
BSc Bioinformatics

Localized Information Comparison

and Analysis for MycoDiversity Database

Lena ten Haaf (s2566818)

Supervisors:

Prof. Dr. Ir. Fons Verbeek
Dr. Rutger Vos (Naturalis)

BACHELOR THESIS

Computer Science, Specialization Bioinformatics

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 26/07/2023

www.liacs.leidenuniv.nl

Abstract

The MycoDiversity Database (MDDB) is developed and designed by LIACS in collaboration
with Naturalis. This resource represents a lot of fungal species that have been sampled from
the soil. In order to compare species in the database with “new” samples, a phylogenetic
reference tree has been computed. This reference tree serves as a valuable resource for assessing
the fungal biodiversity in a particular area. Phylogenetic placement is a technique that enables
this analysis, and various algorithms are available to facilitate such placement. We propose
a two-step approach that uses pplacer to perform the placement: i) Determine the correct
subtree in the reference tree using BLAST, ii) Use pplacer to determine the position of the
query within the selected subtree. The method is validated by comparing the difference in the
number of nodes between two leaves in the original tree and the tree with the query placed
by pplacer. This method will enable researchers to gain insight into the biodiversity of a
sample. Phylogenetic biodiversity takes into account the evolutionary relationship and genetic
variation among species. This makes the estimation of biodiversity more robust compared to
an estimation based on a taxonomic profile. Furthermore, it can be used to compare different
samples or perform longitudinal research which is very important to assess the biodiversity of
one particular area over time.

Contents

1 Introduction 1
1.1 Computational biodiversity . 1
1.2 Metabarcoding . 2

1.2.1 ITS . 3
1.3 Phylogeny . 4
1.4 Research questions . 5
1.5 Thesis overview . 5

2 Material & methods 6
2.1 Data . 6

2.1.1 Reference tree MDDB . 6
2.2 Software . 7

2.2.1 BLAST . 7
2.2.2 RAxML . 7
2.2.3 Pplacer . 8

2.3 Hardware . 8

3 Placement Methods 9
3.1 Maximum likelihood methods . 9

3.1.1 pplacer . 9
3.1.2 pplacerDC . 9
3.1.3 EPA-NG . 9

3.2 Distance methods . 10
3.2.1 APPLES . 10
3.2.2 App-SpaM . 10

3.3 Other methods . 10
3.3.1 RAPPAS . 10

3.4 Analysis . 11
3.4.1 Conclusion . 11

4 Experiments and Results 13
4.1 BLAST . 13

4.1.1 Method BLAST . 14
4.1.2 Results BLAST . 14

4.2 PPLACER . 19
4.2.1 Method pplacer . 19
4.2.2 Results pplacer . 20
4.2.3 Distance and nodes calculation . 25
4.2.4 Interpretation of results . 28

4.3 Statistical validation . 31
4.4 Runtime . 32
4.5 Visualization . 33

4.5.1 Visualization of result . 33

4.5.2 Visualization for biodiversity . 38

5 Conclusions and Further Research 44
5.1 Conclusion . 44
5.2 Discussion . 46
5.3 Future work . 47

References 51

A Lookup table 52

B Zip file 55

1 Introduction

This bachelor thesis is written as part of the bioinformatics program at Leiden Institute of Advanced
Computer Science (LIACS), at Leiden University.

The overall aim of this thesis is to find a way to do phylogenetic placement on a reference
tree for ITS fungi data. To be able to motivate this research, first, an introduction to computational
biodiversity, metabarcoding, and phylogeny is given. This section ends with the research questions
and an overview of the rest of the thesis.

1.1 Computational biodiversity

The diversity of living organisms on earth is referred to as biodiversity [GM22]. The conventional
approach to studying biodiversity is through the lens of species diversity, focusing on understanding
evolutionary and ecological processes and quantifying patterns among species. However, biodiversity
encompasses more than just species diversity. While two regions may have the same number of
species, their biodiversity can differ due to variations in the phylogenetic background of those
species. Moreover, species names alone lack comprehensive information about their evolution or
functional roles within ecosystems. That is why biodiversity is composed of three interconnected
components [Swe11] (See Figure 1).

Figure 1: The relations between three important components of biodiversity. Source: American
Journal of Botany

Although species diversity is the most familiar component, it is not the sole determinant.
Various traits, such as body size, shape, physiological tolerance, or nutritional needs, can be used to
represent species diversity. However, the choice of traits influences the similarity degree as certain
traits tend to be associated with specific types of organisms [VCMFM11]. Thus, the significance
of the other two components and their relationships with the overall biodiversity should not be

1

https://bsapubs.onlinelibrary.wiley.com/doi/full/10.3732/ajb.1000289
https://bsapubs.onlinelibrary.wiley.com/doi/full/10.3732/ajb.1000289

overlooked. The other two components are functional diversity, a facet of biodiversity that primarily
focuses on the breadth of activities and roles performed by organisms within communities and
ecosystems [PG06]. And phylogenetic diversity that takes into account the evolution of the species.
These two components are related to each other. When in a region all species are closely related to
each other, it means that there is a low phylogenetic diversity. However, this increases the likelihood
of low functional diversity since closely related species resemble each other.

The addition of phylogenetic diversity to the measures to determine biodiversity gives rise to
new computational ways to calculate biodiversity. Taxonomic and phylogenetic information provides
valuable insights into the evolutionary relationships among species [VCMFM11]. By examining the
placement of different species within a phylogenetic tree, it becomes possible to draw conclusions
about the biodiversity within a specific area. Several algorithms have been developed to assign
samples to a reference tree to be able to analyze their positions. In Section 3, we will explore and
elaborate on these algorithms in detail.

1.2 Metabarcoding

The Tree of Life aims to represent the evolutionary relationships among organisms. This is an
ongoing process with the discovery of new species. Life on earth is divided into three different
domains: eubacteria, archaebacteria, and eukaryotes [WKW90]. Fungi are among the largest groups
in the domain of the eukaryotes. This makes fungi an important part of the biodiversity, however,
only about two to eight percent of the fungi species are discovered right now [OPJ+05]. Fungi
are important for the biodiversity of other organisms. The fungi that live in the ground, break
down waste and convert it into metabolites that can be used by other organisms. Reduction of the
biodiversity of fungi is reduction of soil life and everything that grows on it. Fungi are everywhere,
in the soil, in water, and in the air. Since they are everywhere, they play a big role in the ecosystems
of the Earth and they are an important field of research.

An important, and recently started research project is the ARISE project. Which is done by
Naturalis1. They make a mapping of all Dutch species (including fungi) and create an infrastructure
to recognize them. To be able to use fungi in this infrastructure, they make use of metabarcoding
for fungi.

DNA metabarcoding is a technique to describe the composition of species in a sample. In this
case, we look at the metabarcoding of soil samples. DNA barcoding is a sequence-based technique
that is designed for rapid species identification, which will accelerate the identification of new
species. The technique makes use of a barcode gene. This gene must meet two requirements: i)
at the level of species, the variability and divergence of genetics should exhibit substantially ii)
feature conserved flanking sites suitable for the development of universal PCR primers with broad
taxonomic applicability [KE08]. The first aspect is important since enough variability between
marker genes is needed to map a sequence to only one species and allow accurate identification. The
second aspect is needed to extract the barcode gene from the sample. Besides these two aspects, it
is important that the gene is present in every cell of the organism and that it is easy to detect,
even in small DNA quantities. The difference between DNA barcoding and DNA metabarcoding
is that DNA barcoding is used to sample individuals and DNA metabarcoding is used to sample
large collections [PH20]. DNA metabarcoding uses high-throughput sequencing (HTS) to identify

1https://www.naturalis.nl/en/science/arise-knowing-nature-in-the-netherlands

2

https://www.naturalis.nl/en/science/arise-knowing-nature-in-the-netherlands

the species in the sample [LCB+20]. Figure 2 shows the workflow from DNA metabarcoding, from
collecting the sample to the identification of the species in this sample.

Figure 2: Workflow for DNA metabarcoding [Source: Nature Metrics]

1.2.1 ITS

For fungi, the most suitable marker gene is the internal transcribed spacer (ITS) region, a result of
posttranscriptional processing of rRNA cistron. The probability for successful identification is the
highest for this marker gene compared to others [SSH+12]. In the past, before the metabarcoding
technique was developed, the composition of fungi was determined using morphological traits. With
this new technique, also species invisible to the eye can be identified. This improves research into
the biodiversity and living environment of fungi. In addition to the identification of more species,
DNA also tells more about the origin of the fungi and their evolutionary relationships to other
fungi and organisms.

Since the metabarcoding technique, many studies have generated ITS data of fungi. To make
them accessible for everyone, different databases are built. One of these databases is the UNITE
database2, which contains all eukaryotic ITS sequences. In this database, sequences with a specific
similarity percentage are combined into species hypothesis (SH) [ANL+10].

Another database that contains ITS data is the MycoDiversity DataBase3 (MDDB). A joint
project between Naturalis and Leiden Institute of Advanced Computer Science (LIACS). In this
database, the sequence is combined with a location, taxonomic information, and literature written
about this sequence [MHK+20]. The database management system behind MDDB is MonetDB.
In MonetDB the data is stored in columns instead of rows, which speeds up the retrieval of data
significantly compared to row-stored systems [NK12]. Functions defined in SQL, Python, and R can
be integrated into the database, allowing analysis of the data. The integration of Python functions
allows for data mining and data visualization techniques. Instead of species hypothesis, MDDB uses
Zero-radius Operational Taxonomic Units (ZOTUs). Operational Taxonomic Units (OTUs) are
clusters of reads with similar sequence similarity. Usually, these clusters are created using a cluster
threshold of 97% [SG94]. For ZOTUs, this threshold is 100%, which means that if two sequences
are not exactly similar, they are considered to be two different, unique taxonomic units [MHK+20].

2https://unite.ut.ee/#main
3https://mycodiversity.liacs.nl/

3

https://www.naturemetrics.com/
https://unite.ut.ee/##main
https://mycodiversity.liacs.nl/

1.3 Phylogeny

Phylogeny depicts the evolutionary relationship between species. In the past, morphological traits
were used for this. Nowadays, besides morphological traits DNA sequences are used, because
evolution can be clearly seen in the genetic sequence [ZJ12]. To convey the phylogenetic information,
it is represented in a branching diagram, also called a phylogenetic tree [BL01]. A phylogenetic tree
serves as a valuable tool for gaining insights into both biodiversity and the evolutionary events that
have taken place over time [Bau08].

Figure 3: Representation of a phylogenetic tree [Source: Nature Education]

Figure 3 is an example of a rooted phylogenetic tree. Rooted means that all species in the
tree descend from that one root, which is the common ancestor of all organisms in the tree. Such a
tree consists of different parts [Bau08]. The leaves of the tree represent the different species in the
tree. They are also called taxa. A node is a branching point in the tree. The children of the node
are descendants with the node as the common ancestor. A branch is a connection between two
nodes, this is called an internal branch, or between a node and a leaf, this is called an external
branch. In certain phylogenetic trees, the length of branches corresponds to the level of interspecies
diversity. Longer branch lengths indicate greater genetic or evolutionary distance between species,
indicating they are more distantly related [BL01]. A clade is a distinct segment of a phylogenetic
tree that encompasses both an ancestral lineage and all its subsequent descendants. A phylogenetic
tree can be represented in different ways. If you can turn a tree into another tree by twisting or
rotating branches, then these two trees have the same topology and represent the same evolutionary
relationship. This is illustrated in Figure 4.

Figure 4: Different trees that show the same relationship [Source: Nature Education]

One way of using phylogenetic trees for biodiversity determination is via phylogenetic placement
(Section 3 goes more into detail about phylogenetic placement). This is a more accurate way than a
taxonomic read assignment [BM21]. UniFrac is a measure that can be used to compare environmental
samples and say something about biodiversity [LLK+11].

4

https://www.nature.com/scitable/topicpage/reading-a-phylogenetic-tree-the-meaning-of-41956/#:~:text=A%20phylogenetic%20tree%2C%20also%20known,genes%20from%20a%20common%20ancestor.
https://www.nature.com/scitable/topicpage/reading-a-phylogenetic-tree-the-meaning-of-41956/#:~:text=A%20phylogenetic%20tree%2C%20also%20known,genes%20from%20a%20common%20ancestor.

1.4 Research questions

The aim of this research is to develop a method to do phylogenetic placement on a reference tree for
ITS fungi data. This method can then be used in biodiversity research. This approach can provide
valuable insights into the differences in biodiversity between distinct locations or for longitudinal
studies.

There already exist different algorithms that can perform phylogenetic placement. However, they
are not all suitable for ITS data. That is why first an analysis of these algorithms needs to be
performed. After that, a method will be constructed for the placement. Finally, it is required to
make a visualization of the results. From this overarching problem statement, the following research
question can be formulated:

RQ1: How can the phylogenetic tree be a measure to determine biodiversity?

The above-stated research question can be separated into two subquestions:

RQ1.1: Which suitable algorithms already exist for phylogenetic placement?

RQ1.2: What is an efficient visualization for the outcome?

The method we will construct uses an algorithm for phylogenetic placement. By using this, we
expect that if we remove leaves from a tree this algorithm places them back at the correct position.
If the method we propose does not work, the leaves will be placed back at the wrong position.

1.5 Thesis overview

Chapter 2 contains the data, software, and hardware that is used for this project. In chapter 3 the
different placement algorithms are explained and analyzed. Chapter 4 contains the method that is
proposed and the experiments done with this method. A conclusion will be given in chapter 5. This
section also contains a discussion and future work.

5

2 Material & methods

This section describes the data, software, and hardware that is used for this research.

2.1 Data

The data that is used for this research comes from UNITE and MDDB. Luuk Romeijn en Casper
Carton created a method to create a reference tree using this data, which is made up of several
chunks [CR22]. How the data is retrieved and what it looks like is described in this subsection.

2.1.1 Reference tree MDDB

The reference tree for MDDB is created using ITS data from UNITE and MDDB (See section 1.2).
The algorithm that is created has different parameters that the user should specify. The research
specifies several different options, and they give two recommendations. The first recommendation:
l0.2_s3_4_1500_o1.0_a0_constr_localpair is used for this research [CR22]. This setting is
chosen because it has the most sequences in the tree when looking at the recommendations. The
original data that is used for the creation of the reference tree can be found here. The data that is
used for this research is downloaded from the github page of Luuk Romeijn. The folder supertree
contains the data of the whole reference tree. From this folder, only the backbone.fasta file is
used. This file contains all the sequences and their names and it is used for the BLAST search.
There is a total of 23237 sequences in the file.

The folder chunks contains the aligned and unaligned FASTA files of the different chunks and
the associated tree files. The aligned FASTA files, which contain all the sequences in the chunk,
and the corresponding tree files of all chunks are used for this research. These files are used for the
BLAST search and the experiments with pplacer.

Some details about the data: There are 229 chunks in the reference tree. The length of the
chunk, or the number of sequences in the chunk, varies between 4 and 2249 sequences. There are
103 unique lengths for the chunks. The average length of a chunk is 102.472, and the standard
deviation is 244.581. The median is 20 and the length that occurs the most is 5, with a frequency
of 23. Figure 5 is a histogram of the frequency of the lengths of the chunks.

6

https://doi.plutof.ut.ee/doi/10.15156/BIO/1264708
https://github.com/luukromeijn/MDDB-phylogeny/tree/main/results/thesis%20results/l0.2_s3_4_1500_o1.0_a0_constr_localpair

Figure 5: Histogram of the length of the chunks in the reference tree

2.2 Software

For the implementation of the analysis Python version 3.8.2 is used. This allowed the use of different
Python packages, such as Biopython, and ete3 for the reading and writing of fasta and Newick tree
files and taxtastic for the creation of reference packages.

2.2.1 BLAST

Basic Local Alignment Search Tool (BLAST) is a tool that can be used to find similarities between
different sequences. It can compare protein or nucleotide sequences to a general database or a
self-created database. For this research BLAST+ version 2.3.0 is used [CCA+09] in the command
line.

2.2.2 RAxML

To be able to use pplacer, the query should be removed from the existing chunk, and the tree of
the chunk should be rebuilt. For this, RAxML (Randomized Axelerated Maximum Likelihood)
version 8.2.12, is used [Sta14]. This is a Maximum Likelihood algorithm that can analyze and
generate phylogenetic trees. It generates different trees, each with a likelihood score. The generation
of these trees and the calculation is very time-consuming, especially when the number of sequences
is large. To create reference packages, the Python package taxtastic version 0.9.3, is used [Bio].

7

2.2.3 Pplacer

The key component of this research is the phylogenetic placement. This placement is performed by
the pplacer algorithm version v1.1.alpha19-0-g807f6f3 which is freely available [MKA10]. A large
collection of query sequences can be placed on a reference tree using likelihood-based methodology.
pplacer has two different modes: Maximum Likelihood (ML) mode and Bayesian mode. In ML
mode, the likelihood weight ratio (LWR) is computed. To create such a LWR, all the likelihood
values from all the different placements are normalized, such that they sum to one. In Bayesian
mode, the posterior probability of a placement is calculated. Both modes are used in this research.

pplacer requires a fixed reference tree, a reference alignment, and the query sequence(s) as
input. The reference tree and the reference alignment are combined into a reference package made
with taxtastic (See section: 2.2.2). It gives a single .jplace file as output, with the reference tree
with numbered branches and the placement(s) of the query sequence(s). For every query sequence,
there might be multiple placements when the algorithm was uncertain. The placement with the
highest LWR score is the best possible location for the query sequence. The results of pplacer can
be analyzed and visualized using guppy [MKA14].

2.3 Hardware

The BLAST search, the generation of trees with RAxML, and the phylogenetic placement with
pplacer are all performed on the MDDB’s server by LIACS. This server runs on an Intel(R)
Xeon(R) x5355 CPU (8 cores) with 32GB memory. The analysis of the BLAST results, the reference
package generation, and the analysis of the pplacer output are performed on a laptop. This laptop
runs on an Intel(R) Core(TM) i5-8265U CPU (4 cores) with 8GB memory.

8

3 Placement Methods

There already exist different methods that can perform phylogenetic placement. In phylogenetic
placement, a new, unknown sequence, called a query sequence (QS), is placed on a fixed phylogenetic
reference tree (RT). This will give researchers insight into how diverse a sample is. For each QS, the
branches in the tree that are most related to the sequence are determined. Keeping in mind that
the reference tree is fixed, the new QSs are not placed in the tree, they are rather mapped onto
it [CSDB22a]. A sample can contain multiple queries. These queries are only aligned against the
reference tree and not against each other. Placement of these queries only resolves the phylogenetic
relationship between the query and the RT, but not between the different queries [CSDB22b]. The
algorithms can be divided into three categories: maximum likelihood methods, distance methods,
and other methods. This subsection provides information about all methods and explains several
algorithms.

3.1 Maximum likelihood methods

Maximum likelihood methods use maximum likelihood to determine the placement of the query
sequence. All methods are computationally intensive. For this research three different algorithms
are compared:

3.1.1 pplacer

pplacer is a phylogenetic placement algorithm that is written in OCaml, C, and Python. It takes
as input a reference tree (RT), a reference alignment (RA) of the reference tree, and a collection of
query sequences (QSs). pplacer has two different modes: maximum likelihood (ML) mode and
Bayesian mode. In ML mode, the QSs are placed on the RT using ML criteria. The output is a
file with the RT and the placements of the QSs. These placements consist of the edge number
where the QS will be placed, the likelihood score, and the likelihood weight ratio. For this ratio,
all likelihood values for the placements are normalized such that they sum to one. In Bayesian
mode, the output also contains the posterior probability of the query sequence. pplacer has one
disadvantage, it fails on reference trees with more than 5000 leaves. [MKA10]

3.1.2 pplacerDC

pplacerDC is a phylogenetic placement algorithm that is written in Python. It uses divide and
conquer to be able to process bigger trees. First, it divides the reference tree into different subtrees
with a bound size. Secondly, it uses pplacer to place the query sequences into the subtrees. This
gives a candidate tree with the QS placed in each subtree. Each placement is scored with a maximum
likelihood score given by RAxML. The best placement is then returned by pplacerDC as placement
on the reference tree. The input for the algorithm is the same as for pplacer. Due to the use of
divide and conquer, pplacerDC can process reference trees with up to 100.000 leaves. [KPW21]

3.1.3 EPA-NG

EPA-NG is a phylogenetic placement algorithm that is written in C++. It works in two phases. First,
it determines a set of candidate branches where the QS can be placed, this is called preplacement.

9

In the second phase, the candidate branches are scored more thoroughly with a likelihood score.
EPA-NG can be parallelized to speed up the process. As input, it requires a multiple sequence
alignment (MSA), a reference tree, and QSs aligned against the fixed MSA. As output, it gives back
a set of placements on the reference tree and each placement is associated with a LWR. [BKC+19]

3.2 Distance methods

Distance methods use a distance metric to determine the placement of the query sequence. For this
research two different algorithms are compared:

3.2.1 APPLES

APPLES is a distance-based phylogenetic placement algorithm that is written in Python. APPLES can
be used on assembly-free and aligned datasets. For assembly-free datasets the distance is calculated
using Skmer [SBPG+19]. This model computes the genomic distances. The distances are then
corrected using the JC69 model. For aligned datasets, the distance is calculated using JC69. The
input of the algorithm is the RT, a QS, and a vector with the distances between the QS and all
other species in the RT. The output is a tree that adds the QS to the RT. [BSM20]

3.2.2 App-SpaM

App-SpaM (Alignment-free phylogenetic placement algorithm based on Spaced-word Matches) is a
distance-based algorithm that is written in C++. It requires a RT and the corresponding reference
sequences and a set of QSs as input. The distance is calculated using spaced-word matches. For
these matches, a binary pattern that describes the match and don’t care positions is determined
at forehand. This pattern is then used to estimate the distance. Finding spaced-word matches
between the RT and a QS is the first step of the algorithm. In the second step, a subset of these
spaced-word matches is used to calculate the distances. This distance is then used to determine the
position of the QS on the RT. The output is a jplace file with the placements of the QSs. [BSM20]

3.3 Other methods

There exist other methods that do not use distance or maximum likelihood as metrics, but that
use something else, like ancestral reconstruction.

3.3.1 RAPPAS

RAPPAS (Rapid Alignment-free Phylogenetic Placement via Ancestral Sequences) is an algorithm
that is written in JAVA. It uses ancestral reconstruction to determine the placement. Ancestral
reconstruction is a way to reason back in time from observed traits of individuals or populations to
infer the characteristics of their common ancestors [JLM+16]. The algorithm uses phylogenetically
informed k-mers (phylo-k-mers) to determine the placement. As input a RT and reference alignment
are required, and the algorithm then builds a database with the phylo-k-mers. By matching the
k-mer of the QS to the database, the query can be placed on the tree. A jplace file with the QSs
and their LWR is generated as output. [LSP19]

10

3.4 Analysis

This section contains an analysis of the different methods that can be used for phylogenetic
placement.
pplacer is a computationally intensive algorithm that fails on reference trees with more than 5000
leaves. It does return an LWR for each query and the involved branch lengths [MKA10]. pplacerDC
is an improvement of pplacer. It uses divide and conquer to be able to process bigger reference
trees, but it is still computationally intensive. It is slower than APPLES, but the accuracy is better
and the algorithm has good scalability [KPW21].

EPA-NG is better than pplacer when preplacement and premasking are both enabled. It is also
faster than pplacer and pplacerDC on a RT with 1000 leaves. When the number of leaves increases,
pplacerDC becomes faster. The accuracy of EPA-NG is lower than the accuracy of pplacerDC, but
higher than APPLES [KPW21]. The algorithm fails on reference trees with more than 50,000 leaves
and it is computationally intensive. On a smaller RT, the algorithm has good scalability for multiple
queries [BKC+19]. It returns a LWR and the branch lengths for all queries.

APPLES can run on large RT and is fast when placing one query. It has a lower accuracy than
maximum likelihood methods and it only returns the position and the branch lengths. There is no
uncertainty reported about the placements. APPLES can handle assembly-free and aligned datasets
[BSM20].

The accuracy of RAPPAS is similar to the accuracy of maximum likelihood methods, however,
this accuracy is highly influenced by the k-mer size. The first step is building a database for the
RT that can be used multiple times. The algorithm can be used with metabarcoding and it returns
the LWR of the placements [LSP19].

The last algorithm that is analyzed is App-SpaM. This algorithm can use short sequencing
reads and returns the placement of the queries without uncertainty but with the branch lengths.
It has the fastest runtime compared to RAPPAS, APPLES, EPA-NG, and pplacer placing 100,000
queries. A difficulty for the algorithm are partial homologies, which may cause over-estimation of
the distance [BM21].

Besides algorithms that perform phylogenetic placement, there are also methods that use
k-mers to identify sequences present in a sample [GZR22] [VESB23]. Instead of the reference tree,
these methods use a reference database that contains the k-mer profiles specific to each taxonomic
unit. However, these methods are not considered in this research.

Table 1 provides a summary of all methods described in sections 3.1, 3.2, 3.3, and 3.4.

3.4.1 Conclusion

There exist several phylogenetic placement methods that are based on different measurement
methods. Maximum likelihood methods are computationally expensive but work better for ITS
data because they can better handle the gaps. Because the method will be integrated into MDDB,
it is important that it is compatible with MonetDB. As stated in section 1.2.1, functions written
in Python, R, and SQL can be integrated. That is why for this research pplacer is chosen in
combination with BLAST. The proposed method is explained in section 4.

11

Method
ML/ dis-
tance/
other

Advantages Disadvantages Input Output Language

pplacer ML X

Computationally
intensive. Fails
on RT with
>5000 leaves.

RT, RA and a
collection of QSs

RT with QS
and their
LWR

OCaml,
C,
Python

pplacerDC ML

Uses D&C for
big trees. Slower
than APPLES,
but higher accu-
racy and good
scalability

Computationally
intensive

RT, RA and a
collection of QSs

RT with the
placed QS

Python

EPA-NG ML

Better than
pplacer when
preplacement
and premasking
are used

Fails on RT
with >50.000
leaves. Com-
putationally
intensive.

MSA, RT, and
QSs aligned
against fixed
MSA

Set of place-
ments on the
RT, each with
an LWR

C++

APPLES
Kmer-
based
distance

Can run on large
RT. Scalable
method.

Lower accuracy
than ML meth-
ods

RT, QS, and
vector with dis-
tances between
QS and species
in RT

RT with the
placed QS

Python

App-
SpaM

Phyloge-
netic
distance

Can use short se-
quencing reads

Partial homolo-
gies may cause
over-estimation
of distances.

A set of RSs, an
RT, and a set of
QSs

JPlace file
containing
all the place-
ments of the
QSs

C++

RAPPAS

Ancestral
recon-
struc-
tion

Builds a DB
that is used for
placement. Can
be used with
metabarcoding.

Accuracy is
highly influenced
by the k-mer
size.

Input for DB:
RA and RT

JPlace file
with place-
ments of QSs
(with LWR)

JAVA

Table 1: Summary of the different phylogenetic placement algorithms. ML: Maximum Likelihood,
RT: Reference Tree, QS: Query Sequence, LWR: Likelihood Weight Ratio, RA: Reference Alignment,
RS: Reference Sequence, DC: Divide and Conquer, MSA: Multiple Sequence Alignment

12

4 Experiments and Results

Figure 6 is an overview of the method that is tested for the phylogenetic placement. The method is
divided into two parts: BLAST and pplacer. BLAST is used to determine the correct subtree and
pplacer is then executed on the smaller subtree. The red and blue rectangles are shown in more
detail in the corresponding subsections. The method is validated by calculating the distances and
the number of nodes.
The method is tested with three different subsets of the data, with each 25 randomly selected
queries. The third test contains next to the 25 new samples, also three samples from the first
(denoted with a * in the results) and three samples from the second test (denoted with a + in
the results). The pplacer part of the method is run three times for each test to determine if the
algorithm is stochastic, or deterministic.

This section contains an in-depth explanation of the different parts of the method.

Figure 6: Overview of the method for phylogenetic placement. First BLAST is used to identify the
subtree. Then pplacer is used to do the phylogenetic placement.

4.1 BLAST

Determining the correct subtree is an important step for the phylogenetic placement. Since pplacer
can not handle trees with more than 5000 leaves, we need to find a way to use pplacer on a smaller
tree. The reference tree is constructed using different chunks. How BLAST is used to determine the
correct subtree and the results of this are described in this subsection.

13

Figure 7: A detailed representation of the first part of the method, using BLAST.

4.1.1 Method BLAST

Figure 7 is a graphical representation of the first part of the method. It is a detailed representation
of the red rectangle in figure 6. The reference tree is divided into two parts. A subset of 25 queries
that will be used for testing, and the remaining reference tree without the 25 queries. A BLAST
database is made from the remaining reference tree. The following command is used for this:

makeblastdb -in data.faa -out database_name -dbtype nucl -title ’database title’

-parse_seqids,

where data.faa is the fasta file that contains all sequences for the database. -parse_seqids is
specified in order to keep the original sequence ids.

After that, the query sequences are blasted against the created BLAST database. The command
that is used for this is as follows:

blastn -query test.faa -db database_name -out output.csv -outfmt ’7 qseqid

sseqid pident evalue length qcovhsp’ -max_target_seqs 10,

where test.faa is the fasta file that contains all the query sequences, output.csv is a CSV file that
is generated as output and it has 6 columns: query id, subject id, % identity, ϵ-value, alignment
length and % query coverage per HSP. For each query sequence, the top ten BLAST hits are saved
in the output file.

4.1.2 Results BLAST

The determination of the original subtree is done for every BLAST hit for every query. The number
of hits in a subtree is counted and after the ten hits, the subtree with the most hits is compared
to the original subtree where the query was in to see if the correct subtree was found. Table 3 is
the result of test one. It denotes the query id, the original subtree, in which subtree(s) there were
BLAST hits, the number of BLAST hits in these subtree(s), and if the original subtree is the same
tree as the subtree with the most BLAST hits. For this test for only one of the 25 queries not the
correct subtree was chosen. This is denoted with an orange colour in the table. Table 4 is the result
of test two and table 5 is the result of test three.

14

Table 2 is a summary of the results of all the tests. In test one and test three, there is only
one query where we did not end up in the correct subtree after the BLAST search. In test one,
77% of the queries had all hits in the same, correct tree. For test two and test three this is 88%
and 77% respectively.

All hits in 1 subtree Multiple subtrees Correct Wrong Number of queries

Test 1 19 6 24 1 25
Test 2 22 3 25 0 25
Test 3 24 7 30 1 31

Table 2: Summary of the results of all tests. Test three contains 25 random queries and three
randomly selected queries from test one and three from test two

15

Query id Original tree Subtree(s)
Hits
BLAST

Correct

SH1237664.08FU JN685254 reps Glomerales Glomerales 10 Yes
SH1140508.08FU AB634264 refs Thelephorales Thelephorales 10 Yes
SH1175403.08FU KJ780631 refs Hygrophoraceae Hygrophoraceae 10 Yes
SH1170869.08FU UDB015275 refs Tricholomataceae Tricholomataceae 10 Yes
SH1235509.08FU KU663969 reps Hymenogastraceae Hymenogastraceae 10 Yes
*SH1145193.08FU EU222979 reps Russulales Russulales 10 Yes
SH1218065.08FU UDB011825 refs Geastrales Geastrales 10 Yes

SH2605620.08FU UDB0454851 reps Cystobasidiales

Cystobasidiomycetes
ord Incertae sedis,
Erythrobasidiales,
Cystobasidiales

1, 1, 8 Yes

SH3220109.08FU UDB0625009 reps Entylomatales
Hymenochaetales,
Entylomatales, Mi-
crostromatales

1, 3, 6 No

SH1184486.08FU UDB0244450 reps Geminibasidiales

Tremellales,
Cystofilobasidi-
ales, Tritirachiales,
Geminibasidiales

1, 1, 1, 7 Yes

SH2613479.08FU UDB0408767 reps Capnodiales Capnodiales 10 Yes
SH2601717.08FU UDB0237225 reps Pleosporales Pleosporales 10 Yes
SH1152427.08FU MG029166 reps Helotiales Helotiales 10 Yes
*SH1189121.08FU MG920147 reps Helotiales Helotiales 10 Yes
SH1168071.08FU KU945909 reps Aspergillaceae Aspergillaceae 10 Yes
SH1166278.08FU MK841471 reps Aspergillaceae Aspergillaceae 10 Yes

SH1150620.08FU MF278325 reps Trichocomaceae
Aspergillaceae, Tri-
chocomaceae

1, 9 Yes

SH1190485.08FU KX828139 reps Xylariales
Diaporthales, Xylari-
ales

2, 8 Yes

SH1149544.08FU AY425628 reps Lecanorales Lecanorales 10 Yes
SH1215154.08FU LN810821 reps Acarosporales Acarosporales 10 Yes
*SH1152267.08FU KR017144 reps Trapeliales Trapeliales 10 Yes

SH1160442.08FU HQ650658 reps Lecideales
Lecanorales, Lecide-
ales

1, 9 Yes

SH1160493.08FU UDB0260931 reps Saccharomycetales Saccharomycetales 10 Yes
SH1177296.08FU UDB0231445 reps Mortierellales Mortierellales 10 Yes
SH1180624.08FU KP744428 reps Mortierellales Mortierellales 10 Yes

Table 3: The results of the subtree determination of the first test. Query is the id of the query
which is blasted against the database. Original tree is the original subtree of the query. Subtree(s)
are the trees with BLAST hits of the specific query. Hits BLAST are the number of BLAST hits in
the subtree(s) and correct is if the original tree is the same as the subtree with the most BLAST
hits. The orange colour denotes the query that did not return the same subtree as the original
subtree. The asterisk (*) highlights the queries that are tested again in test three.

16

Query id Original tree Subtree(s)
Hits
BLAST

Correct

SH1159594.08FU UDB0335978 reps Thelephorales Thelephorales 10 Yes
SH1159486.08FU KF476884 reps Thelephorales Thelephorales 10 Yes
SH1140827.08FU AY969759 reps Thelephorales Thelephorales 10 Yes
SH1245769.08FU MN007027 reps Polyporales Polyporales 10 Yes
SH1238102.08FU JN105716 reps Polyporales Polyporales 10 Yes
+SH1190303.08FU MH926037 reps Polyporales Polyporales 10 Yes
SH1145476.08FU UDB007576 reps Boletales Boletales 10 Yes
SH1184430.08FU UDB0767606 reps Russulales Russulales 10 Yes
SH1191708.08FU MF496149 reps Russulales Russulales 10 Yes
+SH2614834.08FU UDB0680020 reps Tremellales Tremellales 10 Yes
SH1238165.08FU MH861181 refs Pleosporales Pleosporales 10 Yes
SH1150688.08FU KF800188 reps Pleosporales Pleosporales 10 Yes
SH1156865.08FU AF486126 refs Helotiales Helotiales 10 Yes
SH1166814.08FU EF669705 reps Aspergillaceae Aspergillaceae 10 Yes
SH1162773.08FU KT310978 reps Aspergillaceae Aspergillaceae 10 Yes
SH1162466.08FU HQ891869 reps Aspergillaceae Aspergillaceae 10 Yes
SH1166968.08FU KY978354 reps Aspergillaceae Aspergillaceae 10 Yes
SH1235707.08FU KY051892 reps Diaporthales Diaporthales 10 Yes
+SH1191717.08FU MF488989 refs Xylariales Xylariales 11 Yes
SH1142770.08FU KT949894 reps Xylariales Sordariales, Xylariales 1, 9 Yes

SH1183141.08FU GU903288 reps Magnaporthales
Hypocreales, Magna-
porthales

1, 9 Yes

SH1228780.08FU KY940500 reps Magnaporthales
Glomerellales, Xylari-
ales, Magnaporthales

1, 1, 8 Yes

SH1172583.08FU KR912053 reps Teloschistales Teloschistales 10 Yes
SH1183613.08FU KJ707198 reps Saccharomycetales Saccharomycetales 10 Yes
SH1172915.08FU JQ906769 refs Saccharomycetales Saccharomycetales 10 Yes

Table 4: The results of the subtree determination of the second test. Query is the id of the query
which is blasted against the database. Original tree is the original subtree of the query. Subtree(s)
are the trees with BLAST hits of the specific query. Hits BLAST are the number of BLAST hits in
the subtree(s) and correct is if the original tree is the same as the subtree with the most BLAST
hits. The plus (+) highlights the queries that are tested again in test three.

17

Query id Original tree Subtree(s)
Hits
BLAST

Correct

SH2591562.08FU MK348933 reps Glomerales Glomerales 10 Yes
SH1175403.08FU KJ780631 refs Hygrophoraceae Hygrophoraceae 10 Yes
SH1180966.08FU KT429785 refs Hygrophoraceae Hygrophoraceae 10 Yes
SH1235601.08FU FJ943242 reps Hygrophoraceae Hygrophoraceae 10 Yes

SH3233617.08FU MT883671 reps Amanitaceae
Cortinariaceae, Amanitaceae,
Tricholomataceae, Callistospo-
riaceae, Lyophyllaceae

1, 1, 3,
3, 2

No

SH1168537.08FU LC056769 reps Amanitaceae Amanitaceae 10 Yes

SH2593743.08FU MW077527 reps Pluteaceae
Pluteaceae, Lyophyllaceae, Hy-
menochaetales

5, 3, 2 Yes

+SH1190303.08FU MH926037 reps Polyporales Polyporales 10 Yes
SH1174831.08FU LC368018 reps Russulales Russulales 10 Yes
*SH1145193.08FU EU222979 reps Russulales Russulales 10 Yes
SH2602692.08FU UDB0613842 reps Auriculariales Auriculariales 10 Yes
SH1173571.08FU UDB0764892 reps Auriculariales Auriculariales 10 Yes
+SH2614834.08FU UDB0680020 reps Tremellales Tremellales 10 Yes
SH1235583.08FU HQ874756 reps Botryosphaeriales Botryosphaeriales 10 Yes
SH1145889.08FU UDB028521 reps Helotiales Helotiales 10 Yes
SH1155345.08FU HM230882 reps Helotiales Helotiales, Phacidiales 9, 1 Yes
*SH1189121.08FU MG920147 reps Helotiales Helotiales 10 Yes
SH1162906.08FU AF272574 refs Aspergillaceae Aspergillaceae 10 Yes
SH1194552.08FU UDB092932 reps Sordariales Sordariales 10 Yes
SH1173602.08FU HM484543 refs Hypocreales Hypocreales 10 Yes
SH1187931.08FU MH858276 reps Hypocreales Hypocreales 10 Yes
+SH1191717.08FU MF488989 refs Xylariales Xylariales 11 Yes

SH1153681.08FU MT185508 reps Chaetosphaeriales
Chaetosphaeriales,
Phomatosporales

10, 1 Yes

SH2604690.08FU UDB090068 reps Pleurotheciales Pleurotheciales 10 Yes

SH1144564.08FU HQ889706 reps Boliniales
Coniochaetales, Sordariales,
Boliniales

1, 3, 6 Yes

SH1169414.08FU AJ458289 reps Ostropales
Ostropales, Lecanorales, Um-
bilicariales, Pertusariales

6, 1, 2,
1

Yes

*SH1152267.08FU KR017144 reps Trapeliales Trapeliales 10 Yes
SH1174889.08FU KR902678 reps Teloschistales Teloschistales 10 Yes

SH2608872.08FU UDB0209524 reps GS36
Capnodiales, Lecanoromycetes
ord Incertae sedis, GS36

4, 1, 5 Yes

SH1178035.08FU EU836707 refs Saccharomycetales Saccharomycetales 10 Yes
SH1155115.08FU KC489498 refs Umbelopsidales Umbelopsidales 10 Yes

Table 5: The results of the subtree determination of the third test. Query is the id of the query
which is blasted against the database. Original tree is the original subtree of the query. Subtree(s)
are the trees with BLAST hits of the specific query. Hits BLAST are the number of BLAST hits in
the subtree(s) and correct is if the original tree is the same as the subtree with the most BLAST
hits. The orange colour denotes the query that did not return the same subtree as the original
subtree. The asterisk (*) and the plus (+) highlight the sequences that are also tested in tests one
and two respectively.

18

4.2 PPLACER

The second part is the actual placement of the query sequences. The reference tree is reduced in size
by selecting a subtree, so pplacer can be used for the placement. Before pplacer can be run, there
are some steps to be taken. Figure 8 is a graphical representation of the second part of the method.
It is the detailed representation of the blue pplacer rectangle in figure 6. The preprocessing steps
for pplacer, the use of pplacer, and the analysis of the result are described in this section.

Figure 8: A detailed representation of the second part of the method, using pplacer

4.2.1 Method pplacer

The query sequences are removed from the aligned fasta files of the chunks. They are also removed
from the corresponding tree files. However, when these modified files were given as input to pplacer,
a parsing error was encountered that was unsolvable. As a result of this unresolved issue, the
decision was made to employ RAxML for the purpose of reconstructing the subtree. The modified
fasta files are the input for RAxML. pplacer requires a reference package as input, so that needs
to be created first. RAxML is used to rebuild the chunk and to generate an information file about
this tree. RAxML requires a file with aligned sequences as input and returns multiple files. The
RAxML info and RAxML bestTree files are of importance for this research. The RAxML info file
contains the final GAMMA-based likelihoods and the α shape parameters. It also denotes how
RAxML was called and some information about the algorithm. The RAxML bestTree file contains
the best phylogenetic tree with the highest maximum likelihood score. These two files are used to
create a reference package for pplacer. For this research, RAxML is called as follows:

./raxmlHPC-PTHREADS-SSE3 -s input_file -n file_name.out -w output_

dir -m GTRGAMMA -p 12345 -T 8,

where input file is the name of the input file, file name is the name of the output file, and output dir
is the name of the output directory. GTRGAMMA is the model that is used for the substitution,
-p 12345 is the parsimony random seed and -T is the number of threads that should be used.

The reference packages are created using taxtastic. This package requires three files as input
and returns a reference package. The package is called as follows:

19

taxit create -l its -P package_name.refpkg --aln-fasta input_file.fasta

--tree-stats RAxML_info.file_name.out --tree-file RAxML_bestTree.file

_name.out

After the preprocessing steps, the next step is to run pplacer. It is called as follows:

pplacer -c refpkg_file query_file -o query_name.jplace

refpkg file is the reference package including the reference tree and alignment, query file is the file
that contains the aligned query or queries, and query name is the output file as .jplace. To run
pplacer in Bayesian mode, a -p is added to the end of the command.

For analyzing the performance of pplacer, a tree with the query sequence placed is needed.
This tree can be generated using the guppy tog command [MKA14]. This takes the best placement
and puts this in the tree. The command that is used is as follows:

guppy tog -o file_name.tog.tre file_name.jplace,

where file name is the name of the corresponding .jplace file generated by pplacer. Both the
.jplace and the .tog.tre files are used for the distance and nodes calculation. The results are shown
in the next section.

4.2.2 Results pplacer

Figure 9 shows the output of pplacer for one of the chunks. The first element of the output is the
tree with the edges numbered. The second part is the placement of the query sequence(s). For this
tree there was one query sequence, that could be placed in five different locations. The placement
with the highest likelihood weight ratio is the best possible location. The metadata part denotes
how pplacer was called and what the field names are.

20

Figure 9: Output of pplacer, as jplace file, for one of the chunks. The tree part contains the tree
with edges numbered. The placements part contains information about the placed query sequence(s)
and the metadata part contains information about how pplacer is called.

Table 6 is the summarized output of pplacer for test one. It contains the query id of the
placed sequence, the subtree in which it is placed, the likelihood weight ratio (LWR) for the best
placement, the number of possible positions for the query sequence and the posterior probability for
the best placement. The gray columns are the output of pplacer in maximum likelihood mode, the
green column is added when pplacer is run in Bayesian mode. Table 7 is the summarized output
of pplacer for test two and Table 8 is the summarized output of pplacer for test three.

21

Query id Subtree LWR
Number of
placements

Posterior
probability

SH1237664.08FU JN685254 reps Glomerales 0.996557 3 0.997709
SH1140508.08FU AB634264 refs Thelephorales 1.0 1 1.0
SH1175403.08FU KJ780631 refs Hygrophoraceae 0.323651 9 0.388831
SH1170869.08FU UDB015275 refs Tricholomataceae 0.926914 8 0.923368
SH1235509.08FU KU663969 reps Hymenogastraceae 1.0 1 1.0
*SH1145193.08FU EU222979 reps Russulales 0.997733 2 0.994696
SH1218065.08FU UDB011825 refs Geastrales 0.543687 7 0.54309
SH2605620.08FU UDB0454851 reps Cystobasidiales 0.218069 10 0.223116
SH1184486.08FU UDB0244450 reps Geminibasidiales 0.29354 7 0.401973
SH2613479.08FU UDB0408767 reps Capnodiales 1.0 1 1.0
SH2601717.08FU UDB0237225 reps Pleosporales 0.161761 15 0.241216
*SH1189121.08FU MG920147 reps Helotiales 0.994604 4 0.995463
SH1152427.08FU MG029166 reps Helotiales 0.437745 3 0.539873
SH1168071.08FU KU945909 reps Aspergillaceae 0.05 20 0.05
SH1166278.08FU MK841471 reps Aspergillaceae 0.052317 20 0.055319
SH1150620.08FU MF278325 reps Trichocomaceae 0.348697 16 0.262837
SH1190485.08FU KX828139 reps Xylariales 1.0 1 1.0
SH1149544.08FU AY425628 reps Lecanorales 0.949805 3 0.967509
SH1215154.08FU LN810821 reps Acarosporales 0.401506 5 0.408583
*SH1152267.08FU KR017144 reps Trapeliales 0.948184 3 0.986195
SH1160442.08FU HQ650658 reps Lecideales 0.6031 10 0.644485
SH1160493.08FU UDB0260931 reps Saccharomycetales 1.0 1 1.0
SH1177296.08FU UDB0231445 reps Mortierellales 0.916382 3 0.955286
SH1180624.08FU KP744428 reps Mortierellales 1.0 1 1.0

Table 6: The result of pplacer for test one. Query id is the id of the query that is placed. The
subtree is the subtree in which the query is placed. LWR is the likelihood weight ratio for the best
placement. Number of placements is the number of positions pplacer determined for the query.
Posterior probability is the posterior probability value for the best placement. Gray is the output of
pplacer in maximum likelihood mode, the green column is added when pplacer is run in Bayesian
mode. The asterisk (*) highlights the queries that are tested again in test three.

22

Query id Subtree LWR
Number of
placements

Posterior
probability

SH1159486.08FU KF476884 reps Thelephorales 0.923243 7 0.924643
SH1140827.08FU AY969759 reps Thelephorales 1.0 1 1.0
SH1159594.08FU UDB0335978 reps Thelephorales 0.160873 20 0.258652
SH1245769.08FU MN007027 reps Polyporales 0.893283 10 0.962162
+SH1190303.08FU MH926037 reps Polyporales 0.253029 9 0.236485
SH1238102.08FU JN105716 reps Polyporales 1.0 1 1.0
SH1145476.08FU UDB007576 reps Boletales 1.0 1 1.0
SH1184430.08FU UDB0767606 reps Russulales 0.439869 6 0.515159
SH1191708.08FU MF496149 reps Russulales 1.0 1 1.0
+SH2614834.08FU UDB0680020 reps Tremellales 1.0 1 1.0
SH1150688.08FU KF800188 reps Pleosporales 1.0 1 1.0
SH1238165.08FU MH861181 refs Pleosporales 0.606459 3 0.604346
SH1156865.08FU AF486126 refs Helotiales 1.0 1 1.0
SH1166968.08FU KY978354 reps Aspergillaceae 0.05 20 0.05
SH1162773.08FU KT310978 reps Aspergillaceae 0.870022 20 0.866402
SH1162466.08FU HQ891869 reps Aspergillaceae 0.05 20 0.05
SH1166814.08FU EF669705 reps Aspergillaceae 0.800474 3 0.34765
SH1235707.08FU KY051892 reps Diaporthales 0.451275 11 0.60628
SH1142770.08FU KT949894 reps Xylariales 1.0 1 1.0
+SH1191717.08FU MF488989 refs Xylariales 1.0 1 1.0
SH1183141.08FU GU903288 reps Magnaporthales 1.0 1 1.0
SH1228780.08FU KY940500 reps Magnaporthales 1.0 1 1.0
SH1172583.08FU KR912053 reps Teloschistales 0.881873 5 0.893487
SH1172915.08FU JQ906769 refs Saccharomycetales 0.427598 5 0.374877
SH1183613.08FU KJ707198 reps Saccharomycetales 0.482296 5 0.430322

Table 7: The result of pplacer for test two. Query id is the id of the query that is placed. The
subtree is the subtree in which the query is placed. LWR is the likelihood weight ratio for the best
placement. Number of placements is the number of positions pplacer determined for the query.
Posterior probability is the posterior probability value for the best placement. Gray is the output of
pplacer in maximum likelihood mode, the green column is added when pplacer is run in Bayesian
mode. The plus (+) highlights the queries that are tested again in test three.

23

Query id Subtree LWR
Number of
placements

Posterior
probability

SH2591562.08FU MK348933 reps Glomerales 1.0 1 1.0
SH1175403.08FU KJ780631 refs Hygrophoraceae 0.322088 8 0.386894
SH1235601.08FU FJ943242 reps Hygrophoraceae 1.0 1 1.0
SH1180966.08FU KT429785 refs Hygrophoraceae 1.0 1 1.0
SH1168537.08FU LC056769 reps Amanitaceae 1.0 1 1.0
SH2593743.08FU MW077527 reps Pluteaceae 1.0 1 1.0
+SH1190303.08FU MH926037 reps Polyporales 0.279693 9 0.26051
*SH1145193.08FU EU222979 reps Russulales 0.997893 2 0.99507
SH1174831.08FU LC368018 reps Russulales 1.0 1 1.0
SH2602692.08FU UDB0613842 reps Auriculariales 0.991303 2 0.991647
SH1173571.08FU UDB0764892 reps Auriculariales 1.0 1 1.0
+SH2614834.08FU UDB0680020 reps Tremellales 1.0 1 1.0
SH1235583.08FU HQ874756 reps Botryosphaeriales 0.616152 6 0.626686
SH1145889.08FU UDB028521 reps Helotiales 0.629805 3 0.62979
*SH1189121.08FU MG920147 reps Helotiales 0.944242 6 0.956278
SH1155345.08FU HM230882 reps Helotiales 0.682116 10 0.777626
SH1162906.08FU AF272574 refs Aspergillaceae 0.332917 5 0.399174
SH1194552.08FU UDB092932 reps Sordariales 0.785177 3 0.822465
SH1187931.08FU MH858276 reps Hypocreales 0.47998 13 0.471618
SH1173602.08FU HM484543 refs Hypocreales 0.977011 3 0.988748
+SH1191717.08FU MF488989 refs Xylariales 1.0 1 1.0
SH1153681.08FU MT185508 reps Chaetosphaeriales 0.590695 7 0.6278
SH2604690.08FU UDB090068 reps Pleurotheciales 0.666984 7 0.530907
SH1144564.08FU HQ889706 reps Boliniales 0.372726 3 0.374636
SH1169414.08FU AJ458289 reps Ostropales 0.464336 5 0.227834
*SH1152267.08FU KR017144 reps Trapeliales 0.948184 3 0.986195
SH1174889.08FU KR902678 reps Teloschistales 0.951633 4 0.93688
SH2608872.08FU UDB0209524 reps GS36 0.471723 4 0.559123
SH1178035.08FU EU836707 refs Saccharomycetales 0.481467 3 0.545292
SH1155115.08FU KC489498 refs Umbelopsidales 1.0 1 1.0

Table 8: The result of pplacer for test three. Query id is the id of the query that is placed. The
subtree is the subtree in which the query is placed. LWR is the likelihood weight ratio for the best
placement. Number of placements is the number of positions pplacer determined for the query.
Posterior probability is the posterior probability value for the best placement. Gray is the output of
pplacer in maximum likelihood mode, the green column is added when pplacer is run in Bayesian
mode. The asterisk (*) and the plus (+) highlight the sequences that are also tested in tests one
and two respectively.

24

4.2.3 Distance and nodes calculation

To make sure the method proposed gives reliable and reproducible results, the method must be
validated. This is done using two different metrics: the distance between two leaves and the number
of nodes between two leaves in the original tree and in the new pplacer tree. Both methods and
the results of this are described in this section.
For each query sequence, the neighbour is searched in the original tree. For example, if leaf F is the
query sequence, then the sisters of the leaf are searched. Sisters are the other children of the most
recent common ancestor (MRCA) (green dot in Figure 10). This can return a leaf or a clade. In this
example a clade is returned, so we have to search deeper for a neighbour. First, the left child of the
clade is examined if it is a clade or a leaf. If it is a leaf, the neighbour is found. If it is a clade, the
right child is examined in the same way. If left and right are both clades, the left clade is chosen
and the search starts again until a neighbour is found. Since the rotation or twisting of the tree
does not change topology (see section 1.3), the two sequences do not have to be real neighbours as
long as they have the same MRCA. So, for this example, the neighbour of leaf F would be leaf I.

A measure of calculating phylogenetic biodiversity (PD) is using Faith’s PD [Fai92]. For this
measure, the branch lengths from the leaf to the root of all species of interest are summed together.
Changes in this number indicate changes in biodiversity. For this research, an adjusted version of
Faith’s PD is used. The distance used is the sum of the branch lengths of all branches between the
two nodes. So, the distance between nodes C and B in figure 10 is 0.15 + 0.1 + 0.2 = 0.45 (see the
yellow lines in the figure). The distance is normalized by dividing it by the longest branch in the
chunk. This allows for the comparison of distances between different chunks. The number of nodes
between nodes C and H in figure 10 is four (see the red dots in the figure).

Figure 10: An example of how the distance and the number of nodes in a tree is calculated. The
yellow lines are summed for the distance between leaf C and B. The red dots are the number of
nodes between leaf C and H. The green dot is the common ancestor of leaf F, D, and I.

The distance and the number of nodes between the query sequence and its neighbour are
calculated in the original tree and in the tree with the query sequence placed. The absolute difference
in distance and number of nodes is shown in table 9. The colours of the row correspond with the
colours of the leaves in figure 14. Each chunk has its own colour. For test two the results are shown
in table 10 and the colours correspond with the leaves in figure 15. The results of test three are
shown in table 11 and the colours correspond to the leaves in figure 16.

25

Query id Subtree
Difference
in nodes

Difference
in distance

SH1237664.08FU JN685254 reps Glomerales 0 0.00949807
SH1160493.08FU UDB0260931 reps Saccharomycetales 0 0.00453032
*SH1152267.08FU KR017144 reps Trapeliales 0 0.00341981
SH1149544.08FU AY425628 reps Lecanorales 0 0.05772156
SH1190485.08FU KX828139 reps Xylariales 0 0.0121388
SH1150620.08FU MF278325 reps Trichocomaceae 0 0.00196334
*SH1189121.08FU MG920147 reps Helotiales 0 0.00032693
SH1177296.08FU UDB0231445 reps Mortierellales 0 0.00642654
SH2613479.08FU UDB0408767 reps Capnodiales 0 0.00476237
SH1180624.08FU KP744428 reps Mortierellales 0 0.01025783
SH2605620.08FU UDB0454851 reps Cystobasidiales 0 0.0341218
SH1218065.08FU UDB011825 refs Geastrales 0 0.01333243
*SH1145193.08FU EU222979 reps Russulales 0 0.00504073
SH1235509.08FU KU663969 reps Hymenogastraceae 0 0.0716281
SH1170869.08FU UDB015275 refs Tricholomataceae 0 0.01245505
SH1175403.08FU KJ780631 refs Hygrophoraceae 0 0.038016
SH1140508.08FU AB634264 refs Thelephorales 0 0.01172754
SH1184486.08FU UDB0244450 reps Geminibasidiales 0 0.04084656
SH2601717.08FU UDB0237225 reps Pleosporales 1 0.00495125
SH1166278.08FU MK841471 reps Aspergillaceae 1 9.76e-05
SH1152427.08FU MG029166 reps Helotiales 1 0.01601629
SH1215154.08FU LN810821 reps Acarosporales 2 0.02562728
SH1160442.08FU HQ650658 reps Lecideales 3 0.30930186
SH1168071.08FU KU945909 reps Aspergillaceae 14 2.43e-05

Table 9: The difference in distance and the difference in the number of nodes between two leaves
for the original tree and the pplacer tree for the first test. The table is sorted on the difference in
number of nodes. The asterisk (*) highlights the queries that are tested again in test three.

26

Query id Subtree
Difference
in nodes

Difference
in distance

SH1156865.08FU AF486126 refs Helotiales 0 0.00474857
SH1172583.08FU KR912053 reps Teloschistales 0 0.00038766
SH1228780.08FU KY940500 reps Magnaporthales 0 0.00719424
SH1183141.08FU GU903288 reps Magnaporthales 0 0.00516072
SH1142770.08FU KT949894 reps Xylariales 0 0.02904741
+SH1191717.08FU MF488989 refs Xylariales 0 0.00012276
SH1235707.08FU KY051892 reps Diaporthales 0 0.00596839
SH1162773.08FU KT310978 reps Aspergillaceae 0 0.00575541
SH1166814.08FU EF669705 reps Aspergillaceae 0 0.00145389
SH1183613.08FU KJ707198 reps Saccharomycetales 0 0.00262731
SH1150688.08FU KF800188 reps Pleosporales 0 0.01730934
SH1172915.08FU JQ906769 refs Saccharomycetales 0 0.00738778
+SH2614834.08FU UDB0680020 reps Tremellales 0 0.00309087
SH1191708.08FU MF496149 reps Russulales 0 0.01007196
SH1184430.08FU UDB0767606 reps Russulales 0 0.00124808
SH1145476.08FU UDB007576 reps Boletales 0 0.01763931
+SH1190303.08FU MH926037 reps Polyporales 0 0.01140133
SH1238102.08FU JN105716 reps Polyporales 0 0.01329597
SH1140827.08FU AY969759 reps Thelephorales 0 0.0022452
SH1159486.08FU KF476884 reps Thelephorales 0 0.00029567
SH1238165.08FU MH861181 refs Pleosporales 0 0.03525241
SH1245769.08FU MN007027 reps Polyporales 2 0.14336684
SH1166968.08FU KY978354 reps Aspergillaceae 3 0.01955677
SH1159594.08FU UDB0335978 reps Thelephorales 5 0.03630957
SH1162466.08FU HQ891869 reps Aspergillaceae 82 0.00493143

Table 10: The difference in distance and the difference in the number of nodes between two leaves
for the original tree and the pplacer tree for the second test. The table is sorted on the difference
in number of nodes. The plus (+) highlights the queries that are tested again in test three.

27

Query id Subtree
Difference
in nodes

Difference
in distance

SH2591562.08FU MK348933 reps Glomerales 0 0.0033484
SH1174889.08FU KR902678 reps Teloschistales 0 0.00225512
*SH1152267.08FU KR017144 reps Trapeliales 0 0.00341981
SH1144564.08FU HQ889706 reps Boliniales 0 0.03117913
SH2604690.08FU UDB090068 reps Pleurotheciales 0 0.00166448
SH1153681.08FU MT185508 reps Chaetosphaeriales 0 0.00052149
+SH1191717.08FU MF488989 refs Xylariales 0 0.00515157
SH1173602.08FU HM484543 refs Hypocreales 0 0.00468159
SH1194552.08FU UDB092932 reps Sordariales 0 0.01459981
*SH1189121.08FU MG920147 reps Helotiales 0 0.00362057
SH1178035.08FU EU836707 refs Saccharomycetales 0 0.00648553
SH1155345.08FU HM230882 reps Helotiales 0 0.0115516
+SH1190303.08FU MH926037 reps Polyporales 0 0.01605295
SH1175403.08FU KJ780631 refs Hygrophoraceae 0 0.02279403
SH1180966.08FU KT429785 refs Hygrophoraceae 0 0.00411375
SH1235601.08FU FJ943242 reps Hygrophoraceae 0 0.03181313
SH1168537.08FU LC056769 reps Amanitaceae 0 0.00881615
SH2593743.08FU MW077527 reps Pluteaceae 0 0.02799038
+SH2614834.08FU UDB0680020 reps Tremellales 0 0.00309087
SH1155115.08FU KC489498 refs Umbelopsidales 0 0.00029826
SH1174831.08FU LC368018 reps Russulales 0 0.00015163
*SH1145193.08FU EU222979 reps Russulales 0 0.00897937
SH2602692.08FU UDB0613842 reps Auriculariales 0 0.00919327
SH1173571.08FU UDB0764892 reps Auriculariales 0 0.00313107
SH1162906.08FU AF272574 refs Aspergillaceae 1 8.99e-06
SH1169414.08FU AJ458289 reps Ostropales 1 0.06283601
SH1145889.08FU UDB028521 reps Helotiales 1 0.02181867
SH2608872.08FU UDB0209524 reps GS36 2 0.28178906
SH1235583.08FU HQ874756 reps Botryosphaeriales 2 0.00352666
SH1187931.08FU MH858276 reps Hypocreales 4 0.13445295

Table 11: The difference in distance and the difference in the number of nodes between two leaves
for the original tree and the pplacer tree for the third test. The table is sorted on the difference in
number of nodes. The asterisk (*) and the plus (+) highlight the sequences that are also tested in
tests one and two respectively.

4.2.4 Interpretation of results

When there is heterogeneity in the subtrees found by BLAST, one would expect to have a lower
maximum likelihood (ML) score than when there is no heterogeneity. This is not the case in this
research. The minimal normalized likelihood score with all hits in one tree is 0.0377, while the
maximum normalized likelihood score for a query with BLAST hits in multiple trees is 0.7611.

28

There is however a relation between the likelihood score and the size of the subtree. Figure 11a
shows the relation between the normalized likelihood and the length of the subtree. The outliers
pull the trendline a bit higher, which is why in figure 11b the outlier are removed. All outliers came
from the same subtree, namely the Aspergillaceae subtree. These outliers are removed because the
branch lengths in the tree are very small. The average branch length is 0.0195, but the median and
the mode are both 0.0. Such small branch lengths can mean that the sequences are highly similar
or that there is not enough differentiation yet. This makes it harder for pplacer to determine the
placement, so the likelihood scores are lower. When the tree is smaller, the ML score is lower. A
reason for this is that larger trees have more branches and thus increased complexity. A larger tree
has more branch lengths and parameters associated with topology, which allows more flexibility in
placing the query on the tree.

(a) Normalized likelihood plotted against the length
of the subtree.

(b) Normalized likelihood plotted against the length
of the subtree. Outliers are removed

Figure 11: Normalized likelihood plotted against the length of subtree.

If there is no difference in the number of nodes between two leaves in the different trees, it
means that the query is placed in the same subtree as the neighbour. The exact location may differ,
but the topology of the tree is not changed. The difference in distance can then be explained by the
fact that the branch lengths of the branches in the tree have changed. There are no extra branches
in between the two leaves. Figure 12 is an example of a subtree where the difference in number of
nodes zero is. The red branch is the query and the blue branch is the neighbour. The green dot is
the node between the two leaves. Figure 12a is the original tree and figure 12b is the tree where
pplacer placed the query back. Only the rotation of the leaves is different in both trees.

29

(a) Difference in number of nodes in the original tree.
The red branch is the query, the blue branch is its
neighbour. The green dot is the node between the two
branches.

(b) Difference in number of nodes in the pplacer tree.
The red branch is the query, the blue branch is its
neighbour. The green dot is the node between the two
branches.

Figure 12: Example where the difference in number of nodes between two leaves is zero. Result of
subtree Hymenogastraceae in the first test. There is only a rotation of the leaves.

When the difference in the number of nodes is bigger than zero, it means that there are nodes
added (or removed) between the two leaves. The difference in distance can then be explained by
the fact that branches are added or removed between the leaves. Figure 13 is an example of a
subtree where the difference in number of nodes is not zero, but three in this case. Figure 13a is
the original tree and figure 13b is the tree with the query placed by pplacer. In the original tree,
the two leaves are neighbours, but in the pplacer tree they are not anymore.

For each test BLAST and pplacer is run three times and the results of these tests are the
same for all three runs. This indicates that BLAST and pplacer are deterministic algorithms.
Because of time constraints, RAxML is not run three times. The results of these tests can be found
in the zip file (see appendix B).

Three queries from test one and three from test two are also tested again in test three.
The results in test three are not always the same as in test one or two. For example for query
SH1190303.08FU MH926037 reps in subtree Polyporales, the difference in distance is 0.01140133
in test two and 0.01605295 in test three. An explanation for this is that in test two there were
three queries placed in this subtree, while in test three this query was the only query placed in this
subtree. Since in the first case three queries are removed from the original subtree and in the second
case only one, RAxML made two different trees, resulting in different branch lengths in the tree.

30

(a) Difference in number of nodes in the original tree.
The red branch is the query, the blue branch is its
neighbour. The green dot is the node between the two
branches.

(b) Difference in number of nodes in the pplacer tree.
The red branch is the query, the blue branch is its
neighbour. The green dots are the nodes between the
two branches.

Figure 13: Example where the difference in number of nodes between two leaves is not zero, but
three in this case. Result of subtree Lecideales in the first test.

4.3 Statistical validation

As stated in section 1.4, we expect that if we remove a leaf and place it back using the proposed
method, the difference in nodes between two neighbour leaves is zero. And if the method does not
work, the difference in number of nodes is not zero. To validate this, we use a two-tailed, one-sample
t-test. The data that is used, contains the 73 unique queries which are placed using pplacer and
their corresponding difference in number of nodes. The computed mean of difference in number of
nodes is 1.712 and the median is 0 for the data. The standard deviation is 9.709 and the maximum
value is 82. The significance level is 0.05. This study aims to examine the null hypothesis and its
corresponding alternative hypothesis concerning the average difference in the number of nodes
between the query sequence and its neighbour. The null hypothesis, H0, posits that the mean
difference in node count is not zero (µ ̸= 0), while the alternative hypothesis, H1, suggests that the
mean difference is indeed zero (µ = 0).

To assess these hypotheses, a t-test is employed using the following formula:

31

t = ȳ−µ0

se

Here, ȳ represents the sample mean, µ0 denotes the hypothesized population mean, and se is the
standard error defined as se = s√

n
, with s representing the standard deviation and n representing

the sample size. The degrees of freedom (df) for the t-test are calculated as n− 1.
By setting the hypothesized population mean µ0 to 0, the calculated t-value is 1.507. The corre-
sponding degrees of freedom (df) are determined to be 72. The resulting p-value associated with
this t-value is found to be 0.136237.

Upon evaluation, it is observed that the p-value exceeds the significance threshold of p < 0.05.
Consequently, the obtained p-value of 0.136237 does not achieve statistical significance at the p <
0.05 level. This outcome suggests that there is insufficient evidence to reject the null hypothesis
(H0) in favor of the alternative hypothesis (H1), implying that the mean difference in the number
of nodes is not zero.

In a subsequent analysis, a two-tailed, one-sample t-test is conducted on the dataset. This analysis
involves the exclusion of the data points from the Aspergillaceae subtree. This decision is made due
to the intrinsic challenges posed by small branch lengths for the pplacer algorithm, resulting in a
notably elevated difference in node counts within this particular subtree. Specifically, a total of
seven queries from the Aspergillaceae subtree are removed from the data set.
With this refined dataset, the analysis now consists of 66 queries. The computed mean for this
subset of data is 0.364, while the standard deviation is calculated to be 0.971. The maximum
observed value within this dataset is 5. Upon applying the t-test formula to this data, a resulting
t-value of 3.134 is obtained, corresponding to a degrees of freedom (df) value of 65. The associated
p-value derived from this analysis is calculated to be 0.002591.

It is important to note that this outcome holds statistical significance at the threshold of p <
0.05. This indicates that the result of this particular analysis provides strong evidence to reject the
null hypothesis, thereby suggesting that the average difference in number of nodes is zero.

4.4 Runtime

Table 12 presents the runtime measurements for different components of the method, as well as
the total runtime of the method itself. Test one and test two consist of 25 queries each, while test
three includes 31 queries. In test one, RAxML is executed for 22 subtrees, with the first 11 subtrees
executed using 2 cores and the remaining 11 subtrees using 8 cores. Test two involves 13 subtrees,
and test three involves 24 subtrees. The pplacer and guppy tools are both applied to 24 queries in
test one, 25 queries in test two, and 30 queries in test three.

32

Test 1 Test 2 Test 3

Make blast database 1.342s 1.128s 1.118s
BLAST 7.813s 8.010s 10.085s
Determine subtree 23.662s 21.773s 22.513s
RAxML (using 2 cores) 6h10m59.9496s x x
RAxML (using 8 cores) 6h23m26.6316s 6h35m46.1845s 8h16m44.8465s
Make reference package 16.678s 11.839s 18.134s
pplacer 1m13.710s 1m7.689s 1m12.297s
guppy 1.596s 1.566s 1.437s
Total 12h36m31.3822s 6h36m38.1895s 8h18m50.4305s
Total without database, RAxML
and reference package

1m46.781s 1m39.038s 1m46.332s

Table 12: The runtime of the different steps of the method for the different tests. BLAST is run
with 25 queries for tests one and two and 31 for test three. RAxML is run for 22 subtrees for test
one, 13 subtrees for test two, and 24 subtrees for test three. For the first test, RAxML is run with
two cores for the first 11 subtrees and with eight cores for the other 11 subtrees.

In Table 12, the orange rows indicate the tasks that need to be executed only once whenever
the reference tree is updated. These tasks are independent of the method used. On the other hand,
the light blue row represents the total runtime of the method, excluding the time required for
creating the database, running RAxML, and generating the reference package.

4.5 Visualization

A visualization of the data can help to understand the data, and also give more insight into the
data. For this research, two different types of visualization are used. The first is a visualization
of the results of the calculations on the data, explained in section 4.5.1. The second visualization
is the placements of the queries, explained in section 4.5.2. For both visualizations, the reference
tree is used. The reference tree has 23.000+ leaves, so it is hard to visualize the whole tree on a
screen. All the labels will overlap and the different clades are not visible. That is why we decided
to collapse a big part of the tree. As explained in section 2.1.1, the reference tree is built using
different chunks. Each chunk is collapsed into one single node, which gives a reference tree with
only 229 leaves. This is easier to visualize on a screen. For calculation the names of the chunks
were numbers. For visualization, the numbers were changed to names. The lookup table for this
can be found in Appendix A table 13.

4.5.1 Visualization of result

Several values are returned by pplacer or calculated in section 4. Visualization of these values
gives a better understanding of the results. Four different values are added as annotations to the
tree. The visualization is made using ITOL 4. The annotation files can be found in the zip file, see
appendix B. The first value denotes if BLAST found the correct subtree. The green checkmark

4https://itol.embl.de/

33

https://itol.embl.de/

denotes that all ten hits were in the same, correct subtree. The orange star means that not all hits
were in the same subtree, but the majority of hits were in the correct subtree. The red square means
that the majority of the hits were not in the correct subtree. The second value is the posterior
probability given by pplacer. The value is shown as a colour, using a heatmap, with red as the
lowest value and green as the highest. The third value is the difference in nodes between two leaves
in the original tree and the pplacer tree. This is shown as a number. And the last value is the
difference in distance between two leaves in the original tree and the pplacer tree. This value is
also shown as a colour, using a heatmap, with green for the lowest distance and red for the highest
distance. Different queries in the same chunk are shown behind each other.
Figure 14 is the result of test one. The corresponding values can be found in table 3, 6 and 9. The
colours of the leaves correspond with the colours in table 9. Figure 15 is the result of test two. The
corresponding values can be found in table 4, 7 and 10. The colours of the leaves correspond with
the colours in table 10. Figure 16 is the result of test 1. The corresponding values can be found in
table 5, 8 and 11. The colours of the leaves correspond with the colours in table 11. The figures are
also included in the zip file.

34

Figure 14: Visualization of the results for the first test. The first column denotes the results for the
subtree. The second column is a heatmap for the posterior probability. The third column is the
difference in number of nodes. The last column is a heatmap for the difference in distance. Multiple
queries that are placed in the same subtree are placed behind each other. The colours of the leaves
correspond with the rows in table 9.

35

Figure 15: Visualization of the results for the second test. The first column denotes the results for
the subtree. The second column is a heatmap for the posterior probability. The third column is the
difference in number of nodes. The last column is a heatmap for the difference in distance. Multiple
queries that are placed in the same subtree are placed behind each other. The colours of the leaves
correspond with the rows in table 10

36

Figure 16: Visualization of the results for the third test. The first column denotes the results for
the subtree. The second column is a heatmap for the posterior probability. The third column is the
difference in number of nodes. The last column is a heatmap for the difference in distance. Multiple
queries that are placed in the same subtree are placed behind each other. The colours of the leaves
correspond with the rows in table 11

37

4.5.2 Visualization for biodiversity

To be able to gain insight into the biodiversity, a visualization of the placement(s) is important.
The location of the placements in the tree can give information about how diverse a sample is.
Figure 17 is an example, red and blue are two different samples, each with three reads. The dots
next to the tree denote the placement of the queries in the tree. Since blue occurs in more different
branches, the blue sample has higher biodiversity.

Figure 17: An example of how the difference in biodiversity can be determined using a phylogenetic
tree. The sample that is present in more different clades is considered to be more diverse.

A problem you encounter when visualizing a big tree is the fact that you want to see detail
(the actual placement) without losing too much context. When you zoom in on the leaves of a small
part of the tree, you don’t get an overview of the rest of the tree. That is why we made a static
visualization of a smaller tree and we propose a method for an interactive visualization. Zooming in,
into the static visualization will end up in pixels, while in the dynamic visualization, one can keep
zooming in. The smaller tree that is used, is made by collapsing the chunks into one single node.

There are two versions of the static visualization. The first version, figure 18, shows how many
queries there are in one chunk. The magenta colour denotes one query in the chunk, the yellow
colour denotes two queries in the chunk and the blue colour denotes three or more queries in the
chunk. This figure is generated using the data of the third test.

38

Figure 18: Visualization of the number of queries that are placed in a chunk for the third test.
Magenta denotes one query, yellow denotes two queries and blue denotes three or more queries.

The second version shows the diversity between different samples. In figure 19 the three
different tests are visualized. If a chunk contains a placement of a query from one of the tests,
it gets a dot behind the leaf. The magenta dots are for the first test, the yellow dots are for the
second test and the blue dots are for the third test. The size of the dots denotes how many queries
of that sample there are in the chunk. The smallest dot means one query, the middle dot means
two queries and the largest dot means three or more queries. Figure 20 shows a cutout of the larger
tree in figure 19.

39

GS10
GS11

Branch03
GS04

GS05
Branch01

GS07
GS08

GS06
GS03

Glomerales

Gigasporales
Diversisporales

Archaeosporales
GS24

Paraglomerales
Olpidiales

Basidiobolales

Mortierellales

Rhizophydiales
Synchytriales

Rhizophlyctidales
Spizellomycetales

Lobulomycetales
Mucorales

Umbelopsidales

GS23
GS21

GS22
Endogonales

GS31
Archaeorhizomycetales

Saccharomycetales

Taphrinales
Geoglossales

GS33
Orbiliales

Lichenostigmatales
Arthoniales

Falcocladiales
Hypoceales

Conioscyphales

Pleurotheciales

Savoryellales
Myrmecridiales

Xylariales

Trichosphaeriales
Phomatosporales

Pararamichloridiales

Sordariales

Phyllachorales

Chaetosphaeriales

Boliniales

Coniochaetales

Magnaporthales

Xenospadicoidales
Annulatascales

Sordariomycetes_ord_Incertae_sedis
Togniniales

Calosphaeriales
Ophiostomatales

Hypocreales

Glomerellales
Microascales

Diaporthales

Melanosporales
Coronophorales

Lulworthiales
Branch06

Lichinales
Acrospermales

Strigulales
Stigmatodiscales

Tubeufiales
Jahnulales

Venturiales
Valsariales

Pleosporales

Trypetheliales
Dothideales

Minutisphaerales
Mytilinidales

Hysteriales
Mytilinidiales

Abrothallales
Patellariales

Botryosphaeriales

Capnodiales

Dothideomycetes_ord_Incertae_sedis
Myriangiales

Phaeomoniellales
Sclerococcales

Verrucariales
Chaetothyriales

Pyrenulales
Onygenales

Thermoascaceae
Elaphomycetaceae

Aspergillaceae

Trichocomaceae

Coryneliales
Mycocaliciales

Sareales

GS36

Rhizocarpales
Peltigerales

Leprocaulales

Lecanorales

Lecideales

Caliciales

Teloschistales

Pertusariales
Umbilicariales

Candelariales

Acarosporales

Baeomycetales

Trapeliales

Ostropales

Lecanoromycetes_ord_Incertae_sedis
Sarrameanales
Arctomiales

Coniocybales

Helotiales

Thelebolales
Phacidiales

Triblidiales
Rhytismatales

Erysiphales
Symbiotaphrinales

GS34
Pyxidiophorales

Laboulbeniales
Spiculogloeales

Dacrymycetes_ord_Incertae_sedis
Dacrymycetales

Tritirachiales
Malasseziales

Urocystidales
Ustilaginales

Tilletiales
Entylomatales

Microstromatales
Georgefischeriales

Exobasidiales
Sebacinales

GS28
Lepidostromatales

Russulales

Thelephorales

Corticiales

Polyporales

Gloeophyllales
Nidulariaceae
Cyphellaceae

Typhulaceae
Stephanosporaceae

Physalacriaceae
Schizophyllaceae

Omphalotaceae
Marasmiaceae

Pluteaceae

Crepidotaceae

Hymenogastraceae

Strophariaceae
Psathyrellaceae

Inocybaceae
Bolbitiaceae

Cortinariaceae
Agaricaceae

Lycoperdaceae
Lyophyllaceae

Entolomataceae
Callistosporiaceae

Tricholomataceae

Pseudoclitocybaceae
Catathelasmataceae

Amanitaceae

Hydnangiaceae
Agaricales_fam_Incertae_sedis

Cystostereaceae
Pleurotaceae

Hygrophoraceae

Clavariaceae
Radulomycetaceae
Mycenaceae

Pterulaceae

Boletales

Atheliales
Amylocorticiales

Tremellodendropsidales
Phallales

Geastrales

Gomphales
Hysterangiales

Agaricomycetes_ord_Incertae_sedis

Auriculariales

Trechisporales
Hymenochaetales

Cystofilobasidiales
Filobasidiales

Holtermanniales
Trichosporonales

Tremellales

Atractiellales
Kriegeriales

Leucosporidiales
Microbotryomycetes_ord_Incertae_sedis

Microbotryales
Sporidiobolales

Pucciniales
Septobasidiales

Helicobasidiales
Platygloeales

Erythrobasidiales
Cyphobasidiales

Cystobasidiomycetes_ord_Incertae_sedis

Cystobasidiales

Agaricostilbales

Geminibasidiales

Wallemiales
Entorrhizales

Kickxellales
Zoopagales

GS15
Blastocladiales

Sanchytriales
Monoblepharidales

Neocallimastigales
GS16

0.025

Figure 19: Visualization to compare the three different tests. The magenta dots are the first test,
the yellow dots the second, and the blue dots the third. The size of the dots denotes how many
queries there are in the chunk. The smallest dot denotes one query, the middle dot denotes two
queries and the large dot denotes three or more queries.

40

Figure 20: A cutout of the visualization to compare the three different tests. The magenta dots
are the first test, the yellow dots the second, and the blue dots the third. The size of the dots
denotes how many queries there are in the chunk. The smallest dot denotes one query, the middle
dot denotes two queries and the large dot denotes three or more queries.

Another way to visualize the tree could be as a dynamic visualization. There are different
ways to make a visualization dynamic. In this part, we propose an idea for a method for dynamic
visualization. The branch on which the sequence(s) should be added will be coloured. When making
a visualization dynamic, it is important to keep the goal in mind. In this case, the goal is to use it
to determine biodiversity. Thus, it is essential to keep an overview of the whole tree, while zooming
into a specific part. By using collapsible nodes, parts of the tree that are not of interest can be
collapsed and parts that are of interest can be expanded. However, this particular reference tree
has a lot of internal nodes. The collapsed tree in figure 19 has 632 internal nodes. If these nodes
are all collapsible, one should click lots of nodes to get to the view it wants. To prevent this we
came up with two solutions, that also can be combined.

The first solution is to not make all nodes collapsible. In the reference tree, the internal nodes are
hypothetical sequences which means that it is estimated based on their children. Since the sequences
are hypothetical, they might not be encountered in the real world and that is why internal leaves do
not have a name in a phylogenetic tree. The lack of a name can be used to distinguish between the
nodes that are and those that are not collapsible. However, the tree would use some preprocessing
to be able to use this, since right now only the leaves have names. When making the chunks of the
tree collapsible, the resulting tree with collapsed chunks has 229 leaves. To do this, the common
ancestor of the chunk should get the name of the chunk, to make the node collapsible. A dot, with
a different colour and a different size, at each collapsible node could be used to indicate the number
of children of the node. When clicking on a collapsible node, it will expand all its children.

However, some chunks still have quite a lot of children, which makes it difficult to get a good
view. That is why we came up with a second solution.

The second solution prunes branches that are not of interest and it uses also collapsible nodes. The
first part is the same as solution one. It differs from when you click the collapsible node. Instead of
expanding the whole tree, it will only expand a few leaves. For the biodiversity determination, only
the exact placement and a few neighbours around this placement are important, the rest of the
subtree is not of interest. Showing only a branch from the root to some of the leaves or nodes, may
not provide enough information. By adding data to the branches with the normalized distance to

41

this node or leaf and the number of nodes between the node/leaf and the root extra information
will be provided. This allows the visualization of a small part of the tree to show the placement,
and keep the overview of the tree to see where in the tree you are.

A prototype of the first solution is implemented using D3.js and can be found here. The code
for this visualization is based on this code. Figure 21 is an overview of the dynamic visualization.
Figure 22 is a close-up of the visualization, where three subtrees are expanded.

Figure 21: An overview of the prototype. The colour and the size of the dots correspond with the
number of children. The coloured dots are expandable. The names of the subtrees are shortened
and are shown completely when the mouse is hovered over the name.

42

https://observablehq.com/d/1c69d26ecff13759
https://observablehq.com/@d3/collapsible-tree

Figure 22: Close-up of the prototype. The subtrees GS10, GS08, and Olpidiales are expanded. The
grey dots are the internal nodes that are expanded all at once when expanding a subtree.

The size and the colours of the nodes correspond with the number of children. The bigger the
dot, the more children it has. Currently, the visualization lacks placement of the different queries, so
updates of this code are required. Another point of work is the size of the tree. If the branches are
too long, they may extend beyond the screen, making the visualization incomplete. On the other
hand, if the branches are too short, the nodes may overlap, hindering clarity. Experimenting with
different branch lengths or implementing an algorithm to dynamically adjust the branch lengths
based on the tree structure and available screen space will improve the visualization. It is important
to keep in mind that the branch lengths in this interactive tree are all the same, so they do not
denote the evolution of the sequences.

43

5 Conclusions and Further Research

The primary objective of this research was to develop a method capable of conducting phylo-
genetic placement using ITS data. To achieve this, existing phylogenetic placement algorithms
were thoroughly examined. Through this analysis, an algorithm was identified and integrated
into the newly created method, alongside the utilization of BLAST. The method underwent
testing and validation using three distinct test sets. All code written for this research can be
found on GitHub. This section presents the findings that address the research questions, offers a
discussion of the results obtained, and outlines potential topics for future research and improvements.

It is important to note that the method has only been tested using a subset of the reference
tree data. No testing has been conducted on new, unseen data. Therefore, the conclusions and
discussions drawn from the results are solely based on the tests where the original placement
locations were known.

5.1 Conclusion

Following the results obtained from this research, the research questions stated at the beginning
will be answered below. First, the subquestion about the different algorithms will be answered.
After that, some conclusions about the results will be given. Then, the second subquestion about
the visualization will be answered and finally, the main research question will be answered.

RQ1.1: Which suitable algorithms already exist for phylogenetic placement?

There are different types of algorithms for phylogenetic placement. The two biggest types are
algorithms based on maximum likelihood and algorithms based on distances. Since the data that is
used, is short, has gaps, and has a high variability, algorithms that use maximum likelihood are
preferred. The big disadvantage of such algorithms is that they are computationally expensive,
especially with large trees. For the method to be compatible with MonetDB, it is important that it
is written in Python. That is why pplacer is chosen as placement algorithm. Only, the problem
with pplacer is, that it fails on trees with more than 5000 leaves. Since the tree that is used
has more than 23.000 leaves, BLAST is used to determine the subtree and reduce the size of the tree.

Using BLAST for the subtree determination works reasonably well. 75 unique queries are tested
and for 73 of them, the majority of the BLAST hits came from the correct subtree, see also table 2.
Of these 73 queries, 59 queries had all ten BLAST hits in the same subtree.
Using pplacer for the placement of the query works reasonably well. For 16 of the 73 unique queries,
the difference in number of nodes is bigger than zero. This means that for those 16 queries, pplacer
did not place them back in the same location. The difference in distance for those queries is thus
due to the fact that branches have been added or removed. The method is statistically validated
using a one-sample t-test with a significance level of 0.05. The null hypothesis being tested was that
the average difference in the number of nodes is not zero. Applying this test to a dataset comprising
73 queries, a p-value of 0.136 was obtained. As this value exceeds the significance level of 0.05, the
results are not statistically significant. However, when the queries from the Aspergillaceae subtree
are excluded, 66 queries remain for analysis. Applying the one-sample t-test to this reduced dataset

44

https://github.com/LenatenHaaf/phylogenetic-placement-MDDB

yielded a p-value of 0.0026. This p-value falls below the threshold of 0.05, indicating statistical
significance. Consequently, the null hypothesis can be rejected. These findings suggest that the
observed results are unlikely to have occurred by chance alone, under the assumption of the null
hypothesis.

When looking at the runtime of the method, RAxML takes up most of the runtime time.
However, this only needs to be executed once every time the reference tree is updated. Considering
the entire process, the method is executed in approximately 1 minute and 45 seconds.

To be able to understand and gain insight into the data, visualization is needed leading to
the following question:

RQ1.2: What is an efficient visualization for the outcome?

Since the reference tree is large, an efficient visualization is needed. For this research, two vi-
sualizations are made. A static and a dynamic one. The static visualization can visualize the
placement of different reads in a sample or compare different samples. However, the details of the
placement are lost in the static visualization. A method for dynamic visualization is proposed to
keep an overview, but also be able to zoom in on the details.

Not only does the visualization of the placements on the tree give insight into biodiversity. The
different colours given to each subtree also give a quick insight into biodiversity. By representing the
results in tables, where each subtree is associated with its respective colour, the visual representation
becomes even more informative. The variations and distinctions in colours serve as indicators of
differences in biodiversity across different samples.
Based on the retrieved results and the subquestions answered above, the main research question
can be answered.

RQ1: How can the phylogenetic tree be a measure to determine biodiversity?

Phylogenetic placement plays a crucial role in using the phylogenetic tree as a measure of biodi-
versity. Comparing a sample with the reference tree gives the placement of the different queries
within the sample onto the tree. This provides valuable insight into the variety of species in the
sample, thereby offering a means to assess the biodiversity of a sample. The biodiversity of a sample
could be quantitatively expressed using different measures. To express the biodiversity within
a sample, Faith’s phylogenetic biodiversity measure could be used. To express the biodiversity
between samples UniFrac can be used.
While the method proposed in this research demonstrates reasonable performance, it should be
noted that further refinements are still required to achieve perfection. It is however a valuable tool
that can be used to enrich MDDB because the method is compatible with MonetDB. Even the
integration of interactive visualization made in D3.js enhances the functionality of MDDB.

In summary, the method presented in this study contributes to the enrichment of MDDB by
facilitating phylogenetic placement and leveraging compatibility with MonetDB. With the potential
for integration of interactive visualizations, it holds promise as a valuable tool for studying and
understanding biodiversity.

45

5.2 Discussion

This section presents several points of discussion that need to be considered when interpreting the
results of this research.
In the current approach for determining the correct subtree, only the top ten hits from BLAST are
considered. The subtree with the highest number of hits is chosen as the primary subtree. However,
when two subtrees have an equal number of hits, the first subtree is chosen. As observed in the
results in section 4.1.2, this method does not yield perfect results. To improve the accuracy of subtree
selection, alternative BLAST metrics can be incorporated. Metrics such as percentage identity,
ϵ-value, or percentage coverage can offer additional information to improve the accuracy of se-
lecting the correct subtree. Selecting the correct subtree influences the outcome of the whole method.

Another point of discussion is the algorithm used for the phylogenetic placement. As discussed
in section 3, there are different algorithms that can perform phylogenetic placement. However,
there are also methods that use k-mers to identify species in a sample. This is a sensible approach,
however when using ITS data there are a few elements that need to be taken into account. The
DNA regions used in this research are short and highly variable, which can lead to k-mer patterns
that overlap between different taxa. On the other hand, specific k-mer patterns might be present in
the short sequences, leading to the identification of the species and also resolving lower taxonomic
levels. Another element is the quality of the reference database, if the reference database is made
using longer sequences, the shorter sequences might not match the reference sequence. However, if
the reference database is made using the short variable sequences the identification might become
more accurate.

Furthermore, when working with a pruned tree, the use of pplacer results in a parsing error
in the tree file. To avoid this issue, RAxML is used to generate a new tree of the data with the
pruned leaf removed. However, due to the removal of this leaf from the data, the newly generated
tree may exhibit variations in its structure compared to the original subtree. Consequently, verifying
the placement of pplacer becomes more challenging.

When verifying the work of pplacer, counting the nodes between the root and the leaf in
both the original tree and the tree where pplacer places the query would be desirable. A count of
zero would indicate that the query is properly placed within the correct subtree. However, in this
case, such a method cannot be used since the tree structures can differ. Instead, the number of
nodes between the query and a neighbouring node is used as a verification mechanism.

The runtime of the method is heavily dependent on the runtime of RAxML. As leaves are pruned
from the subtrees, new trees must be generated, which involves computationally intensive tasks such
as creating different trees and calculating the likelihood score for each tree. However, it is important
to note that this step does not need to be performed every time the method is executed. It is
only required to be executed when the reference tree is updated. In this case, only an information
file of the tree needs to be generated since the subtrees are already present and unpruned. This
optimization significantly reduces the runtime of RAxML. Additionally, updating the reference tree
necessitates updating the BLAST database, as well as generating new information files that are
needed to update the reference packages.

It is worth considering that the method has been tested with a maximum of 30 queries.

46

However, in practical scenarios, an unseen sample may contain more than 100 queries, which can
potentially increase the runtime due to the larger dataset.

It is crucial to understand the functionality and principles of pplacer. For accurate biodiver-
sity determination, precise placement of queries is important. The placement location is determined
through a maximum likelihood calculation, with optimization of branch lengths. When pplacer

identifies multiple potential locations for a query, a likelihood weight ratio (LWR) is associated
with each placement. The location with the highest LWR is chosen as the final placement. However,
in certain cases, there may be numerous possible placements with identical LWR values. In such
scenarios, pplacer selects the first location from the list, which may not necessarily be the correct
placement. Considering an alternative location from the list could yield better results.

Furthermore, it is worth noting that pplacer has the potential to even improve the place-
ment of queries. During the construction of the original reference tree, decisions are made at
higher levels, influencing the order of the tree’s leaves. When a sequence is removed from the
tree, subsequent decisions may lead to the construction of different trees by RAxML. For the 16
queries where the difference in the number of nodes is non-zero, the new placement might be su-
perior to the original placement. However, further research is required to fully explore this possibility.

Lastly, while the static visualization is currently suitable for its intended purpose, the inter-
active visualization requires further enhancements. The design of the interactive visualization aligns
with Ben Shneiderman’s information visualization mantra: ’overview first, zoom and filter, then
details on demand’ [Shn96]. This mantra emphasizes the importance of providing an initial overview
of the entire tree, allowing users to subsequently zoom in and focus on specific areas of interest to
access detailed information.

Although a framework is already in place to support this approach, improvements are necessary
to enhance its usability and functionality. Upgrading the framework will facilitate a more seamless
and intuitive user experience, enabling users to effectively navigate and explore the details of the
placement in the visualization. By upgrading the framework, the interactive visualization can better
fulfill its purpose as a valuable tool for phylogenetic placement exploration and analysis.

5.3 Future work

There are several topics that can be added or changed in the proposed method, which may be
interesting for future work on this topic. Firstly, right now BLAST is used as the first step to
identify the subtree. There exists a different algorithm, called Protax-fungi that can be used to
identify fungal ITS sequences [ASN+18]. This algorithm can be used to replace BLAST and maybe
improve the method.
Another topic that can be reconsidered, is the length of the sequences. In MDDB the sequences
are curated at 250 nucleotides. With longer sequences, the BLAST search might be more accurate,
which can result in better placement. However, when using longer sequences for the queries, the
reference tree should also contain longer aligned sequences. Otherwise, the identification might get
worse.
Furthermore, the method is not yet tested with new data. The method is only validated using
known data. When adding new samples, the biodiversity of these samples can be computed using
different measures. The phylogenetic biodiversity (PD) can be expressed quantitatively using Faith’s

47

PD to express PD within a sample or UniFrac to express PD between different samples. Such a
number can be more informative when a visualization is added. The visualizations shown in this
research are already informative but could use some upgrades. When not only the tips are colour
coded, but also the interior branches leading to the tips have colours, this could subtend which
paths are common and how the paths are shared among samples. This will allow for comparing
different trees with each other and clarify the quantitative expressions.
Lastly, for this method, pplacer is used as placement algorithm. pplacer is chosen, because it can
be incorporated into the Python interface of MDDB and become a standard tool of MDDB. New
samples from the ARISE project for longitudinal and local research, can then be analyzed using
this tool. As described in section 3, there are several algorithms that can perform phylogenetic
placement. It might be interesting to see how the other algorithms perform in this approach.

48

References

[ANL+10] Kessy Abarenkov, R Henrik Nilsson, Karl-Henrik Larsson, Ian J Alexander, Ursula
Eberhardt, Susanne Erland, Klaus Høiland, Rasmus Kjøller, Ellen Larsson, Taina
Pennanen, et al. The unite database for molecular identification of fungi–recent
updates and future perspectives. The New Phytologist, 186(2):281–285, 2010.

[ASN+18] Kessy Abarenkov, Panu Somervuo, R Henrik Nilsson, Paul M Kirk, Tea Huotari,
Nerea Abrego, and Otso Ovaskainen. Protax-fungi: A web-based tool for probabilistic
taxonomic placement of fungal internal transcribed spacer sequences. New Phytologist,
220(2):517–525, 2018.

[Bau08] D Baum. Reading a phylogenetic tree: The meaning of monophyletic. Nature
Education, 2008.

[Bio] FHCRC Computational Biology. taxtastic.

[BKC+19] Pierre Barbera, Alexey M Kozlov, Lucas Czech, Benoit Morel, Diego Darriba, Tomáš
Flouri, and Alexandros Stamatakis. Epa-ng: massively parallel evolutionary placement
of genetic sequences. Systematic biology, 68(2):365–369, 2019.

[BL01] Fiona SL Brinkman and Detlef D Leipe. Phylogenetic analysis. Bioinformatics: a
practical guide to the analysis of genes and proteins, 2:323–324, 2001.

[BM21] Matthias Blanke and Burkhard Morgenstern. App-spam: phylogenetic placement
of short reads without sequence alignment. Bioinformatics Advances, 1(1):vbab027,
2021.

[BSM20] Metin Balaban, Shahab Sarmashghi, and Siavash Mirarab. Apples: scalable distance-
based phylogenetic placement with or without alignments. Systematic Biology,
69(3):566–578, 2020.

[CCA+09] Christiam Camacho, George Coulouris, Vahram Avagyan, Ning Ma, Jason Papadopou-
los, Kevin Bealer, and Thomas L Madden. Blast+: architecture and applications.
BMC bioinformatics, 10:1–9, 2009.

[CR22] Casper Carton and Luuk Romeijn. Building a phylogeny for the fungal kingdom with
its data, 2022.

[CSDB22a] Lucas Czech, Alexandros Stamatakis, Micah Dunthorn, and Pierre Barbera. Metage-
nomic analysis using phylogenetic placement—a review of the first decade. Frontiers
in Bioinformatics, 2, 2022.

[CSDB22b] Lucas Czech, Alexandros Stamatakis, Micah Dunthorn, and Pierre Barbera. Metage-
nomic analysis using phylogenetic placement—a review of the first decade. Frontiers
in Bioinformatics, 2:44, 2022.

[Fai92] Daniel P Faith. Conservation evaluation and phylogenetic diversity. Biological
conservation, 61(1):1–10, 1992.

49

[GM22] Moumita Ghosh and Kartick Chandra Mondal. Computational biodiversity. In
Proceedings of International Conference on Advanced Computing Applications: ICACA
2021, pages 739–750. Springer, 2022.

[GZR22] Melissa Gray, Zhengqiao Zhao, and Gail L Rosen. How scalable are clade-specific
marker k-mer based hash methods for metagenomic taxonomic classification? Frontiers
in Signal Processing, 2:842513, 2022.

[JLM+16] Jeffrey B Joy, Richard H Liang, Rosemary M McCloskey, T Nguyen, and Art FY
Poon. Ancestral reconstruction. PLoS computational biology, 12(7):e1004763, 2016.

[KE08] W John Kress and David L Erickson. Dna barcodes: genes, genomics, and bioinfor-
matics. Proceedings of the National Academy of Sciences, 105(8):2761–2762, 2008.

[KPW21] Elizabeth Koning, Malachi Phillips, and Tandy Warnow. ppiacerdc: a new scalable
phylogenetic placement method. In Proceedings of the 12th ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics, pages 1–9, 2021.

[LCB+20] Mingxin Liu, Laurence J Clarke, Susan C Baker, Gregory J Jordan, and Christopher P
Burridge. A practical guide to dna metabarcoding for entomological ecologists.
Ecological entomology, 45(3):373–385, 2020.

[LLK+11] Catherine Lozupone, Manuel E Lladser, Dan Knights, Jesse Stombaugh, and Rob
Knight. Unifrac: an effective distance metric for microbial community comparison.
The ISME journal, 5(2):169–172, 2011.

[LSP19] Benjamin Linard, Krister Swenson, and Fabio Pardi. Rapid alignment-free phylo-
genetic identification of metagenomic sequences. Bioinformatics, 35(18):3303–3312,
2019.

[MHK+20] Irene Martorelli, Leon S Helwerda, Jesse Kerkvliet, Sofia IF Gomes, Jorinde Nuytinck,
Chivany RA van der Werff, Guus J Ramackers, Alexander P Gultyaev, Vincent SFT
Merckx, and Fons J Verbeek. Fungal metabarcoding data integration framework
for the mycodiversity database (mddb). Journal of integrative bioinformatics, 17(1),
2020.

[MKA10] Frederick A Matsen, Robin B Kodner, and E Armbrust. pplacer: linear time maximum-
likelihood and bayesian phylogenetic placement of sequences onto a fixed reference
tree. BMC bioinformatics, 11(1):1–16, 2010.

[MKA14] Frederick A Matsen, Robin B Kodner, and E Armbrust. pplacer documentation,
guppy tog, 2014.

[NK12] Stratos Idreos Fabian Groffen Niels Nes and Stefan Manegold Sjoerd Mullender Martin
Kersten. Monetdb: Two decades of research in column-oriented database architectures.
Data Engineering, 40, 2012.

[OPJ+05] Heath E O’Brien, Jeri Lynn Parrent, Jason A Jackson, Jean-Marc Moncalvo, and
Rytas Vilgalys. Fungal community analysis by large-scale sequencing of environmental
samples. Applied and environmental microbiology, 71(9):5544–5550, 2005.

50

[PG06] Owen L Petchey and Kevin J Gaston. Functional diversity: back to basics and looking
forward. Ecology letters, 9(6):741–758, 2006.

[PH20] Teresita M Porter and Mehrdad Hajibabaei. Putting coi metabarcoding in context:
The utility of exact sequence variants (esvs) in biodiversity analysis. Frontiers in
Ecology and Evolution, 8:248, 2020.

[SBPG+19] Shahab Sarmashghi, Kristine Bohmann, M Thomas P Gilbert, Vineet Bafna, and
Siavash Mirarab. Skmer: assembly-free and alignment-free sample identification using
genome skims. Genome biology, 20(1):1–20, 2019.

[SG94] EaBMG Stackebrandt and Brett M Goebel. Taxonomic note: a place for dna-dna
reassociation and 16s rrna sequence analysis in the present species definition in
bacteriology. International journal of systematic and evolutionary microbiology,
44(4):846–849, 1994.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Proceedings 1996 IEEE symposium on visual languages, pages
336–343. IEEE, 1996.

[SSH+12] Conrad L Schoch, Keith A Seifert, Sabine Huhndorf, Vincent Robert, John L Spouge,
C André Levesque, Wen Chen, Fungal Barcoding Consortium, Fungal Barcoding Con-
sortium Author List, Elena Bolchacova, et al. Nuclear ribosomal internal transcribed
spacer (its) region as a universal dna barcode marker for fungi. Proceedings of the
national academy of Sciences, 109(16):6241–6246, 2012.

[Sta14] Alexandros Stamatakis. RAxML version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies. Bioinformatics, 30(9):1312–1313, 01 2014.

[Swe11] Nathan G Swenson. The role of evolutionary processes in producing biodiversity
patterns, and the interrelationships between taxonomic, functional and phylogenetic
biodiversity. American Journal of Botany, 98(3):472–480, 2011.

[VCMFM11] Mark Vellend, William K Cornwell, Karen Magnuson-Ford, and Arne Ø Mooers.
Measuring phylogenetic biodiversity. Biological diversity: frontiers in measurement
and assessment, pages 194–207, 2011.

[VESB23] Julia Van Etten, Timothy G Stephens, and Debashish Bhattacharya. A k-mer-
based approach for phylogenetic classification of taxa in environmental genomic data.
Systematic Biology, page syad037, 2023.

[WKW90] Carl R Woese, Otto Kandler, and Mark L Wheelis. Towards a natural system of
organisms: proposal for the domains archaea, bacteria, and eucarya. Proceedings of
the National Academy of Sciences, 87(12):4576–4579, 1990.

[ZJ12] Nadine Ziemert and Paul R Jensen. Phylogenetic approaches to natural product
structure prediction. In Methods in enzymology, volume 517, pages 161–182. Elsevier,
2012.

51

A Lookup table

Tree
num-
ber

Tree name
Tree
num-
ber

Tree name
Tree
num-
ber

Tree name

001 Glomerales 002 Diversisporales 003 Gigasporales
004 Archaeosporales 005 Paraglomerales 006 GS24
007 Thelephorales 008 Gomphales 009 Hygrophoraceae
010 Cortinariaceae 011 Inocybaceae 012 Amanitaceae
013 Lycoperdaceae 014 Agaricaceae 015 Typhulaceae
016 Clavariaceae 017 Hydnangiaceae 018 Tricholomataceae
019 Marasmiaceae 020 Mycenaceae 021 Psathyrellaceae
022 Strophariaceae 023 Callistosporiaceae 025 Omphalotaceae
026 Cyphellaceae 027 Entolomataceae 028 Pluteaceae
029 Lyophyllaceae 030 Pleurotaceae 031 Pterulaceae
032 Bolbitiaceae 033 Catathelasmataceae 034 Stephanosporaceae
035 Cystostereaceae 036 Hymenogastraceae 037 Schizophyllaceae

038
Agaricales fam Incer-
tae sedis

039 Crepidotaceae 041 Physalacriaceae

042 Nidulariaceae 045 Radulomycetaceae 046 Pseudoclitocybaceae
048 Hymenochaetales 049 Polyporales 050 Boletales
051 Russulales 052 Corticiales 054 Auriculariales
055 Geastrales 056 Trechisporales 057 Phallales
058 Gloeophyllales 059 Sebacinales 060 Hysterangiales

061 Atheliales 062 Amylocorticiales 063
Agaricomycetes ord
Incertae sedis

064 Tremellodendropsidales 065 GS28 067 Lepidostromatales
070 Tremellales 071 Cystofilobasidiales 072 Trichosporonales

073 Holtermanniales 074 Filobasidiales 075
Cystobasidiomycetes
ord Incertae sedis

076 Erythrobasidiales 077 Cyphobasidiales 078 Cystobasidiales

080 Sporidiobolales 081
Microbotryomycetes
ord Incertae sedis

082 Microbotryales

083 Leucosporidiales 084 Kriegeriales 086 Agaricostilbales
087 Septobasidiales 088 Pucciniales 089 Platygloeales
090 Helicobasidiales 091 Exobasidiales 092 Entylomatales
093 Tilletiales 094 Georgefischeriales 095 Microstromatales
099 Tritirachiales 100 Geminibasidiales 101 Ustilaginales
102 Urocystidales 104 Atractiellales 105 Spiculogloeales

107 Dacrymycetales 108
Dacrymycetes ord In-
certae sedis

110 Malasseziales

111 Wallemiales 116
Dothideomycetes ord
Incertae sedis

117 Capnodiales

52

Continuation of Table 13
Tree
num-
ber

Tree name
Tree
num-
ber

Tree name
Tree
num-
ber

Tree name

118 Pleosporales 119 Acrospermales 120 Tubeufiales
121 Botryosphaeriales 122 Dothideales 123 Venturiales
124 Myriangiales 125 Strigulales 127 Abrothallales
128 Mytilinidales 129 Patellariales 130 Mytilinidiales
131 Trypetheliales 132 Hysteriales 133 Jahnulales
135 Stigmatodiscales 137 Valsariales 139 Minutisphaerales
140 Helotiales 141 Erysiphales 142 Rhytismatales
143 Thelebolales 144 Triblidiales 146 Phacidiales
149 Aspergillaceae 150 Trichocomaceae 151 Thermoascaceae
152 Elaphomycetaceae 153 Onygenales 154 Chaetothyriales
155 Verrucariales 156 Phaeomoniellales 157 Mycocaliciales
158 Sclerococcales 159 Coryneliales 160 Pyrenulales

161 Glomerellales 162
Sordariomycetes ord
Incertae sedis

163 Microascales

164 Diaporthales 165 Coniochaetales 166 Sordariales
167 Hypocreales 168 Xylariales 169 Magnaporthales
170 Chaetosphaeriales 171 Melanosporales 172 Phyllachorales
173 Pleurotheciales 174 Myrmecridiales 175 Branch06
176 Ophiostomatales 177 Conioscyphales 178 Hypoceales
179 Boliniales 181 Calosphaeriales 182 Annulatascales
183 Togniniales 184 Xenospadicoidales 185 Coronophorales
186 Pararamichloridiales 187 Trichosphaeriales 188 Lulworthiales
189 Phomatosporales 190 Falcocladiales 191 Savoryellales
196 Ostropales 197 Lecanorales 198 Caliciales
199 Rhizocarpales 200 Peltigerales 201 Umbilicariales
202 Acarosporales 203 Pertusariales 204 Arctomiales

206 Trapeliales 207 Teloschistales 208
Lecanoromycetes ord
Incertae sedis

209 Leprocaulales 210 Lecideales 211 Baeomycetales
212 Candelariales 213 Sarrameanales 214 GS36
218 Orbiliales 219 GS33 221 Taphrinales
222 Saccharomycetales 223 GS34 224 Symbiotaphrinales
227 Coniocybales 228 Geoglossales 229 Laboulbeniales
230 Pyxidiophorales 231 Archaeorhizomycetales 232 GS31
233 Arthoniales 234 Lichenostigmatales 236 Sareales
237 Lichinales 241 GS05 242 GS08
243 GS07 244 GS03 245 GS11
246 Branch01 247 GS06 249 GS10
250 GS04 252 Branch03 254 Spizellomycetales

53

Continuation of Table 13
Tree
num-
ber

Tree name
Tree
num-
ber

Tree name
Tree
num-
ber

Tree name

255 Rhizophydiales 256 Lobulomycetales 259 Rhizophlyctidales
260 Synchytriales 262 Basidiobolales 263 Endogonales
264 GS21 265 GS22 267 Mucorales
268 GS23 269 Umbelopsidales 270 Blastocladiales
271 GS15 272 Mortierellales 273 Neocallimastigales
274 GS16 277 Olpidiales 278 Monoblepharidales
280 Sanchytriales 281 Zoopagales 283 Kickxellales
284 Entorrhizales

Table 13: Look up table for tree number and name.

54

B Zip file

All results of this research are combined in a zip file. The structure of the zip file is shown below.
Some files contain numbers in their name. The corresponding subtree name can be found in appendix
A, table 13. The folders for BLAST and pplacer contain the raw output and the calculations done
with this output. All figures for biodiversity are added in the folder Visualizations biodiversity.

Results

Test 1

Annotation

BLAST

pplacer

Calculations

Output pplacer

Test 2

Annotation

BLAST

pplacer

Calculations

Output pplacer

Test 3

Annotation

BLAST

pplacer

Calculations

Output pplacer

Visualizations biodiversity

55

	Introduction
	Computational biodiversity
	Metabarcoding
	ITS

	Phylogeny
	Research questions
	Thesis overview

	Material & methods
	Data
	Reference tree MDDB

	Software
	BLAST
	RAxML
	Pplacer

	Hardware

	Placement Methods
	Maximum likelihood methods
	pplacer
	pplacerDC
	EPA-NG

	Distance methods
	APPLES
	App-SpaM

	Other methods
	RAPPAS

	Analysis
	Conclusion

	Experiments and Results
	BLAST
	Method BLAST
	Results BLAST

	PPLACER
	Method pplacer
	Results pplacer
	Distance and nodes calculation
	Interpretation of results

	Statistical validation
	Runtime
	Visualization
	Visualization of result
	Visualization for biodiversity

	Conclusions and Further Research
	Conclusion
	Discussion
	Future work

	References
	Lookup table
	Zip file

