
Computer Science

Generating Pipes puzzles using

maze-generating algorithms

Meili Hegeman

Supervisors:
Hendrik Jan Hoogeboom & Walter Kosters

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 24/05/2022

www.liacs.leidenuniv.nl

Abstract

This thesis analyses methods to generate a Pipes puzzle, a logic puzzle also
known as FreeNet. A puzzle consists of a field of pipes, where all pipes
can be rotated repeatedly by 90◦. The goal is to connect all pipes to the
power source located at the centre. The fields are generated using different
maze-generating algorithms, and are considered valid if it has a unique
solution. In this thesis, we convert a field into a Boolean expression and use
a SAT solver to verify whether a field is a valid puzzle. We also compare
the performance of the different algorithms.

Contents

1 Introduction 1
1.1 Complexity . 1
1.2 Generating puzzles . 2

2 Maze-generating algorithms 4
2.1 Binary Tree . 4
2.2 Depth-first . 5
2.3 Kruskal . 6
2.4 Prim . 8
2.5 Wilson . 9

3 Verifying the puzzles 12
3.1 Boolean satisfiability problem . 12
3.2 Converting puzzles into a Boolean expression 12

3.2.1 The tiles . 13
3.2.2 The field . 14
3.2.3 The solution . 15
3.2.4 Connectivity . 15

3.3 DIMACS format . 17

4 Code 20
4.1 Functionality . 20
4.2 Implementation . 20

5 Results 21
5.1 Multiple safe states . 21
5.2 The bound for tree traversal . 23
5.3 Number of valid puzzles . 24
5.4 Tiles and texture . 24

6 Conclusion 28
6.1 Further research . 29

7 References 30

1 Introduction

Pipes is a puzzle played on a n×m grid. The field consists of various types of tiles
filled with up to three pipes in the directions north, east, south and west. Each
tile can be repeatedly rotated by 90◦. One of the tiles located at the centre of the
field also contains a power source. It does not affect the gameplay, but is merely
there to add visuals and context to the game. The puzzle is also known as FreeNet.
A field consists of the following tiles:

We call a side of a tile open if a pipe is running from the centre to that side. Two
open sides of adjacent tiles can be connected by rotating the tiles until they touch
each other. We call a configuration of a field a safe state if all tiles are connected
with their neighbours in such a way that no open side is left unconnected and no
closed side faces an open side. If a safe state does not contain cycles, it is a solution.

The puzzle can be played online [1]. A sample start configuration and its corres-
ponding solution can be found in Figure 1.

Figure 1: An example of a 7× 7 puzzle (left) and its solution (right), visualised
using software developed for this project

1.1 Complexity

We can easily see that a solution of an instance of the pipes problem can be verified
in polynomial time in field size n×m. We can do so by performing a depth-first
search, where we need to check that each path ends with a D-tile, and that all

1

tiles are visited exactly once during the search.

A more difficult problem is to determine the computational complexity of the
problem. Using a reduction from Hamilton Cycles in graphs with with degree
three on grids, one can prove that it is NP-complete [3]. This is done by creating
smaller gadgets, consisting of puzzle tiles, which represent parts of a graph. For
example, a gadget for a node is shown in Figure 2.

Figure 2: A corner-gadget used for a reduction from Hamilton Cycles in graphs
with degree three on grids

1.2 Generating puzzles

A common method to generate puzzles is by brute-force. This method involves
generating a field of random tiles and verifying whether it has a unique solution.
It can be improved by including some requirements of the puzzle during the
generation of fields, and thus create candidate fields with a higher probability of
being a valid puzzle1.

One way to improve the candidate fields is by starting with a solution. The
actual puzzle can be created by randomly rotating all the tiles to create a different
configuration. A valid solution has the shape of a tree placed on a grid, or rather,
a maze. We can use maze-generating algorithms to find solutions. For this thesis,
we will analyse the following algorithms: BinaryTree, DepthFirst, Kruskal, Prim
and Wilson. The original use of these algorithms is not necessarily to generate
mazes, but with small modifications they are easy to implement.

We call a solution unique if it is the only solution for a field. After generat-
ing a solution, we have to check that the field cannot be rotated into a different
solution. This is done using a SAT solver. A SAT solver is a tool that efficiently
calculates whether it is possible to find an assignment for variables which satisfies

1https://twitter.com/PuzzleTeamClub/status/1353454873988255746

2

a Boolean expression. As we want to analyse a large amount of puzzles, this is a
fast way to do so. We convert the field to a list of clauses which are satisfiable if
and only if it is possible to connect all open sides in another way without creating
cycles, where at least one tile is in a different orientation than the starting solution.
If the expression is satisfiable, the candidate field has multiple solutions and is
considered an invalid puzzle.

3

2 Maze-generating algorithms

To generate puzzles, we will be looking at maze-generating algorithms. A valid
solution of the puzzle is the configuration is a safe state, which is a field in which
all tiles are connected through pipes, without any cycles. This means that a valid
solution has the structure of a spanning tree placed on a grid, also known as a
maze. In this section, we will discuss various maze generating algorithms used to
create puzzle candidates.

The algorithms used are Binary Tree, Depth-first, Kruskal, Prim and Wilson.
While Binary Tree is not commonly used, the other algorithms are usually applied
to graphs. Kruskal and Prim compute a minimum spanning tree, where we choose
a subset of edges with the minimum possible total weight. Wilson determines a
uniform spanning tree, where each edge has the same probability of being chosen.

We view the centres of the tiles as nodes, and connected pipes between them
as edges. All algorithms are slightly modified to prevent tiles with four open sides.
These modifications are not shown in the pseudocode to keep it clear, but described
in each section.

Let T be the set of tiles in the field, and let D = {n, e, s, w} be the set of
directions. Let un, ue, us, uw denote the northern, eastern, southern and western
neighbour of a tile t ∈ T . Let r(p, q) be a random number generator, generating
numbers between and including p and q, and let R(t) be a function that randomly
selects an unvisited tile.

2.1 Binary Tree

The Binary Tree algorithm (Algorithm 1) is a very simple algorithm that generates
a maze with the structure of a binary tree. For each tile, the algorithm randomly
creates a passage north or west. If a tile is positioned at the top or left edge of the
field, it takes the only possible passage [4].

Each node can have at most two children, which makes it impossible to create a
tile with four open sides. No additional modifications are needed.

The main advantage of this algorithm is its simplicity. We do not need to keep any
additional state or data during the execution, apart from saving the field. All tiles
are independent from each other, and can be treated similarly. However, we do see
that all generated mazes have a specific texture. As this algorithm only creates
passages towards the north and west, half of the orientations of tiles will never

4

Algorithm 1 Binary Tree

1: for t ∈ T do
2: if un does not exist then B edge tiles
3: connect(t, uw)
4: else if uw does not exist then
5: connect(t, un)
6: else if r(0, 1) = 0 then B remaining tiles
7: connect(t, un)
8: else
9: connect(t, ue)

10: end if
11: end for

occur in the maze. The top-left edge piece is exceptional as it has no northern or
western neighbours. This C-tile will occur exactly once in the orientation where
the eastern and southern side are open. An example of a maze is shown in Figure
3.

Figure 3: A maze generated by the Binary Tree algorithm

2.2 Depth-first

The Depth-first algorithm (Algorithm 2) is commonly used for tree traversal. It
starts at the root, and continues along a path as long as possible. Unvisited neigh-
bours will be stored on a stack. Upon reaching a leaf, the algorithm backtracks by
popping a node from the stack [7, Chapter 22].

Instead of traversing a tree, we will use the algorithm to build one in our field.
We start by adding the centre to the stack. We visit the element at the top and
remove it from the stack. Then we connect all unvisited neighbours and add them
to the stack in a random order. This prevents a bias towards a certain direction.
We continue with a new tile at the top of the stack. If a tile already has three
open sides, we will not create a fourth path. The algorithm will visit the tile from
another direction.

5

Algorithm 2 Depth-first

1: stack S
2: tile t = tmiddle

3: push t to S
4: while S is not empty do
5: t = S.top
6: S.pop
7: visit t
8: stack temp
9: for d ∈ D and ud unvisited do B connect neighbours

10: connect(t,ud)
11: push ud to S
12: end for
13: end while

Although there is no major bias caused by the algorithm, we do find that it tends
to give long paths, especially along the boundary. The algorithm wants to traverse
the field as far as possible. For boundary tiles, there are fewer directions possible,
and thus there is a higher chance of only being able to continue along the boundary.
The centre tile is always a T-tile. An example of a maze is shown in Figure 4.

Figure 4: A maze generated by the Depth-first algorithm

2.3 Kruskal

Kruskal’s algorithm (Algorithm 3) computes a minimum spanning tree in a weighted
graph. It is a greedy algorithm, which means that it will only consider the current
state while choosing the best option. It starts by sorting all edges in non-decreasing
order, and adds them to the constructed forest in this order provided the edge
does not create a cycle. The algorithm uses disjoint sets to keep track of the
different components, implemented as a Union-Find data structure. We use the
operation Find to return the component index of a node and Union to join two
components. At the beginning, a unique component index is assigned to each node.

6

After connecting two nodes, the two components are joined, and all connected
tiles get the same index. If two tiles already belong to the same component, it
means that the algorithm is about to create a cycle, and the edge is discarded [7,
Chapter 23].

In our field, we view the tiles as nodes and the connections between them as
edges. If we assign each edge the same weight, we build a uniform spanning tree
instead. This means that there is no need to sort the edges. To prevent tiles with
four open sides, we also discard an edge if one of the tiles already has three open
sides.

Algorithm 3 Kruskal (with Union-Find)

1: vector V with pairs (t, u)
2: int array set
3: int k = 0
4: for t ∈ T do
5: set[t] = k B unique set for each tile
6: k = k + 1
7: if ue exists then B push all possible connections
8: push (t,ue) to V
9: end if

10: if us exists then
11: push (t,us) to V
12: end if
13: end for
14: while V is not empty do B randomly connect two tiles
15: x = r(1, size of V)
16: t = V [x]1, u = V [x]2
17: if find(t) is not find(u) then B check for cycles
18: connect(t, u)
19: union(find(t), find(u))
20: end if
21: erase V [x] from V
22: end while

It is necessary to store all possible edges in the field, which requires more memory
than most other algorithms for larger puzzles. Fortunately, the complexity is still
only O(n ·m), which does not make it an issue. An example of a maze is shown in
Figure 5.

7

Figure 5: A maze generated by Kruskal’s algorithm

2.4 Prim

Prim’s algorithm (Algorithm 4) is similar to Kruskal’s algorithm. It is another
greedy algorithm that computes a minimum spanning tree in a weighted graph.
It starts at one node, which will be the root, and stores all reachable edges to
unvisited neighbours in a vector. It then continues to add the shortest edge each
step [7, Chapter 23].

Once again, we view the tiles as nodes and connections as edges. We give all
edges the same weight to generate a random spanning tree and start at the centre
of the field.

Algorithm 4 Prim

1: vector V with pairs (t, u)
2: tile t = tmiddle

3: for d ∈ D do B add centre tile
4: push (t, ud) to V
5: end for
6: while V is not empty do
7: visit t
8: for d ∈ D do B add neighbours to vector
9: if ud unvisited then

10: push (t, ud) to V
11: end if
12: end for
13: x = r(1, size of V)
14: if V [x]2 unvisited then B connect random reachable tile
15: connect(V [x]1,V [x]2)
16: t = V [x]2
17: end if B else continue with the same tile
18: erase V [x] from V
19: end while

8

If a tile already has three open sides, we discard the edge and mark the tile as
unvisited. Unfortunately, it will not necessarily be reached again from another
neighbour. To fix this, we traverse the field afterwards and connect all unvisited
tiles to a random neighbour with fewer than three open sides. This is possible if at
least one neighbour is not a T-tile. We notice that if all neighbours are T-tiles,
there would be a cycle around the unvisited tile, as illustrated in Figure 6.

Figure 6: All tiles can be connected with at most three open sides

However, the algorithm creates a tree, which means that no cycles are present. Thus,
it follows that we will always be able to reach the tile from at least one side. In this
example, the algorithm creates a path between the unvisited tile and its southern
neighbour. Even in the unlikely event that a tile is surrounded by unvisited tiles,
the structure stays the same, and thus, it will still be possible to connect all of
them to the tree without creating cycles. An example of a maze is shown in Figure 7.

Figure 7: A maze generated by Prim’s algorithm

2.5 Wilson

Wilson’s algorithm (Algorithm 5) is an algorithm that computes a random spanning
tree. It selects a random node to be the root. Next, it chooses an unvisited node
and performs a random walk until a visited node is encountered. All nodes along
the path will be visited and added to the tree [4].

A random walk describes a path that consists of a succession of random steps. In
this case, the steps are directions across the field. It is allowed to enter the same
tile multiple times. However, the final path has a constraint, as we do not want
any cycles. To ensure this, we only save the most recent direction used to exit a

9

tile. Figure 8 illustrates how a random walk is performed and converted to a path
in the maze.

(a) Add a random
point to the maze and
select a random start-
ing point

(b) Start the random
walk

(c) Overwrite most
recent direction and
continue

(d) Add all tiles along
the path to the maze.
All unused directions
are discarded

Figure 8: A random walk converted into a path in the maze

After adding the path to the maze, a new random walk is performed. This time,
there are more points where the algorithm can end the walk, as new tiles were just
added to the maze. We repeat this process until all tiles are included in the maze.

Algorithm 5 Wilson

1: tile t = R(t) B select a random tile
2: visit t
3: while t unvisited exists do
4: tile tstart = R(t)
5: t = tstart

6: int array dir
7: while t unvisited do B perform a random walk over the field
8: r = r(0, 3)
9: dir[t] = r B remember last direction

10: t = tr
11: end while
12: t = tstart

13: while t unvisited do B connect tiles from walk
14: connect(t, tdir[t])
15: visit t
16: t = tdir[t]

17: end while
18: end while

If a tile already has three connections, we prevent the algorithm from entering it,
to ensure that no tiles with four open sides will occur. An example of a maze is

10

shown in Figure 9.

Figure 9: A maze generated by Wilson’s algorithm

11

3 Verifying the puzzles

Recall that a puzzle is valid if there exists a unique solution. We convert our
generated field to Boolean expressions and use a SAT solver to check for additional
solutions.

3.1 Boolean satisfiability problem

A Boolean expression consists of variables and the operators AND (∧), OR (∨)
and NOT (¬). The Boolean satisfiability problem (SAT) is the problem of finding
whether there exists an assignment for the variables which satisfies the expression.
A SAT solver is a tool to determine whether the expression can be satisfied, and
gives a possible assignment for the variables. For our experiments, we have used
the solver Lingeling2.

Lingeling requires the input to be in Conjunctive Normal Form (CNF). A Boolean
expression is in CNF if it is a conjunction (∧) of clauses consisting of disjunctions
(∨). An example would be (a ∨ b) ∧ (b ∨ ¬c ∨ d) ∧ e.

3.2 Converting puzzles into a Boolean expression

Let T be the set of tiles in a puzzle and let D = {n, e, s, w} be the set of directions.
For each tile t, let tn, te, ts and tw be Boolean variables that denote the northern,
eastern, southern and western directions respectively, which are true if and only
if that side is open. Furthermore, we define td′ as the opposite side and td+ as the
next side in a clockwise orientation of a direction d ∈ D. We can view the field
as a set of variables, where each direction has a unique number. An example is
shown in Figure 10.

Figure 10: Labelling the directions of the tiles

For the actual puzzle, we add an additional boundary of empty tiles around it.
We call this set of tiles Tboundary. This allows us to treat each tile in the same way.
For a 2× 2 board, we would consider the field from Figure 11. We can calculate
the value of a tile’s northern direction using the formula 4((m + 2)i + j), where
i, j start from 1 and represent the row and column of the field without boundary

2http://fmv.jku.at/lingeling/

12

respectively, and m the width of the puzzle. We can add a value between 0 and 3
depending on which direction we are looking for.

Figure 11: A field for a 2× 2 puzzle

Given a maze, we want to generate a Boolean expression that is satisfiable if and
only if the puzzle has a second solution. The formula will consist of the following
parts:

• the tiles

• the field

• the solution

• a check for connectivity

3.2.1 The tiles

As we start with a candidate puzzle, we know which type of tile can be found at
each position. We look at each tile separately, and add a clause to determine the
different possible orientations of a tile. Let TD, TS, TC and TT denote the sets of
D-tiles, S-tiles, C-tiles and T-tiles respectively for the given puzzle.

We construct the XOR(x, y) operator as (x∨ y)∧ (¬x∨¬y) and the EQUAL(x, y)
operator as (x ∨ ¬y) ∧ (¬x ∨ y), both of which are in CNF. These operators can
be used in the expressions for the tiles.

D-tile The dead-end tile has one open side. We can say that for each pair of sides
at least one of them must be closed, which means that no two sides can be open.
It also holds that at least one side must be open. Combining these requirements
makes sure that we have exactly one open side.∧

t∈TD, p,q∈D | p 6=q

(¬tp ∨ ¬tq) ∧
∨
p∈D

tp

13

S-tile The straight tile has two open sides opposite of each other. This is the same
as saying that for each pair of adjacent sides, exactly one must be open.∧

t∈TS , p∈D

XOR(tp, tp+)

C-tile The corner tile has two open sides adjacent to each other. We can simply
say that exactly one of each pair of the opposite sides should be open.∧

t∈TC , p∈{n,e}

XOR(tp, tp′)

T-tile The T-tile has one closed side. This is the opposite of the D-tile, which has
one open side. We can construct the expression in the same way, and replace all
open sides with closed sides and the other way around.∧

t∈TT , p,q∈D | p 6=q

(tp ∨ tq) ∧
∨
p∈D

¬tp

3.2.2 The field

The next step is to add information about the field. This means that we set all
variables on the edge of the field to false, as they do not actually exist in the
puzzle, but are merely added so we can treat each tile equally. The SAT solver
Lingeling does not allow a variable named x0, but since it is always positioned at
a boundary tile, we can skip it in the actual implementation. We get∧

t∈Tboundary, d∈D

¬td

Now we need to treat adjacent variables as the same, since open sides need to
touch each other. It is sufficient to say that all eastern and southern neighbours of
a tile are equal. Per symmetry, this also gives all northern and western neighbours.
Let E be the eastern neighbour of t and S be the southern neighbour of t.∧

t∈T

EQUAL(te, Ew) ∧ EQUAL(ts ∧ Sn)

We can easily calculate which variables should be the same. The eastern neighbour
of variable k would be variable k + 6, as we add another another tile and a half.
The southern neighbour depends on the width m of the field, and has index
k + 4(m + 2)− 2.

14

3.2.3 The solution

We started with a solution, and want to verify whether it is the only one. When
looking for a possible second solution, we can say that at least one of the sides
that is currently open should be closed.∨

t∈T, d∈D | t open at d in field

¬td

3.2.4 Connectivity

So far, we have a formula which finds a safe state. The next step is to verify that
all tiles are connected without cycles. Recall that a solution has the structure of
a tree placed on a grid, which means that the number of connections is one less
than the number of tiles. We start from the same field, and thus, the number of
connections between tiles is the same for any second solution. Thus, if all tiles are
connected, the number of connections is still one less than the number of tiles, and
we have found a new tree. We conclude that it is sufficient to check whether all
tiles are reachable in the second solution.

We used two different methods to check for connectivity. The first method is
to first find an assignment to the formula so far in order to find a safe state.
Afterwards, we can verify the assignment by checking for disconnectivity, which
corresponds with a simpler formula than connectivity. If we cannot find an assign-
ment, we know that the puzzle must be connected. This method relies on the idea
that second solutions are very rare. However, larger puzzles tend to have many
different safe states, which are often not all connected. This is why we used a
different formula for most experiments, more suited for a SAT solver. The second
method is to perform a depth-first tree traversal [5]. We will discuss both in this
section.

Disconnectivity For the first method, we need the second assignment and the
dimensions of the puzzle to determine whether it is a connected second solution.
Each tile will get its own variable. We start by assigning true to the first tile t0.
Then we say that for each pair of connected tiles, they must be assigned the same
Boolean value. We do this using the EQUAL operator. The field is restricted to a
safe state by the clauses above, and thus it holds that all open sides are connected
to open sides. Lastly, we check that at least one tile can be assigned with false,
meaning that it is not connected to the first tile. Note that we are now considering
tiles only, and disregarding in which direction the tiles are connected. Once again,
we only need to look at the eastern and southern neighbours to consider the whole
field. We use the same notation as before and let E be the eastern neighbour of t

15

and S be the southern neighbour of t.

t0

∧
∧

t∈T | te is open

EQUAL(te, Ew)
∧

t∈T | ts is open

EQUAL(ts, Sn)

∧
∨

t∈T | t 6=t0

¬t

We can give each tile a unique integer K from 1 up to and including n ·m, excluding
the boundary. This would be equal to (i− 1)m+ j, but we do not know the values
of i and j, because the input consists of an assignment of variables. Let k be a
variable which denotes a variable of the field (e.g. a direction of one of the tiles).
We use following formula to calculate the value of K without needing i and j:

K = (k/4/(m + 2)− 1) ·m + k/4 mod (m + 2)

Depth-first tree traversal In the second method, we include connectivity in
the formula itself by performing a depth-first tree traversal. Note that we cannot
copy the approach of [5] directly, as it is applied to a given graph. In our field, the
graph depends on the orientations of the tiles as chosen by the variable assignment,
which makes the edge relation between the neighbouring tiles conditional. We first
choose a starting tile, and check whether each tile of the field is reachable in a
certain amount of steps, specified by a bound b. Let vK,` indicate whether tile K is
reachable in at most ` steps. We choose a centre tile tc as starting tile and say that
it is reachable in 0 steps. All other tiles need at least one step, or are unreachable.

vtc,0 ∧
∧

t∈T |t6=tc

¬vt,0

We construct an implication x⇒ y as (¬x∨ y) in CNF. A tile is reachable in `+ 1
steps if and only if it is reachable in ` steps or if one of the neighbours is connected
and reachable in ` steps. We already have variables td and vK,` to indicate this
respectively. It is not possible to add this conjunction in CNF, as this would be of
the form ¬a ∨ b ∨ (c ∧ d). However, we can introduce a new variable ztd,` which is
true if and only if side td contains a pipe and that neighbour tile is reachable in `
steps. The following expressions ensures that vt,`+1 is true if and only if the tile is
reachable in ` + 1 steps:

∧
t∈T

b−1∧
l=1

(
¬vt,l+1 ∨ vt,l

∨
d∈D

ztd,l
)

Lastly, we need to add implications to ensure that ztd,l is true only if neighbour td
is connected and reachable in l steps. Let u be the neighbour connected to variable

16

td. ∧
td∈T | d∈D

b−1∧
l=1

(ztd,l ⇒ td) ∧ (ztd,l ⇒ vu,l−1)

Combined, these additional clauses are satisfiable if and only if the new assignment
creates a connected solution.

For the SAT solver we need to create a new set of variables for vK,`. We continue
indexing from the highest variable previously used. For readability, we will discard
that term in the next explanation. K is the same variable as defined previously,
which gives each tile a unique number. We assign the first b variables to the first
tile, the next b to the second, etc. We calculate the number of the variable using
the formula

vK,` = (K − 1)b + `

The variables ztd,l will be numbered after all vK,l. The value for the north neighbour
can be calculated using

ztn,l = 4b((i− 1)m + j − 1)

as each tile has four sides, and we need a variable for each possible bound for all
tiles. We add 0 to 3 depending on the direction.

We can find the value of vu,l similar to how we found the indices of the neighbours
in the first method. Instead of adding 1 or m for horizonal and vertical neighbours
respectively, we add or subtract b and b ·m.

3.3 DIMACS format

Lingeling requires the input to be in DIMACS format. This is a specified format
to represent the Boolean expression [2]. There are three different types of lines.

Comment line This is a line to provide additional information that will be
ignored by the program. A lowercase c denotes the beginning of a comment line.

c This is a comment line

Problem line This is a line which defines the problem. Each input has exactly
one problem line, which must appear before any clauses. A lowercase p denotes
the beginning of a problem line.

p FORMAT VARIABLES CLAUSES

17

The FORMAT field refers to the expected format, which in this case will be cnf.
The VARIABLES field describes the number of variables used and the CLAUSES field
contains the number of clause lines that the input consists of.

Clauses These are the lines which describe the Boolean expression we want
to solve. Each line contains a single clause. The variables are represented as num-
bers, so x1 will appear as 1. The negation ¬x1 is denoted as −1. Each line will
contain a disjunction, where the variables are separated by spaces, and the end of
the line is marked with a 0. Different lines are interpreted as conjunctions.

For example, we can take the formula (x1∨x2)∧¬x2∧ (x1∨x3∨¬x4). This would
give the following input in DIMACS form:

c A small example

p cnf 4 3

1 2 0

-2 0

1 3 -4 0

The puzzle from Figure 11 can be described using the following lines:

p cnf 139 174 -53 0 -67 66 89 90 0

c The tiles -54 0 -89 70 0

-1 0 -55 0 -89 21 0

-2 0 -56 0 -90 74 0

-3 0 -57 0 -90 22 0

-4 0 -58 0 67 0

-5 0 -59 0 68 0

-6 0 -60 0 -69 68 98 99 0

-7 0 -61 0 -98 76 0

-8 0 -62 0 -98 26 0

-9 0 -63 0 -99 64 0

-10 0 c The field -99 27 0

-11 0 1 -7 0 -70 69 102 103 0

-12 0 -1 7 0 -102 77 0

-13 0 2 -16 0 -102 26 0

-14 0 -2 16 0 -103 65 0

-15 0 5 -11 0 -103 27 0

-16 0 -5 11 0 -71 70 106 107 0

-17 0 6 -20 0 -106 78 0

-18 0 -6 20 0 -106 26 0

-19 0 9 -15 0 -107 66 0

18

20 22 0 -9 15 0 -107 27 0

-20 -22 0 10 -24 0 71 0

21 23 0 -10 24 0 -72 0

-21 -23 0 17 -23 0 -73 72 112 113 0

-24 -25 0 -17 23 0 -112 64 0

-24 -26 0 18 -32 0 -112 36 0

-24 -27 0 -18 32 0 -113 76 0

-25 -26 0 21 -27 0 -113 37 0

-25 -27 0 -21 27 0 -74 73 116 117 0

-26 -27 0 22 -36 0 -116 65 0

24 25 26 27 0 -22 36 0 -116 36 0

-28 0 25 -31 0 -117 77 0

-29 0 -25 31 0 -117 37 0

-30 0 26 -40 0 -75 74 120 121 0

-31 0 -26 40 0 -120 66 0

-32 0 33 -39 0 -120 36 0

-33 0 -33 39 0 -121 78 0

-34 0 34 -48 0 -121 37 0

-35 0 -34 48 0 75 0

36 38 0 37 -43 0 76 0

-36 -38 0 -37 43 0 -77 76 128 131 0

37 39 0 38 -52 0 -128 68 0

-37 -39 0 -38 52 0 -128 40 0

-40 -41 0 41 -47 0 -131 72 0

-40 -42 0 -41 47 0 -131 43 0

-40 -43 0 42 -56 0 -78 77 132 135 0

-41 -42 0 -42 56 0 -132 69 0

-41 -43 0 c Connectivy -132 40 0

-42 -43 0 64 0 -135 73 0

40 41 42 43 0 -65 64 81 82 0 -135 43 0

-44 0 -81 68 0 -79 78 136 139 0

-45 0 -81 21 0 -136 70 0

-46 0 -82 72 0 -136 40 0

-47 0 -82 22 0 -139 74 0

-48 0 -66 65 85 86 0 -139 43 0

-49 0 -85 69 0 79 0

-50 0 -85 21 0 c Current solution

-51 0 -86 73 0 -20 -21 -24 -36 -37 -40 0

-52 0 -86 22 0

19

4 Code

We wrote a program in C++ to carry out the experiments. It was used to generate
mazes and analyse these candidates as puzzles.

The field is implemented as a two-dimensional integer array. Each type of tile has
its own number. A simple data structure consisting of four Booleans is associated
with each tile number, to indicate whether a side is open, and thus represents the
type of tile.

4.1 Functionality

The program is mainly used to generate mazes using different algorithms, and
compute its corresponding SAT formula to check for a second solution. It is also
possible to read an input file containing tile numbers instead.

The second functionality is to read SAT assignments for a certain field. Based on
the dimensions, which are derived from the number of variables, it is possible to
print the puzzle created by the assignment on a field, or write a new SAT formula
to check for connectivity.

There is also a visual implementation. This allows the user to play the game
using the mouse. Clicking a tile will rotate it, and the right mouse button can be
used to lock a tile, preventing it from rotating.

4.2 Implementation

The largest part of the code runs in the terminal, and functions to carry out
experiments. It is not intended to be user-friendly or playable, but to aid in the
experiments. It has the functionality described in the previous section, such as
generating algorithms and writing SAT formulas.

The experiments themselves were carried out using simple bash scripts. These used
the SAT solver and counted the number of valid puzzles. In case connectivity is
checked separately, it keeps track of the different number of configurations found
before the puzzle is marked as valid or invalid.

The other part of the program is the visual game, which is written using glut.
This allows us to create a new window and to draw a field with tiles. The library
includes functions to rotate parts, which is useful for the tiles. The flood of water
flowing from the water source is visualised. Figure 1 shows the result.

20

5 Results

We have used our C++ program to generate mazes and a SAT solver to check
whether it would be a valid puzzle with a unique solution. We will analyse square
puzzles with dimensions 5, 10, 15 and 20. Let N denote the sample size for an
experiment.

5.1 Multiple safe states

At first, we thought that second solutions were rare, and expected puzzles to have
at most a few possible safe states. Thus, we only looked at the orientations of the
tiles to find possible second solutions and carried out a separate check to see if it
was connected. We quickly found this expectation to be incorrect, and encountered
issues for larger puzzles. Table 1 shows the number of safe states tested before a
conclusion was reached, meaning that a second valid solution was found, or that
there were no valid safe states left. If the number of safe states was larger than or
equal to 200, we used the value 200 to calculate a lower bound for the average.
These values are increasing rapidly for larger mazes, with the exception of the
Binary Tree algorithm. This makes it an illogical choice to use this method, and
thus we chose to use a depth-first tree traversal to verify whether all tiles are
connected for the other algorithms.

Binary Tree Depth-first Kruskal Prim Wilson

5

avg 1 1,56 1,09 1,5 1,12

max 1 4 3 6 3

valid 100 67 100 95 95

≥ 200 0 0 0 0 0

10

avg 1 11,39 2,81 9,37 2,19

max 1 ≥ 200 10 100 15

valid 100 27 66 41 65

≥ 200 0 1 0 0 0

15

avg 1 79,79 13,44 62,74 9,61

max 1 ≥ 200 99 ≥ 200 ≥ 200

valid 100 3 35 15 36

≥ 200 0 26 2 17 1

20

avg 1 159,46 54,34 137,12 47,95

max 1 ≥ 200 ≥ 200 ≥ 200 ≥ 200

valid 100 0 7 3 11

≥ 200 0 75 16 54 11

Table 1: Number of different safe states to satisfy the tiles (N = 100)

21

We found that these additional ways to connect the pipes are mainly caused by T-
tiles and D-tiles. For most tiles, two sides are already determined by the orientation
of the neighbours. For T-tiles, this leaves two other orientations. Combined with
D-tiles, which are just as flexible, this creates many possibilities. Most of them will
not connect all tiles and instead create cycles, which makes them configurations.
Figure 12 shows an example of a small puzzle with five possible ways to rotate the
pipes.

Figure 12: A 5× 5 puzzle with five different safe states

We also notice that second solutions are usually caused locally by a small group
of tiles. In some cases, only four tiles are needed. Because we see no large global
changes, the structure of the second solution is very similar to the original solution.
Figure 13 shows some examples.

(a) Depth-first (b) Prim

(c) Wilson

Figure 13: A second solution of different mazes obtained by small local changes

22

5.2 The bound for tree traversal

After finding out that fields can have hundreds of solutions, we decided to check
for connectivity using a tree traversal instead. This formula asks for a bound b,
which is the maximum distance from the starting tile to any other tile. A safe
bound would be n ·m, as this covers the whole field. Unfortunately, this creates
an enourmous number of variables and clauses, especially for larger fields, and
takes much time to compute, which is not practical for experiments with many
candidate fields. Table 2 shows the number of variables, clauses and computation
times with a bound of n2.

Binary Tree Depth-first Kruskal Prim Wilson

5

variables 3,316 3,316 3,316 3,316 3,316

clauses 4,901 4,902 4,891 4,895 4,892

time 0.02 s 0.01 s < 0.01s 0.01 s < 0.01 s

10

variables 50,571 50,571 50,571 50,571 50,571

clauses 82,728 82,726 82,692 82,727 82,692

time 0.02 s 0.11 s 0.08 s 0.16 s 0.28 s

15

variables 254,276 254,276 254,276 254,276 254,276

clauses 429,991 429,995 429,915 430,000 429,921

time 0.92 s 1.49 s 1.48 s 1.7 s 1.75 s

20

variables 801,931 801,931 801,931 801,931 801,931

clauses 1,378,195 1,378,203 1,378,068 1,378,220 1,378,064

time 3.4 s 5.32 s 4.36 s 4.82 s 4.61 s

Table 2: Average number variables, clauses and time per puzzle with a bound of
b = n2 (N = 100)

Thus, it was necessary to find a feasible bound smaller than n2. We started by
generating all our mazes and calculating what the average and maximum bound
was for each size and algorithm. The bounds are listed in Table 3.

In most cases, these are a little over 1
2
n2. Table 4 shows the variables, clauses and

computation times with this bound. We do not know beforehand what a different
solution will look like, which means that the bound is not necessarily the same.
However, we expect it to have a similar structure, as explained in the previous
section. For each puzzle, we add 2, 5, 7 and 10 to the maximum of puzzles of
size 5, 10, 15 and 20 respectively and use that as bound. The exception is Prim’s
algorithm. We add 5 instead of 2 to puzzles of size 5, to have some additional space
for unexpected outcomes. For the other puzzles, the maximum is already so close
to the theoretical maximum of n2 = 25 that we expect that it is safe to add only

23

Depth-first Kruskal Prim Wilson

5

avg 15.64 9.51 5.60 9.91

max 18 20 11 21

bound 20 22 16 23

10

avg 47.44 24.20 11.71 26.42

max 62 54 21 57

bound 67 59 26 62

15

avg 93.49 40.36 17.13 44.41

max 123 87 30 100

bound 130 94 37 107

20

avg 152.55 57.60 22.94 64.39

max 203 126 35 137

bound 213 136 45 147

Table 3: Maximum, average and observed bounds of generated mazes (N = 5000)

2. Note that we cannot guarantee that all possible second solutions fall within the
chosen bound, but we believe this chance to be small enough to be insignificant.

5.3 Number of valid puzzles

Table 5 lists the number of valid puzzles generated by the algorithms, using the
bounds from the previous section. The Binary Tree algorithm is tested using the
first method for connectivity.

We see that Binary Tree is the algorithm that generates the most valid puzzles.
More interesting, it is the only algorithm which generates valid puzzles only. We
notice that the performance of the other algorithms decreases heavily as the size of
the puzzle increases. This makes sense when we recall that a second solution can
originate from few as four tiles. The algorithms of Kruskal and Wilson generate
the highest number of valid puzzles after Binary Tree.

5.4 Tiles and texture

Table 6 shows the average number of tiles for each type used in a field.

We notice that the BinaryTree algorithm used a large amount of S-tiles, while
for all other algorithms, this tile is used least. Furthermore, for each maze, the
number of D-tiles is exactly two more than the number of T-tiles. This is caused
by the tree structure.

24

Binary Tree Depth-first Kruskal Prim Wilson

5

variables 1,691 1,691 1,691 1,691 1,691

clauses 2,496 2,497 2,486 2,490 2,487

time 0.06 s 0.1 s 0.09 s 0.1 s 0.09 s

10

variables 25,571 25,571 25,571 25,571 25,571

clauses 41,728 41,726 41,692 41,727 41,692

time 0.31 s 0.3 s 0.24 s 0.21 s 0.16 s

15

variables 25,571 25,571 25,571 25,571 25,571

clauses 214,726 214,730 214,650 214,735 214,656

time 0.32 s 0.69 s 0.63 s 0.69 s 0.57 s

20

variables 401,931 401,931 401,931 401,931 401,931

clauses 690,195 690,203 690,068 690,220 690,064

time 1.13 s 2.05 s 1.97 s 2.27 s 2.05 s

Table 4: Average variables, clauses and time per puzzle with a bound of 1
2
n2

(N = 100)

Binary Tree Depth-first Kruskal Prim Wilson

5 5000 3067 4480 3490 4613

10 5000 393 1701 524 2054

15 5000 4 247 34 426

20 5000 0 13 1 48

Table 5: Valid puzzles (N = 5000)

We know that the Binary Tree algorithm has a diagonal bias and creates mazes
with a very specific texture. Nearly all tiles occur in only two different orientations,
opposed to the expected four, and we have paths in only two directions.

The algorithms Depth-first and Prim work from the centre. As a result, the power
source is nearly always a T-tile. During the execution of the algorithms, a maze is
slowly build. Mazes generated by the Depth-first algorithm tend to have long paths,
while Prim’s algorithms creates the shortest, as seen in the bounds for tree traversal.

Thus, Kruskal and Wilson seem to be making the most random textures. Contrary
to Depth-first and Prim, these algorithms build small parts of the maze until it is
complete. It makes sure that adding an edge will not violate the properties of a
spanning tree, but during the execution of the algorithm, added edges do not need
to create a valid tree.

25

Binary Tree Depth-first Kruskal Prim Wilson

5

D-tile 7.25 9.08 7.8 9.76 7.56

S-tile 6.8 4.86 4.24 2.64 4.58

C-tile 5.7 3.97 7.16 4.84 7.29

T-tile 5.25 7.08 5.8 7.76 5.56

10

D-tile 25.98 39.73 28.76 35.56 27.93

S-tile 28.07 11.04 17.21 15.59 18.5

C-tile 21.97 11.51 27.27 15.3 27.63

T-tile 23.98 37.73 26.76 33.56 25.93

15

D-tile 57.28 91.43 63.88 78.87 62.17

S-tile 61.64 20.18 37.96 36.92 40.5

C-tile 50.81 23.97 61.28 32.33 62.17

T-tile 55.28 89.43 61.88 76.87 60.17

20

D-tile 101.04 164.37 113.49 139.78 110.17

S-tile 108.07 31.73 66.56 66.36 71.12

C-tile 91.84 41.52 108.47 56.08 110.55

T-tile 99.04 162.37 111.49 137.78 108.17

Table 6: Average tile distribution (N = 5000)

Table 7 contains the average number of tiles of each type found in original puzzles
on the website [1]. We did not find a way to efficiently retrieve data about the
fields, so for each size, five puzzles have been counted manually.

D-tile S-tile C-tile T-tile

5 8.2 2.2 8.4 6.2

10 33.2 16.4 19.2 31.2

15 69.4 37.6 50.6 67.4

20 119.4 65.4 97.8 117.4

Table 7: Average tile distribution from original puzzles (N = 5)

When we compare those averages to the tile distributions for the mazes generated
for this thesis, we find that the Binary Tree algorithm has a high number of S-tiles,
and less D-tiles and T-tiles compared to original puzzles. Both Kruskal’s and
Wilson’s algorithm generate puzzles with a high number of C-tiles. The Depth-first
and Prim’s algorithm creates mazes with more D-tiles and T-tiles, at the expense
of C-tiles.

26

Similar to the texture bias, we find that we have Kruskal and Wilson, who share
the same properties, and Depth-first and Prim, who share other properties. The
Binary Tree algorithm does not share major similarities with the other algorithms.

27

6 Conclusion

In this thesis, we analysed five different maze-generating algorithms to create Pipes
puzzles: Binary Tree, Depth-first, Kruskal, Prim and Wilson. All candidate fields
were verified using a SAT solver to check that no other solutions exist. In general,
we found Binary Tree deviates the most from the other algorithms. Furthermore,
Depth-first and Prim create similar results, and so do Kruskal and Wilson.

Valid puzzles
The Binary Tree algorithm is the only algorithm that generates valid puzzles only.
The performance of all other algorithms decreases heavily as the size of the puzzle
increases. At a size of 20 or larger, our current method to generate puzzles is not
suitable anymore, and only few valid puzzles are generated. The algorithms of
Kruskal and Wilson generate the highest number of valid puzzles after Binary Tree.

Texture bias
The Binary Tree algorithm generated puzzles with a very specific structure. Half
the orientations of tiles never occur in the maze, with the exception of the top-left
piece. The algorithms Depth-first and Prim both work from the centre. Depth-first
generates mazes with long paths. Kruskal and Wilson seem to make the most
random textures, where no clear bias can be found.

Tile distribution
We compared the tile distribution of our generated puzzles to original puzzles. The
binary tree algorithm has a high number of S-tiles, and less D-tiles and T-tiles
than original puzzles. The algorithms of Kruskal and Wilson generate puzzles with
a high number of C-tiles. Depth-first and Prim’s algorithm create mazes with more
D-tiles and T-tiles, at the expense of C-tiles.

Difficulty
A basic strategy for solving this puzzle is to start from the boundary and work
towards the centre. For example, an S-tile at the boundary only has one correct
orientation. In puzzles with multiple safe states, it can be necessary to guess the
orientations of certain tiles in order to finish the puzzle. We expect these puzzles
to be more difficult. Binary Tree generates puzzles only a single safe state, and
is expected to make the easiest puzzles, whereas Depth-first and Prim generate
puzzles with most safe states, which would make them the most difficult to solve.

28

6.1 Further research

Unfortunately, the number of valid puzzles generated for larger puzzles is extremely
low. The research could be expanded in order to find a more effective method to
generate puzzles.

The most logical next step would be to improve the maze-generating algorithms.
We notice that the performance is really bad for larger puzzles. It will be interesting
to either try new algorithms or alter the algorithms to prevent second solutions. It
would be helpful if we can find a pattern in the puzzles with multiple solutions, so
we can avoid them during the generation.

During the experiments, we were limited by the computation times. We could
look for a better SAT solver, or improve the satisfiability formula in order to test
even more puzzles or larger dimensions. One way to improve the formula is by
reducing the number of variables using a technique called bit-blasting. Rather than
having a variable for each possible distance to the starting tile, we can encode the
binary representation of that distance instead, and include the binary comparison
as clauses into the formula [6]. In our current formula for connectivity, we did not
use the fact that a maze is a graph embedded on a grid. Using this structural
restriction, it might be possible to find a simpler formula. An idea is to traverse
the graph and give each edge a number corresponding with the direction. This
way, it might be possible to find cycles more easily.

Lastly, it is possible to place the puzzles in different difficulty classes. This can for
instance be done by counting how many times all tiles need to be rotated in order
to solve the puzzle using different solving algorithms.

29

7 References

[1] Pipes - online puzzle game. URL: https://www.puzzle-pipes.com.

[2] Satisfiability suggested format.

[3] Marzio De Biasi. The complexity of the puzzle game net: ro-
tating wires can drive you crazy. December 2012. URL:
https://www.nearly42.org/cstheory/the-complexity-of-the-puzzle

-game-net-rotating-wires-can-drive-you-crazy/ (version 31-5-2021).

[4] Jamis Buck. Mazes for Programmers. The Pragmatic Programmers, 2015.

[5] Yuval Filmus. Sat algorithm for determining if a graph is disjoint. Computer
Science Stack Exchange. URL: https://cs.stackexchange.com/q/111411
(version: 2019-07-02).

[6] D.W. (https://cs.stackexchange.com/users/755/d w). Sat algorithm for de-
termining if a graph is disjoint. Computer Science Stack Exchange. URL:
https://cs.stackexchange.com/q/142450 (version: 2021-07-20).

[7] Ronald L. Rivest Clifford Stein Thomas H. Cormen, Charles E. Leiserson.
Introductions to Algorithms, chapter 22. MIT Press, 2009.

30

	Introduction
	Complexity
	Generating puzzles

	Maze-generating algorithms
	Binary Tree
	Depth-first
	Kruskal
	Prim
	Wilson

	Verifying the puzzles
	Boolean satisfiability problem
	Converting puzzles into a Boolean expression
	The tiles
	The field
	The solution
	Connectivity

	DIMACS format

	Code
	Functionality
	Implementation

	Results
	Multiple safe states
	The bound for tree traversal
	Number of valid puzzles
	Tiles and texture

	Conclusion
	Further research

	References

