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Abstract

Since their introduction, Convolutional Neural Networks have been used for image classification
and object detection. Over the past few years, they have also been used to classify music genres,
where research has focused on relatively small datasets. In this thesis, an implementation of
MusicRecNet [1] is created. It is trained and validated on the GTZAN dataset [2], a dataset
that has been used heavily in the field of music genre classification. MusicRecNet’s performance
on GTZAN is compared to two other network architectures for music genre classification with
VGG-16 [3] and EfficientNetV2B0 [4] as backbones. Two subsets of the Free Music Archive
dataset [5] to evaluate the scalability of the three methods. Experimental results show lower
accuracies for the datasets with more samples or more genres. The addition of an SVM as
proposed by the MusicRecNet paper does not lead to the expected performance gains in our
scalability experiments, but finetuning does have a significant impact on model performance.
The EfficientNetV2B0 model performs best in terms of scalability, when used in combination
with an SVM classifier and finetuning the network.
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1 Introduction

Neural networks have been transforming the way we solve problems since their introduction. Due
to their context-independent nature, they can be used to solve a wide range of problems One of the
areas in which they are being deployed is music genre classification.
One of the main ways of categorizing songs is by specifying their genre. It is a common task for a

human expert within the field of music to determine the genre of a song. With major streaming
platforms like Spotify having over 100 million songs [6] and over 100.000 tracks being added each
day to streaming platforms [7], the amount of music that has to be categorized is growing rapidly.
As a result of that growth, the process of classifying the song genres by human expertise at this
scale can be time-consuming and challenging.
To automate music genre classification, this thesis will focus on the use of a particular type of

Neural Network, the Convolutional Neural Network(CNN). This type of network performs well at
image classification tasks, as shown by architectures like XCeption [8] and YOLO [9]. These CNNs
are used as feature extractors to detect certain characteristics and even entire objects in images.
Over the years researchers have also attempted to train CNNs for music genre classification tasks.

Most of the research focused on creating a neural network that is able to classify genres of the songs
in the GTZAN dataset, created by G. Tzanetakis [2]. In order to compare performance between
newer networks and existing solutions this dataset has been used extensively as a benchmark.
Accuracy scores of up to 97.6% have been achieved on this dataset. The problem with the GTZAN
dataset however is that it is relatively small and not that diverse: it contains 1000 songs, across 10
genres. This small size makes it relatively easy for the network to learn how to recognize certain
genres of music that are inside the dataset.
Bigger and more diverse datasets exist, such as the Free Music Archive (FMA) [5] dataset. This

set not only contains more songs, but the songs also span across more genres. Training a network
on such a dataset is expected to make it able to generalize better across a variety of songs.
In this paper we use a baseline model proposed by Elbir, A & Aydin, N. [1]. Its performance

is validated on the GTZAN dataset. The goal of this thesis is to see how such a network would
handle scaling of a dataset. In our study, the network is trained on larger subsets created from
the FMA dataset. These subsets allow for testing scalability of the models in two ways: by using
a dataset that uses more samples per genre and a subset that uses more different classes/genres.
After training and comparing its performance on those subsets to GTZAN, the model is compared
to two other networks, that use VGG-16 [3] and EfficientNetV2B0 [4] as backbone networks. Their
accuracies are compared and analyzed. Using a bigger dataset is expected to be beneficial to the
network’s capacity to generalize, but it will also create performance challenges, as the network
will need more time to train and might perform worse when genres have overlapping distinctive
features.
The rest of the paper is organized as follows: Section 2 contains related work in the field of music

genre classification that is the foundation of this thesis. The main definitions of used techniques
and measures will be discussed in Section 3. The aforementioned baseline network MusicRecNet
will be fully explained in Section 4. The two other network architectures are defined in Section
5. The datasets that were created and used for the experiments are discussed in Section 6. The
baseline and scalability experiments and their results can be found in Sections 7 and 8. Finally, our
conclusions can be found in Section 9.
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2 Related Work

In this section, the relevant information found in the field that contributes to our approach is
highlighted. Human performance regarding genre classification, methods used on the GTZAN
dataset, and methods used on the FMA dataset are also mentioned.

Human performance
In order to see if a network is a feasible solution for the genre classification problem a baseline
accuracy level we expect the network to achieve has to be established, before comparing it to other
models. In order for a model to be useful for classification problems we think it has to be at least
as good or better than humans at genre classification. Robert O. Gjerdingen & David Perrott [10]
showed that humans are able to classify music genres about 70% of the time. In their study they
let participants listen to song excerpts of up to 3 seconds and asked the participants to classify the
genre, being able to choose from 10 genres.

GTZAN performance
Researchers have generated models that have exceeded the aforementioned human performance of
classification. Zhang et al. [11] were able to achieve an accuracy of 87.4% on the GTZAN dataset
using their 10-layer CNN. They found that the classification accuracy improved after the used songs
were cut into smaller 3-second clips, similar to the work by Robert O. Gjerdingen & David Perrott.
Others such as Liu et al. [12] have improved on this score, showing accuracy levels of up to 93.9%.

This score was achieved by using a relatively small network that uses Bottom-up Broadcasting.
The idea is that the network does not simply use convolution operations to detect features but that
it utilizes the time-frequency information that is contained in mel-spectrograms.
Elbir, A & Aydin, N. [1] created a CNN architecture and reported the currently leading accuracy

on the GTZAN dataset, 97.6%. This accuracy was achieved using a CNN architecture they called
“MusicRecNet”. Their network consists of three sets of layers: a convolution layer, a MaxPooling2D
layer, and a dropout layer. These three sets are then flattened and fed into a dense layer with
dropout and fed into another dense layer. The distinctive feature for MusicRecNet is that it uses
this output as a feature vector for a Support Vector Machine (SVM) to classify the songs. A lot of
research on genre classification uses the GTZAN dataset, which is why it is also used in this thesis
as a baseline to test the networks’ performance.

FMA performance
The FMA dataset has been less popular in the field of genre classification. Zhang et al. [13] achieved
an accuracy of 65.2% on the FMA dataset, using a Convolutional Recurrent Neural Network
approach. Similar to previously mentioned methods they also used spectrograms as input for the
network. S. Chillara et al.[14] used the FMA dataset to compare three network architectures: CNNs,
Convolutional Recurrent Neural Networks (CRNN), and CNN-RNNs. Their configuration of a CNN
achieved the state-of-the-art accuracy of 88.5% Not only do they show that from the three tested
architectures the CNN has the highest accuracy, but also that using spectrograms as input yields a
higher accuracy when compared to feature-based models, that achieved an accuracy of 64.1%.
In this thesis the FMA dataset is used over other datasets like the Million Song Dataset [15],

because it has the actual audio files in it, similar to the GTZAN dataset. This makes comparing
the baseline network to other solutions possible. The accuracies achieved by Zhang et al. and S.
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Chillara et al. on this dataset also leave room for improvement.

3 Fundamentals

In this chapter, the fundamentals of this thesis are explained. Melspectrograms are first introduced,
as they form the input for the networks that are used. Convolutional Neural Networks are then
briefly explained. After that, the evaluation metrics that will be used to assess model performance
are highlighted.

3.1 Mel-Spectrograms

Audio can be represented as a time series of amplitude values. These audio signals can be converted,
using a Fourier transform, to a spectrogram. Spectrograms show the energy levels of an audio
signal for certain frequency bands. The energy levels are shown by plotting the intensity of different
frequencies in the signal over time. In order to plot the frequency intensities over time, the signal
has to be decomposed into different frequency bands at each time step. This is done by applying
a Fast-Fourier-Transform [16] on a window of the audio signal around that time step. After this
transformation, the different frequencies can be plotted per time step. This allows for a visualization
of the frequencies and their intensity. A mel-spectrogram is a version of a spectrogram that contains
frequencies that are mapped to the mel-scale [17] followed by a cosine deconvolution step. The
mel-scale is a perceptual scale where the pitches are perceived as equally distanced from each other
by humans. An example of a mel-spectrogram can be found in Figure 1.

Figure 1: A melspectrogram image generated from the GTZAN dataset, for a piece of Blues music.

3.2 Convolutional Neural Network

Since their introduction in 1989 by LeCun[18], Convolutional Neural Networks have been used for
a range of image recognition tasks. The convolutional layers in the network contain convolutional

3



kernels: matrices of weights that can be trained. These kernels slide over the input image to convert
it to a feature map. This feature extraction can be used to extract features such as edges, but
also more abstract features such as faces, text, etc. CNNs are especially suited for images because
images are in essence matrices of pixel values, making it easier to multiply the kernel weights with
the values. The network also utilizes other operations apart from convolution. Pooling is used for
dimension reduction. For pooling a window size is defined, say 2x2. Depending on the type of
pooling (max-, min-, or average-pooling) either the maximum, minimum, or average values of those
4 selected values are picked or calculated. This window then slides over the feature space in order
to reduce its dimension.
To prevent overfitting our dataset, which is more common for smaller datasets, dropout layers are
used. These layers ensure that some weights are reset to 0 at random. This helps the network to
generalize better, instead of learning to recognize the dataset.

3.3 Transfer Learning

Training a neural network from scratch can be resource-heavy. Transfer learning is a technique
used in machine learning, where instead of training a neural network from scratch, a pre-trained
network is used. The pre-trained network has been trained to detect powerful features in images,
for classifying images from big datasets such as ImageNet [19]. This feature extraction can be used
for other datasets as well. In order to make sure the network can be applied to the new dataset, the
pre-trained network can be fitted with a new, suitable classifier for the new dataset. If needed, a
number of layers of the original pre-trained network can be ”unfrozen” so they can also be trained
along with the classifier. This can be beneficial if the used dataset differs from the original dataset.

3.4 Evaluation metrics

The neural network performance will be assessed and evaluated using two metrics: accuracy and
confusion matrices. Accuracy is widely used to see how well a method is performing, which enables
us to compare our method against other methods in the field. A confusion matrix will give us more
detailed insight into the classifications the network is deciding on.

3.4.1 Accuracy

Accuracy is generally defined as the number of True Positives (TP) and True Negatives (TN),
divided by the total number of predictions, or the True Positives, True Negatives, False Positives
(FP), and False Negatives (FN) combined (see Equation 1). In this thesis, it is defined as the
number of correctly classified genres divided by the number of total classifications, i.e. TN = 0.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

3.4.2 Confusion Matrix

Confusion matrices can be used to investigate how the network is behaving in terms of classifications
and misclassifications. It shows what the predicted classes were and what the actual classes are.
This can give a more detailed indication of where the network is classifying data incorrectly. This
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information can then be used to make specific changes to the network based on those particular
misclassifications, further improving network performance, for example by altering hyperparameters.
When it comes to music, genres that are relatively similar to each other might be harder to classify.
This would be clearly represented in a confusion matrix. See for example the confusion matrix for
the genres Jazz and Rock, as presented in Table 1.

Predicted label

Actual label Jazz Rock Total

Jazz 5 7 12

Rock 3 3 6

Table 1: Confusion matrix for example genres Jazz and Rock. The first row shows that 5 out of 12 Jazz
classifications were correctly classified, but in many cases, Jazz and Rock are confused with each other.

Figure 2: Visualization of the MusicRecNet [1] architecture. Output genres are either defined by using
softmax probability scores or the SVM classifier.

4 Baseline: MusicRecNet

The network by Elbir, A & Aydin, N, called ”MusicRecNet” [1] is not publicly available, but we
have implemented our own network that has the same structure as described in [1] to be used as a
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baseline network in our studies. We opt for this approach because [1] reported for MusicRecNet
the highest accuracy for the GTZAN dataset. The network structure can be found in Figure 2.
The network starts with a 2D convolutional layer, followed by a MaxPooling layer and a dropout
layer. This set of 3 layers is repeated two more times, after which a flatten operation is performed.
This flattened output is fed into a dense layer of size 128, with an additional dropout layer. The
final layer is a dense layer for classification. This dense layer has a number of output nodes equal
to the number of different labels in the dataset. The network processes input images and each
output node receives a probability score. This score shows the probability that an image belongs to
a certain class. The final prediction is given by choosing the node with the highest probability. The
original parameter settings can be found in Table 2.

Parameter Value

Input size 128x128

Batch size 64

Kernel size 3x3

Number of filters 32, 64, 128

Loss function Categorical Cross Entropy

Optimizer RMSProp

Trainable parameters 3,797,578

Table 2: Parameter configurations for our baseline network.

Elbir, A & Aydin, N also use MusicRecNet as a feature extractor and use its features as input
for an SVM classifier. The output weights of the Dense(128) layer are used as sample features and
fed into the SVM, as depicted in Figure 2. The SVM then classifies each sample based on those
features.

5 Method

As mentioned earlier the goal of this thesis is to research the scalability of music genre classification
algorithms The studied Neural Networks (NN) for music genre classification are the baseline
MusicRecNet with and without SVM, and two NNs based on VGG-16 and EfficientNetV2B0,
respectively. For our proposed NNs we use transfer learning to obtain the highest possible accuracies
for the different music genre datasets described in Section 6. The NNs VGG-16 and EfficientNetV2B0
are used as a backbone feature extractor network in combination with a classifier. A visualization
of this classifier can be seen in Figure 3. In this section, the model architectures are highlighted
and a description of their implementation for this thesis is given.

5.1 VGG-16

The VGG-16 architecture by K. Simonyan & A. Zisserman [3] consists of 21 layers, of which 16
contain trainable weights. It has 138.4M parameters. The network is visualized in Appendix A,
Figure 9. The layout of the network can be viewed as 5 blocks of layers. Each block consists of a
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Figure 3: Visualization of the combination of a backbone neural network, e.g. VGG-16 or EfficientNetV2B0,
and the classifier network. X denotes the number of unique classes in the dataset that is used. Images
move through the network first, after which the output features are flattened and used in a classifier block.
The chosen networks act as feature extractors.

set of two or three convolutional layers and a MaxPooling2D layer. The network is initiated with
the weights that resulted after training on the ImageNet dataset. To use the network as a feature
extractor for the music genre classification we freeze the first four blocks. These four blocks act
as a feature extractor. The final block is set to trainable. This allows the network to train more
features that are more catered to the spectrogram datasets.

5.2 EfficientNetV2B0

EfficientNetV2 is a family of CNNs by M. Tan and Q. V. Le [4]. The EfficientNetV2B0 configuration
has 7.2M parameters, which is significantly less than VGG-16. This allows for more efficient training.
The architecture can also be divided into 6 blocks of repeating layers. The network is visualized in
Appendix A, Figure 10. In the described experiments for the EfficientNetV2B0 architecture the first
3 blocks will be used for feature extraction and the last 3 blocks will be trained on the dataset. The
accuracy on the ImageNet [19] benchmark is 83.9%, which is higher than the VGG-16 architecture,
which achieved an accuracy of 74.4%. The higher accuracy and lower amount of parameters are a
reason to use this relatively recent and good-performing network, and see if it is capable to handle
the GTZAN and different-sized FMA datasets better than the older VGG-16 model.

6 Datasets

To test the performance of the three different models, two datasets were used: the GTZAN dataset
and the FMA dataset. The GTZAN dataset is widely used in the field of music genre classification.
Its uniformly distributed genres make it a dataset that is well-suited for experiments, as each genre
has the same number of examples. The FMA dataset was chosen because it contains more songs
and more genres, which allows us to address the problem of scalability.
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6.1 Preprocessing

The audio files are in .wav format and preprocessed using Librosa [20], a Python library. Similar
to the work of Elbir, A & Aydin, N each audio file is split up into 5-second segments. After this,
the Librosa library is used to convert the audio files to mel-spectrogram images. The images are
resized to the desired input sizes of 128x128 and 224x224. This preprocessed image data is saved to
a numpy array, so the data can be used to train and test the network. This preprocessing step is
depicted in Figure 4.

Figure 4: Pipeline for our baseline network. The images in the dataset are first preprocessed to make
them suitable for use by the networks, which expect images as inputs. After this, the networks are trained
on these images, in order to predict a genre for a given input image by outputting a probability for each of
the possible genres. The output genre is equal to the class with the highest probability, by softmax (a) or
SVM (b) output.

6.2 GTZAN

The GTZAN dataset was created by G. Tzanetakis and P. Cook [2], to be used within the field
of Music Information Retrieval (MIR). The dataset consists of 1000 songs, each belonging to one
of 10 genres: classical, country, metal, hip-hop, jazz, disco, pop, blues, reggae and rock. For each
genre the dataset contains 100 songs that are classified as that genre, making it a balanced dataset.
The dataset contains audio files that are 30 seconds long and also has feature data for each song.
Feature data contains meta-information such as the calculated Mel-frequency cepstral coefficients
and spectral roll-off information. For this study, we only use the generated Mel-spectrogram images
for genre classification.

6.3 FMA

In 2017, M. Defferrard et al. [5] published another dataset suited for the field of MIR, called the Free
Music Archive (FMA) dataset. This dataset was built to overcome the issue that audio datasets up
to that time were relatively small. The FMA dataset contains 106,574 tracks, distributed over 161
genres. Metadata for the audio files is also provided, expanding on the GTZAN dataset, offering
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not only data about the raw audio file, but also artist information. The set can be used in different
sizes: small, medium, large, and full. The small version contains 8000 songs, uniformly distributed
over 8 genres. The medium version contains 25000 songs, of which each belongs to 1 of 16 genres.
It is important to note that the distribution of those songs across the genres is not uniform. In
order to compare the performance of FMA to GTZAN we created a subset of the FMA medium
dataset that contains 14 genres. These 14 genres each have 100 songs, similar to GTZAN. The
genres ”blues” and ”easy-listening” were omitted from the original set as those contain less than 100
songs per genre. The FMA subsets will be referred to as FMA 8 and FMA 14, for their respective
amount of genres. Genre composition and dataset size across the GTZAN dataset and the FMA
subsets can be found in Tables 3 and 4.

Dataset GTZAN FMA 8 FMA 14 FMA medium

Genre

Electronic x x x

Experimental x x x

Folk x x x

Hip-hop x x x x

Instrumental x x x

International x x x

Pop x x x x

Rock x x x x

Jazz x x x x

Old-Time / Historic x x

Soul-RnB x x

Spoken x x

Classical x x x

Country x x x

Blues x x

Easy-listening x

Metal x

Reggae x

Table 3: Overview of the genre composition of the different datasets used in this study.

7 Experimental Setup

In this paper, the influence of dataset scaling on the performance of neural network models for
genre classification is researched. There are two sets of experiments. The first set of experiments
has been conducted using the baseline network and the GTZAN and FMA datasets, to establish
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Dataset GTZAN FMA 8 FMA 14 FMA medium

Number of songs per genre 100 1000 100 21-7103

Total number of songs 1000 8000 1400 25000

Table 4: Overview of the songs per genre and the total amount of songs in the different datasets used in
this study.

the performance on those datasets. The second set of experiments tries to answer the following
three research questions:

• How does increasing the amount of samples affect model performance?

• How does increasing the amount of genres affect model performance?

• How does adding an SVM affect model performance?

The experiments are conducted using Google Colab Pro, using their GPU runtime, and run for
100 epochs unless differently specified.

7.1 Baseline experiments

The goal of the baseline experiments was to find the optimal selection of values for a set of
parameters of the baseline network. The parameters that have been explored are: optimizer, batch
size, number of epochs, and learning rate. The different configurations can be found in Table 5.
For each experiment the initial default optimizer was RMSprop, the default batch size was 64, the
default learning rate was 0.001 and the default number of epochs was 30.

Parameter Values

Optimizer [ Adam, Adadelta, RMSprop ]

Batch size [16, 32, 64]

Number of epochs [10, 25, 50]

Learning Rate [0.0001, 0.001, 0.01]

Table 5: Parameters and their explored values in the parameter optimization experiments.

7.2 Scalability experiments

To determine the effects of scaling a dataset on the accuracy of models we use a set of architectures
on the GTZAN and FMA datasets. The initial focus is on scaling depth-wise: increasing the amount
of samples a certain genre has. The FMA dataset offers more samples per genre. The MusicRecNet-
inspired network is trained and used on both datasets, to establish a baseline performance for a
state-of-the-art model. In this experiment, the accuracies of GTZAN and FMA are compared.
As an alternative approach two pre-trained models, VGG-16 [3] and EfficientNetV2B0 [4] are used.
The two networks are used as feature extractors in a set of configurations and combinations:
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1. Network as feature extractor

2. Network as feature extractor, with an SVM after the last classifier layer

3. Network as feature extractor, with an SVM after the second to last classifier layer

4. Network as feature extractor, but with the last block(s) unfrozen

5. Network as feature extractor, but with the last block(s) unfrozen and an SVM after the last
classifier layer

6. Network as feature extractor, but with the last block(s) unfrozen and an SVM after the
second to last classifier layer

The addition of a classifier such as SVM was inspired by [1], as their paper shows an increase from
81.8% to 97.6% accuracy. Using the SVM after the second to last classifier layer, a Dense(128)
layer, gives the SVM more data points to work with. The different implementations of the SVM are
shown in Figure 5. The effect of this is examined. Setting the last block(s) of a model to trainable
is suggested by [21], as an accuracy-improving measure. Allowing the network weights to train on
the given dataset should help with classification. Input size is also varied for a set of experiments
to see if this affects performance as well.
Finally, the effect of increasing the amount of genres is examined. The subset of FMA using 14
genres is used. A comparison is made between performance on the GTZAN dataset and the FMA
dataset, using the best-performing model.

Figure 5: Visualization of the described ways of classification with and without SVM. The genre can
be classified by using a Dense layer that has a number of nodes equal to the amount of classes (a).
Adding an SVM to the second to last Dense(128) layer results in more features per sample (b). The final
implementation is using an SVM at the end of the Dense layers (c).

8 Experimental Results

In this section, the results of the described experiments are given. We try to validate the baseline
method and compare our performance to the original paper and other models. In Section 8.2
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performance results are given for the baseline, VGG-16, and EfficientNetV2B0 models across the
three datasets GTZAN, FMA 8, and FMA 14.

8.1 Baseline experiments

The goal of these experiments was to find the optimal hyperparameters for the baseline network and
establish its performance on the GTZAN dataset. The goal is to validate the baseline architecture
and its original performance. The accuracies for our implementation of MusicRecNet and other
models can be found in Table 6.

Model GTZAN Accuracy

Zhang et al. [11] 87.4%

Liu et al. [12] 93.9%

Elbir, A & Aydin, N. [1] 81.8%

Elbir, A & Aydin, N. with SVM [1] 97.6%

Our Baseline Implementation 81.0%

Our Baseline Implementation + SVM 81.6%

Table 6: Accuracies on GTZAN across state-of-the-art models and our own baseline MusicRecNet
implementation.

After conducting a set of experiments to find the optimal hyperparameter values described in
Table 5 we found the optimal optimizer to be RMSProp, with a batch size of 32 when using GTZAN
and 64 when using FMA, for 100 epochs and a learning rate of 0.01. Using these hyperparameter
values our implementation of the MusicRecNet architecture was able to achieve a similar level of
accuracy as the described method by Elbir, A. & Aydin, N.[1]. Our model without SVM achieved
81.0%, whereas Elbir, A & Aydin, N achieved 81.6%. Their model with SVM got significantly
higher results, whereas our model only improved to 81.6%. Our implementation was created based
on information from the original paper and a meeting with one of the authors, Elbir, A. The cause
of the difference in performance is unclear.

8.2 Scalability Experiments

In this section the results for the experiments as described in Section 7.2 are given.
The goal of these experiments is to measure the effect of scaling a dataset on model accuracy

performance. The accuracies for all combinations of datasets and models can be found in Table 7.
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Dataset GTZAN GTZAN 224 FMA 8 FMA 8 224 FMA 14

Method

Baseline 81.0 68.6 42.0

Baseline-SVM-Output 81.5 70.7 42.0

Baseline-SVM-D128 81.6 72.1 42.6

VGG 73.1 53.4 53.6

VGG-SVM-Output 73.0 53.9 53.6

VGG-SVM-D128 76.5 54.4 54.8

VGG-FT 81.6 60.7 57.3

VGG-SVM-Output-FT 81.6 61.0 57.3

VGG-SVM-D128-FT 83.0 61.2 56.9

EfficientNet 80.0 82.1 59.6 62.0 56.8

EfficientNet-SVM-Output 80.6 82.5 60.5 63.0 56.5

EfficientNet-SVM-D128 83.0 87.5 61.4 63.1 60.8

EfficientNet-FT 90.0 90.5 76.9 73.8 60.4

EfficientNet-SVM-Output-FT 89.8 90.5 76.8 73.7 60.4

EfficientNet-SVM-D128-FT 90.3 90.8 77.4 73.9 61.1

Table 7: Accuracies for the different models across the different datasets. Models have been used as-is, or
with finetuning (denoted as FT). The 224 suffix indicates that the used dataset consists of images that are
of size 224x224. SVM accuracies were achieved using an ”rbf” kernel. The SVM has been applied in two
ways: after the last output Dense layer (denoted as SVM-Output) or after the second to last Dense(128)
layer (denoted as SVM-D128). Models that use finetuning have been denoted with the -FT suffix.
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It can be seen that accuracies for the FMA 8 dataset are lower than those of GTZAN, across the
different models used. The accuracies for FMA 14 are lower than those of FMA 8 and GTZAN.
The effect of increasing the amount of samples on model performance can be measured by

comparing the different datasets. The FMA 8 subset has fewer genres but more samples per genre
than GTZAN (see Table 4). Accuracies for the FMA 8 dataset are lower for all models tested.
The effect of increasing the amount of genres can be measured by comparing the FMA 14 dataset

to the other datasets. Moving from 8 or 10 to 14 different genres results in lower accuracies across
all models. In our experiments increasing the amount of different genres seems to have a bigger
effect on accuracies than increasing the amount of samples.
Table 7 shows that for all models, adding an SVM leads to higher accuracies, with improvements

of up to 5.4%. In most cases, the accuracy gains were highest when using the SVM after the
Dense(128) layer. This was to be expected, as the SVM will have more data points per sample to
work with. Performance gains through the use of an SVM are highest when used in combination
with the VGG-16 and EfficientNetV2B0 models. For the baseline network, the use of an SVM has
the largest impact when used with the FMA 8 dataset.

Figure 6: Accuracies from Table 7 visualized.
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Finetuning however has a bigger effect on accuracies across the models tested. VGG-16 performance
on the GTZAN dataset goes up from 73.0% to 81.6% and EfficientNetV2B0 performance on the
GTZAN dataset goes up from 80.0% to 90.0%. Similar accuracy gains are shown across models
when used on the FMA 8 dataset.
Figure 6 shows a graph of the values from Table 7. This figure is used to illustrate the scalability

of the different models. The accuracy difference between the GTZAN and FMA 8 datasets is the
smallest for the baseline network using an SVM on the second to last Dense(128) layer. In terms of
scalability however, the EfficientNetV2B0 model in combination with an SVM on the second to last
Dense(128) shows a similar gap, but with higher accuracies for both GTZAN and FMA 8. This
makes this the best scalable method when it comes to a dataset that uses more samples per genre.

(a) GTZAN (b) FMA 8

(c) FMA 14

Figure 7: Confusion matrices for the EfficientNet-SVM-D128-FT model across the GTZAN, FMA 8 and FMA 14
datasets.
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A comparison between the GTZAN and FMA 14 datasets shows the scalability in terms of
increasing the amount of genres. The difference is smallest for the VGG-16 network here, but
EfficientNetV2B0 again has higher accuracies for both GTZAN and FMA 14. This makes it the
better method for scaling in terms of using a dataset with more genres.
Accuracies can be further explored by looking at confusion matrices for the three datasets. Figure

7 shows the confusion matrices for the best-performing model across the datasets: EfficientNet-
SVM-D128-FT. Model performance on the GTZAN dataset is between 78.3% and 96.6% for all
genres, with Rock being the worst-performing genre and Metal being the best-performing genre.
FMA 8 performance shows accuracies in the range 51.5%-85.3%. The lowest-scoring genre is ”Pop”.
After listening to some of the pop samples in the dataset this low accuracy can be explained: the
pop songs are not distinctly pop songs, especially in terms of their frequencies, and can probably
more easily be mistaken for other genres. We see that it often gets mistaken for Folk and Rock.
The best-performing genre in this set is hip-hop.

Figure 8: EfficientNetV2B0 training curves for GTZAN (left) and FMA 14 (right) datasets.

A similar trend can be seen when looking at the FMA 14 set. Accuracies range from 18.3% for
Pop to 98.3% for Old-Time/Historic. The Pop class is again often mistaken for Folk. The average
accuracy is lower across the set. A possible explanation for this is that the network is overfitting: it
memorizes the training data and is less good at generalizing, causing the network to be worse at
recognizing the test data, which it has never seen before. Figure 8 shows a comparison between the
train and test accuracy and loss functions during training for the EfficientNetV2B0 architecture,
for the GTZAN and FMA 14 datasets. The GTZAN curves show regular behavior: train and test
accuracies are relatively close to each other and test loss is around 1. The FMA 14 curves however
show signs of overfitting: the test accuracy is much lower than the training accuracy and the loss
function keeps increasing over time.
Additional precision, recall, and F1 scores for the best-performing variations of the used models are
available in Appendix J. A quick analysis shows no irregularities and the scores are in line with the
achieved accuracies.
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9 Conclusions and discussion

In this paper, we have looked at the scalability of different music genre classification algorithms.
We compared our baseline implementation of MusicRecNet [1] to music genre classification models
using VGG-16 [3] and EfficientNetV2B0 [4] as feature extraction backbones on the GTZAN [2]
and FMA 8 and FMA 14 [5] datasets. Our implementation of MusicRecNet achieved similar levels
of performance on the GTZAN set without using an SVM classifier: 81.0%. We were not able to
reproduce the 97.6% given for use with an SVM in the original paper, as our baseline implementation,
based on the paper and a conversation with one of the paper authors, Elbir, A., achieved an accuracy
of 81.6%. Finetuning seems to have a bigger effect on accuracies than the addition of an SVM
classifier.
The baseline network was also trained on the FMA 8 and FMA 14 datasets to illustrate the effect
of scaling on model accuracies. A larger number of samples resulted in a lower accuracy across the
three models. A larger number of genres also resulted in a lower accuracy across the three models.
The best-performing model is the EfficientNetV2B0 model when used with a form of fine-tuning by
unfreezing the last three blocks of layers and in combination with an SVM classifier that used the
output of the second-to-last Dense(128) layer. In our experiments this model achieved the highest
accuracy on the GTZAN dataset: 90.3%. It also showed the best scalability, with its accuracies being
the highest and not having the biggest difference in those accuracies between datasets. Its accuracy
levels also exceeded expected human performance [10] for the GTZAN and FMA 8 datasets.
Accuracies for the FMA 14 are lower than those for GTZAN and FMA 8. As mentioned before this

could be due to overfitting and the fact that the ”pop” class contains music that is not distinctive
enough to be classified within one genre. The FMA 14 subset was created by taking a subset of
the FMA Medium subset, that contains 16 genres and 25000 samples. Due to the non-uniform
distribution of samples per genre, the first 100 songs were picked per genre. This method might have
affected model performance, as the first 100 songs might have been less distinctively classifiable as
”pop”.
It is also worth mentioning that the GTZAN dataset is a widely used benchmark dataset in this
field, but it might be less suited to conduct research on scalability, as it is a relatively small dataset
both in terms of samples and classes.
The FMA 14 subset that we created is similar to GTZAN because it also has 100 samples per

genre. In order to improve performance for future research it would be beneficial if a bigger dataset
existed, with at least 1000 samples per genre, similar to the FMA 8 subset. Future research could
also look into preventing overfitting, by applying more or stronger dropout layers.

A final recommendation for future research is that the effect of sample length can be investigated
and used more. Songs often belong to a particular genre because of repetitive parts in the song
that make it a distinctive genre. A combination of different parts of songs might be beneficial to
classification. For this, a dataset that contains complete songs would be ideal.
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Appendix

A Network Architectures

Figure 9: Visualization of the VGG-16 [3] architecture.
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Figure 10: Visualization of the EfficientNetV2B0 [4] architecture.
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B GTZAN Baseline verification experiment results

This appendix contains the accuracy and loss values for the exploration of different hyperparameters.
Experiments were conducted using our implementation of the MusicRecNet network using the
GTZAN dataset.

Figure 11: Accuracy and loss across different values for batch size, on the baseline network. A batch size
of 32 yields the most stable high accuracy.

Figure 12: Accuracy and loss across different values for the amount of epochs, on the baseline network.
In this set of experiments the highest amount of epochs, 50, yielded the highest accuracy.
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Figure 13: Accuracy and loss across different values for learning rate, on the baseline network. The
default learning rate of 0.001 yielded the highest accuracy.

Figure 14: Accuracy and loss across different types of optimizers, on the baseline network. The RMSProp
optimizer yielded the highest accuracy.
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C FMA Baseline network Experiment results

This appendix contains the accuracy and loss values for the exploration of different hyperparameters.
Experiments were conducted using our implementation of the MusicRecNet network using the
FMA dataset.

Figure 15: Accuracy and loss across different values for batch size, on the baseline network. A batch size
of 64 yields the highest accuracy.

Figure 16: Accuracy and loss across different values for the amount of epochs, on the baseline network.
In this set of experiments the highest amount of epochs, 50, yielded the highest accuracy.
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Figure 17: Accuracy and loss across different values for learning rate, on the baseline network. The
default learning rate of 0.001 yielded the highest accuracy.

Figure 18: Accuracy and loss across different types of optimizers, on the baseline network. The RMSProp
optimizer yielded the highest accuracy.

25



D Confusion matrices for GTZAN, input size 128x128

This appendix contains confusion matrices for the models used on the GTZAN (128x128 input)
dataset.

(a) Baseline

(b) Baseline + SVM Dense(10)

(c) Baseline + SVM Dense(128)

Figure 19: Confusion matrices on the GTZAN dataset, for 128x128 input images, for the Baseline network
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(a) VGG-16 (b) VGG-16 FT

(c) VGG-16 + SVM Dense(10) (d) VGG-16 FT + SVM Dense(10)

(e) VGG-16 + SVM Dense(128) (f) VGG-16 FT + SVM Dense(128)

Figure 20: Confusion matrices on the GTZAN dataset, for 128x128 input images, for the VGG-16 and VGG-16(with
finetuning, denoted as VGG-16 FT) networks.
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(a) EfficientNetV2B0 (b) EfficientNetV2B0 FT

(c) EfficientNetV2B0 + SVM Dense(10) (d) EfficientNetV2B0 FT + SVM
Dense(10)

(e) EfficientNetV2B0 + SVM Dense(128) (f) EfficientNetV2B0 FT + SVM
Dense(128)

Figure 21: Confusion matrices on the GTZAN dataset, for 128x128 input images, for the EfficientNetV2B0 and
EfficientNetV2B0(with finetuning, denoted as EfficientNetV2B0 FT) networks.
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E Confusion matrices for GTZAN, input size 224x224

This appendix contains confusion matrices for the models used on the GTZAN (224x224 input)
dataset.

(a) EfficientNetV2B0 (b) EfficientNetV2B0 FT

(c) EfficientNetV2B0 + SVM Dense(10) (d) EfficientNetV2B0 FT + SVM
Dense(10)

(e) EfficientNetV2B0 + SVM Dense(128) (f) EfficientNetV2B0 FT + SVM
Dense(128)

Figure 22: Confusion matrices on the GTZAN dataset, for 224x224 input images, for the EfficientNetV2B0 and
EfficientNetV2B0(with finetuning, denoted as EfficientNetV2B0 FT) networks.
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F Confusion matrices for FMA 8, input size 128x128

This appendix contains confusion matrices for the models used on the FMA 8 (128x128 input)
dataset.

(a) Baseline

(b) Baseline + SVM Dense(8)

(c) Baseline + SVM Dense(128)

Figure 23: Confusion matrices on the FMA 8 dataset, for 128x128 input images, for the Baseline network
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(a) VGG-16 (b) VGG-16 FT

(c) VGG-16 + SVM Dense(8) (d) VGG-16 FT + SVM Dense(8)

(e) VGG-16 + SVM Dense(128) (f) VGG-16 FT + SVM Dense(128)

Figure 24: Confusion matrices on the FMA 8 dataset, for 128x128 input images, for the VGG-16 and VGG-16(with
finetuning, denoted as VGG-16 FT) networks.
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(a) EfficientNetV2B0 (b) EfficientNetV2B0 FT

(c) EfficientNetV2B0 + SVM Dense(8) (d) EfficientNetV2B0 FT + SVM
Dense(8)

(e) EfficientNetV2B0 + SVM Dense(128) (f) EfficientNetV2B0 FT + SVM
Dense(128)

Figure 25: Confusion matrices on the FMA 8 dataset, for 128x128 input images, for the EfficientNetV2B0 and
EfficientNetV2B0(with finetuning, denoted as EfficientNetV2B0 FT) networks.
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G Confusion matrices for FMA 8, input size 224x224

This appendix contains confusion matrices for the models used on the FMA 8 (224x224 input)
dataset.

(a) EfficientNetV2B0 (b) EfficientNetV2B0 FT

(c) EfficientNetV2B0 + SVM Dense(10) (d) EfficientNetV2B0 FT + SVM
Dense(10)

(e) EfficientNetV2B0 + SVM Dense(128) (f) EfficientNetV2B0 FT + SVM
Dense(128)

Figure 26: Confusion matrices on the FMA 8 dataset, for 224x224 input images, for the EfficientNetV2B0 and
EfficientNetV2B0(with finetuning, denoted as EfficientNetV2B0 FT) networks.
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H Confusion matrices for FMA 14, input size 224x224

This appendix contains confusion matrices for the models used on the FMA 14 (224x224 input)
dataset.

(a) Baseline

(b) Baseline + SVM Dense(14)

(c) Baseline + SVM Dense(128)

Figure 27: Confusion matrices on the FMA 14 dataset, for 224x224 input images, for the Baseline network
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(a) VGG-16 (b) VGG-16 FT

(c) VGG-16 + SVM Dense(14) (d) VGG-16 FT + SVM Dense(14)

(e) VGG-16 + SVM Dense(128) (f) VGG-16 FT + SVM Dense(128)

Figure 28: Confusion matrices on the FMA 14 dataset, for 224x224 input images, for the VGG-16 and VGG-16(with
finetuning, denoted as VGG-16 FT) networks.
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(a) EfficientNetV2B0 (b) EfficientNetV2B0 FT

(c) EfficientNetV2B0 + SVM Dense(14) (d) EfficientNetV2B0 FT + SVM
Dense(14)

(e) EfficientNetV2B0 + SVM Dense(128) (f) EfficientNetV2B0 FT + SVM
Dense(128)

Figure 29: Confusion matrices on the FMA 14 dataset, for 224x224 input images, for the EfficientNetV2B0 and
EfficientNetV2B0(with finetuning, denoted as EfficientNetV2B0 FT) networks.
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I Train/test accuracy curves

This appendix contains train/test accuracy curves for the models used on the different datasets
and their respective error curves.
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(a) Baseline network (b) VGG-16

(c) VGG-16 FT (d) EfficientNetV2B0

(e) EfficientNetV2B0 FT

Figure 30: Train/test accuracy curves and train/test error curves for the baseline, VGG-16 and EfficientNetV2B0
models on the GTZAN(128) dataset, for 128x128 input. Networks are also used in combination with finetuning,
denoted with a ” FT” suffix.
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(a) EfficientNetV2B0 (b) EfficientNetV2B0 FT

Figure 31: Train and test accuracy curves and train and test error curves for the EfficientNetV2B0 models on the
GTZAN(224) dataset, for 224x224 input. The network is also used in combination with finetuning, denoted with a
” FT” suffix.

(a) EfficientNetV2B0 (b) EfficientNetV2B0 FT

Figure 32: Train and test accuracy curves and train and test error curves for EfficientNetV2B0 models on the
FMA 8(224) dataset, for 224x224 input. The network is also used in combination with finetuning, denoted with a
“ FT” suffix.
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(a) Baseline network (b) VGG-16

(c) VGG-16 FT (d) EfficientNetV2B0

(e) EfficientNetV2B0 FT

Figure 33: Train and test accuracy curves and train and test error curves for the baseline, VGG-16 and Effi-
cientNetV2B0 models on the FMA 8(128) dataset, for 128x128 input. Networks are also used in combination with
finetuning, denoted with a “ FT” suffix.
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(a) Baseline network (b) VGG-16

(c) VGG-16 FT (d) EfficientNetV2B0

(e) EfficientNetV2B0 FT

Figure 34: Train and test accuracy curves and train and test error curves for the baseline, VGG-16 and Efficient-
NetV2B0 models on the FMA 14(224) dataset, for 224x224 input. Networks are also used in combination with
finetuning, denoted with a “ FT” suffix.
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J Precision, recall and F1 scores for the best performing

models per dataset.

This appendix contains precision, recall and F1 scores for the best performing variants of the three
tested models, per genre in each dataset.

Figure 35: Precision, recall and F1 scores for the GTZAN dataset.

Figure 36: Precision, recall and F1 scores for the FMA 8 dataset.
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Figure 37: Precision, recall and F1 scores for the FMA 14 dataset.
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