problem instances. These instances have been clas-

sified into six distinct categories: C1, C2, R1, R2, RC1, and RC2. The ’C’ class

pertains to problems with clustered data, implying that customers are grouped

either based on geographic proximity or time windows. The ’R’ class repre-

sents problems with uniformly random data distribution. Finally, the ’RC’ class

encompasses instances that combine characteristics from both the ’C’ and ’R’

classes. Additionally, Category 1 has a vehicle with a small capacity that only

serves a small number of clients, whereas Category 2 has a vehicle with a big

capacity that serves more consumers in a single sub-route.

2. Amazon Data Set

2021 Amazon Last Mile Routing Research Challenge: Data Set [21]. The Chal-

lenge provides two datasets. The training data set has 6,112 routes, and the

evaluation set has 3,052 routes. Each route contains a set of 50 to 250 stops.

The dataset provided by Amazon consists exclusively of real-life routes, offering

a more accurate representation of actual operational scenarios.

Since this data set is designed for the Travel Salesman Problem instead of the

VRPTW problem, we need to apply preprocessing steps. The data set contained

route information, stop information and package information. In route informa-

tion, each route has the capacity of the vehicle, departure time, and each stop

in the route. Stop information specified the coordinates of each stop, packages

delivered at each stop, and the estimated transit time to every other stop on the

route. As for the package information, it has the service time, dimension, and

time window for each package. Please note the time window is not applicable

for every package, since some customers do not mention it. For packages that

do not specify a time window, we set his time window to a whole day. A route

represents an individual instance, where each stop is considered as a customer to

be serviced. The sum of package sizes to be delivered at each stop is treated as

the customer’s load, while the earliest and latest time windows within the stop’s

package collection define the time window. Considering that the capacity of the

vehicle in the provided dataset accommodates all packages within each instance,

and as only one vehicle operates on a given route, we opted to diminish the vehi-

cle’s capacity from 3,313,071 to 1,313,071 and from 4,247,527 to 2,247,527. The

distances and estimated times between each stop are assumed to be equal, as in
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reality, distance and time are positively correlated, and calculating precise dis-

tances in the real world is challenging. As Amazon did not provide the location

of the depot, the required time between the depot and each stop is unknown. In

this study, we consider the first stop of each route as the depot.

Figure 3.7: Structure of Amazon data set.

Categorized by the count of customers (stops), we organized the problems into

three distinct groups: A1 encompassing instances with fewer than 100 customers,

A2 comprising instances with 100 to 200 customers, and A3 involving instances

with over 200 customers. Within each problem category, a selection of 15 in-

stances was randomly drawn from the training dataset, and each route has an

80% probability of being selected. Each of these instances includes the corre-

sponding route ID present in the original dataset. We did not run all instances

due to the primary purpose of the complete training set being model develop-

ment. With 45 examples, we deemed it sufficient to assess the testing algorithm’s

performance.
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Table 3.1: Details of A1 and vehicle capacity in cm3 for instances.

Instance Number of customer Vehicle capacity
A100 59 1313071
A101 78 1313071
A102 80 1313071
A103 78 1313071
A104 91 1313071
A105 72 2247527
A106 96 1313071
A107 83 1313071
A108 74 1313071
A109 82 2247527
A110 82 1313071
A111 38 2247527
A112 85 1313071
A113 82 1313071
A114 69 1313071

Table 3.2: Details of A2 and vehicle capacity in cm3 for instances.

Instance Number of customer Vehicle capacity
A200 119 1313071
A201 106 2247527
A202 128 2247527
A203 142 1313071
A204 155 1313071
A205 190 2247527
A206 161 1313071
A207 155 2247527
A208 177 1313071
A209 129 1313071
A210 185 1313071
A211 173 1313071
A212 161 1313071
A213 130 1313071
A214 176 1313071
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Table 3.3: Details of A3 and vehicle capacity in cm3 for instances.

Instance Number of customer Vehicle capacity
A300 202 1313071
A301 222 2247527
A302 205 2247527
A303 204 2247527
A304 203 1313071
A305 203 1313071
A306 203 1313071
A307 204 1313071
A308 203 1313071
A309 203 1313071
A310 206 2247527
A311 204 2247527
A312 203 1313071
A313 204 1313071
A314 219 1313071

3.2.2 Performance metrics

Assessing the performance of algorithms in Multiple-Objective Problems (MOPs) in-

volves evaluating both convergence and diversity aspects. As concluded by Zitzler

et al [37], relying on a single performance metric isn’t sufficient to provide a holistic

measure of an MOP algorithm’s performance. Therefore, it is advisable to utilize mul-

tiple indicators. In this study, we employed widely-used metrics in MOPs such as the

Hypervolume (HV) and the Coverage metric (C-metric).

1. Hypervolume (HV): HV metric is proposed by Zitzler and Thiele [35]. The

hypervolume metric calculates the total amount of space enclosed by a set of so-

lutions, which indicates how well the solutions cover the desired objective space.

A higher hypervolume value indicates a more diverse and better-distributed set

of solutions, which is desirable in multi-objective optimization. To calculate HV,

we need to define the reference point, which is a set of points with extreme values

in each objective dimension. In this paper, we define as [1.01, 1.01, 1.01, 1.01,

1.01].

2. Coverage metric (C-metric): C-metric is proposed by Zitzler and Thiele [36].

This metric is extensively employed for comparing two sets of nondominated

solutions, labeled as X and Y . The value of C(X,Y ) reflects the proportion of

solutions in set Y that are dominated by at least one solution in set X. A value
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of 1 for C(X,Y ) implies that all nondominated solutions in Y are dominated by

solutions in X, while a value of 0 indicates that all nondominated solutions in X

are dominated by solutions in Y . It’s important to note that the sum of C(X,Y )

and C(Y,X) doesn’t always equate to 1, owing to the potential scenario where

some solutions within sets X and Y do not dominate each other.

A collection of solutions with a higher HV can be interpreted as a superior ap-

proximation to the true Pareto Front. Given the varying ranges of objectives in each

instance, we have normalized all objective values to compute HV and C-metric.

3.2.3 Baseline

To evaluate the performance of our algorithm, we used NSGA-II [8] as the baseline.

It is a state-of-art multi-objective evolutionary algorithm that has proven to have

good performance and offers different choices and trade-offs for decision-makers facing

complex problems with multiple objectives. The NSGA-II implementation retained an

identical solution representation and population initialization, along with consistent

utilization of crossover, mutation, selection operators, and parameter configuration

as employed in the hybrid multi-objective evolutionary algorithm. The disparities lie

in the parent selection procedure and the subsequent integration of the local search

approach following the evolution process.
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Results

We compared the results of the hybrid multi-objective evolutionary algorithm with

NSGA-II by applying both algorithms to two data sets: Solomon’s benchmark in-

stances and the Amazon data set. Due to the stochastic nature of the experiments, all

the results are reported as the average (AVG) and standard deviation (SD) obtained

from ten repetitions of the experiment. The difference between the results obtained by

the two algorithms was demonstrated through the utilization of the Wilcoxon signed-

rank test [31, 9, 1] at 5% significance level.

4.1 Solomon’s benchmark instances

Table 4.1 illustrates the results between HV and C-metric in the context of Solomon’s

instances. The initial column lists the instance names, followed by the second and third

columns displaying the mean and standard deviation of HV, respectively. The fourth

column showcases the mean of C-metric, delineated by C(NS, HM) for C(NSGA-II,

HMOEA) and C(HM, NS) for C(HMOEA, NSGA-II). For each instance, superior val-

ues are highlighted in bold typeface. The concluding row within Table W/B provides

an overview, indicating whether HMOEA is better or worse compared to NSGA-II.

The comparison of HV and C-metric results in Solomon’s instances is presented

in Table 4.1, where the first column is the name of instances, the second and third

columns are the average and standard deviation of HV respectively, the fourth column

is the average of C-metric, in which C(NS, HM) is C(NSGA-II, HMOEA), C(HM, NS)

is the C(HMOEA, NSGA-II). The better values are represented in bold font for each

instance.
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Based on the results, we can observe that HMOEA outperforms NSGA-II overall.

In terms of the average values, HMOEA demonstrates superiority over NSGA-II in the

majority of cases, achieving higher Hypervolume (HV) scores. Specifically, out of the

total instances, HMOEA outperforms NSGA-II in 47 instances concerning HV, while

in 9 instances, it shows slightly worse performance.

An additional perspective to consider is the stability of the algorithms, as indicated

by the standard deviation values. Notably, HMOEA showcases a slightly higher level

of stability compared to NSGA-II, suggesting that it could yield more consistent results

across various scenarios.

Furthermore, evaluating the algorithms using the C-metric reveals a similar pat-

tern. HMOEA outperforms NSGA-II in 45 instances, showcasing its superior conver-

gence and diversity capabilities. In contrast, there are 11 instances where HMOEA

falls short compared to NSGA-II. This collectively underscores HMOEA’s proficiency

in achieving a balance between convergence and diversity, ultimately leading to en-

hanced overall performance.

4.2 Amazon Data Set

In Table 4.2, we delve into a comprehensive comparison between the outcomes of HV

and C-metric analyses within the Amazon dataset. Much like Table 4.1, the table

structure’s initial columns remain consistent, including instance names, average HV

values, standard deviations of HV, and average C-metric values. The difference is the

final row of the table furnishes a comprehensive overview through a W/S/B format,

embodying HMOEA Worse than, Similar to, and Better than comparisons, providing

an encompassing vantage point to assess the performance of HMOEA in relation to

NSGA-II.

Based on the results, a discernible pattern emerges—HMOEA exhibits a tendency

to outperform NSGA-II across diverse metrics. This observation holds true when

considering the average values, as HMOEA registers remarkable improvements over

NSGA-II in 28 instances under the HV metric. Remarkably, 7 instances demonstrate

inferior performance. A parallel trend is evident when scrutinizing the standard de-

viation of HV, with HMOEA showcasing superiority in 35 instances compared to

NSGA-II. However, it is crucial to acknowledge the balance, as 10 instances exhibited

less favorable outcomes under HMOEA’s approach.

Furthermore, evaluating the performance through the lens of C-metric reaffirms

HMOEA. It triumphs over NSGA-II in 31 instances, reinforcing its potential for en-
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hancing optimization. Nonetheless, it is essential to acknowledge that in 13 instances,

HMOEA registers comparatively unfavorable results, while 1 instance exhibits simi-

larity. This comprehensive examination underscores HMOEA’s overall effectiveness in

addressing the challenges posed by the Amazon dataset and highlights its potential

to outperform traditional methods such as NSGA-II across a range of performance

metrics.
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Table 4.1: The AVG and SD of the hypervolume (HV) and Coverage metric (C-metric)
results for the NSGA-II and HMOEA algorithms in Solomon’s instances experiment, superior
values are highlighted in bold typeface.

Instance HV-AVG HV-SD C-metric
NSGA-II HMOEA NSGA-II HMOEA C(NS,HM)a C(HM,NS)b

C101 0.87958 0.90172 0.06982 0.07237 0.30600 0.49800
C102 0.86834 0.90226 0.11097 0.06584 0.21500 0.42200
C103 0.63655 0.66850 0.27252 0.36602 0.27575 0.57812
C104 0.54264 0.65106 0.24458 0.31427 0.23442 0.34109
C105 0.82921 0.93097 0.17592 0.04990 0.24345 0.41100
C106 0.77889 0.86833 0.24850 0.16987 0.34646 0.70519
C107 0.77462 0.52132 0.17227 0.31481 0.41900 0.28700
C108 0.60628 0.67702 0.30326 0.26934 0.15100 0.05900
C109 0.53529 0.71507 0.30204 0.20037 0.29650 0.04200
C201 0.88378 0.88662 0.13022 0.08078 0.32364 0.45791
C202 0.92057 0.90441 0.06328 0.06890 0.41655 0.40800
C203 0.89519 0.89825 0.12161 0.09327 0.33631 0.58341
C204 0.86843 0.89738 0.18798 0.11490 0.37030 0.38473
C205 0.86557 0.89096 0.08176 0.05793 0.38366 0.54000
C206 0.91744 0.92185 0.04235 0.04800 0.42997 0.44367
C207 0.84325 0.87873 0.11196 0.09296 0.36836 0.47100
C208 0.84891 0.86623 0.05422 0.07679 0.39411 0.63917
R101 0.78533 0.90256 0.15136 0.04844 0.31958 0.56300
R102 0.62589 0.67018 0.19728 0.30173 0.34167 0.36722
R103 0.39709 0.53129 0.33428 0.36308 0.22825 0.46106
R104 0.51277 0.83305 0.44549 0.29046 0.39530 0.70700
R105 0.84239 0.82943 0.10114 0.09326 0.29358 0.42864
R106 0.52118 0.64363 0.16323 0.28768 0.32979 0.64959
R107 0.41975 0.72374 0.38092 0.37601 0.15567 0.73800
R108 0.47103 0.53545 0.38491 0.42521 0.43556 0.65039
R109 0.70372 0.68592 0.25304 0.20160 0.42696 0.17218
R110 0.51957 0.73568 0.36283 0.31908 0.28062 0.28132
R111 0.46222 0.68079 0.27516 0.30121 0.23335 0.61608
R112 0.58190 0.61109 0.22639 0.32315 0.46506 0.52098
R201 0.80888 0.83020 0.07382 0.08384 0.34849 0.50223
R202 0.85166 0.88930 0.19246 0.10067 0.37687 0.39458
R203 0.85305 0.85508 0.09041 0.12225 0.36263 0.50939
R204 0.83364 0.93550 0.14666 0.17240 0.37713 0.57346
R205 0.81602 0.85562 0.06481 0.06519 0.32182 0.34900
R206 0.78864 0.87685 0.11284 0.07384 0.20984 0.57700
R207 0.86209 0.91063 0.09317 0.06980 0.38032 0.20441
R208 0.82041 0.94091 0.21951 0.14514 0.26052 0.76657
R209 0.74908 0.87182 0.17510 0.11799 0.44754 0.62111
R210 0.77128 0.87682 0.11594 0.11397 0.31399 0.51159
R211 0.80845 0.77864 0.13500 0.12151 0.45687 0.43407
RC101 0.71507 0.75804 0.12841 0.17219 0.24570 0.49539
RC102 0.72006 0.69056 0.27107 0.23676 0.35919 0.52578
RC103 0.57744 0.55803 0.20177 0.27974 0.30477 0.46033
RC104 0.33824 0.60497 0.29957 0.32761 0.41993 0.38564
RC105 0.72960 0.76846 0.14213 0.14267 0.30672 0.42895
RC106 0.61252 0.73261 0.29394 0.29835 0.35920 0.36284
RC107 0.32382 0.66470 0.21939 0.28484 0.21545 0.41084
RC108 0.53267 0.56231 0.37447 0.32953 0.40156 0.17900
RC201 0.83554 0.87407 0.04711 0.08122 0.35383 0.56731
RC202 0.82720 0.87507 0.09412 0.08599 0.28490 0.43903
RC203 0.90734 0.87613 0.07533 0.10475 0.37706 0.49389
RC204 0.90420 0.91358 0.11442 0.10357 0.36725 0.42433
RC205 0.85685 0.86617 0.09441 0.08844 0.50537 0.43789
RC206 0.84195 0.86147 0.08616 0.06663 0.34683 0.44317
RC207 0.85281 0.82646 0.07680 0.10967 0.51361 0.34412
RC208 0.78807 0.86862 0.25738 0.08813 0.25799 0.51741
W/B 9/47 26/30 11/45
a C(NSGA-II, HMOEA)
b C(HMOEA, NSGA-II)
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Table 4.2: The AVG and SD of the hypervolume (HV) and Coverage metric (C-metric)
results for the NSGA-II and HMOEA algorithms in the Amazon data set experiment, superior
values are highlighted in bold typeface.

Instance HV-AVG HV-SD C-metric
NSGA-II HMOEA NSGA-II HMOEA C(NS,HM)a C(HM,NS)b

A100 0.61629 0.77360 0.18942 0.13732 0.15375 0.56003
A101 0.61881 0.76852 0.43729 0.29651 0.58100 0.67778
A102 0.58329 0.69294 0.25277 0.27965 0.39705 0.32404
A103 0.75308 0.71688 0.19567 0.31870 0.22133 0.69581
A104 0.34472 0.75924 0.33208 0.34784 0.36268 0.89800
A105 0.50596 0.89580 0.41244 0.26994 0.12778 0.74575
A106 0.67709 0.71784 0.29332 0.27759 0.49495 0.68019
A107 0.60565 0.71507 0.30774 0.28945 0.43423 0.58625
A108 0.56203 0.79259 0.31258 0.17518 0.29498 0.76207
A109 0.45747 0.85067 0.47158 0.16125 0.35000 0.51133
A110 0.72675 0.74702 0.25786 0.27261 0.29800 0.64553
A111 0.65709 0.88109 0.40161 0.23465 0.40400 0.54107
A112 0.68732 0.89933 0.29869 0.14262 0.29491 0.59872
A113 0.79636 0.68320 0.42744 0.42427 0.74700 0.40110
A114 0.69161 0.77379 0.32452 0.17715 0.51890 0.37838
A200 0.70759 0.91315 0.36133 0.15607 0.18727 0.66657
A201 0.46221 0.74321 0.44636 0.41121 0.30300 0.69600
A202 0.54070 0.75209 0.37239 0.40471 0.25020 0.66395
A203 0.87150 0.92448 0.14442 0.13946 0.39798 0.62807
A204 0.90681 0.83556 0.30542 0.34668 0.72675 0.44737
A205 0.72025 0.80092 0.45308 0.42765 0.77368 0.71229
A206 0.43173 0.81716 0.48779 0.37201 0.39800 0.80000
A207 0.74902 0.88667 0.38326 0.31346 0.42000 0.67750
A208 0.87923 0.97376 0.33440 0.24296 0.70000 0.80000
A209 0.63986 0.92724 0.47420 0.32153 0.60000 0.90000
A210 0.67488 0.68435 0.47519 0.44840 0.70000 0.50200
A211 0.51573 0.80215 0.41645 0.18574 0.49098 0.73000
A212 0.73440 0.86661 0.49304 0.34182 0.70000 0.60000
A213 0.58580 0.70402 0.49956 0.43913 0.66267 0.69400
A214 0.78701 0.80919 0.41884 0.42021 0.60000 0.69778
A300 0.85814 0.90646 0.21686 0.17860 0.50427 0.59836
A301 0.95689 0.87669 0.29762 0.36065 0.90000 0.70000
A302 0.64478 0.89499 0.43879 0.29552 0.30300 0.82208
A303 0.68346 0.73785 0.41172 0.37673 0.51667 0.49600
A304 0.89804 0.73631 0.34524 0.48741 0.89800 0.60000
A305 0.88220 0.86925 0.36655 0.33777 0.80000 0.60000
A306 0.70107 0.67705 0.48248 0.38612 0.77818 0.40909
A307 0.67429 0.74108 0.46544 0.43158 0.50204 0.49750
A308 0.65628 0.81657 0.35765 0.42364 0.39593 0.75577
A309 0.66648 0.76833 0.40148 0.37126 0.55219 0.67829
A310 0.78847 0.94798 0.44131 0.32581 0.70000 0.90000
A311 0.64871 0.97681 0.47417 0.17164 0.50000 0.73750
A312 0.72445 0.78651 0.48115 0.41237 0.70000 0.70000
A313 0.63889 0.95480 0.53205 0.29538 0.60400 0.80200
A314 0.68368 0.93550 0.43706 0.12584 0.47778 0.71380
W/B/S 7/28/0 10/35/0 13/31/1
a C(NSGA-II, HMOEA)
b C(HMOEA, NSGA-II) 27



Chapter 5

Conclusions and Future Work

5.1 Summary

This paper has presented a hybrid multi-objective evolutionary algorithm to address

MOVRPTW. The algorithm follows the framework of the evolutionary algorithm

with similarity measurement, local search method, and non-dominated sorting selec-

tion operator. Experimental evaluations were conducted on two datasets, Solomon’s

benchmark instance and 2021 Amazon Last Mile Routing Research Challenge: Data

Set, revealing superior performance compared to conventional NSGA-II. The dataset

provided by Amazon consists of real-world data, and our proposed method exhibits

promising performance, particularly in scenarios with a large number of customers.

This suggests the applicability of our algorithm to real-world settings, addressing a

range of problems.

Moreover, effectively solving VRPTW can have the following impacts on society,

e.g., improved transportation efficiency, energy savings, enhanced service quality, and

promoted economic development. Optimizing vehicle routing can reduce the distance

and travel time, leading to decreased fuel emissions. By properly arranging the vehicle

routes and time windows, it is possible to have logistics services reach customers on

time and meet their time window requirements. This will improve service quality

and customer satisfaction. Furthermore, solving VRPTW can help businesses reduce

logistic costs and strengthen supply chain coordination and management.
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5.2 Future work

This paper holds potential for expansion from two distinctive perspectives. Firstly,

the current approach initializes the population in a randomized manner and hasn’t

explored various recombination and mutation techniques. Addressing this could lead

to an intriguing avenue of research. For instance, future investigations might involve

devising heuristics tailored to each example during the population’s initial establish-

ment, potentially serving as a foundation for subsequent evolution. Exploring different

recombination and mutation operators within the evolutionary algorithm could also

yield enhanced performance.

Moreover, integrating the methodology outlined in this paper with artificial in-

telligence holds promise. Utilizing neural networks for individual optimization post

each evolutionary round could be a fruitful endeavor. However, this would introduce

challenges such as adapting neural network architectures, training protocols, and bal-

ancing computational efficiency. The resulting amalgamation could potentially bring

forth improved optimization outcomes and unveil new insights into the intersection of

evolutionary algorithms and artificial intelligence.

29



Bibliography
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