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1 General Introduction

Within the field of metaheuristics, natural processes have been a popular source
of inspiration for novel optimization methods. This popularity can be attributed
to the successes of a few well-known nature-inspired metaheuristics, such as Ge-
netic Algorithms (Bremermann [5]), Evolutionary Strategy (ES) (Rechenberg
[23]), Particle Swarm Optimization (PSO) (Kennedy & Eberhart [16]) or Sim-
ulated Annealing (Kirkpatrick et al. [17]). These methods not only provided
an effective way of finding a near-optimal solution, but also an intuitive under-
standing due to the source of inspiration.

Using metaphors to describe the inner workings of the methods contributed
to the applicability of these methods, and thus adhere to the more general
sense of metaheuristics: metaheuristics as a “framework that provides a set of
guidelines or strategies to develop heuristic optimization problems” (Sörensen
[27]). The word metaheuristics, according to Sörensen, has however also been
used to denote a “specific implementation of a heuristic optimization algorithm”,
possibly due to some of the more popular metaheuristics explicitly presenting
it as such (both Ant Colony Optimization (ACO) (Dorigo [9]) and Simulated
Annealing (Kirkpatrick et al. [17])).

The successes of well-known metaheuristics has led to an influx of nature-
inspired, metaphor-based methods. In his paper, Sörensen [27] argues that many
of the metaphor-based methods do not present any new ideas apart from the
metaphor; many of these “novel” methods use ideas already well-established,
simply renamed to suit the metaphor. He argues that, frequently, no attention
is given to why a method is effective. Justification for publishing is found in what
he denotes as an up-the-wall-game, where a method (frequently: an algorithm)
is used as a black box: if better performance results are produced than another
well-known metaheuristic implementation, it is published, regardless of whether
or not this might be due to parameter tuning, or other problem-specific tailoring.

This is highlighted by Campelo and Aranha [7], who in addition to drawing
attention to the high frequency of papers published based on metaphors, illus-
trate this problem in their catalog Evolutionary Computation Bestiary (Campelo
and Aranha [6]), in which a great many metaphor-based methods are listed.
They argue that the use of metaphors obscures the underlying mechanics and
similarities to other metaheuristics, fragmenting the literature into niches. Fur-
thermore, they stress that especially application-oriented journals seem vulner-
able to the publication of novel metaheuristics, as researchers might not be as
familiar with the field and thus gravitate towards recent papers with a lot of cita-
tions. Sörensen, Campelo and Aranha all argue that the reason metaphor-based
metaheuristics are popular is due to the ease of finding “novel” metaphors, and
thus producing papers, alleviating the pressure to publish. Sörensen emphasizes
that many of the authors involved in publishing these kinds of papers also have
a tendency to cite one another.

The problem of metaphor-based heuristics ultimately accumulated in a state-
ment (Aranha, Villalón, Campelo et al. [1]) calling journals to not publish any
“novel” metaheuristics unless the authors of these papers are able to properly
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present their method within the known literature. This statement was subse-
quently signed by 95 prominent researchers within the field worldwide, showing
that the issue is considered sufficiently important.

There have been attempts to analyze some of the more popular “new” meta-
heuristics in order to elucidate their position within the field as a whole. For ex-
ample, the Intelligent Water Drops (Shah-Hosseini [26]), Cuckoo Search (Yang &
Deb [39]), Grey Wolf (Mirjalili & Lewis [19]), Firefly (Yang [37]) and Bat (Yang
[38]) algorithms have been analyzed by Villalón, Stützle and Dorigo [31], [33],
[32], showing these to be either special cases of ACO (Intelligent Water Drops),
(µ+λ) ES (Rechenberg [23]) (Cuckoo Search) or PSO. Harmony Search (Geem
et al. [12]) has been analyzed as a special case of (µ + 1) ES (Schwefel [25])
by Weyland [36]. Many of these attempts focused on algorithms with a high
number of citations in order to bring attention to how this reflects on the field.

2 Raven Roost Optimization

In this thesis, we analysed and benchmarked one of the not-yet-examined meta-
heuristics in the Evolutionary Computation Bestiary[6]. We will discuss the
novelty of the mechanics and compare them to previous metaheuristics. To this
end, we have chosen the Raven Roost Optimization algorithm (henceforth de-
noted RRO), first described by Brabazon, Cui and O’Neil in their titular 2015
paper [4]. The amount of citations at the moment of writing is around thirty,
making it a reasonably popular paper. It is however interesting as to how other
authors have appropriated RRO by publishing either an “improved” or hybrid
form of the algorithm. We will discuss this last point in section 3.3.

RRO is inspired by the foraging behaviour of ravens, specifically the role of
roosting as a form of information sharing. The use of birds as a metaphor is not
new: it has been in use since BOIDS (Reynolds [24]), and has been a source of
inspiration for PSO (Kennedy & Eberhart [16]). For RRO, the authors place
the emphasis on the social aspect of foraging behaviour rather than the flight
patterns, used in BOIDS and PSO.

The authors of RRO try to make a compelling case for why the avenue of
social foraging for the use of algorithms could be interesting. In their paper,
they seem to be at least familiar with recent literature in the specific subfield
of ecology on foraging behaviour. The interest is highlighted in questions as to
how food sources are found, and how these are communicated to other members
of the species. It is remarked that these questions could potentially be relevant
for any optimization strategies. Considerable time is spent on explaining the
benefits of sharing information about food sources. The foraging behaviour of
information sharing at a single site is ultimately picked as a focus of the paper,
and given shape in the form of ravens roosting. An explanation as to why ravens
exhibit roosting behaviour is given in the Information Center Hypothesis (Ward
& Zavahi [35]). This hypothesis would suggest that roosts act as a place where
ravens share information about food sources, and “recruit” other ravens for the
purpose of safety and potential mate-finding.
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For the development of the algorithm, four elements considered critical to
the simulation of foraging behaviour are isolated: individual perception of envi-
ronment, personal memory, social transmission of information and a stochastic
search component. The authors remark that all foraging-inspired methods use
these elements, albeit in “varying degrees”. The RRO algorithm proposed in-
corporates all of these elements explicitly. They compare RRO with ACO[9]
as well as PSO[16], and suggest that neither of these incorporate the element
of individual perception explicitly, nor does ACO have an element of personal
memory. Furthermore, only RRO has a central information point, which they
call social roosting.

2.1 Algorithm Description

The algorithm proposed by the authors to test the effectiveness of social roosting
and individual perception proceeds thus. First, during initialization, a random
location within the domain is chosen, which is fixed for the runtime of the al-
gorithm. This random location is denoted as Roost. The main loop starts from
this point. N solutions, denoted Ravens, are selected randomly within the do-
main, evaluated, and initially saved to memory as personal best. The global
best solution is selected, and called the Leader. For every solution, there is a
probability Percfollow it will move towards their personal best, or select a ran-
dom destination around the found global optimum in a hypersphere with radius
Rleader. In either case, the solution will move from the roost position towards
their destination (simulating a flying raven) in a given number of steps Nsteps,
with each step moving the solution a random amount 1 closer to the destina-
tion. At each stop, the current location is evaluated. Furthermore, a number of
random solutions or perceptions Npcpt are selected within a hypersphere with
radius Rpcpt around the current position. If a better solution is found than
the current personal best, there is a probability Probstop that the raven does
not continue moving towards its destination. For the ravens which follow the
Leader and arrive at their destination, the destination is evaluated and the per-
sonal best is updated. Once all the ravens have stopped flying, the loop starts
again: N random solutions are generated and accepted if evaluated as better.
The global best solution is updated, and the Leader is chosen. The algorithm
runs the main loop until a terminating condition is met. The algorithm in pseu-
docode can be found in Algorithm 1, and our interpreted pseudocode can be
found in Algorithm 2. A visual representation of how the algorithm behaves in
2 dimensions can be found in Figure 1

2.2 Parameter Settings

When initialized, RRO uses quite a few parameters. Apart from the parameters
known to every other swarm-based algorithm (i.e. number of particles N and

1Limited to a fraction of the total distance. In our implementation, we used stepi =
ni∈[1,Nsteps/2]

Sum
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Algorithm 1 Original Pseudocode for Raven Roost Optimization

Randomly select a roosting site;
repeat

The N foraging ravens are assigned to N random locations in
the search space;
Evaluate the fitness of each raven location;
Update the personal best location of each raven;
The location of the best solution is denoted as LEADER;
Recruit Percfollow percentage of the N foragers from the
roosting site which will search in the vicinity of the LEADER
(within the range of radius Rleader and the rest of the ravens
will seek to travel to their personal best locations;
Set step = 0;
while step < Nsteps do

On the way to its destination (whether the destination is
the LEADER’s vicinity or their personal best location),
each raven flies for a while and searches in the vicinity of
its current position (within the range with radius Rpcpt);
if a better solution is found than the bird’s personal best then

There is a Probstop chance the raven will stop;
Update the personal best location;

else
It continues to fly;

end if
step = step+ 1;

end while
For the ravens which finally arrive at their destinations (the
LEADER’s vicinity or their personal best), update their
personal best locations if necessary (to the fitness of the
location) and evaluate the fitness for each forager;
Update location of the best solution found so far if necessary;

until terminating condition;
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the maximum number of iterations), it has multiple parameters related to its
stochastic searching: Percfollow, Rleader, Rpcpt, Npcpt, Nsteps and Probstop. To
combat the inevitable complexity introduced for anyone who tries to apply the
algorithm, a series of comparisons2 were made by the authors and a “canonical”
RRO defined, denoted RRO0: Rpcpt = Rleader = R

3.6
D√

N
, where R is the radius

of the search space3, and D is the dimensionality of the problem, with R

1.8
D√

N
as alternatives in either, Npcpt = Nsteps = 10, with 5 and 10 as alternatives,
Percfollow = 0.2, with 0.4, 0.6 and 0.8 as alternatives, and finally Probstop =
0.1, with either 0.2 or 0.4 as the alternatives.

Figure 1: Graphical representation of RRO0 at D = 2 with N = 30 and 50000
evals. The black dot is the roost position, red dots are random solutions gener-
ated during the start of the loop, and the colouring of the other dots denoted the
y-value of the solution found, with colder colours tending towards more optimal
points.

2.2.1 Individual Perception

The authors emphasize the individual perception mechanism. To this end, they
compared 13 versions of RRO (RRO0 to RRO12) with different selections of pa-
rameters, and a special version without the individual perception mechanism,
but otherwise identical to canonical RRO (denoted RROv). The results show
that RROv is outperformed by canonical RRO on almost every problem, and on
several problems it performs worse than “canonical PSO”. The outlier is Ras-
trigin, where RROv performs similarily and even outperforms canonical RRO
in high dimensionality (i.e. 60). The authors conclude that individual percep-
tion is an important part of RRO. No attempt is made to see if a perception
mechanism on PSO would improve the performance of PSO.

A similar analysis for sensitivity is performed for the size of the perception
radius Rpcpt. RRO2 and RRO3 have a perception radius twice the size of canon-
ical RRO. For most of the problems, RRO2 and RRO3 perform worse than other

2On DeJong, Griewank, Rastrigin and Rosenbrock with d = [20, 40, 60]
3In our implementation, we interpreted this as the average of all dimensions divided by 2
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version of RRO, once again with the exception of Rastrigin, in which RRO3 per-
forms even better than canonical RRO at high dimensionalities. Our suspicion
is that Rastrigin is less suitable for the perception mechanism; this might be
due to the global structure of Rastrigin, whereas a function like DeJong simply
benefits from any area being searched thoroughly.

Finally, the authors analyze the sensitivity of the amount of perceptions
per timestep. RRO4 and RRO5 perform 5 and 20 perceptions per timestep as
opposed to the canonical 10. In all problems, similar performance to RRO0 is
shown.

2.2.2 Stop Probability

RRO11 and RRO12 have the same settings as canonical RRO, but have Probstop
set to 0.2 and 0.4 respectively. In the orignal paperś results, it is shown that
both versions perform significantly worse than canonical RRO. The authors
conclude that “RRO0 > RRO11 > RRO12”. Their explanation for this is
when ravens stop more frequently, the search space is traversed less thoroughly.
Interestingly, the authors do not attempt to compensate for ravens stopping by
allowing for more evaluations elsewhere: by stopping, the algorithm simply loses
evaluations4. Especially in such an implementation, it might have been valuable
to compare the canonical RRO to a version which does not have stopping at
all. The authors, however, do not consider this. Our suspicion is that removing
the stop mechanism from RRO entirely, might have improved it in all cases. To
verify this, we will test a version of RRO with the stopping mechanism removed
by setting the parameters to 0 (see section 5).

2.3 Novelty of Raven Roost Optimization

The novelty of the Raven Roost Optimization heuristic is to be found in either
the social roosting approach towards social transmission, the individual percep-
tion of each raven or the step mechanism approach towards stochastic search.
The latter two will overlap somewhat, but are considered separately as the au-
thors regard them as distinct. Personal memory simply uses personal best, and
we will therefore not consider it.

2.3.1 Social Roosting

The simulation of social roosting is done by designating a fixed point within the
search space from where the ravens start moving, and sharing the global best
solution to exploit current found optima. A percentage of the ravens will follow
the leader towards a destination near the found global best. The sharing of
information about the global best to influence the search for solutions has been in
use since PSO. In RRO, it is not the case that all the ravens are partly influenced
by the global best solution, but instead only a part of the ravens is “fully”
influenced. Which ravens are selected is randomly determined. Arguably, this

4Something that we did compensate for in our evaluation.
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Algorithm 2 Interpreted Pseudocode Raven Roost Optimization

Roost← U(lb, ub);
repeat

for i ∈ N do
Evaluate s← U(lb, ub);
Update personal best;
Update global best if necessary: LEADER ← i;
xi ← Roost;

end for
Select Percfollow of N ravens as follower;
for i ∈ N do

if follower then
destination← random within radius Rleader hypersphere of pleader;

else
destination ← pi;

end if
Determine step sizes: di ← [1..Nsteps + 1] ∈ (0, 1) summing to 1;
di = di(destination− Roost)

end for
step← 0;
while step < Nsteps do

for i ∈ N do
xi,t = xi,t−1 + di,t
Evaluate xi,t and Npcpt solutions within radius Rpcpt;
if found solution better than personal best then

Update personal best;
Stop flying with probability Probstop;

end if
end for
step = step+ 1;

end while
for every follower do

if not stopped then
Evaluate destination;
Update personal best;

end if
end for

until terminating condition;
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is to facilitate exploration: “... the best-so-far location does not influence the
search process of all birds in each iteration of the algorithm”.

The use of a single point, fixed for the entirety of the runtime, can be con-
sidered new. However, many algorithms use a single point within the domain
towards special effect, such as PSO or Spiral Dynamics (Tamura & Yasuda
2011). In all of these, the “central” point is updated during runtime to either
global best, or another location to facilitate exploration. In contrast, the roost
location is never updated. Combined with how the stochastic search is per-
formed, this leads to a significant emphasis on solutions found around the roost
location. We will consider this in detail in section 2.5.

2.3.2 Individual Perception

The individual perception of the algorithm is simulated by random sampling
at stopped locations within a hypersphere. The authors argue that neither
PSO nor ACO have an individual perception mechanism, suggesting that this
is a new approach. This is true for sampling within the neighbourhood of
stopped locations, although particles within PSO evaluate each position after
each timestep. The authors state that only one solution is evaluated at a time
in PSO/ACO, whereas multiple solutions are evaluated every iteration in RRO.
Whilst this is a definite difference from PSO/ACO, the idea of random sampling
within a hypersphere is not new. Because multiple samplings are done each
time the raven moves, the space roughly between the roost and the global best
solution is thoroughly searched. Considering that there is no further mechanism
to individual perceptions beyond this (i.e. more sampling further from the roost,
location of random samples shifted towards a known solution etc.), it is not
clear how the authors want to match intuition of individual perceptions to the
mechanical reality.

2.3.3 Stochastic Search

The stochastic search of RRO can be divided into four parts adding randomness
to the search. One of these parts is individual perception, which we already
considered. The other three parts are: random step size, the probability of
stopping, and generation of random solutions at each iteration. The random
selection of followers could also be considered part of the stochastic search, but
this has likewise been discussed.

On their way from the roost to the destination, each raven will stop along
the way Nsteps times. The formula for updating the position of the raven is
given as follows:

xi,t = xi,t−1 + di,t

where xi,t and xi,t−1 are current and previous positions, and di,t is a ran-
dom (predetermined) step size, multiplied by the vector from roost to desti-
nation. The step sizes are determined per individual by “dividing their flight
into Nsteps”. How these steps are divided exactly is not made clear, apart
from being random. The movement of the ravens is thus entirely a straight
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line from roost to destination, and differs from (canonical) PSO by not having
“velocity-based movement”. During “flight”, the raven can “stop” at any found
or perceived solution better than its current with a probability Probstop. It will
only stop at better solutions, and can thus be considered greedy. The reason
for the raven’s stopping, is not made clear; it does not accept a worse solution
for potential exploration, and any found solution is roughly between the previ-
ously found global or personal best and the roost. Therefore, there is a high
probability that the same path is threaded in the next iteration as during the
current, only more intensively, as it is divided over the same amount of steps.

2.3.4 Similarity to other Metaphor-based algorithms

At least three other metaphor-based algorithms use a similar pattern when it
comes to exploration. All of these work by taking a single point and searching
in straight lines outwards. The Fireworks Algorithm (Tan & Zu, 2010) picks
random points from which solutions, or “sparks”, are produced by random sam-
pling within a hypersphere. The Grenade Explosion Algorithm (Ahrari & Atai
2010) and the Mine Blast Algorithm (Sadollah et al. 2012) do something sim-
ilar, instead choosing “shrapnel” to find the highest places of “loss” (fitness).
None of these sample randomly along the way, however.

The similarity to other swarm-based metaphors might be more apt from an
“intuition” perspective. However, we feel that the original criticism of metaphor-
based heuristics is that the metaphors are ultimately irrelevant, compared to
actual search mechanics. As we could find three metaphor-based algorithms
using similar search mechanics, whilst being intuitively starkly different from
RRO, illustrates this. Categorizing RRO based on the intuition would ascribe
unwaranted importance to the metaphor, and therefore misses the point.
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2.4 Comparison to PSO

For PSO, the pseudocode can be described as follows:

Algorithm 3 Particle Swarm Optimization

for i ∈ N do
xi ← U(lb, ub);
pi ← xi;
Update global best if necessary: g ← pi;
vi ← U(lb, ub);

end for
while termination condition not met do

for i ∈ N do
vi,t = αvi,t−1 + ϕ1r1(pi − xi,t−1) + ϕ2r2(g − xi,t−1);
xi,t = xi,t−1 + vi,t;
Evaluate xi,t;
Update personal best;
Update global best if necessary: g ← pi;

end for
end while

Every particle is assigned a random vector within the search space as their
original position and thus personal best. The global best is denoted and saved
to memory. All particles are assigned a random velocity vector. For every
particle, until a stop criterium is met, their velocity −→v is updated according to
the formula:

−→v i,t = α−→v i,t−1 + ϕ1r1(
−→p i −−→x i,t−1) + ϕ2r2(

−→g −−→x i,t−1) (1)

Where −→v i,t is the velocity vector of particle i at time step t, α is the iner-
tia weight, ϕ1andϕ2 are respectively the cognitive and social coëfficient, r is a
random factor, −→p i is the personal best, and −→g is the current global best. The
position of the particle is then updated according to the formula

−→x i,t =
−→x i,t−1 +

−→v i,t (2)

When looking at the pseudocode, it seems that RRO and PSO have a very
similar general structure, although RRO has a lot more parameters to keep
track of. Both algorithms start with a randomization step, an assigning of the
initial positions, and give a special role to the best-found solution. Both then
follow a main loop until a termination criterium is met, although in the case
of RRO this is divided up into steps. The movement of the particles is rather
different at first sight, mainly because PSO’s movement has a few more factors;
the updating of the position is highly similar. Hence we will try to reduce PSO’s
movement to RRO.
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First, we can state α = 0 to remove all inertia, and r1 = r2 = r, our formula
could be reduced to:

−→v i,t = ϕ1r(
−→p i −−→x i,t−1) + ϕ2r(

−→g −−→x i,t−1) (3)
−→v i,t = r[ϕ1(

−→p i −−→x i,t−1) + ϕ2(
−→g −−→x i,t−1)] (4)

Because we can define any position within the search space as a combination
of vectors, we can add a third vector, −→u i −−→g , assign it ϕ2 as a coëfficient, and
ignore the personal best by setting ϕ1 = 0, to simulate a raven moving towards
a random point within a hypersphere of the global best g with a random step
size:

−→v i,t = rϕ2[(
−→u i −−→g ) + (−→g −−→x i,t−1)] (5)

Likewise, we could set ϕ2 = 0 to simulate the ravens moving toward their
personal best with a random step size:

−→v i,t = rϕ1(
−→p i −−→x i,t−1) (6)

Furthermore, as initially stated in Kennedy and Eberhart’s original paper on
PSO [16], dividing particles into groups with special purpose is an expected and
considered mechanism of PSO: “Another version considered using two types of
agents, conceived as “explorers” and “settlers.” [...] The hypothesis was that
explorers would extrapolate outside the “known” region of the problem domain,
and the settlers would hill-climb or micro-explore regions that had been found
to be good.”

Instead of using random r for every timestep, we could use an array (or vec-
tor) ri,1, ri,2, ..., ri,n with n = Nsteps and the further constraints that

∑n
j=1 ri,j =

1, and instead of from the current position, the vector is calculated from the
roost. Finally, a random fixed location is chosen as the initial location for each
particle, and reset during each iteration. This way, the behaviour of particles
would be the same as the ravens from RRO.

Thus, save for the “inner loop”, stopping mechanism and perception mech-
anism, RRO could be rewritten as a special case of PSO. Both PSO and RRO
leave the termination criterium up for interpretation. In the canonical imple-
mentation of RRO the stopping mechanism simply removes evaluations. There-
fore RRO could be considered a special case of PSO, plus random sampling of
the environment “along the way”.

2.5 Inverse Square Law

As all ravens will start their movement at every iteration at the roost, stop after
a random distance and sample the environment a certain amount of times, the
space searched most thoroughly will always be around the roost point. All ravens
potentially sample the same amount of times on the way to their destination
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(ignoring the destination sampling of followers), potentially even less amount
of times at the end of their flight due to the stopping mechanism. Due to this
methods of sampling, we suspect the inverse square law of distance roughly
applies to the intensity of sampling around the roost, with a stronger effect in
higher dimensions. No apparent effort by the authors was made to remedy this
problem: the dividing of the flight path is done randomly.

In order to see if our prediction is true, we plotted the euclidian distance
of every sampled position from either the roost point and the optimal point in
a box plots below. For this experiment we used N = 30, 50000 evaluations
per run and repeated the experiment for 30 runs for dimensions 2, 5 and 10.
Otherwise, the parameter settings were identical to RRO0. The box plots below
show the cumulative sample distances over all runs.

Figure 2: Plotted euclidian distance to either the global optimum or roost po-
sition, with N=30, 50000 evals and 30 repeats.

From the figures above we can clearly see that RRO has a strong tendency to
sample around the roost point, and that the difference between the roost and the
global optimum becomes more pronounced at higher dimensionalities. Although
some sampling around a starting point could be considered logical, we feel that
a lot of unnecessary sampling could be avoided by having a more structured
approach towards either the perception mechanism or the step division.
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3 Other work

RRO has been cited a fair amount of times as per the time of writing. Many
of the citations are either a review of metaphor-based metaheuristics, or simply
cite RRO without using it (i.e. Hussain et al [15] and Rajwar et al. [22]),
possibly in order to count which metaphors are used. Other authors mention it
when discussing applications, i.e. task scheduling (Nabi et al. [21] or Barghavi
et al. [2], the latter finding RRO highly applicable), or when introducing their
own novel metaheuristic (Moldovan [20]). Two citations of RRO stand out in
particular. One by the orignal author of RRO, and another by other researchers
for the introduction of an improved version. These will be discussed in 3.2 and
3.3 respectively.

3.1 Earlier analysis

Earlier attempts to explicitly place RRO within the literature have been made
by Eugwu et al. [11], defining RRO as a swarm-based algorithm. Dragoi &
Dafinescu [10], place RRO within the category of “food-based bird-inspired”
methods, along with eight other methods, showing foraging behaviour to be
a rather inspiring topic to many authors. Neither paper goes into much detail
about the workings of RRO, attempting to serve as overviews of metaphor-based
algorithms.

3.2 Response to criticism of metaphor-based algorithms

In a talk given in 2017 [3] the main author of RRO, Anthony Brabazon, ac-
knowledges the criticism of Sörensen [27] towards the field of metaheuristics.
The problem of identifying differences and similarities between “novel”, specifi-
cally foraging-inspired, metaphor-based algorithms is recognized as warranting
consideration. The author’s response to this problem is by suggesting tax-
onomies of different foraging-inspired swarm metaheuristics, in order to make a
better comparance. As we saw before, more attempts have been made by other
authors [11] [10] to provide a taxonomy of metaphor-based algorithms, so this
is a plausible approach. Some of the suggested taxonomies are:

• Tree of Life - taxonomy based on the relationship of the species in the
animal kingdom.

• Foraging Behaviour - taxonomy based on whether the agents are solitary
or neighbour-influenced.

• Foraging Capabilities - taxonomy based on different attributes or mecha-
nisms of the species, including:

– Sensory - what sensory modalities the species / algorithm has. i.e.
vision, sound, chemicals etc.

– Memory - how do the agents remember. i.e. personal, global, environment-
based etc.
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– Communication - how do the agents communicate? i.e. through
pheromones, roosting site etc.

– Stochastic - what stochastic element is used in the traversal of the
search space?

The author argues that more taxonomies are possible, and that the list
is by no means exhaustive. Interestingly enough, the mechanisms mentioned
as part of foraging capabilities are very similar to the four mentioned in the
RRO paper to compare the algorithm with PSO and ACO. Three of these
four capabilites we used earlier to analyse the novelty of RRO, in order to easily
compare to what the authors claimed. The capabilities mentioned however, were
ultimately still inspired by what biologists consider foraging behaviour. Due to
the high overlap of elements (i.e. the RRO perception mechanism is still just a
stochastic element) and the emphasis on the metaphor as basis for classification,
the taxonomies suggested seem of limited use. This last point is mentioned by
the author himself, cutting to the heart of the matter: “... the ways in which
sensory mechanisms are implemented in algorithms can sometimes be quite
similar, despite claims that they arise from different sensory modalities”.

The author goes on to argue that by using the four mentioned capabilities,
it is possible to construct a metaframework for foraging-based algorithms: “In
spite of the multiplicity of foraging inspired algorithms, a relatively compact
metaframework can be outlined which encapsulates most existing algorithms”.
Generalizing the four capabilities would allow an algorithm designer to compare
their novel creation to already-existing methods, and thus avoid the pitfall of
reinventing the wheel, mentioned earlier. This allows the designer quite a bit
of creative freedom: “[a]n unlimited number of specific algorithms, with differ-
ing search characteristics, can be created within this general metaframework”.
The author ultimately still emphasizes the metaphor, and points of comparison
inspired by the metaphor, to solve this problem.

3.3 Improved Raven Roost Optimization

The most prolific referencers of RRO are Torabi and Safi-Esfahani, as being
the authors of the Improved Raven Roosting Algorithm [28], henceforth denoted
IRRO. In their paper, they recognize some problems with RRO, namely the
lack of exploration and premature convergence. The solution they propose is
twofold: they replace the Probstop with a Foodst, which is time-based, and
select the ravens following the leader based on personal best, denoting them
weak and greedy ravens. In the same way RRO is benchmarked, they test their
parameters in different versions (denoted IRRO0 to IRRO8) and compare them
to all the versions of RRO and some well-known algorithms (PSO and Chicken
Swarm Optimization [18]).

The Foodst parameter starts at Food Max (in their implementation set to
1), and gradually diminishes over time according to the formula:

Foodstt+1,j = Food Max
MaxIt− i

MaxIt
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Where MaxIt is the maximum number of iterations (meaning the amount of
times it passes repeat in the pseudocode), and i is the current iteration. This
parameter is updated at the end of every loop, before the roosting stage. Consid-
ering the ravens will probably stop more easily before reaching their destination,
it seems that this would not encourage exploration and in fact, worsens the ten-
dency to search around the roost. As the MaxIt parameter has to be known
beforehand, the authors’ implementation cannot accomodate for any “lost” it-
erations either.

The division between weak and greedy ravens is done based on personal best.
The percentage “Weak Population Percent” with the lowest evaluated personal
best is denoted weak and will follow the leader. Why this would help either
premature convergence or exploration is not made clear by the authors. This
mechanism tends more towards greed, and would therefore be more prone to
getting stuck in local optima, a point acknowledged by the authors.

The values tested in IRRO for “Weak Population Percent” are 0.2, 0.4, 0.6
and 0.8. The percentage of 0.4, claimed by the authors as the best setting, is
tested in version IRRO6. This version however, does not consistently outperform
IRRO0 (same as canonical RRO, with 0.2 as percentage), nor does IRRO6
perform the best of all the other algorithms in any problem. The authors claim
that it performs better in higher dimensionalities, yet the published data (as
appendix to the paper) does not support this. This claim is made once more in
their later papers [30], but again is not supported.

According to the results published, RRO is rather consistently outperformed
by IRRO. IRRO5 seems to steadily outperform the other versions. IRRO5 is
“canonical” IRRO (same parameters as canonical RRO) with more steps (20 as
opposed to 10). We assume the number of iterations is changed to accomodate
the amount of steps, although this is nowhere mentioned by the authors.

Considering we suspect that stopping is not a useful mechanism at all, it is
rather disappointing that the authors of IRRO do not test whether or not this
is an actual improvement on the stop mechanism. Both changes are not tested
individually, but at the same time. Therefore it is not in fact clear whether
or not food mechanism is an improvement. For this reason, we will test this
ourselves in different versions of RRO (see section 5).

The authors of IRRO use their novel algorithm in two more papers. In both
they combine it with Chicken Swarm Optimization (CSO) [18], another rather
popular metaphor-based metaheuristic, showing some structural similarities to
PSO, and apply it to the problem of task scheduling. The reasoning is that
CSO suffers from premature convergence, an issue apparently solved by IRRO
when compared to RRO (although never explained how). The resulting algo-
rithm, IRRO-CSO [30] [29] is simply a concatenation of IRRO and CSO: first
IRRO is run, after which the population of ravens (presumably meaning the
personal bests) is used to initialize the positions for the chickens in CSO. It
is not made clear how this solves premature convergence, and nowhere is the
algorithm explained further beyond a flowchart placing the entirety of IRRO
before CSO.

Considering CSO already performs well on the problem of task scheduling,
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it is not entirely surprising that using IRRO for pre-selection instead of random
initialization generates better results. The study is considered a success, and
suggestions are made for further research into using IRRO in combination with
other well-known algorithms.

4 Method

We will compare the performance of several version of RRO to a few well-
known standard metaheuristics (PSO, random search and CMA-ES-CSA [14])
on the Black-Box Optimization Benchmarking (BBOB) [13] suite of 24 continu-
ous problems. BBOB contains many different functions for testing optimization
algorithms, and has been used extensively in the past decade. CMA-ES-CSA
is a version of evolution strategies considered to be state-of-the-art since the
introduction in 2004, and is thus used to place RRO and PSO within the field
as a whole. For each algorithm we will allow a budget of 50,000 evaluations,
and repeat the experiment 100 times on 2, 5, 10 and 20 dimensional problems
with a population of N = 30.

Furthermore, we will compare the performance of canonical RRO to a version
without stopping. To compensate for the amount of evaluations, our interpre-
tation allows for more evaluations when a flight is prematurely abandoned. The
extra evaluations will “spill over” into the next round of random sampling and
flying.

4.1 Implementation

The experiments were done on an AMD Ryzen 7 5700G at 3.8 GHz and 16GB
RAM. The implementation of the RRO was done in Python 3.11. The bench-
marking software used was IOHprofiler (Doerr, Wang, Ye, van Rijn, Bäck [8]),
using the BBOB problem suite, and comparison was done using the IOHana-
lyzer website (Wang, Vermetten, Ye, Doerr, Bäck [34]). The comparison results
of PSO, random search and CMA-ES are part of the IOHanalyzer.

4.2 Interpretation of Metaphors

When designing the implementation, we tried to stay as true to the proposed
algorithm as possible. Due to the wording of RRO, a few liberties in interpre-
tation had to be taken. The original algorithm can be found in Algorithm 1,
and our interpretation in Algorithm 2.

4.2.1 Stopping and flying

In the original pseudocode of the algorithm, a raven only explicitly continues to
fly if the current solution found is not better than the personal best. If a better
solution is found, there is a probability it will stop, but not explicitly mentioned
it will continue flying if not. In the verbatim description of the algorithm it
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is strongly implied that the raven will continue flying if it does not stop, and
furthermore only stops for the rest of the iteration if it does.

4.2.2 Updating personal best

Likewise, in the original pseudocode, the personal best of any one raven is only
updated during either initialization, roosting, arriving at their destination as a
follower or when it stops during flight. It is not made clear if personal best is
always updated even when the raven does not stop: updating the personal best
is done after stopping. The pseudocode states the updating of the personal best
quite explicitly, suggesting this is not simply done after every sampling. In the
textual description of the algorithm, it is simply stated “If a better location is
perceived [...] there is Probstop chance that the raven stops its flight at that point
and forages at the newly-found location; otherwise, it takes another step and
continues to fly to its destination”. In our implementation the algorithm seemed
much more prone to exploration when the personal best was always updated:
there are simply less moments when it can stop as it already accepted a better
solution. This interpretation, however, makes it hard to justify the purpose
of the stopping from a mechanical perspective. Less of the search domain is
explored, and upon subsequent iterations the raven will, with high probability,
fly to this point again, intensifying sampling along a path already searched.

5 Experiments

In order to thoroughly analyze RRO, a few distinct versions were benchmarked.
First, canonical RRO (RavenRoost) with all the parameters as the original
authors recommended. Second, to test whether or not stopping is a useful
mechanic, another version with Probstop = 0 is compared (RavenRoostNoStop),
effectively removing the stop mechanism. The other parameters are identical to
RRO0.

To test which of the mechanisms of IRRO improve the algorithm, they are
tested in two different versions. The first, RavenRoostFood, uses the food mech-
anism instead of a stop percentage. Considering our implementation compen-
sates for evaluations lost, the formula for the food percentage uses evaluations
instead of iterations. The FoodMax factor is still 1 as in original IRRO. Al-
though not entirely the same to the mechanism intended, the overall working
can be expected to be the same. The second, RavenRoostWeak, uses the elitist
selection mechanic introduced by IRRO. This mechanism is exactly the same
as the authors of IRRO intended. Finally, a combined version of these two
is tested, with both the food and the elitist mechanic (ImprovedRavenRoost).
Apart from the mechanisms, all the parameters are the same as canonical RRO
(including the percentage used to recruit “weak” birds, differing from the IRRO
paper).
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6 Results

The results we are most interested in are the distribution of the expected best
value, per algorithm, per function, and the expected value over runtime. The
former gives a good overview of the performance of all algorithms for a given
function, and gives a reliable image whilst being resistant to outliers in the data.
For this we used a probability density function, colloquially known as a violin
plot. The latter shows a good estimate of what can be expected after a certain
amount of iterations, and furthermore gives a good estimation of the rate of
convergence, prematurely or otherwise.

For most of the functions a proper comparison between CMA-ES-CSA, PSO,
Random Search and the different versions of RRO could be made. The exception
is the LinearSlope function, for which not enough data was available for PSO
and CMA-ES-CSA. For this reason, RRO is only compared to Random Search
in this function. For all the other versions, the data insofar available was used
to compare.

Furthermore, functions StepEllipsoid, Gallagher101 and Gallagher21 with
D = 2 did not display correctly in the IOHAnalyzer software. To remedy this,
the experiments were rerun on D = 20.
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Figure 3: The IOHAnalyzer ranking heatmaps for all tested dimensions. X
compares favourably to Y if it is red, unfavourably if blue.

The expected value over runtime plots generated for all algorithms are to
be found in Appendix A. The results per function, condensed in probability
distribution plots of best-found result after 50,000 evaluations, are to be found
in Appendix B.
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7 Discussion
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7.1 Performance compared to other algorithms

From the results in Appendix A and B, it is first and foremost clear that CMA-
ES-CSA outperforms the other algorithms by a fairly large margin. Surpris-
ingly, and in contrast to the results from the authors of both RRO and IRRO,
PSO steadily outperforms them both. At worst, it seems to perform similar-
ily in Katsuura at dimensionality 10 (Figure 22). Somewhat strikingly, RRO
performs marginally better than Random Search for the same amount of evalu-
ations, sometimes being beat by it when it comes to the average best result (i.e.
BuecheRastrigin D=2 (Figure 12), LinearSlope D=2 (Figure 13). In the case of
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LinearSlope). This could be attributed to the algorithm not going beyond its
own best-so-far, see Figure 1, and thus not reaching the edges where the optimal
solutions are.

RRO performs somewhat more competatively to PSO at lower dimensions.
The issue with RRO seems to do with a lack of exploration (having no explicit
mechanism to go “beyond” its own borders like PSO does), and at lower dimen-
sions it might simply be more favourable to thoroughly exploit a certain area,
something that RRO excels at.

7.2 Removal of stop mechanism

The heatmaps (Figure 3), and to a lesser extent the expected best-so-far found
graphs (Figure 4) and cumulative distribution graphs (Appendix B), show that
RRO without a stopping mechanism performs as well if not better than all
other used versions. This shows that the stop mechanism is at best insignificant
and at worst detrimental to the performance of RRO. Considering the original
RRO lost evaluations when stopping, it is to be expected that in that case the
difference would be even more pronounced.

7.3 IRRO and mechanisms

The results in Figure 3 demonstrate that in most casesRROweak > RROfood >=
IRRO. Whilst RROweak shows a slight advantage over original RRO, the per-
formance is very similar. As it is an elitist strategy, compared to random selec-
tion of followers, it is to be expected. IRRO on the whole fares worse than both
of its mechanisms separately. This could be explained by the elitist strategy
being offset by a much more harsh stopping mechanic, only “loosening up” well
after being stuck in local optima.

As the results show that RavenRoostNoStop performed on average the best
of all the RRO versions, the performance of IRRO might very well be ascribed
to making stopping a more central part of the algorithm.

8 Conclusion

The use of the metaphor in the case of RRO is questionable; neither the roosting
nor the individual perceptions constitute more than either a single fixed point
or random sampling in the area. The intuition of “flight” and stops towards a
destination makes sense in the context of the metaphor, but could just as well
have been framed in the language of PSO. Furthermore, due to overreliance on
metaphor, it is sometimes not clear how the algorithm proceeds exactly, nor
what the purpose of certain mechanisms is.

Due to how the roosting mechanism and the movement is structured, it
leads us to believe RRO was designed without explicit solutions to the problem
of oversampling around the roost location. This in order to test roosting and
individual perception along a flight path as useful concepts, and leave room
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for potential further experimentation. There is some parameter tuning to test
the effectiveness of different components, and the original paper explicitly tests
the performance of RRO with and without perceptions. There is however, lit-
tle analysis as to “why” certain components work. For example, the reason
for stopping during flight is never made clear, apart from simply suiting the
metaphor. In our experiments we were able to show that this mechanism is
irrelevant at best, and detrimental at worst.

For almost all of the functions it can be shown that PSO outperforms all
versions of RRO. This is in direct contrast to the claims made by the authors of
RRO/IRRO. As we had to take some liberties in the interpretation of RRO, this
might still be up for debate. IRRO performed considerably worse, diverging from
the results by the authors. It is possible that this is due to how we implemented
the food mechanism, but this seems highly unlikely.

Because of the highly similar structure of RRO to PSO (arguably simply
being a special case of), benchmarking the application of the individual percep-
tion mechanism in PSO might be a worthwhile avenue. Considering the limited
success of RRO in the sense of citations, testing whether or not PSO is improved
by the use of random sampling might have been a more fruitful endeavour for
the authors, firmly placing it within the literature.
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alyzer: Detailed performance analyses for iterative optimization heuristics.
ACM Transactions on Evolutionary Learning and Optimization 2, 1 (2022).

[35] Ward, P., and Zahavi, A. The importance of certain assemblages of
birds as ”information-centres” for food-finding. Ibis 115 (1973), 517 – 534.

23



[36] Weyland, D. A rigorous analysis of the harmony search algorithm -
how the research community can be misled by a “novel” methodology.
International Journal of Applied Metaheuristic Computing 1-2 (2010), 50–
60.

[37] Yang, X. Firefly algorithms for multimodal optimization. Proceedings of
the 5th international conference on Stochastic algorithms: foundations and
applications 5792 (2010).

[38] Yang, X. A New Metaheuristic Bat-Inspired Algorithm. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 65–74.

[39] Yang, X., and Deb, S. Cuckoo search via levey flights. 2009 World
Congress on Nature and Biologically Inspired Computing, NABIC 2009 -
Proceedings (2010), 210 – 214.

24



A Expected Target Value over Runtime

1e−9

1e−6

1e−3

1

0.1
2
5
1
2
5

10
2
5

100

1e−8

1e−4

1

1e+4

1e−9

1e−6

1e−3

1

1e+3

1e−9

1e−6

1e−3

1

1e+3

1 100 1e+4
1e−9

1e−6

1e−3

1

1e−8

1e−4

1

1e+4

1e+8

1e−8

1e−4

1

1e+4

1e−8

1e−4

1

1e+4

1e+8

1e−9

1e−6

1e−3

1

1e−6

1e−3

1

1e+3

1 100 1e+4

1e−9

1e−6

1e−3

1

1e−9

1e−6

1e−3

1

1e+3

1e−9

1e−6

1e−3

1

1e+3

1e−8

1e−4

1

1e+4

1e+8

1e−6

1e−3

1

1e+3

1e−9

1e−6

1e−3

1

1 100 1e+4

1e−6

1e−3

1

1e−9

1e−6

1e−3

1

1e+3

1e−8

1e−4

1

1e+4

1e−5

1

1e+5

1e+10

1e−6

1e−3

1

1e+3

1e−8

1e−4

1

1e+4

1 100 1e+4

1

100

1e+4

CMA-ES-CSA ImprovedRavenRoost PSO RANDOMSEARCH RavenRoost RavenRoostFood RavenRoostNoStop

RavenRoostWeak

Function Evaluations Function Evaluations Function Evaluations Function Evaluations

Be
st

-s
o-

fa
r 

f(
x)

Be
st

-s
o-

fa
r 

f(
x)

Be
st

-s
o-

fa
r 

f(
x)

Be
st

-s
o-

fa
r 

f(
x)

Be
st

-s
o-

fa
r 

f(
x)

Be
st

-s
o-

fa
r 

f(
x)

F1F1F1 F2F2F2 F3F3F3 F4F4F4

F5F5F5 F6F6F6 F7F7F7 F8F8F8

F9F9F9 F10F10F10 F11F11F11 F12F12F12

F13F13F13 F14F14F14 F15F15F15 F16F16F16

F17F17F17 F18F18F18 F19F19F19 F20F20F20

F21F21F21 F22F22F22 F23F23F23 F24F24F24

Figure 5: All algorithms, D=2
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Figure 6: RRO algorithms, D=2
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Figure 7: All algorithms, D=5
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Figure 8: RRO algorithms, D=5

28



1e−9

1e−6

1e−3

1

1e+3

2
5
1
2
5

10
2
5

100
2

1e−8

1e−4

1

1e+4

1e−9

1e−6

1e−3

1

1e+3

1e−6

1e−3

1

1e+3

1 100 1e+4
1
2

5

10
2

5

100

1e−4

1

1e+4

1e+8

1e−8

1e−4

1

1e+4

1e−8

1e−4

1

1e+4

1e+8

1e−9

1e−6

1e−3

1

1e+3

1e−6

1e−3

1

1e+3

1 100 1e+4

2

5

10

2

5

100

2
5

10
2
5

100
2
5

1e+3
2

0.01

1

100

1e−8

1e−4

1

1e+4

1e+8

1

10

100

1e+3

2
5
1
2
5

10
2
5

100

1 100 1e+4

2

5
1
2

5
10
2

5
10
2
5

100
2
5

1e+3
2
5

1e+4

1e−8

1e−4

1

1e+4

1e−5

1

1e+5

1e+10

0.01

1

100

1

100

1e+4

1 100 1e+4

10

100

1e+3

1e+4

1e+5

CMA-ES-CSA ImprovedRavenRoost PSO RANDOMSEARCH RavenRoost RavenRoostFood RavenRoostNoStop

RavenRoostWeak

Function Evaluations Function Evaluations Function Evaluations Function Evaluations

Be
st

-s
o-

fa
r 

f(
x)

Be
st

-s
o-

fa
r 

f(
x)

Be
st

-s
o-

fa
r 

f(
x)

Be
st

-s
o-

fa
r 

f(
x)

Be
st

-s
o-

fa
r 

f(
x)

Be
st

-s
o-

fa
r 

f(
x)

F1F1F1 F2F2F2 F3F3F3 F4F4F4

F5F5F5 F6F6F6 F7F7F7 F8F8F8

F9F9F9 F10F10F10 F11F11F11 F12F12F12

F13F13F13 F14F14F14 F15F15F15 F16F16F16

F17F17F17 F18F18F18 F19F19F19 F20F20F20

F21F21F21 F22F22F22 F23F23F23 F24F24F24

Figure 9: All algorithms, D=10
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Figure 10: RRO algorithms, D=10
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B Probability Density Functions
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Figure 11: Left-to-right, top-to-bottom: Sphere D=[2,5,10], Ellipsoid
D=[2,5,10]
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Figure 12: Left-to-right, top-to-bottom: Rastrigin D=[2,5,10], BuecheRastrigin
D=[2,5,10]
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Figure 13: Left-to-right, top-to-bottom: LinearSlope D=[2,5,10], AttractiveSec-
tor D=[2,5,10]
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Figure 14: Left-to-right, top-to-bottom: StepEllipsoid D=[20,5,10], Rosenbrock
D=[2,5,10]
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Figure 15: Left-to-right, top-to-bottom: RosenbrockRotated D=[2,5,10], Ellip-
soidRotated D=[2,5,10]
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Figure 16: Left-to-right, top-to-bottom: Discus D=[2,5,10], BentCigar
D=[2,5,10]
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Figure 17: Left-to-right, top-to-bottom: SharpRidge D=[2,5,10], DifferentPow-
ers D=[2,5,10]
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Figure 18: Left-to-right, top-to-bottom: RastriginRotated D=[2,5,10], Weier-
strass D=[2,5,10]
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Figure 19: Left-to-right, top-to-bottom: Schaffers10 D=[2,5,10], Schaffers1000
D=[2,5,10]
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Figure 20: Left-to-right, top-to-bottom: GriewankRosenbrock D=[2,5,10],
Schwefel D=[2,5,10]
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Figure 21: Left-to-right, top-to-bottom: Gallagher101 D=[20,5,10], Gallagher21
D=[20,5,10]
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Figure 22: Left-to-right, top-to-bottom: Katsuura D=[2,5,10], LunacekBiRast-
rigin D=[2,5,10]
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