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Abstract

The reconfigurability and versatility of FPGAs and eFPGAs result in an increase in use and
popularity. They are used in high-value sectors like defense and medical applications that
require high reliability and security. They are also becoming more popular among hobbyists
and commercial entities. This is partly due to the ease of sharing Intellectual Property and
designs which lowers the learning curve and accelerates adoption of FPGAs and eFPGAs.
However, this also makes it easy for malicious parties to infect and abuse Intellectual Property
which poses a risk to the end users. This thesis investigates these risks for eFPGAs in general
with a focus on the SymbiFlow open-source design flow and power hammering circuits. The
results show that SymbiFlow offers little to no protection. Furthermore, eFPGAs can suffer
greatly under the influence of very small and easily embedded power hammering designs,
requiring as little as 7.3% of the available logic space to render the eFPGA unpredictable.
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1 Introduction

This thesis focuses on Denial-of-Service and power draining attacks on embedded Field-Programmable
Gate Arrays. It analyses the protection capabilities of the used open-source design flow (SymbiFlow)
and investigates the effect of multiple types of ring oscillators on the power consumption and core
validity of the eFPGA core.

Before the invention of Field Programmable Gate Arrays (FPGAs) in 1984 [Tri15], develop-
ers had to order a new chip for every design change in a circuit, resulting in high development costs.
They also had to wait for new components since every design change required a physically different
Integrated Circuit (ICs). The most common chips that were used before the utilization of FPGAs
are Application Specific Integrated Circuits (ASICs). These semiconductor devices are created with
a specific circuit implementation and cannot be changed after production [CK00]. Meaning that for
every design change, new ICs needed to be ordered [Utm21]. FPGAs provide an alternative which
is re-configurable on the go instead of waiting for a new IC. This brings the benefit of reduced
development costs and faster development cycles but with a higher cost per unit.

During the initial invention and development of FPGAs, ASICs offered magnitudes of better
performance. This performance gap has shrunk significantly since then but ASICs still offer higher
performance with regards to FPGAs [Tri15, KR06]. This smaller difference in performance resulted
in FPGAs becoming a viable alternative while the maximum attainable performance still lies with
ASICs [Int23]. FPGAs are also popular due to the possibility to reconfigure them while they are in
the final product. This allows manufacturers to solve issues or upgrade capabilities via a software
update instead of having to physically change components.

1.1 Problem Statement

The rise in popularity of FPGAs and eFPGAs will likely result in an increase of using open-source
tooling like SymbiFlow [OS23], especially for hobbyists. A large benefit of eFPGAs is that the
designs and configurations can be shared as Intellectual Property (IP) which only require adaptation
to the specific FPGA architecture used. This allows hobbyists but also companies to share and
use IPs, lowering the learning curve for using FPGAs. However, this also means that there is a
possibility of malicious IPs which can act as a virus resulting in unexpected or unwanted behaviour.
One type of these malicious IPs are designs containing power hammering circuits that consume a
lot of power and can potentially crash or damage the (e)FPGA [GOT17]. It is important that the
implications of power hammering circuits are known and that the current SymbiFlow design flow is
analysed for security leaks. The reconfigurability of the (e)FPGA could be a security risk, not only
exposing the FPGA but the entire system [ZQ14]. These facts rise the following research questions:

RQ1: What are the effects of different kinds of power hammering circuits on the
correct functioning and power consumption of the eFPGA core on the EOS-S3

SoC [EOS18]?

RQ2: What are the current protection capabilities of the open-source
SymbiFlow [OS23] design flow for preventing and warning the user of possibly

unwanted code in their designs?

1



1.2 Thesis contributions and overview

This thesis provides the following:

• A framework to automatically test the effect of different power hammering circuits on eFPGAs.

• An experimental setup to test the EOS-S3 SoC. This setup can generate multiple types of
ring oscillators with a variable number of circuits. It can also program the board and perform
power measurements.

• An analysis of the protection capabilities of the SymbiFlow design flow against possibly
unwanted and malicious designs containing ring oscillators.

This chapter contains the introductions; Section 2 provides the background information needed
for this thesis; Section 3 describes work related to this research; Section 4 presents the materials
used and the experimental setup; Section 5 presents the results from the experiments; Section 6
discusses the results; Section 7 concludes this thesis.

Bachelor thesis for Computer Science by Joris Gravesteijn at LIACS, University of Leiden under
the supervision of Todor Stefanov.

2 Background

This section introduces the various concepts needed to understand this thesis.

2.1 Field Programmable Gate Arrays (FPGAs)

A Field Programmable Gate Array (FPGA) is an integrated circuit that contains a grid of Con-
figurable Logic Blocks (CLBs) with programmable interconnects between the CLBs. An FPGA
also contains I/O blocks that facilitate communication with components outside of the FPGA
such as other FPGAs, general-purpose processors and sensors. This interoperability allows for
FPGAs to be used in complex systems in which the FPGA optimizes highly specific tasks while
the general-purpose host takes care of the tasks which the FPGA is not optimized for. Nowadays
most FPGAs also contain Block Random Access Memory and Digital Signal Processing slices. The
Block Random Access Memory (BRAM) blocks can be used as Random Access Memory in the
same manner as with a CPU. Furthermore, Digital Signal Processing Slices (DSPs) can be used
to carry out digital signal processing functions such as filtering or multiplying [KR06]. A block
diagram of a general FPGA is shown in Figure 1. A grid of CLBs (blue) is shown with the black
lines representing the programmable interconnects. The switch matrices are used to connect the
different interconnects, allowing for connections to be created. The I/O blocks are shown in yellow
and allow for interaction with peripherals outside of the FPGA. BRAM and DSPs are not shown.
Also, a simplified version of a CLB is shown in Figure 2. This CLB consists of two LUT3 primitives,
a Full Adder, three multiplexers and a D-Flip Flop. This CLB has 5 inputs, a clock line and two
outputs.

FPGAs are most commonly programmed by using a Hardware Description Language (HDL) [ES08].
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This type of programming language is used to describe the digital circuits that need to be imple-
mented on the FPGA. This includes structure, behaviour and timing of the circuits. HDL is a
low-level language which means that each component and its connection is described. A tool called
the synthesizer takes the HDL code and creates a binary file that configures the individual CLBs
and interconnections based on the architecture of the FPGA. First, the HDL code is converted to
primitives. These primitives represent configurations of a singular CLB. For example, a Look-Up
Table with 2 inputs (LUT2) primitive represents the required ports to be able to configure a CLB
as a LUT table with 2 inputs. After the required primitives are known, the synthesizer places them
within the architecture of the FPGA. The final step is routing the necessary connections in between
blocks [CoQ20].

Figure 1: Introduction to FPGA and its Programming Tools, Abhimanyu Pandit,
24-03-2019, From https://circuitdigest.com/tutorial/what-is-fpga-introduction-and-

programming-tools

Figure 2: Simplified CLB, Peter Kallstrom, 02-05-2010, From https://en.wikipedia.org/wiki/

Logic_block

Generally, HDL designs, also called Intellectual Property (IP), can be exchanged in between FPGAs
and only require adaptation to the FPGA architecture. The adaptation can usually be done by
the synthesizer without any modification to the actual HDL code. This allows hobbyists but also
companies to share and use IPs thereby lowering the learning curve for using FPGAs. However,
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this also means that there is a possibility of malicious IPs which can act as a virus resulting in
unexpected or unwanted behaviour.

Aside from being re-programmable, FPGAs also offer higher performance with regards to la-
tency and parallelism when compared to Central Processing Units (CPUs). They offer lower latency
and can thereby achieve a higher throughput [LGM+12].

FPGAs do have multiple downsides when compared with ASICs. They are generally more expensive
than ASICs due to their increased complexity resulting in lower development costs but higher
production costs. FPGAs also consume more power [AAE06] and are physically larger due to
onboard storage (BRAM) and resources for reprogramming and configuration. ASICs can also
be more optimized when compared to FPGAs because they are designed for one highly-specific
task [KR06].

2.2 Embedded FPGA (eFPGA)

Embedded FPGAs (eFPGAs) are a programmable logic core (FPGA) directly integrated within
the ASIC or System on Chip (SoC) [Fle05], as shown in Figure 3. Figure 3 shows that less space is
needed on the PCB and also various improvements with regards to FPGA power consumption,
unit cost, latency with regards to the SoC and bandwidth. Generally, almost half of the power
consumption of an FPGA is dedicated to re-programmable I/O circuits around a standalone FPGA.
However, since the eFPGA has a direct connection to the ASIC or SoC, these circuits are no longer
required and a significant chunk of the power consumption is eliminated [Utm22, Fle05]. The ASIC
or SoC can also take over the role of a lot of the surrounding peripherals for the FPGA such as
clock generation which saves space and routing difficulty for the PCB. Since FPGAs offer significant
performance boosts in specific tasks when compared to ARM or RISC-V processors, a combination
of the two can be very efficient. Integrating the FPGA core into the SoC means a close proximity
between the eFPGA core and the processor, allowing for a connection with high-bandwidth and
low-latency [vSNBN06]. Furthermore, the designer of the SoC can determine the size and I/O of
the eFPGA core which gives a lot of versatility and allows for optimal configurations where no
space is wasted. It also means that current products that have physical FPGA chips and processors
can be minimized by integrating it into one SoC, resulting in smaller PCBs and thus devices.

eFPGAs are very popular in the defense, AI, and acceleration sector. They are widely used in
automation, automatic driving systems, and medical electronics [Leo08]. All of which are critical
sectors where consistency and reliability are key.

2.3 Attacks on FPGAs and eFPGAs

With the rise in popularity of FPGAs and eFPGAs, the risk of attackers and people with mali-
cious intentions also rises. As mentioned in Section 2.1, it is possible to share IPs that contain
the configuration of an FPGA. This lowers the learning curve for FPGA design and allows for
more easy adaptation and development. However, this also creates an opportunity for IPs with
malicious circuits to infect FPGAs. A common example of malicious circuits are power hammering
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Figure 3: FPGA vs eFPGA configuration. From https://www.edn.com/has-the-time-for-

embedded-fpga-efpga-ip-finally-come/

circuits that draw high amounts of power via ring oscillators. This is further explained in Section 2.4.

Figure 4: FPGA as a Service (FaaS) with 1 FPGA core being shared amongst 2 users

Another example is in the cloud-based domain. In the current day and age, a lot of resources are
moved to the cloud. Big vendors like Amazon Web Services (AWS) and Microsoft’s Azure already
offer FPGAs in the cloud as FPGA as a Services (FaaS). These cloud-based FPGAs divide a single
FPGA core into multiple chunks such that the single large FPGA core can be fully utilized by
multiple individuals, as shown in Figure 4. These users share the power budget which creates the
possibility of a Denial of Service (DoS) attack. During such an attack, one of the users implements
power hammering circuits such as oscillators with very high switching frequencies. These circuits
consume the power budget for the FPGA and this can result in the FPGA crashing. This attack
results in the FPGA becoming unusable for the other users [LMG+20].
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The sharing of IPs with malicious code is especially a risk in eFPGAs. Most of the time, they
share the power rail of the SoC with the other peripherals. This means that simple and small
ring oscillators can be used to consume the power budget, limiting the functionality of the entire
SoC. This can result in a significant enough voltage drop to thereby crash the eFPGA, as with
normal FPGAs [LMG+20, GOT17]. These ring oscillators can be very hard to find and hidden in
the binary file that is uploaded to the eFPGA. A possible attack is that one injects ring oscillators
to a functional bit-stream, resulting in a hybrid binary with malicious and non-malicious code.
This can have numerous implications on the reliability of the eFPGA but also on the battery life of
mobile systems that use eFPGAs.

2.4 Ring Oscillators

A very common way of power hammering is by embedding multiple instances of ring oscillators on
an (e)FPGA. A ring oscillator is a circuit with a very high switching frequency [MS10]. The power
consumption of the FPGA is directly linked to the switching frequency of the logic circuit, with a
higher switching frequency resulting in higher power consumption. Most ring oscillators are not
clocked and they can reach switching frequencies in the GHz range based on the propagation delay
of the used primitives [LMG+20]. The most basic form of a ring oscillator is an uneven number
of NOT gates, with the output of the last NOT gate being fed into the first NOT gate, as shown
in Figure 5a and Table 5b. The amount of power drawn decreases with the number of gates in
one loop, since this adds to the total propagation delay. A longer delay means a lower switching
frequency and thus less power consumption.

(a) Generic Ring Oscillator based on three NOT gates

Gate # 1 2 3 1 2 3 1
Value 0 1 0 1 0 1 0

(b) NOT Gate values, the first and last cell
are the same, forming a loop.

Figure 5: The most basic form of a ring oscillator based on three NOT gates which are linked
together to form a loop.

Another common example of a ring oscillator is based on Look-Up Tables (LUT). A lookup table is
a table that generates an output based on the inputs and a predefined INIT value. A LUT2 table
with two inputs and one output is shown in Table 6b. LUTs can be used to implement any boolean
function as long as there are enough inputs available. They can also mimic other gates such as
AND gates and OR gates. To create a ring oscillator using a LUT2, one of the outputs is connected
back into one of the inputs of the LUT. This can be directly fed into itself, as shown in Figure 6a
and Table 6b, or in a sequence of multiple LUTs.
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(a) Generic Ring Oscillator based on a
LUT2, the truth table is shown in table 6b

Input A Input B Output C
0 0 1
1 0 0
0 1 0
1 1 0

(b) LUT2 table with 2 inputs (A, B) and 1
output (C)

Figure 6: LUT2 based ring oscillator with two inputs and one output.

3 Related Work

In related work [LMG+20], fifteen types of ring oscillators are tried. It shows that FPGAs are
vulnerable to power hammering designs and that only 3% of the FPGA is required to disrupt the
functionality of the FPGA. The related work only implements power hammering designs on an
FPGA board. This thesis aims to replicate their results using an eFPGA to see if eFPGAs are
vulnerable to the same type of designs. This thesis replicates the combinatorial designs that are
based on the LUT and MUX primitives and it expands the related work by comparing variations
of these designs that use different types of primitives such as the MUX2 primitive. This will show
the vulnerability of eFPGAs to power hammering designs and will examine the effect of power
hammering designs based on different primitives.

Related works [GOT17, PHT19, KGT18, MS19] show that FPGAs are vulnerable to voltage
drop based attacks and that these attacks can disrupt multi-tenant systems. The voltage is dropped
to such a degree that the FPGA experiences timing faults [MS19], crashes [GOT17, PHT19, KGT18]
or remains unresponsive [GOT17]. Related work [GOT17] shows that in some cases, the functional-
ity of the FPGA is only restored after a full power-cycle. Related work [GOT17] only examines
LUT based power hammering designs. This thesis replicates the voltage drop attack vector and
examines the effect on the EOS-S3 SoC. Furthermore, this thesis aims to expand this attack vector
by replicating the attack with MUX and NOT primitives instead of LUT primitives. This will give
insight into the effect of different primitives on the voltage drop based attack and could result
in a design that requires a smaller percentage of the total logic space to crash the eFPGA when
compared to the LUT primitive based power hammering design.

Furthermore, related works [PHT19, KGT18] implement attacks on multi-tenant cloud-based
FPGA systems. This thesis will examine the effect of malicious circuits that are embedded
in functional designs. This mimics the attack on multi-tenant systems as proposed in related
works [PHT19, KGT18]. This will give insight to the vulnerability of the eFPGA when used in
multi-tenant configurations or when the eFPGA is split up to execute multiple tasks in parallel.
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4 Experimental Methods and Materials

This section explains the used EOS-S3 SoC with an eFPGA core, the SparkFun QuickLogic Thing+
development board and the experimental setup, which we have developed, which automatically
creates and tests power hammering circuits. It also explains the used power hammering circuits.

4.1 EOS-S3

The SoC used for the experiments is the EOS-S3 from QuickLogic [EOS18] implemented on the
SparkFun QuickLogic Thing+ (QT+) board [Spa21]. The block diagram of the EOS-S3 is shown
in Figure 7a. This board was chosen due to its relatively cheap price, its open-source tools for
programming the board and it was readily available. The eFPGA contains 891 CLBs, the general
layout of a CLB is shown in Appendix A and more statistics can be seen in Table 7b. Each CLB
is a multiplexer-based single bit register with 22 simultaneous inputs and four outputs, of which
three are combinatorial and is in a register. This allows for a high variety of configurations per
CLB which include but are not limited to two independent 3-input functions, 4-input functions
and 8-to-1 mux functions [Qui20]. The EOS-S3 is programmable over a UART connection and for
this thesis only the eFPGA core is used, not the ARM-M4F processor.

(a) EOS-S3 block diagram,
From https://www.quicklogic.

com/products/soc/eos-s3-

microcontroller/

Feature EOS-S3
Logic Cells 891
8K RAM Modules (512x18 - 9.216 bits) 8
FIFO Controllers 8
RAM Bits 73.728
Configurable Interface 32

Multiplier
2x32x32
4x16x16

(b) EOS-S3 On-Chip Programmable Logic Major
features, From https://www.quicklogic.com/wp-

content/uploads/2020/06/QL-EOS-S3-Ultra-Low-

Power-multicore-MCU-Datasheet.pdf, table 7

Figure 7: The block diagram of the EOS-S3 core and statistics about the integrated eFPGA core.

One CLB of the EOS-S3 can be split up into four fragments to fit multiple functions into one
CLB. Appendix A shows this with the first letter of the input and output pin corresponding to
the fragment that it belongs to. These fragments do have different capabilities but it is possible to
utilize multiple fragments of one CLB for different functions. For example, the f-fragment can be
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used to implement a NOT gate while a LUT2 table is implemented in the t-fragment. This allows
for more efficient use of the available CLBs. These fragments can also be grouped to allow for a
larger component inside one CLB like a LUT4 table which requires 16 inputs. The synthesizer does
have the functionality to merge or split different primitives into combinations of other primitives
while retaining the desired behaviour. Examples of this are using two LUT3 primitives and a
multiplexer to implement a LUT4 primitive or using a LUT1 primitive to mimic a NOT gate. The
latter is used when the f-frag of a CLB is used up while the t-frag is still available. This allows for
maximum utilization of the eFPGA.

4.1.1 Power Rail for eFPGA core

An important aspect of the EOS-S3 implementation is the power supply for the eFPGA. On the
SparkFun QuickLogic Thing+, the eFPGA is powered by Low-DropOut (LDO) regulators within
the EOS-S3 SoC. These convert the external input of 3.3V down to approximately 1.1V. A block
diagram is shown in Figure 8. It is important to note that the operation of the eFPGA is only
considered valid while the voltage supply is above 0.95v as explained in [Qui17], page 80. This was
also further confirmed by the QuickLogic Corporation in a private communication and is used as
the threshold for breaking the functionality of the eFPGA during the experiments.

Figure 8: LDO Configuration on the SparkFun QuickLogic Thing+ [Qui17], page 80

4.2 SymbiFlow

SymbiFlow is the open-source design flow which is used to generate EOS-S3 binaries from custom
HDL code. It uses Verilog To Routing (VTR) [MPZ+20] to map the custom HDL code to a EOS-S3
binary. First, VTR uses Yosys Open SYnthesis Suite (YOSYS) [Yos23] to map the HDL file to
the EOS-S3 primitives. Then, Versatile Place and Route (VPR) is used to route the connections
between the I/O blocks and the CLBs. Figure 9 shows a block diagram of SymbiFlow.
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Figure 9: Block diagram of the SymbiFlow design flow submodules

4.3 Power Hammering Circuits

This section explains the different power hammering circuits that we have implemented and
tested. All power hammering circuits that are used for testing are based on combinatorial ring
oscillators that can generate high frequency switching activities with a minimal of one CLB. They
are generated by bash scripts, that we developed, called ”Verilog Generators”, that are further
explained in Section 4.3.5. All the generators and results are available in the projects GitHub
repository https://github.com/JsGraaf/Thesis_QT_Testing_Software.

4.3.1 NOT3 Based RO

Figure 10 shows the implemented ring oscillator based on linking three NOT gates in a sequence.
An OR tree is implemented to link all the ring oscillators due to the requirement that every circuit
must have an output. Otherwise, the entire circuit will be removed from the design during the
optimization stages. The OR tree compresses all the NOT3 ring oscillators to one output pin,
lowering the I/O requirement for the eFPGA. As explained in Section 2.4, an uneven number of
inverters results in a ring oscillator. The value is inverted after the last NOT gate and fed back
into the first NOT gate. This results in an endless loop with every iteration changing the value of
the NOT gates. This change in value results in a power draw. On the EOS-S3, the NOT gates are
implemented in the f-frag section of the CLB [QC21] and one ring oscillator instance requires at
least 3 CLBs. Since they can utilize the small f-frag section of a CLB, they are easily embedded
into designs.

Figure 10: NOT3 based ring oscillator with 2 instances. The table shows the propagation of the
values trough one ring oscillator
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4.3.2 LUT Based ROs

Figure 11 shows the implemented ring oscillator based on a single LUT2 primitive. Like with the
NOT3 ring oscillator, an OR tree is used to link the outputs of the instances. The truth table in
Figure 11 shows the initialisation of the LUT2 primitive. Input B is always set to zero and the
value of the input A is changed every time it propagates through the LUT2 primitive. This results
in an inverter which begins to self-oscillate.

In this implementation, no enable signal is used to simulate the real-world implementation where
the malicious circuit should start when the eFPGA receives power. This can easily be modified
by replacing the constant 0 of output B with an enable signal and changing the INIT value to
INIT(’0100’). By doing this, the LUT2 will always output 0, unless input B is equal to 1, at which
point it will start oscillating. The LUT2 table is implemented in the t-frag section of an EOS-S3
CLB [QC21]. Only one CLB is required to implemented this type of ring oscillator.

The implementation for the LUT1, LUT3 and LUT4 based ring oscillators is the same with
the only change being the primitive that is used. The only modification needed is setting the
remaining outputs of the primitives to zero and adding leading zeros to the INIT variable. In the
case of the LUT1 primitive, input B is removed and the INIT variable is changed to INIT(’00’).
In the case of LUT3, input D is added and the INIT variable is changed to INIT(’00000001’).
Finally, in the case of LUT4, input D and E are added and the INIT variable is changed to
INIT(’0000000000000001’).

All LUT primitives are implemented on the t-frag of a EOS-S3 CLB, thereby requiring only
one CLB for a functioning RO [QC21].

Figure 11: LUT2 based ring oscillator with 2 instances
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4.3.3 MUX Based ROs

Figure 12 shows the implemented ring oscillator based on a single MUX2 primitive. Like with the
previous ring oscillator implementations, an OR tree is used to link the outputs of the instances.
The MUX2 primitive propagates the state of one of the inputs based on the S0 selection input. The
table in Figure 12 shows which input is propagated with which value. Due to the values of inputs
A and B, input A selects input B, which then selects input A. This results in constant switching of
the MUX2 primitive, resulting in power draw. The MUX2 primitive is implemented on the f-frag
section of a EOS-S3 CLB and requires only on CLB for a fully functional RO [QC21]. Due to it
only utilizing the f-frag portion, it can easily be embedded in a design.

For the MUX4 implementation, two inputs D and E are added together with one selection line
S1. All of these new inputs are connected to 0, resulting in the same behaviour. MUX8 adds an
additional 6 inputs labelled with D, E, F, G, H and I together with the two selection lines S1 and S2.

The MUX4 primitive is implemented on the t-frag section of a EOS-S3 CLB [QC21]. The MUX8
primitive is implemented on a combination of the t-frag and b-frag section (tb-frag) section of an
EOS-S3 CLB [QC21]. Both MUX4 and MUX8 require one CLB to implemented a fully functional
ring oscillator.

Figure 12: MUX2 based ring oscillator with 2 instances

4.3.4 Note on D-flip flop and Latch based Ring Oscillators

The SymbiFlow design flow currently does not support the D-flip flop and Latch primitives of the
EOS-S3. They can be defined by using the logic cell macro primitive and creating the components
from scratch but there was not enough time within this thesis to implement these primitives.
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4.3.5 Circuit Generation

An important part to automate the experiments is our Verilog Generator which can create a valid
Verilog file with the specified number of RO circuits. This enables the PC host to scale the amount
of ring oscillators in the FPGA to see the effect of each increment. The generator is split into four
parts: The initialisation of the generator, initialisation of the modules, the instance generation
(one circuit) and the end of the module. The generator for the NOT3 experiment is available in
appendix B for reference.

4.3.5.1 Verilog Generator: Generator Initialisation

#!/bin/bash

### <CIRCUIT NAME HERE > generator for verilog code for QT plus ###

# Usage: ./<Filename > <Amount of circuits > <output file path >

FILE_NAME=’MODULE_top.txt’

CIRCUIT_NAME="<CIRCUIT NAME HERE >"

# Check if arguments where given

if [ $# -eq 0 ]

then

echo "No arguments supplied"

exit

fi

# Get amount from arguments

AMOUNT=$1
OUTPUT_FILE_PATH=$2

echo "Generating ${1} $CIRCUIT_NAME"

This code block is responsible for parsing the input from the Command Line Interface (CLI) when
calling the generator. It checks if all the required arguments are present and informs the caller on
the amount and type of circuits that are going to be generated.
4.3.5.2 Verilog Generator: Module Initialisation

### INITIALISATION OF SUBMODULES ###

# This can be deleted if there are no submodules

echo """

<ADD SUBMODULE DEFINITIONS HERE >

""" > $FILE_NAME

This section is responsible for the pre-module initialisation. The <ADD SUBMODULE
DEFINITIONS> string should be replaced with all the code which needs to be defined before
the top module generation. This can be global variables, includes from other libraries or submodules.

### TOP OF MODULE ###

echo """

module MODULE_top(

io_pad

);
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// GPIO

inout wire [31:0] io_pad ;

""" >> $FILE_NAME

echo """

<ADD TOP MODULE DEFINITION HERE >

<BEWARE OF \$AMOUNT == 0>

""" >> $FILE_NAME

This section is responsible for the initialisation of the top module. This starts with the required
header that exposes the I/O pins of the QuickLogic Thing+. This is required for proper compilation.
After this initialisation, the custom code for the module can be defined. This can include testing
and debugging modules or other components that need to be available outside a single instance.
It should be noted that the generator should account for zero instances being generated. For
example: If a register is being created based on the number of instances generated, there should be
a verification such that ”reg [0:0] registers” is avoided since this will result in a compilation error.

4.3.5.3 Verilog Generator: Instance generation

### INSTANCE GENERATION (individual Circuit) ###

if [ "$AMOUNT" -gt "0" ]; then

for i in $( eval echo {1.. $AMOUNT} )

do

echo """<ADD INSTANCE DEFINITION HERE >

""" >> $FILE_NAME
done

else # In case the design is empty (circuits = 0), add 1 inverter

echo """inv invBase (

.A(io_pad [2]),

.Q(io_pad [25])

);

""" >> $FILE_NAME
fi

This section is responsible for the generation of the circuit instances. The instance design should be
placed in the < ADD INSTANCE DEFINITION HERE > field. One instances should contain one
fully functional circuit but the instances can be connected to each other. In case of an empty design,
one inverter is created inside of the module. This is due to the restrictions of the SymbiFlow design
flow which requires the presence of at least one component. The inverter connects one input to one
output such that a valid circuit is created. This has a negligible effect on the power measurements
on the circuit since the CLB changes state once, directly after powering on.

4.3.5.4 Verilog Generator: End of Module

### END OF MODULE ###

echo ’<ADD MODULE END HERE >’ >> $FILE_NAME
echo ’endmodule ’ >> $FILE_NAME

mv $FILE_NAME $OUTPUT_FILE_PATH
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Figure 13: The experimental setup using a Seeeduino XIAO(left) [Hu23], INA219(middle) [Tex15]
and QuickLogic Thing+(right) [Spa21].

This section is responsible for generation the end of the module definition and Verilog file. The
”endmodule” statement is required but the ”endmodule” statement can be replaced with any code.

4.4 Automatic Testing Hardware

We have created an automated automatic testing framework and a hardware experimental setup
,shown in Figure 13, to conduct the experiments in an efficient and consistent manner. A Seee-
duino XIAO [Hu23] was used in combination with a PC to automatically flash the QuickLogic
Thing+(QT+). The XIAO was connected to a INA219 [Tex15] voltage and current sensor to
measure the power draw of the QT+ at the 5V USB input. The QT+ requires two actions to
enter programming mode, in which it accepts a new FPGA design. Firstly, the reset button needs
to be pressed and within 5 seconds, the USR BTN needs to be pressed to enter programming
mode. These two actions have been diverted to two General-Purpose Input/Output (GPIO) pins
of the XIAO. This allows the XIAO to enable programming mode without human intervention.
Furthermore, one of the GPIO pins of the XIAO is connected to the GPIO2 of the QT+. This
GPIO pin is accessible in the FPGA and can be used to enable the ring oscillators. Finally, an
Analog-to-Digital Converter (ADC) capable pin of the XIAO is connected to Test Point 2 (TP2) of
the QT+. This allows the XIAO to measure the output voltage of LDO-2, which is responsible
for powering the digital logic inside of the eFPGA core [Qui20]. This is used to determine if the
output of the core can be considered valid, or in other words higher than 0.95V. The PC1 and PC2
inputs should be connected to the host PC. A cable should also be added between the top USB
port and the QT+ USB port. A full wiring diagram is shown in Figure 13:

• The RESET wire is used to reset the QT+, this is required to enable the programming mode.

• The GPIO6 wire is connected to the USR BTN line, which needs to be pulled low within 5
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seconds of resetting the QT+ to enable the programming mode.

• GPIO2 is connected to one of the I/O pins of the EOS-S3. This pin is also available to the
FPGA core.

• LDO-2 is connected to TP2 on the QT+. This is a test point which allows the measurement
of the voltage which is being supplied to the FPGA digital logic.

4.5 Host PC Software

We have created a python program which can automatically generate Verilog HDL code, flash
the board and run power tests on the USB interface and EOS-S3 core. The Host PC software
consists of two parts: A python script and a Verilog generator written in bash. The entire testing
framework with the used Verilog generators, python script and QT+ project is available at
https://github.com/JsGraaf/Thesis_QT_Testing_Software.

4.5.1 QORC SDK

To generate the binary for the EOS-S3, the open-source tools that were suggested by the QuickLogic
Corporation were used. V1.10.0 of the QORC SDK was used, which is available at https://github.
com/QuickLogic-Corp/qorc-sdk/releases/tag/v1.10.0. Two modifications were made to make
the SDK compatible with the experimental setup:

• Replacing the default project structure: The default structure as proposed by the
QORC SDK lacks in several areas. It does not allow for easy compilation and flashing to
the board. During the preliminary research, a GitHub repository with experimental and
updated projects was found at https://github.com/coolbreeze413/qorc-onion-apps.
This repository was created by one of the developers of the QORC SDK and had a new and
fully tested project structure with multiple quality-of-life improvements such as a framework
of bash scripts and Makefiles with the ability to flash and debug boards. A blank project
directory can be found in the GitHub of this thesis.

• Flashing via a modified Makefile: The experiments were compiled under Windows
Subsystem for Linux 2 [CM22] as this is only possible on Linux. A downside to this approach
is that WSL2 does not have access to the serial port via which the SparkFun QuickLogic
Thing+ is flashed. This was solved by moving the programming script to the Windows
machine and using a PowerShell script to launch it. This accesses the binary on the Linux
partition while running under Windows, giving it access to the serial port. The command can
be found inside the flash fpga m4.sh file in the .scaffolding folder inside of the blank project
directory in the GitHub repository for this thesis.

Furthermore, all three of the SparkFun QuickLogic Thing+ boards had broken bootloaders
from the manufacturer. None of them were able to enter programming mode and this had to
be resolved by using a JTAG debugger and re-flashing the bootloader. This issue has been re-
ported to the manufacturer SparkFun and a detailed guide on how to fix this can be found at
https://forum.quicklogic.com/viewtopic.php?t=29. This guide was written for the original
QuickLogic QuickFeather development kit but is applicable to the SparkFun board by substituting
”ql loadflash.bin” to ”qf loadflash.bin”
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4.5.2 AutoTester.py Python Script

Our python script that is running on the host is responsible for the following:

• Creating and maintaining a serial connection to control and communicate with the XIAO
micro-controller.

• Compiling the new FPGA configuration from the Verilog file and QT+ project. This is done
in the background while the previous iteration is running to save time.

• Gathering the results from the XIAO micro-controller via the serial connection and outputting
these to a XLSX workbook for further processing.

The command line inputs are shown in Table 1.

Name Description CLI Flag Required Default

QORC Port
The serial port to which the

QuickLogic Thing+ is connected
-q Yes -

COM Port
The serial port to which the

XIAO micro-controller is connected
on the Windows OS

-p Yes -

Generator

The desired Verilog generator
to use for this iteration.
Must be located in the

”Verilog Generators” directory

-g Yes -

Circuit Count
The maximum number of
circuits to generate using
the Verilog generator

-c No 200

Increment
The number of circuits to

increment by. Starts at 0 and
runs until the Circuit Count

-i No 10

Test Length

Specifies the amount of time
during which the measurements

are taken by the
XIAO micro-controller

-l No 50000ms

Delay
Specifies the amount of time

between measurements
taken by the XIAO micro-controller

-d No 500ms

Table 1: Description of input parameters for the PC host software

4.6 XIAO Micro-controller Software

The serial communication with the XIAO is responsible for starting the measurements and enabling
the programming mode on the QT+. The commands are available in Table 2 and a typical
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Command Description

r
Resets the QT+ by pulling down the reset pin for 1 second,

Waiting for 1 second for the QT+ bootloader and
Pulling GPIO6 (USR BTN) low for 1 second

t
Tests the connection with the XIAO

Returns ’c’ if successful

p

Run the power tests using the INA219 and
12-bit ADC for the core voltage.

Executes them based on the specified parameters
and outputs the results to the serial connection
Pulls down the GPIO2 pin during the tests

y
Continuous power testing used for verifying the new ROs

Measures every 500ms and outputs it to the
Serial connection

Table 2: Overview of serial commands for the XIAO

communication flow for one generator iteration is available in Table 3. The serial communication is
defined as follows:

Command send
by host

XIAO return Description

- -
Serial connection is opened

by the host
r c Starts the reset process for the QT+

- d
Confirms that the reset process

is finished

t c
Tests the connection

before starting the power tests

-
Measurement data
xx:xx:xx:xx;...

XIAO outputs the measurement
data in the form of
1. USB voltage (V)

2. USB power draw (mW)
3. USB current draw (mA)

4. LDO-2 voltage (V)

Table 3: Overview of the typical serial communication between the PC host and the XIAO for one
generator iteration.

5 Experimental Results

Figures 14-21 show the results from the power hammer experiments. They display the highest
amount of current drawn at the 5V USB input and the lowest voltage of the eFPGA core at different
instance amounts of ring oscillator circuits. The 0.95V threshold for the eFPGA core is given for
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reference. Also for reference: An empty design uses around 3.3mA with a core voltage of 1.15V. A
32-input 4-bit clocked adder tree that uses 81 CLBs consumes 8mA with a core voltage of 1.15V. The
measurements were performed with 500ms intervals for a total duration of 50 seconds. The lowest core
voltage was plotted together with the highest current draw. All results are available in the GitHub
repository for this thesis at https://github.com/JsGraaf/Thesis_QT_Testing_Software.git.

5.1 Look-Up Table (LUT) based ROs results

Figure 14-17 show that in all cases the core voltage starts to drop after the current draw raises
above 15mA. In all four cases this happens at a different amount of instances with the LUT1 based
ROs making the voltage drop after only 25 instances or 2.8% of the entire eFPGA. The 0.95V
threshold is reached after 65 instances or 7.3% of the eFPGA. The results for the LUT2, LUT3, and
LUT4 primitives are shown in Table 4. Figure 14-17 also show that the current draw never exceeds
16mA. When the core voltage is close to the threshold of 0.95V, the current drops to around 14mA.
While the different LUT primitives start to drop core voltage at different times, they all show the
same behaviour with regards to the current: The current remains at 15mA when the core voltage
starts to drop and drops to 14mA when the core voltage reaches 0.95V.

Primitive

Voltage

Drop

Voltage

Threshold

Instances
% of
total

Instances
% of
total

LUT1 25 2.8 65 7.3
LUT2 55 6.2 125 14.0
LUT3 55 6.2 125 14.0
LUT4 35 3.9 80 9.0

Table 4: LUT primitive based results.

5.2 MUX based RO results

Figure 18-20 show similar behaviour to the LUT based ring oscillators. Again, the core voltage
starts to drop when 16mA is reached, dropping down to 14mA when the core voltage approaches
0.95V. The MUX2 primitive requires the least amount of instances before the core voltage starts
to drop at 25 instances or 2.8% of the entire eFPGA. The voltage threshold is reached with 65
instances or 7.3% of the entire eFPGA. The results from the MUX4 and MUX8 primitive based
ROs are visible in Table 5.

5.3 NOT3 based RO results

Figure 21 shows that it takes 45 instances of NOT3 ring oscillators or 15.3% of the entire FPGA,
to hit 16mA current draw. The percentage is relatively high because one functional NOT3 based
ring oscillator requires three NOT primitives, each requiring one CLB. After this point, the voltage
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Figure 14: Results of LUT1 ring oscillator per instance amount. The current draw at the
5V USB port and the voltage at the eFPGA core are shown. The 0.95V threshold for
validity is also given for reference.

Primitive

Voltage

Drop

Voltage

Threshold

Instances
% of
total

Instances
% of
total

MUX2 25 2.8 65 7.3
MUX4 55 6.2 125 14.0
MUX8 35 3.9 80 9.0

Table 5: MUX primitive based results.

starts to drop and the current drops to around 14mA after the core voltage starts to reach the
0.95V mark at 95 instances or 32.0% of the entire eFPGA. At 5 instances, the core voltage drops
to 1.1V and climbs back up to 1.15V at 10 RO instances. This appears to be an artifact.

5.4 LUT2 with Enable results

To confirm that the voltage drop is caused by the RO instances, a LUT2 based implementation was
created with a different INIT variable. This allowed for enabling and disabling the circuit, making it
possible to see the core voltage level with and without the RO instances active. The implementation
is shown in Figure 23 and the results in Figure 22. Figure 22 shows that the eFPGA has a current
draw of around 3 mA and a core voltage of around 1.15V when the RO instances are not active.
When the RO instances are enabled after 8.5 seconds, the current jumps to around 14 mA which is
consistent with the LUT, MUX and NOT3 results. The core voltage also drops below the 0.95V
threshold with occasional spikes slightly above 0.95V.
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Figure 15: Results of LUT2 ring oscillator per instance amount. The current draw at the
5V USB port and the voltage at the eFPGA core are shown. The 0.95V threshold for
validity is also given for reference.

Figure 16: Results of LUT3 ring oscillator per instance amount. The current draw at the
5V USB port and the voltage at the eFPGA core are shown. The 0.95V threshold for
validity is also given for reference.
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Figure 17: Results of LUT4 ring oscillator per instance amount. The current draw at the
5V USB port and the voltage at the eFPGA core are shown. The 0.95V threshold for
validity is also given for reference.

Figure 18: Results of MUX2 ring oscillator per instance amount. The current draw at the
5V USB port and the voltage at the eFPGA core are shown. The 0.95V threshold for
validity is also given for reference.
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Figure 19: Results of MUX4 ring oscillator per instance amount. The current draw at the
5V USB port and the voltage at the eFPGA core are shown. The 0.95V threshold for
validity is also given for reference.

Figure 20: Results of MUX8 ring oscillator per instance amount. The current draw at the
5V USB port and the voltage at the eFPGA core are shown. The 0.95V threshold for
validity is also given for reference.
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Figure 21: Results of NOT3 ring oscillator per instance amount. The current draw at the
5V USB port and the voltage at the eFPGA core are shown. The 0.95V threshold for
validity is also given for reference.

Figure 22: Results of LUT2 with Enable ring oscillators with 150 instances. All ROs have
an enable delay of 8.5 seconds. The current draw at the 5V USB port and the voltage at
the eFPGA core are shown. The 0.95V threshold for validity is also given for reference.
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Figure 23: LUT2 based Ring Oscillator with enable signal.

5.5 Adder with RO instances

The behaviour of the EOS-S3 while having a core voltage lower than 0.95V has also been investi-
gated. 200 LUT2 RO instances with an 8.5 second delay were added to the 32-input 4-bit adder
tree which was mentioned in Section 5. The eFPGA core checks the output of the adder with
predefined constants to the correct output. When this output is correct, the green LED lights up.
When the USR BTN of the SparkFun QT+ is pressed, one of the inputs is changed. This results in
the green LED turning off, since the output is no longer correct. The adder uses 81 logic CLBs or
10% of the EOS-S3 FPGA core. Figure 24 shows that the adder consumes around 7mA until the
8.5 delay. At this point the RO instances are enabled and the current jumps up to 18mA This is
higher than the previous 16mA but the green LED was turned on, unlike in the previous experiments.

The USR BTN was pressed for 10 seconds at the 20 second mark and 40 second mark. The
green LED instantly turned off and after the button was released, instantly turned back on. The
QT+ consumed 2mA less while the green LED was turned off.

Note: This experiment was also conducted with 150 RO instances, but this did not cause the core
voltage to drop below 0.95V.

6 Discussions

All eight different ROs show consistent behaviour as explained in Section 5. In all cases, a certain
amount of RO instances use up the power budget of the eFPGA at which point the core voltage
starts to drop. The LUT1 and MUX2 based ROs required only 25 instances, or 2.8% of the entire
eFPGA, before the current limit is reached. In both cases, the voltage threshold is passed with
65 instances (7.3%). The eFPGA core seems to be current limited when the 5V USB current is
at 16mA. This means that the difference between an empty design, which consumes 3.3mA and
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Figure 24: 200 instances of LUT2 based Ring Oscillators with a 32-input 4-bit adder

the peak draw is 16 − 3.3 = 12.7mA at the 5V input bus. Due to the layout of the SparkFun
QT+, it is not possible to measure the input current and compare it with the output current to
definitively determine the current draw at the eFPGA core. Future research would benefit from
placing the EOS-S3 on a different PCB with access to both the LDO VIN and LDO VOUT ports
to determine this current draw. However, Section 5.4 shows that the increase in current is due to
the RO instances.

6.1 Different voltage drops for different primitives

Section 5 shows that the voltage drop differs per primitive. For example, the MUX2 primitive
based ROs drop the current much quicker than the MUX8 primitive based ROs. This is due to
the different fragments that are used inside of a single CLB. As mentioned in Section 2.4, the
power draw of a circuit is based on the switching frequency of the ROs. This switching frequency
is determined by the number of gates that the signal has to pass through before reaching the
output. The MUX2 primitive uses the f-fragment of a CLB [QC21] and the signal only has to pass
through a single multiplexer, as shown in Appendix A. This means that the propagation delay is
mostly determined by the propagation delay of that one single multiplexer. Meanwhile, the MUX8
primitive uses the tb-fragment of the CLB [QC21], this is a combination of the t and b-fragment of
the CLB. Appendix A shows that this signal has to go through 8 multiplexers and a D-flip flop.
This results in a higher propagation delay that further results in a lower switching frequency and
thereby a lower power draw. This lower power draw means that the voltage drop is less significant
with 60 MUX8 primitive based ROs when compared to the same number of MUX2 primitive based
ROs.

Another important note is that the power draw is not only dependent on the propagation delay
but also on the number of gates that change state with every cycle. Table 5 shows that the MUX4
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primitive requires more instances to reach the voltage threshold than the MUX8 primitive. The
MUX4 primitive uses the same tb-fragment of the CLB but multiple input ports are tied to
ground [QC21]. This means that a smaller number of gates is changing state with each clock cycle
when compared to the MUX8 primitive, resulting in a smaller power draw. This in turn results in a
smaller voltage drop.

6.2 Bootloader current limit

Section 5.5 shows that the eFPGA seems to be working fine when 200 RO instances are enabled
together with our 4-bit adder tree, as the adder tree seems to produce a correct result. Figure 8 and
the text in Section 4.1.1 show that the proper operation of the eFPGA core is no longer guaranteed
after breaking the 0.95V threshold. This was also confirmed by the QuickLogic Corporation in
a private communication. This fact combined with the hard current limit prompted a further
investigation into the EOS-S3 data sheet and technical manual. Figure 25 shows that the current
for the LDO-2, here noted by LDO 30 IMAX, can be configured in the bootloader. with the default
being 8mA. This is inconsistent with the results from the experiments, which showed a limit of
16mA. We have performed a separate experiment, at which the LDO 30 IMAX was set to the
minimal 1mA and the maximum 30mA configuration. We found that the 1mA configuration resulted
in a maximum draw of 57mA at the 5V USB at 900 RO instances with a core voltage lower than
0.95V. The 30mA configuration resulted in a maximum draw of 14mA at the 5v USB with 50
RO instances and a core voltage lower than 0.95V. The latter is consistent with the current limit
that was hit by the experiments. This shows that the EOS-S3 has power monitoring circuits which
prevent the LDOs from burning out. Further investigation with the 1mA configuration could result
in even more current draw. This would require the modification of the bootloader and thus physical
access which is outside of the scope of the proposed attack and thereby this thesis. This could
however be another attack vector which is specific to the EOS-S3 SoC.

Figure 25: LDO 30 IMAX bootloader setting. Page 150 from the EOS-S3 technical reference manual
[Qui17]

6.3 Core voltage

As soon as the current hits its peak, the voltage starts to drop. This shows that the EOS-S3 core
cannot supply more power in its current configuration. During the experiments, the pin depicted by
GPIO2 in Figure 13, that is connected between the XIAO and the QT+ also experienced a voltage
drop. When the pin is enabled high, the voltage stopped at 0.623V instead of reaching the 3.3v of
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Figure 26: Warning displayed by VPR in the MODULE Top.log file when 400 LUT1 RO instances
are implemented

the desired high signal. This is not the case when the current limit is not reached. This further
shows that the power budget of the EOS-S3 is saturated and that power hammering circuits can
have an effect on not only the SoC but the entire system. Since the EOS-S3 eFPGA performance is
not guaranteed at a core voltage of 0.95V or below, our experiments show that the eFPGA core can
be disrupted by using as little as 2.8% of the eFPGA. However, the EOS-S3 SoC does not require a
full power cycle to become usable again as is the case with other eFPGAs [GOT17]. It is important
to note that the EOS-S3 never crashed or stopped functioning correctly during the experiments.

6.4 Analysis of the security of SymbiFlow

After compilation, the SymbiFlow design flow offers no warning or errors in the command terminal
for any of the tried malicious circuits. In the build directory of the FPGA section of the project,
multiple log files are created. One is generated by the Yosys synthesis suite and three by VPR.
Only the VPR log files contain warnings about a combinatorial circuit and these warnings are
displayed near the beginning of the log file. One of these warnings is shown in Figure 26. These
are a result of the timing analysis, which calculates the maximum clock frequency of the virtual
clocks inside of the eFPGA. The timing analysis is performed on a local copy of the design and
the combinatorial loops are only broken inside the copy. This is required such that there is no
loop inside of the design which would prevent a correct timing analysis. This breaking of combi-
natorial loops has no effect on the final design implementation. The user is not warned that the
combinatorial loop can be malicious and no further precautions are taken to prevent malicious intent.

Commercial synthesizers like Xilinx Vivado [Fei12] offer a Design Rule Checker (DRC). The
designer can create rules which the HDL design has to follow and the DRC can give warnings when
they are broken. The DRC does not only check during the timing analysis but during every step of
the synthesis. The warnings are categorized in three categories: Advisory, Warning and Critical
Warning. The critical warnings prevent the user from implementing the design and require manual
override in case the circuit is as desired [Xil23]. Table 2 in [LMG+20] shows that the Vivado DRC
recognizes many of the ring oscillators and generates the appropriate warnings. SymbiFlow would
benefit from this DRC system and could inform the user of the potential hazards within the design.

Furthermore, nothing was found which prevented the compilation and implementation of a malicious
design or presented a warning in the command prompt.
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7 Conclusions and Further Research

This thesis presented an automated testing framework for evaluating the EOS-S3 subsystem and
performed an analysis of the open-source SymbiFlow design flow which is used to program the
EOS-S3. It showed that eFPGAs are under threat from power hammering designs and that little
to no warning is given to the command prompt after compilation. The only warnings given are
buried within multiple directory layers in between 20+ files and don’t inform the user of possible
malicious intent.

The first research question is answered by performing and presenting experiments and results
indicating that the power hammering resulted in lower voltages inside of the EOS-S3 core but also
lowered the voltage of connected peripherals. For some power hammering designs like the LUT2
primitive based design, only one CLB is required for a power draining effect, which can easily be
embedded into an IP. This malicious circuit could result in a decrease in battery life of mobile
FPGAs and potentially damage or break the eFPGA. The MUX2 primitive based ring oscillator is
the most effective power hammering circuit available on the EOS-S3. It only utilizes the f-fragment
of a CLB and only needs 65 circuits or 7.3% of the FPGA to saturate the power budget. The LUT1
primitive based ring oscillator also requires 65 instances but is implemented on the t-fragment of
the CLB. This section is more frequently used in designs then the f-fragment and it would therefore
be harder to embed malicious circuits in the fragment. This could be different on other FPGAs
with different CLB configurations. It is important to note that the EOS-S3 never showed signs of
incorrect functioning during the experiments.

The second research question is answered as follows: The SymbiFlow design flow should be
improved by scanning the log files for errors and reporting them back to the command prompt.
This would warn potentially inexperienced users about combinatorial loops and prevent malicious
design implementation. It should not prevent the user from compiling certain circuits since this
limits the versatility of the software. The EOS-S3 is well protected in such a way that the SoC
performs power monitoring such that the electrical components cannot be crashed. This could
however change with different bootloader settings but this requires further research.

In further research, the LDO 30 IMAX bootloader setting should be investigated. By chang-
ing this setting, the total power draw of the EOS-S3 SoC could be further increased, resulting in
an even higher waste of power and could have currently unknown consequences on the rest of the
system. The EOS-S3 should be placed on a PCB where the LDO VIN, LDO1 and LDO2 ports are
exposed. This would allow for an accurate measurement at the EOS-S3 core.
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A Appendix: EOS-S3 CLB

Figure 27: EOS-S3 CLB, From https://www.quicklogic.com/wp-content/uploads/2020/06/

QL-EOS-S3-Ultra-Low-Power-multicore-MCU-Datasheet.pdf, figure 36
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B Appendix: NOT3 Verilog Generator

#!/bin/bash

### NOT3 Seperate generator for verilog code for QT plus ###

# Usage: ./<Filename > <Amount of circuits > <output file path >

FILE_NAME=’MODULE_top.txt’

CIRCUIT_NAME="NOT3 Seperate"

# Check if arguments where given

if [ $# -eq 0 ]

then

echo "No arguments supplied"

exit

fi

# Get amount from arguments

AMOUNT=$1
OUTPUT_FILE_PATH=$2

echo "Generating ${1} $CIRCUIT_NAME"

### INITIALISATION OF SUBMODULES ###

echo """module not_3_ro(

input en,

output out ,

);

assign connect [0] = en ? connect [3] : 0;

assign out = en ? connect [3] : 0;

(*keep*)wire [3:0] connect;

inv inv1 (

.A(connect [0]),

.Q(connect [1])

);

inv inv2 (

.A(connect [1]),

.Q(connect [2]),

);

inv inv3 (

.A(connect [2]),

.Q(connect [3])

);

endmodule

""" > $FILE_NAME

### TOP OF MODULE ###

echo """

module MODULE_top(
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io_pad

);

// GPIO

inout wire [31:0] io_pad ;

""" >> $FILE_NAME

if [ "$AMOUNT" -lt "2" ]; then

if ["$AMOUNT" -eq "1"]; then

echo "wire out;" >> $FILE_NAME
else

echo "wire [2:0] out;" >> $FILE_NAME
fi

else

echo "wire [$(( AMOUNT -1 )):0] out;" >> $FILE_NAME
fi

echo """

reg en;

initial begin

en <= 1;

end

""" >> $FILE_NAME

### INSTANCE GENERATION (individual Circuit) ###

if [ "$AMOUNT" -gt "0" ]; then

for i in $( eval echo {1.. $AMOUNT} )

do

echo """not_3_ro ro$((i - 1)) (

.en(en),

.out(out[$((i-1))]) ,
);

""" >> $FILE_NAME
done

else # In case the design is empty (circuits = 0), add 1 inverter

echo """inv invBase (

.A(io_pad [2]),

.Q(io_pad [4])

);

""" >> $FILE_NAME
fi

### END OF MODULE ###

echo ’assign io_pad [2] = |out;’ >> $FILE_NAME
echo ’endmodule ’ >> $FILE_NAME

mv $FILE_NAME $OUTPUT_FILE_PATH
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