A4:E-¥:x Universiteit
Adlikd) Leiden

Master Computer Science

ELECTROGAN: TOWARDS HIGH
FIDELITY ELECTRONIC MUSIC GENERATION
WITH STYLEGAN2

Name: B.D. Havenaar
Student ID: s3026531
Date: 15/08/2023

Specialisation: Artificial Intelligence

1st supervisor: Dr. E.M. Bakker
2nd supervisor: Prof. dr. M.S.K. Lew

Master's Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

Generating convincing audio samples in the waveform domain is a
complex and unsolved task. Various approaches have been proposed us-
ing Generative Adversarial Networks. Models developed for the speech
generation domain often output insufficient sampling rates that do not
meet the Nyquist criterion when generating music samples. Especially for
music, having a high enough resolution is required for a good listening ex-
perience. In this paper, we show how to synthesize convincing audio sam-
ples using a StyleGAN2-based generative model. We create a large high
quality 16 bit, 44.1k samples/second training dataset of approximately
540k house and techno music samples in a Short Time Fourier Transform
representation. We explore various parameter settings and training tac-
tics. We evaluate the resulting models with a Fréchet Inception Distance
and show that for our application this metric is a valid alternative for a
mean opinion score (MOS). For the best configurations we obtain a MOS
score of 2.46, and 2.96 for studio mastered music clips, compared to 3.94
for real data.

1 Introduction

Innovations in instrument-, production- and performance technology have been
a strong driver for creativity in the music industry. For instance, the invention
and widespread availability of the synthesizer has led to the development of
completely new genres. Also, the increase in computer performance and the
uprising of Digital Audio Workstation (DAW) software have made audio pro-
duction accessible for anyone with a modest workstation. As computational
power continues to improve and with the continuous development of machine-
and deep learning techniques, the adoption of such Al models in the music pro-
duction process is inevitable. This upcoming field has seen various approaches
ranging from models that produce sound effects, compose music notes, and the
generation of complete songs.

The task of audio generation in general has received considerable attention
through the desire to create high quality Text To Speech (TTS) models. Such
models are already widely implemented through applications such as Alexa, Siri,
or Amazon Polly. In comparison to speech generation, music generation is vastly
more complex. High-quality speech requires about 16k samples per second and
the length of individual utterances can be a fraction of a second. Due to a
wider range of active frequencies, high quality music requires a resolution of
approximately 44.100 samples per second at 16 bits per sample. Music covers
the complete audible range of the human ear on average ranging from about
50Hz to 22.000 Hz. This gives a much broader range of frequencies that needs
to be distinguished from the human ear. Following the Nyquist criterion a
signal needs a sampling frequency of at least twice the maximum observable
frequency. This results in that the amount of required samples necessary to
create a high-quality audio signal is around 44.000 per second.

Another way of describing the complexity of generating music is through the
large variety of different levels at which individual samples are correlated. On
the frequency level, samples are in general correlated with nearby samples in
the ps range. This is for example the case between two neighboring frequency
cycles. At the same time on a much higher level samples also correlate. For
example on an instrumental expression such as vibrato effects lead to correlating
samples several ms apart. Melodies and music keys have an even wider span
of tens of seconds or even minutes. The extreme difference in the magnitude of
inter-sample correlations makes generating music a complex task. [1].

Apart from some recent examples, researchers often aim to create complete
classical piano compositions. Such compositions contain complex melodies and
chord progressions that can span several minutes of music. Due to the fact that
the key frequencies of piano music are between approximately 30 and 4500hz,
it often suffices to have a lower sampling frequency for piano music, although
this brings some loss in higher harmonic frequencies. On the other hand piano
music can have very long and extensive inter-sample correlations in long medolic
pieces. This is for example the case when considering complex, almost mathe-
matically composed classical piano pieces like Bach. In contrast to such piano
compositions, most modern-day Western music genres follow the simplest com-

mon time signature of 4/4 beats and are highly repetitive. Especially in genres
like techno, electro, house, disco, drum & bass, and other electronic music-based
genres this often holds. Where piano compositions require tens of seconds of
comprehensive audio to create a believable song, most electronic-based genres
only require a few bars (4 beats) that can be looped into longer pieces.

The focus of this research is to address the challenge of generating convincing
high-quality audio sample loops within the electronic music domain (Techno,
House, Electro). StyleGAN2 generative models are trained and used to generate
images of Short Time Fourier Transform representations of electronic music
samples. The models are evaluated using the Fréchet Inception Distance and
mean opinion scores.

2 Related Work

In this section, we give an overview of various important and state-of-the-art
methods for generating audio in the symbolic and waveform domains.

2.1 Symbolic Domain

In the symbolic domain music is described in abstracted forms such as MIDI
notes, musical scores or guitar tabs. Such representations have the advantage
of low memory requirements as they only contain information about the timing,
velocity and pitch of notes played. They can be played by sequencers or musi-
cians that operate one or many instruments at once. The disadvantage of those
representations is that they only capture a part of the information on how the
piece is played. Not capturing unique details that depend on individual instru-
ments or musicians [2]. Auto regressive models have been used for generating
music through this symbolic approach such as RNN-; LSTM-[3] and VAE’s[4].

2.2 Autoregressive models

One of the state-of-the-art models that generate audio in the waveform domain
is WaveNET [5]. This model uses 1-dimensional convolutions to predict the
audio sample at time step ¢ + 1 by evaluating its conditional probability given
all previously seen samples p(zi41|21, 22, ..., 2¢). By stacking increasingly larger
dilated convolutions, the model has a very flexible and potentially large recep-
tive field. This way it is able to capture local dependencies between individual
samples at the audio wavelength level. On the other hand, the model is also
capable of capturing longer-term multi-second dependencies such as chord pro-
gressions or word utterances. The conditioning of the model can be extended
to other input features for the purpose of speech generation (TTS). The main
disadvantage of this approach is the computational complexity of both training
and inference. By parallelizing the WaveNET architecture using Probability
Density Distillation inference time is improved towards realtime [6]. Although
the use of sparse RNNs can increase inference efficiency by an order of magni-
tude, inference speed still remains far below real-time [7]. In the meantime, also
other auto-regressive models in the waveform domain have been proposed such
as SampleRNN [8] which lead to similar inference time issues.

2.3 Adversarial models

Another approach is using Generative Adversarial Networks, or GANs to gen-
erate an audio sequence [2]. Two of the first implementations of this are Wave-
GAN and SpecGAN [9]. Both models utilized DCGAN [10] architectures. In
the case of WaveGAN, the original two-dimensional architecture is flattened
to single-dimensional convolutions. SpecGAN uses the original 2-dimensional
DCGAN model, but here the input data is transformed to a two-dimensional
spectrogram representation using a Shortime Fast Fourier Transform (SFFT).

GANSs are known to create checkerboard-like artifacts during the deconvolution
phase, as described by [11]. In the audio domain, those artifacts lead to overlap-
ping frequencies that can be perceived as pitched noise. Although the authors
propose a method for ensuring this artifact is not used as a trivial recognizable
feature for the discriminator, the high pitch is still recognizable in the generated
audio.

Another GAN-based generative network in the waveform domain is Mel-
GAN. This model is trained to perform mel spectogram to waveform inversion.
The model uses the mel spectogram representation as an intermediate step to
train conditioned generator models which then can be used for tasks like style
transfer [12].

GANSynth is also based on mel spectograms and is focused on creating single
instrument sounds [13]. This model was trained using progressive GANS from
the StyleGAN architecture as proposed by [14]. They show that latent space in-
terpolations contain recognizable instrument features such as timbre. Although
the generated musical sounds are highly convincing, it differs in complexity from
generating complete electronic high quality music compositions.

StyleGAN2[15] is a further improvement of the StyleGAN model, making
it the most interesting candidate architecture for generating high quality elec-
tronic music at the time of this research. In [16], the authors have successfully
experimented with applying UNGAN [17], StyleGAN and StyleGAN2 models to
clean drum loops. This dataset however consisted of clean drum loop recordings
from a sampling database used for music productions. In real world electronic
music examples the music samples can consists of a variety of drum loops, synths
and other instruments playing together making it potentially harder to generate
convincing samples.

2.4 Other applications within music generation domain

Authors of Jukebox [18] used Vector Quantized Variational Auto Encoders (VQ-
VAE) [19],]20] to create long sequences of audio of arbitrary length. They use
multiple VQ-VAE’s on multiple temporal resolutions to generate latent codes
used to later reconstruct the audio signal. Furthermore sparse transformers
[21], [22], and other auto regressive models are used to reconstruct the individ-
ual resolution layers at inference. Although this results in conditioned, highly
convincing audio of arbitrary length, the inference time is multiple hours on
state-of-the-art hardware to generate a minute of music.

While undertaking this research more interesting approaches have appeared
that yielded good results in the domain of creating high fidelity audio samples.
Musika [23] uses a two step encoder that first encodes the input STFT to an
intermediate latent space compression, which then is further decoded to a more
compact latent space. By using the intermediate latent space as a coordinate
system during the decoding phase, authors are able of generating multiple ad-
jacent generated outputs to create sequences of arbitrary length. By using a
decoder to translate back into a magnitude and phase representation that can

be reversed using an inverse STFT (iISTFT), the use of a separate phase recon-
struction method can be omitted.

Another recent approach that may not be let unnoticed is Riffusion [24].
Here the us of Stable Diffusion [25] models enable the model of translating from
one representation to another. For example with from text or image inputs to
audio. Authors use the Griffin-Lim algorithm to reconstruct phase information.
Due to the vast computational and data resources required, this approach is not
considered for this research.

3 Contributions

This paper has the following core contributions. We create a the Mixsets
dataset, large collection of electronic music containing 2500 hours of electronic
music samples. We evaluate various hyperparameter settings for StyleGAN2, to
generate long, complex, and comprehensive music samples of electronic music
that last tens of seconds. We show that it is attainable to generate near natural-
sounding audio pieces with a high-quality sampling rate of 44.1kHz at a 16 bits
resolution. We evaluate generated results using Mean Opinion Scores and the
Frechet Inception Distance (FID). We show that although the FID score is based
on visual images it also is valid alternative for MOS scores when analyzing the
performance of GANs that are trained to generate STFT representations for
generating music.

4 Fundamentals

In the following section, we explain the working of Generative Adversarial Net-
works and the development towards at the time of this reserach state of the art,
StyleGAN2.

4.1 Convolutional Neural Network

A convolutional neural network (CNN) is a type of deep learning architecture
that has been extensively used in image processing and computer vision tasks
and first applied to a representational learning problem by [26]. The basic idea
behind CNNs is to learn feature representations of input data by applying a
series of convolutional filters to it. These filters scan the input data, identify
patterns and features, and transform them into meaningful representations that
are useful for the desired task.

The structure of a CNN has similarities to the biological process of visual
perception in the human visual cortex, where visual cells are pooled to deeper
cells in the cortex [27]. The convolutional layers of a CNN perform a series
of computations on the input data, using the weights of the filters to extract
relevant features from it. These features are then passed on to the next layers of
the network, which perform additional processing, such as pooling or flattening,
to further refine the feature representations.

One of the key benefits of CNNs is their ability to learn hierarchical feature
representations of the input data. By stacking multiple convolutional layers
on top of each other, the network can learn increasingly complex and abstract
features, which enables it to handle more complex and challenging visual tasks.
Additionally, CNNs can leverage the spatial relationships between pixels in an
image, allowing them to capture local patterns and structures that are critical
for accurate image classification and segmentation. Once a representation is
learned, a CNN can also be utilized in generative models.

4.2 Generative Adversarial Networks

A Generative Adversarial Network (GAN) is a deep neural network architecture
designed to learn to generate new content similar to a given target dataset. It
was first introduced by [28] and consists of two primary components: a generator
G and a discriminator D, both of which compete in a min-max game. The
generator takes as input a latent random vector z and has the same output
as the shape of the training samples, often images. The discriminator takes as
input either a generated or a real image and outputs if a given batch of images is
real or fake. The generator’s objective is to produce a batch of images that are
indistinguishable from real ones, whereas the discriminator aims to distinguish
images between real and fake ones. By randomly showing the discriminator
batches of either real images or fake images from the generator, both networks
can learn from each other’s mistakes.

Z-4X4 - 8X8 - 16X16 > () »~Nx~+N » NxN

(a) Visualization of the DCGAN Generator architecture. The
network starts with a random latent vector Z as input vector
which is successively up-sampled with increasingly large convo-
lutional layers until the desired N x N size is obtained.

= mee .

NxN->-Nx-IN > () > 16X16 - 8x8 - 4x4 Binay

output

(b) Visualization of the DCGAN Discriminator architecture. Has
n X m input which is down-sampled using successive convolutions
to eventually end up with a binary output. Where the binary
output determines if the input image is real or fake.

Figure 1: DCGAN [10] Generator and Discriminator architectures.

The use of convolutional layers [26] further optimizes the GAN architecture
for generating images [10]. With this architecture, the generator again takes a
latent vector z as input and furthermore is connected to a sequence of convolu-
tional layers {(2 x 2),(4 x 4),(...),(n x n)} as explained in (Figure 1a). The
output of the generator now is a two-dimensional (n X n) image.

For the discriminator the opposite holds, here the input image is of the size
n x n and is subsequently down sampled (Figure 1b) until it reaches a binary
output that determines if the image is real or fake.

4.2.1 Loss functions

The original GAN loss, the adversarial loss function was initially proposed by
[28]. Equation 1 shows that this loss function consists of two components.
Here D is the discriminator and D(x) the probability that x came from real
data, and G(x) is the generated data from generator G. The first part is the
discriminators’ prediction that a batch of real-world samples is real, the second
part is the inverse log probability that a batch of generated samples is real. The
generator uses the loss function values to update it’s weights with the goal to
maximize this probability, whilst the discriminator aims to reach the opposite.

minmax V(D,) = [log(D(x))] + E:[log(1 — D(G(2)))] (1)

In practice, this min-max loss saturates the weights in the generator making
it hard for the generator to keep up with the discriminator. This happens
when the generator produces samples that are easily recognized as fake by the
discriminator, leading to a very high loss for the generator. As a result, the
generator can become stuck in a state where it generates only a limited set of
samples that the discriminator can easily classify as fake, without improving its
ability to generate more realistic samples.

To prevent this a Ry Regularization gradient penalty was introduced that
only penalizes when the discriminator evaluates real data [29], [30]. This loss
function optimizes the generator for maximizing the probability that a pro-
duced batch is deemed real, instead of it minimizing the probability of not being
deemed fake. This way the generator is also updated with powerful gradients
without considering losses from the discriminator assessing real-world examples.
The regularization parameter « for R; Regularization controls the amount of
penalty that is given whenever the discriminator moves towards a Nash Equilib-
rium [31]. Therefore with a higher value for the stability of training is expected
to increase while the diversity of the output should decrease. The influence of
on the quality of the results is studied and experimentally demonstrated in our
work.

4.3 StyleGAN

The StyleGAN models and their predecessors provide various improvements to
the GAN architecture and are based on the Wasserstein GAN with R; Regular-
ization gradient penalty (WGAN-GP) [29] [32]. The use of a gradient penalty
greatly improves the stability of the training of the GANs. By penalizing the
discriminator’s gradients, it prevents extreme large values. Gradient penalty is
an improvement on weight clipping, where both have the same goal of maintain-
ing Lipschitz continuity of the discriminator. Choosing the right proportion of
gradient penalty is important. If too much gradient penalty is allowed within
the discriminator the risk occurs of vanishing gradients, training instability and
eventually mode collapse. On the other hand choosing too little gradient penalty
may also lead to unstable training due to too large gradients and a discriminator
that is unable to learn a meaningfull representation of the presented data.

The stability and speed of training is further improved in Stylegan by using
progressively growing GANs [33]. At the start of training both the discriminator
and generator begin with the lowest possible resolution images (2 x 2) and both
progressively grow during training. This allows for significantly larger images
above (1024 x 1024) and further improves training speed.

The introduction of the "Style’ part of StyleGAN [34] originates from changes
to the architecture inspired by the style transfer literature. In StyleGAN, the
random input vector z of the generator is replaced with a learned constant, and
a new mapping network is introduced that injects into the various layers of the

10

generator. This new mapping input provides control over various levels of fea-
tures in the generated images. When for example generating human faces with
a StyleGAN model, low-level features change coarse-grained features such as the
shape of the face, while high-level features only affect hair color. Compared to
vanilla progressive GANs, StyleGAN further improves quality and efficiency by
adding noise inputs and introducing mixing regularization. Apart from disen-
tangling different style features, this also improves overall image quality.

Latent vector 2 € Z Synthesis network

Normalize

noise input

Fully-connected

Fully-connected
Fully-connected

(b) Style-based generator

Figure 2: StyleGAN architecture as proposed by [34]. The generator (right)
starts with a learned constant vector where a noise input is added, this is fol-
lowed by adaptive instance normalization that is combined with the latent vector
W through a learned affine transformation. The latent vector W is an interme-
diate latent space which is the output of a fully connected 'mapping’ network
(left). This network maps the latent space to each individual convolution.

4.4 StyleGAN2

Further improvements in generated image quality and training speed are achieved
by reducing regularization term update frequency and introducing an improved
alternative for the progressive growth of both the generator and discriminator
[15]. Together with improving the size of the network, this configuration yields

11

AN
T

(a) Seperate frequencies: y = sin(t)
(black), y = sin(2t) (red), y = sin(3t) (b) The accumulation of frequencies:
(green). y = sin(t) + sin(2t) + sin(3t).

Figure 3: Comparison of different frequencies.

better results than its predecessor [34].

4.5 Discrete audio representation

Music and other sounds are de facto frequencies of air vibrations that are observ-
able by hair cells in the human capula. An audio waveform is an accumulation
of several base continuous sinusoidals with each their own frequency and mag-
nitude as shown in Figure 3. Real world sounds too are a combination of a large
number of stacked frequencies.

In order to store, manipulate and read audio with computers the continuous
audio signal must be converted to a digital discrete signal. Here the continuous
accumulation of frequencies is chunked into separate discrete samples (Figure
4). The sampling rate or sampling frequency is of high influence when it comes
to obtaining the resolving power to distinguish different base frequencies from
each other. The Nyquist frequency is the amount of samples that are required
to convert a continuous signal to a discrete signal without loosing the resolving
power to identify all frequencies independently in the original continuous signal.
This required sampling frequency is equal to twice the highest frequency that
occurs in the frequency band for the specific application. In case of electronic
music, all frequencies audible to the human ear are in uses (50Hz until 22.000
Hz). Therefore the required Nyquist frequency is at least 44.000 samples per
second. The reason why twice as many samples are required, is that in order to
identify the highest possible frequency in a given spectrum, at least a sample
left and right from the peak of this frequency has to be taken.

4.6 Short-Time Fourier Transform (STFT)

The Short Time Fourier Transform is a two dimensional representation of a
one dimensional signal such as audio. The signal is decomposed into a two
dimensional matrix containing frequency and phase information of the original
signal. By creating a two dimensional representation of a signal, one can treat
it as an image and enable visual evaluation.

12

Figure 4: Taking samples from frequency wave. Each red dot represents an
individual sample that is taken.

To understand the construction of an STFT, it is essential to first grasp
the concept of the Discrete Fourier Transform (DFT). The DFT is a mathe-
matical tool used to convert a discrete sequence of time-domain samples into
its equivalent frequency-domain representation, decomposing the signal into
its constituent sinusoidal components. However, the DFT assumes stationary,
treating the entire signal as a single entity. With audio and speech cases, the
signal varies in frequencies and amplitude over time which makes the DFT not
suitable analysing non-stationary signals. The DTF (Equation 2) transforms a
sequence of audio samples x := {xg, z1,...,tny—1} to its complex valued form
X := {Xo, Xl, ...,XNfl}.

N-1 .
Flag) = Z P (2)
n=0

Where N is equal to the total number of samples and k is the index of the
frequency component that is calculated. The Short-Time Fourier Transform
(STFT) overcomes this limitation by analyzing the signal in small overlapping
segments, thereby capturing its time-varying nature (Equation 3). By applying
the DFT to each segment, we obtain a time-frequency representation of the
signal, revealing how the spectral content evolves over time. The STFT is
expressed as follows:

N—1
X(na k) = Z Tn+m w(m) : ei%kn (3)
m=0
Where N is equal to the total number of samples, k is the index of the
frequency component that is calculated and w(m) is the window that is applied
to the signal. The ISTFT reconstructs the time-domain signal from its STFT
representation by inverting the process of segmenting and overlapping. Given
the STFT spectrogram, denoted as X (n, k), where n represents the time index
and k denotes the frequency bin, the ISTFT operation aims to recover the
original time-domain signal x(n).
The ISTFT can be mathematically expressed as:

13

s 127
z(n) = % > X(nk)-eNFwt(k), (4)
k=0

Where w*(k) is the complex phase information of the window function w(k)
used during the STFT. Additionally, N denotes the window length, representing
the number of samples within each segment.

In order to reconstruct the signal magnitude as well as the complex val-
ued phase part of the audio signal must be know. When applying the short
time fourier transform X, only the magnitude part of the signal shows visually
correlated features. The phase part of the signal is seemingly chaotic and vi-
sually looks like noise. Because GANs and CNNs require visual features to be
trained on, only a representation of the magnitude part is learned. In order to
reconstruct the signal the phase part of the signal w* (k) must be reconstructed.

4.7 Griffin-Lim Algorithm

The Griffin-Lim algorithm [35] is a widely used and influential technique for
reconstructing a time-domain signal from its magnitude spectrogram, making
it particularly valuable in audio signal processing and speech synthesis. This
algorithm addresses the problem of phase retrieval, where the phase information
of a signal is lost during the process of obtaining its magnitude spectrogram. As
phase contains crucial information about the temporal structure of the original
signal, phase retrieval is essential for accurate signal reconstruction.

The Griffin-Lim algorithm operates iteratively, attempting to converge the
complex-valued time-domain signal from its magnitude spectrogram. The initial
phase of the signal is randomly generated or, alternatively, estimated from other
sources if available. In each iteration, the algorithm computes the complex-
valued STFT (Short-Time Fourier Transform) of the current time-domain esti-
mate, keeping the magnitude spectrogram fixed and using the phase information
from the previous iteration.

Next, the inverse STFT is applied to obtain a new time-domain estimate,
reconstructing the signal with the updated phase information. However, this
reconstructed signal usually suffers from inconsistencies, as the inverse STFT
does not precisely preserve the magnitude spectrogram. To address this issue,
the algorithm refines the reconstructed signal by applying the STFT again to
obtain a new magnitude spectrogram. The magnitude of this new spectrogram is
then replaced with the original magnitude, and the phase information is retained
from the previous iteration.

By iteratively refining the time-domain signal through alternating STFT
and inverse STFT operations, the Griffin-Lim algorithm gradually improves
the reconstruction’s phase information. As the iterations progress, the signal’s
temporal structure becomes more accurately represented, leading to improved
perceptual quality and reduced artifacts.

Although the Griffin-Lim algorithm is effective and computationally effi-
cient, it is essential to note that it may not always yield perfect phase retrieval,

14

Input: Magnitude spectrogram |X| and number of iterations T'
Output: Reconstructed time-domain signal z
Initialize the phase of the signal randomly or by estimation;
fort=1toT do
Compute the complex-valued STFT of the current time-domain
estimate: X; = | X| - e/-angle(Xe-1),
Apply the inverse STFT to obtain a new time-domain estimate:
xy = ISTFT(X});
Compute the STFT of the new time-domain estimate to obtain a
new magnitude spectrogram: |X;| = STFT(z;);
end

Reconstructed time-domain signal: © = xp
Algorithm 1: Griffin-Lim Algorithm

particularly for complex signals with intricate temporal patterns such as with
music. In this research we do not focus on the quality of phase reconstruction,
this is addressed in other research [36].

15

5 Mixsets dataset

For this research, a custom dataset is created. We drew upon a large online
catalog [37] containing high-quality recordings from DJ performances (DJ sets)
from which we sourced 1472 DJ sets that contained tags in a close range of
specified electronic music genres (Techno, House, Electro). This dataset con-
tains about 2500 hours of music and is stored in 320 kilobytes per second MP3
format. Each DJ set is sliced into minute-long segments. We first apply beat-
finding analysis to the first segment to find the tempo and the first onset beats.
After that the segment is time stretched to 130 beats per minute. Then, the
segment is sliced into audio clips with 1024 x 1024 samples (23.77 seconds at
44.1kHz). We use a stride of 8 beats to slice consecutive audio clips. When
the end of the one-minute sample is reached, we repeat the process for the next
one-minute sample.

Most audio samples were slower than 130 BPM, meaning that on average we
did not suffer quality loss when adjusting the speed. We also discarded samples
outside the 120 and 145 bpm range to avoid unacceptable quality loss during
the time-stretching. Following this method, a total of 546.256 music samples
were generated.

Dataset limitations The music dataset comprises mixed music pieces sourced
from individual DJ sets, reflecting the diverse and dynamic nature of real-world
music performances. While this approach offers valuable insights into the practi-
cal application of music in various contexts, it does introduce certain challenges.

One important issue is the potential for incorrect beat matching due to
human DJ performance errors. DJing involves seamlessly transitioning between
tracks, but errors in timing or tempo adjustments can result in mismatched
beats. This disrupts the overall cohesiveness of the audio compilation. As a
result those artefacts could also be learned by the generator.

Another artifact commonly encountered during DJ’ing is the simultaneous
peaking of audio signals within specific frequency ranges. This can lead to over-
saturation of the audio signal causing distortion artifacts. The presence of such
artifacts can also be learned in the trained generator. Furthermore, when mixing
two music pieces together, there is a possibility of encountering mismatched
musical keys. When combining pieces with disparate keys, clashes in harmonies
and dissonances can arise, leading to an unpleasant auditory experience.

Regarding the audio format utilized in this study, the MP3 format was cho-
sen due to the fact that almost all music online is in this format. However,
it is essential to acknowledge that the MP3 format is lossy, meaning that it
compresses audio data to reduce file size, resulting in a loss of some audio in-
formation. While this format provided a practical solution for managing large
volumes of data, it may not fully capture the nuances of the original audio, po-
tentially impacting the accuracy of analyses dependent on subtle audio features.

To address these limitations and explore potential avenues for improvement,
future research could investigate alternative data collection and preparation

16

methods. Considering lossless audio formats, such as WAV or FLAC, could
offer higher fidelity recordings for advanced analyses, albeit harder to source.

5.1 Pre processing and audio reconstruction

All audio samples were processed to a two-dimensional representation. The
audio samples were transformed using Short Time Fourier Transform (STFT)
with a window length of 2048 and an equal amount of frequencies, a hop length
of 1025, and center-aligned padding. This resulted in a 1024 x 1024 two-
dimensional matrix containing both frequency and phase information of the
sample in a 16 bit resolution. The phase part is then discarded. We follow the
strategy proposed by [2] taking the log of the power spectrogram before normal-
izing with a pre-calculated dataset mean and standard deviation. We clip the
result between three standard deviations from the mean and rescale between
0 and 255. This leaves us with a greyscale image of size 1024 x 1024 (Figure
5). In this research, we have limited ourselves to mono audio. Prior to the
pre-processing phase, we evaluate the dataset moments for normalization and
denormalization during the pre-processing and reconstruction. To reconstruct
an image we first reverse the above process. To recover the audio samples we
reconstruct the phase signal using the Griffin-Lim Algorithm (GLA) [35] with
10 iterations.

Figure 5: Short Time Fourier Representation of original dataset sample after
preprocessing (2x2 images).

17

6 Methods
6.1 Training StyleGAN

In order to train StyleGAN for the purpose of generating audio samples we first
adjust the network to output a 1024 x 1024 x 1 vector. We apply a search on the
hyperparameters learning rate o and the regularization factor . As the input
of the model we use the frequency part of the STFT representation of the sliced
dataset samples. Because the models outputs those representations rather than
audio samples a conversion step is performed later.

We train train the model until the FID score starts to degrade. An important
indicator is that the subsequent steps show signs of mode colapse. This is
apparent if the network outputs a series of images that clearly show a single
skewed archetype of the data (Figure 6).

Figure 6: Example of training images that show mode collapse, the images
almost look exactly the same and the network starts to degrade.

6.2 Fréchet Inception Distance

A method for measuring the similarity between real and fake images is the
Fréchet Inception Distance score (FID) [38].

The metric aims to calculate the difference between two dataset samples by
calculating the distance of the feature embeddings of each dataset when feeding
through a classification network, the Inception V3 classification network [39].

The Inception V3 network is a state of the art image recognition model
that is trained on the ImageNet dataset. The ImageNet dataset is a large-
scale collection of labeled images that has been widely used as a benchmark
in computer vision tasks, particularly for image classification. It contains over
1,000,000 images belonging to 1,000 different classes. Each image in the dataset
is manually annotated with one of the 1,000 class labels.

Before the network is fed into a one-hot encoded feature vector of size 1 x
1000, the second to last layer is a vector of size 8 x 8 x 2024 which is used
as embedding to compare. To calculate the metric two batches of 50k images
are fed through the Inception network. The second to last embeddings of the

18

network are then compared using the Fréchet Distance Equation 5 where pup
and mug are the mean vectors of sets V and . Here P represents the feature
vector of the intermediate feature vector after processing images from the real
dataset into the network, and @ of the generated samples respectively.

FID(P,Q) = |lpp — poll3 + Tr (Ep +30 -2 (EPEQ)1/2> (5)

A lower distance means a higher similarity between two feature embeddings
and thus indicating similarity between the original and generated images. Using
the FID score to measure the distance between STFT representations of audio
may appear to be counter-intuitive, the Inception network was trained for the
task of classifying items on photographic images, a completely different modality
than the STFT images. Using the FID score on STFT images nevertheless
seems to translate into reasonable measurements when informally listening to
the resulting audio examples and has been widely used in comparing generated
audio samples. In this research, we also show that the FID score for audio yields
similar results compared to other metrics.

6.3 Human Judgement: MOS

The primary evaluation method for this paper is judgment by humans. It is
however not trivial to find sufficient and the right humans to judge the audio
samples for this particular task. For judging universal audio samples such as
speech, it suffices to have unfiltered survey respondents from crowdsourcing
platforms such as MTurk. For validating the quality of electronic music, listeners
that are at least familiar with the genre are required.

We sent out an online questionnaire to a relevant audience of approximately
25.000 electronic music festival visitors, who can be considered very familiar
with the music genre. From this survey in total of 514 respondents complete
the survey. We ask the human judges to determine if the audio sounds like
real electronic music (Excellent, Good, Fair, Poor, Bad). With this five-point
ordinal scale, we calculate a Mean Opinion Score (MOS) on the audio quality
7.

The survey consists of 20 audio examples '. The examples where randomly
drawn from a generated batch of samples. The samples where generated with
the best model configuration (Conf A) at 2200 ticks and two earlier check-
points (1600 and 800) for comparison. Also we added the Real samples that
went through the process of conversion and reconstruction using the Griffin Lim
method to account for the impact on quality of those steps.

We evaluate if the changes in the FID score are also measurable with the
MOS scores. We also ask on what medium the judges listen to the samples
(speakers, headphones, or speakers from a laptop or phone) to evaluate if this
has an effect on the outcome. It could be expected that listeners on higher
fidelity audio systems or installations such as headphones or speakers.

L Audio samples used in Questionnaire:
https://drive.google.com/drive/folders/1dGmPBsx2QaeCOIdTkvFsESqVvF WIyQkp

19

» 0:00/0:07 ==)

How real does this electronic music sample sound? (1/20)
(O Excellent - completely sounds like real electronic music

(O Good - mostly sounds like real electronic music

(O Fair - equally does and does not sound like real electronic music

(O Poor - mostly does not sound like real electronic music
O

Bad - completely does not sound like real electronic music
Figure 7: Example question in survey

6.4 Audio mastering

In general music productions often undergo post-production mastering treat-
ment. Because we are curious what the best achievable level of generated audio
is, we also process a small batch of generated audio samples using conventional
non-synthetic mastering techniques in a conventional music studio for evalua-
tion. In a music studio we apply EQ corrections, compressions and loudness
corrections.

20

7 Experimental Setup

We focus on the trade-off between training stability and diversity and it’s im-
pact on quality. It is hypothesized that for each representation (audio, images
etc) a different learning speed and gradient penalty is required. On the one side,
we experiment with different learning rate parameters, controlling the overall
speed of convergence. On the other hand, we evaluate the effects of altering
the rate of gradient penalty, which is expected to have an effect on stability
and diversity. We apply a grid search strategy for evaluating various hyperpa-
rameter settings. For the learning rate we evaluate {0.001,0.002} and for the
regularization constant v we evaluate {1, 5, 10}.

We furthermore do an investigation on the quality of the samples generated
from the model configuration (Configuration A) with the lowest found FID score.
We compare the best trained network snapshot with two earlier snapshots with
lower FID scores to compare if the MOS score changes with a similar effect with
the FID score. We also apply mastering techniques on a selection of samples
created by the best-performing model and aquire those MOS scores. Because
the pre-processing steps also has some lossy elements in it, we evaluate the
MOS scores from original data set that went through the preprocessing steps.
For each of the generated samples, we hand-picked 4 best samples out of a set of
20 samples. We strongly encourage the reader to listen to the used audio clips
2

A single step in training is one kimg, meaning that a thousand real samples
have been processed by the network.

Computational costs of the complete research including exploratory work are
2554 hours on a RTX3090 GPU. To train the best hyperparameter configuration
to the best achievable score the model was trained for 137 hours.

2Audio samples from research: https://soundcloud.com/havenaarbd/sets/electrogan-
towards-high-fidelity-electronic-music-generation-with-stylegan?2

21

8 Results

The different hyperparameter settings for the learning rates and ~ have a sig-
nificant influence on the best achievable FID score and the number of processed
kimg’s possible until the networks started to degrade (Figure 1). We see some
indication of a trade-off between a low learning rate and high v and vice versa.
This too seems a logical consequence of the higher learning rate allowing for
more rigorous adjustments to the networks, while a higher v allows more diver-
sity.

Configuration Best FID score (lower is better)
Learning Rate | ~ FID kimg
0.001 10 | 3.21 2200
0.001 5 | 7.57 7200
0.001 1 | 13.06 2600
0.002 10 | 40.5 300
0.002 5 | 48.1 200
0.002 1| 7.39 2000

Table 1: FID scores for various training runs with Learning Rate €
{0.001,0.002}, v € {1, 5,10}

The winning configuration is a learning rate of 0.001 and a v of 10. This
yields an FID score of 3.21. Notably this is the same exact the same configu-
ration and approximate FID score achieved for generating faces in [34]. A big
difference is that convergence seemingly happens an order of magnitude faster
in this case, for audio. Inference speed of generating STFT images and the
post processing pipeline (normalization, GLA) cost 1.01 seconds per 23.77 sec-
onds of audio. After 2200 kimg’s this network does not improve any further
and starts to gradually degrade (Figure 8). We see this happening when the
Wasserstein loss for the Generator and the Discriminator start to converge and
cross. Also this is the same point at which the gradient penalty starts to over-
compensate (Figure 9). This behaviour is expected when the generator starts
outputting very similar images (mode colapse) and the discriminator start to
easily recognize fake images.

The best configuration generates samples with a MOS score of 2.46 (Table
2) with a standard deviation of 1.02 and a FID score of 3.33 (Figure 10). The
audio samples that where post-processed using conventional studio mastering
techniques achieved a MOS score of 2.87. The original audio samples that went
through the pre- and post processing pipeline achieved a MOS score of 3.94 with
a standard deviation of 0.92. The human judges mostly use headphones 49.6%
or speakers 19.8%. The remaining judges use the sound of their laptop or phone
30.5%. We did not see significant difference in MOS scores across the different
used listening media devices.

Visually the generated samples are hard to distinguish from the original

22

Wasserstein loss for G and D
300
14
12 - 250
10 L 200
hn o8
5 150
(o]
=S 5]
100
4
3 I 50
RRPRY T Y Y
0 -0
0 1000 2000 3000 4000 S000
kimg

Figure 8: Training run with LR = 0.001, v = 10. Wasserstein loss for generator
(orange) and discriminator (blue) with FID score (red). The best result was
achieved after 2200 Kimg after which the network deteriorated

dataset. When informally listening to the samples we hear clear features of the
electronic music such as the 4/4 rhythm of bass drums and percussion such as hi-
hats. This also comes with a noisy background and disordered phases. It sounds
as if the generated samples lack silence in any frequency, making the audio sound
very crowded across the complete spectrum. After professionally mastering the
audio samples in a music production studio with the use of common mastering
techniques the samples become much easier to listen to. Also, we sporadically
recognize archetypes in generated audio samples. These archetypes share similar
sound features such as a certain percussive line or other musical features. This is
not the same as the mode collapse described earlier because this is also observed
while the model is still converging.

Dataset / configuration MOS FID
mean std.

Real* 3.94 | +/-0.92 -

Mastered 2.87 | +/-1.02 -

Conf A - 2200 ticks 246 | +/-1.02 | 3.33

Conf A - 1600 ticks 2.24 | 4+/-1.05| 7.35

Conf A - 800 ticks 1.94 | +/-0.97 | 29.04

Table 2: MOS score for real audio, mastered audio, and best-performing con-
figuration (LR = 0.001, v = 10) with FID scores for various snapshots. *Real
samples include conversion to STFT and Griffin Lim audio reconstruction as
described in section 5.

23

rl penalty

04

03

02

01

0.0

) 1000 2000 3000 4000 5000
kimg

Figure 9: After convergence at 2200 steps the model kept stable until approx-
imately 2750 steps. Hereafter the gradient penalty significantly increases as
mode collapse occurs

9 Conclusion and discussion

Generating long, complex, and comprehensive electronic music samples using
the methods described in this paper is a promising direction. The generated
music samples clearly show the structure of electronic music, are tens of seconds
long, and have a sampling rate with sufficient resolving power to accommodate
high-quality audio.

We have shown that it is feasible to achieve similar FID scores with audio as
with the original StyleGAN2 experiments on faces. For evaluating the quality
of the audio both MOS score and the FID score move in the same direction.
At the same time, the quality of the audio is still not close to what sounds like
real electronic music, while the FID scores indicate almost perfect similarity
between the generated samples and the real dataset. The relatively low scores
(MOS 3.94) of the real audio samples that have been subject to pre-processing
and phase recovery (Table 2) also indicate that there is a lot of room for im-
provement in the phase reconstruction part. Furthermore, it is not clear why
some generated samples tend to linger toward certain archetypes.

The choice to work with extra large networks with 1024 x 1024 output could
be debated. The increased amounts of parameters and time to train such a
network might not be necessary if one would accept shorter audio samples. For
a 512 x 512 STFT this could provide 5.9 seconds of (possibly looped) audio
compared to 23.77 seconds. Using a smaller network may also have effects on
the stability of the training. This would be interesting for further research.

24

Figure 10: STFT results from StyleGAN 2 trained model with LR = 0.001,
= 10 with 2200 training steps (2x2 images).

10 Acknowledgments

I want to express my gratitude to my supervisor, Erwin Bakker, whose invalu-
able guidance and patience has helped me shape this long lasting research. Also
I want to thank my family for their support along the road. I extend my ap-
preciation to the Investment in Culture Fund of the Municipality of The Hague
for co-funding the hardware that significantly enhanced the execution of this
experimental research.

25

References

[1]

[10]

S. Dieleman, A. van den Oord, and K. Simonyan, “The challenge of realis-
tic music generation: modelling raw audio at scale,” in Advances in Neu-
ral Information Processing Systems (S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran As-
sociates, Inc., 2018.

S. Dieleman, “Generating music in the waveform domain,” 2020. Blog
article: https://benanne.github.io/2020/03/24/audio-generation.html, last
time visited 30/07/2023.

B. L. Sturm, J. F. Santos, O. Ben-Tal, and I. Korshunova, “Music tran-
scription modelling and composition using deep learning,” arXiv preprint
arXw:1604.08723, 2016.

A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck, “A hierarchical
latent vector model for learning long-term structure in music,” in Interna-
tional conference on machine learning, pp. 4364-4373, PMLR, 2018.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet: A Generative
Model for Raw Audio,” in Proc. 9th ISCA Workshop on Speech Synthesis
Workshop (SSW 9), p. 125, 2016.

A. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu,
G. Driessche, E. Lockhart, L. Cobo, F. Stimberg, et al., “Parallel wavenet:
Fast high-fidelity speech synthesis,” in International conference on machine
learning, pp. 3918-3926, PMLR, 2018.

N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. Lock-
hart, F. Stimberg, A. van den Oord, S. Dieleman, and K. Kavukcuoglu,
“Efficient neural audio synthesis,” in Proceedings of the 35th International
Conference on Machine Learning (J. Dy and A. Krause, eds.), vol. 80 of
Proceedings of Machine Learning Research, pp. 2410-2419, PMLR, 10-15
Jul 2018.

S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. C.
Courville, and Y. Bengio, “SampleRNN: An unconditional end-to-end neu-
ral audio generation model,” Conference on Learning Representations,
vol. abs/1612.07837, 2016.

C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthesis,”
in International Conference on Learning Representations, 2018.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” CoRR,
vol. abs/1511.06434, 2015.

26

[11]

[12]

[14]

[15]

[22]

[23]

A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard
artifacts,” Distill, 2016.

K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh, J. Sotelo,
A. de Brebisson, Y. Bengio, and A. Courville, “MelGAN: Generative ad-
versarial networks for conditional waveform synthesis,” vol. 32, Advances
in neural information processing systems, 10 2019.

J. Engel, K. K. Agrawal, S. Chen, 1. Gulrajani, C. Donahue, and
A. Roberts, “GANSynth: Adversarial neural audio synthesis,” in Inter-
national Conference on Learning Representations, 2019.

T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4396-4405, 2019.

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “An-
alyzing and improving the image quality of styleGAN,” in Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 8107-8116, IEEE,
2020.

T.-M. Hung, B.-Y. Chen, Y.-T. Yeh, and Y.-H. Yang, “A benchmark-
ing initiative for audio-domain music generation using the freesound loop
dataset,” International Society for Music Information Retrieval, 08 2021.

J.-Y. Liu, Y.-H. Chen, Y.-C. Yeh, and Y.-H. Yang, “Unconditional audio
generation with generative adversarial networks and cycle regularization,”
Interspeech, pp. 1997-2001, 2020.

P. Dhariwal, H. Jun, C. Payne, J. Kim, A. Radford, and I. Sutskever,
“Jukebox: A generative model for music,” 04 2020.

A. Van Den Oord, O. Vinyals, et al., “Neural discrete representation learn-
ing,” Advances in neural information processing systems, vol. 30, 2017.

A. Razavi, A. Van den Oord, and O. Vinyals, “Generating diverse high-
fidelity images with vg-vae-2,” Advances in neural information processing
systems, vol. 32, 2019.

C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, I. Simon, C. Hawthorne,
N. Shazeer, A. M. Dai, M. D. Hoffman, M. Dinculescu, and D. Eck, “Music
transformer: Generating music with long-term structure,” in International
Conference on Learning Representations, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners.” OpenAl blog.

S. Pasini, “Musika! fast infinite waveform music generation,” Proceedings
for ISMIR 2022, 2022.

27

[24]

[25]

[26]

[27]

[29]

[30]

[31]

[32]

S. Forsgren and H. Martiros, “Riffusion - Stable diffusion for real-time
music generation,” 2022. blog ariticle: https://riffusion. com/about 6. Last
visited 30/07/2023.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10684-10695, 2022.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp- 2278-2324, 1998.

J. Antolik and J. A. Bednar, “Development of maps of simple and complex
cells in the primary visual cortex,” Frontiers in computational neuroscience,
vol. 5, p. 17, 2011.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139-144, 2020.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” Advances in neural information
processing systems, vol. 30, 2017.

K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann, “Stabilizing training
of generative adversarial networks through regularization,” Advances in
neural information processing systems, vol. 30, 2017.

L. Mescheder, A. Geiger, and S. Nowozin, “Which training methods for
GANs do actually converge?,” in International conference on machine
learning, pp. 3481-3490, PMLR, 2018.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in International conference on machine learning, pp. 214—
223, PMLR, 2017.

T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs
for improved quality, stability, and variation,” in International Conference
on Learning Representations, 2018.

T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” in Proceedings of the IEEE/CVFE' confer-
ence on computer vision and pattern recognition, pp. 4401-4410, 2019.

D. Griffin and J. Lim, “Signal estimation from modified short-time fourier
transform,” IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, vol. 32, no. 2, pp. 236-243, 1984.

28

[36]

[39]

Y. Masuyama, K. Yatabe, Y. Koizumi, Y. Oikawa, and N. Harada, “Deep
grifin—lim iteration,” in ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 61-65,
IEEE, 2019.

M. D. Website, “Electronic music mixes dataset.” Website, 2023. Accessed
on August 15, 2023.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANSs trained by a two time-scale update rule converge to a local nash

equilibrium,” Advances in neural information processing systems, vol. 30,
2017.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

29

