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Abstract

Electric vehicles lack an auditory footprint as opposed to their Internal Combustion Engine
counterparts. Even though in urban environments, engines are typically considered an annoyance
and their sounds should typically be minimal, having some auditory footprint has its safety
benefits. Research shows that the sound of a combustion engine is easily detected as a moving
object. Hence the synthesis of a realistic engine sound can be an important safety feature.

This work focusses on synthesizing realtime car exhaust notes using an on-board diagnostics
(OBD)-based language through Text-to-Speech (TTS) networks. A method is presented to syn-
thesize OBD transcribed data through FMOD with AudioMotors. A large dataset of synthetic
exhaust notes with corresponding OBD data is constructed by using synthetic OBD data to syn-
thesize exhausts notes using FMOD with AudioMotors (using our FMOD-Enginesynth). The
resulting dataset is named the FMOD-OBD-Dataset.

An Extraction, Transformation and Load (ETL) script is introduced to transcribe the OBD data
of engine expressions such that the dataset can be used as training set for a novel modified TTS
engine. This ETL and modified TTS engine form Enginetron. The performance of Enginetron
is evaluated using a Fréchet Audio Distance (FAD) score.

II



Contents

1 Introduction 1

2 Related work 3

2.1 Exhaust notes synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Speech synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Exhaust notes datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Fundamentals 7

3.1 On-board diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Mel spectrograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Librosa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Qualitative evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Quantitative evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7 Frequency Analysis using GoldWave® . . . . . . . . . . . . . . . . . . . . . . . . 12
3.8 Fréchet Audio Distance (FAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Methodology 14

4.1 Enginetron network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Input representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 FMOD-OBD Dataset 19

5.1 Synthesizing with FMOD Studio and AudioMotors . . . . . . . . . . . . . . . . . 20
5.2 Generating synthetic OBD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 OBD and raw audio waveform ETL to Enginetron script . . . . . . . . . . . . . . 23
5.4 Transformed dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Test trained network script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Experimental Setup 24

6.1 Exploring novel metrics for exhaust notes synthesis . . . . . . . . . . . . . . . . . 24
6.2 Synthesizing real OBD through FMOD-Enginesynth . . . . . . . . . . . . . . . . 25
6.3 Synthesis of exhaust notes through Enginetron . . . . . . . . . . . . . . . . . . . 25

7 Results 26

7.1 Novel metrics for exhaust notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 Synthesis of real OBD through FMOD-Enginesynth . . . . . . . . . . . . . . . . . 28
7.3 Synthesis of exhaust notes through Enginetron . . . . . . . . . . . . . . . . . . . 28

8 Conclusions and Future Work 31



Bibliography 33

Appendix A FMOD Synthesis script 36

Appendix B Dataset ETL script 37



1. Introduction

Even though the first car ever produced was in fact an electric car, most production cars at the
time of writing utilize an Internal Combustion Engine. With the exhaustion of fossil fuels we
are transitioning towards alternative energy sources to power our cars. Many car manufacturers
start to produce electrical vehicles. The problem however is that electrical cars lack the sound
that Internal Combustion Engines make. This is not only important for product experience, it
also plays an important factor in safety.

Synthesis of exhaust noise is an active field both in research and in a lot of commercial compa-
nies. It has applications in many areas. Some research focusses on adding audio to cars with
little to no auditory footprint. There are several motivations to do this such as product percep-
tion (sportiness, perceived product quality, etc) [1] as well as safety (detectability of a vehicle,
perception of speed of a vehicle etc) [2, 3, 4]. Other applications are in multimedia contexts such
as cinematography or the gaming industry. Another application would be product exploration.
Using a Generative Adversarial Network (GAN) network on a dataset comprising car exhaust
notes could be used to explore a compact latent space of exhaust notes [5], which allows a sound
artist to make adjustments to latent variables to explore the kind of sound they are looking for.
Finally exhaust note metrics, which are also researched in this work, also have applications in
detecting engine malfunctions of cars that do utilize an Internal Combustion Engine [6].

This work focusses on synthesizing exhaust notes using end-to-end Text-to-Speech (TTS) net-
works, such as Tacotron. End-to-end training requires good evaluation metrics. Preliminary
research [5] showed that good evaluation metrics for exhaust notes synthesis are lacking. Spec-
trograms do reflect if harmonics are preserved, but this is a manual observation and hard to
quantify. An important part of this work is the search and selection of a better evaluation metric,
that could be used for end-to-end training neural network (NN) exhaust synthesizers. Similarly
these metrics could be used to train an exhaust note synthesizer in an adversarial setting, which
are known to be highly effective in synthesizing realistic sounds with low resources.

This work will cover the following important aspects:

• Selection of a metric. train a network to evaluate synthesized exhaust notes quality.

Initially considered to be part of this work, creating and training a network to deduce
revolutions per minute (RPM), gear or potentially even speed (more difficult) from a
sound, is a fruitful avenue for future research.

• Improve existing attention mechanisms in TTS NNs, i.e. improve the attention and decoder
part of the network such that it will work better on exhaust notes sound.

• Change the Encoder such that it can take raw diagnostic data such as RPM through
preprocessing with a custom language. This will allow for better learning of the semantics
by the network.
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• Address the problem for car exhaust note synthesis of limited data. There is even less data
available that will be annotated with on-board diagnostics data. This work will cover the
creation of a large exhaust note dataset with matching On-Board Diagnostics (OBD).

Initially considered to be part of this work, voice cloning. It would be interesting to apply
voice cloning techniques that are presented in text-to-speech papers to the car exhaust note
synthesis problem. Ideally one could train on a big data set with a lot of exhaust notes
(such as the one introduced in this paper) and then would need a much smaller exhaust
note dataset with a new car for training. It is still considered a promising direction for
future research.

Contributions

The main contributions of this work are the following:

• Metrics. A study of quantitative and qualitative evaluation metrics that can be used
to evaluate the quality of synthesized exhaust notes is presented. Qualitative evaluation
metrics that are covered are MOS scores, and preserved harmonics. Quantitative eval-
uation metrics that are covered are F0 evaluation, MOSNet, Frequency Analysis using
GoldWave®, and Fréchet Audio Distance.

• FMOD-OBD Dataset. This work provides the largest OBD with matching audio
dataset named “FMOD-OBD Dataset” available to train data-hungry neural network based
networks to synthesize exhaust notes. A script is also provided to generate such datasets
as part of this contribution.

• FMOD-Enginesynth. A script that can synthesize OBD data using the FMOD and
AudioMotors tool.

• Enginetron. This work provides a network named “Enginetron” that can be trained to to
synthesize exhaust notes. A pre-trained network, trained on the aforementioned dataset,
and hyperparameters such as learning rates are also provided.

Structure

The remainder of this thesis is structured as follows. Related work is covered in Chapter 2. The
fundamentals are described in Chapter 3. The methodology for this work is given in Chapter 4.
The dataset and creation presented in Chapter 5. The experiments setup is given in Chapter 6.
Results are presented in Chapter 7. Finally this thesis is concluded in Chapter 8.
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2. Related work

In this section we discuss the related research on exhaust note synthesis and on speech synthesis
technologies. In this thesis we adapt the latter for exhaust note synthesis.

2.1 Exhaust notes synthesis

Most works that deal with exhaust note synthesis work with sample based methods. Typically
a few samples based on RPM and load are provided from which, to obtain different samples
such as low rpm low load, low rpm high load etc. The provided samples are stitched while using
simple parameters and have their pitch shifted to match the RPM of the car.

State of the art car exhaust notes synthesizers [7] typically use a method called granular synthesis.
Granular synthesis [8] is a form of (additive) synthesis which involves generating thousands of
very short sonic grains to form larger acoustic events.

Lesound AudioMotors1 is a proprietary exhaust note synthesizer that is used in the gaming
industry. AudioMotors also uses this so-called granular synthesis method. There is a free trial
available on their website. They also provide a link to a databank on their website having short
recordings of cars cycling accelerating. They integrate with a tool called FMOD2, which is a
tool for making adaptive sound for games. In this work FMOD with AudioMotors is used. A
custom script is made such that FMOD with AudioMotors can synthesize on-board diagnostics
data.

2.2 Speech synthesis

In this section the different speech synthesis methods and current research directions that are
currently active are discussed. MOS-scores are shown for US English that are presented in the
original papers. They might use the exact same dataset, have varying preprocessing or dif-
ferent benchmarking methods and therefore those MOS-scores are not suitable for side-by-side
comparison. However it should still be able to give a broader overview of the progression of
text-to-speech research and different methods.

Concatenative methods
A well-known speech synthesis methods is concatenative speech synthesis [9]. In this method
you have a large dataset of segments and their recorded speech. Segments could be sentences,
words, syllables etc. To form sentences different segment recordings would be concatenated.
The disadvantage of this method is that to synthesize the audio you will need a dataset of all
the segments possible audio. Recent concatenation methods [10] achieve a Mean Opinion Score
(MOS) score of about 3.82± 0.08 for real speech, which is behind the current state of the art
methods that typically have a MOS higher than 4.5.

1
https://lesound.io/audiomotors-wwise/

2
https://www.fmod.com/
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Statistical parametric methods
Another approach is statistical parametric speech synthesis [11]. In statistical parametric speech
synthesis parameters that characterize the audio sample are extracted such as the frequency
spectrum, fundamental frequency and duration. The parameters are estimated using a trained
statistical model.

An advantage of statistical parametric speech synthesis is that there is no need for a big database
with all speech samples for synthesis. Also parametric speech synthesis is more flexible in (voice)
characteristics compared to concatenation methods. Recent statistical parametric methods [12]
achieve MOS scores of 3.69±0.119 on US English, which is worse than the concatenated speech
synthesis methods.

Deep learning methods
During the last decade deep learning has been applied to the text-to-speech problem. With
deep learning, one can effectively capture the hidden internal structures of data and use more
powerful modeling capabilities to characterize the data. In this section we will dive deeper in
several different deep learning text-to-speech methods.

Autoregressive models
WaveNet [13] is a model that synthesizes raw waveform of the audio signal instead of acoustic
features. WaveNet is a so-called autoregressive model in which each sample statistically depends
on the previous ones. To build the autoregressive model a fully convolutional neural network
was used inspired by PixelCNN where PixelCNN is a network which is used to generate nat-
ural images. PixelCNN is a network that auto-completes an occluded image according to its
content by generating pixel predictions from a pixel’s nearest neighbors. WaveNet operates on
one-dimensional time-series as opposed to PixelCNN two-dimensional RGB pictures. WaveNet
achieves a MOS score of 4.21 on US English.

Statistical parametric methods
Many diffferent Deep Neural Network (DNN) architectures have been studied for TTS. Early
models that try to achieve end-to-end training started with a so-called encoding, decoder ar-
chitecture. Typically this architecture had an encoder that would convert characters, words,
phonemes, etc, into an intermediate representation. Further successes were obtained by adding
attention mechanisms to the network. Finally, for decoding the network would output (mel)-
spectrograms or wav waveform audio.

Tacotron [14] is an end-to-end system that incorporates many of these techniques. It is a sequence
to sequence model that has an encoder-decoder architecture with an attention mechanism. The
encoder extracts sequential representations of text. Attention is used to pass the representation
to the encoder. The decoder module generates a linear-scale spectrogram after which a Griffin-
Lin vodoer is used to get the raw waveform. Tacotron achieved a MOS of 3.82 on an US English
evaluation set.

Tacotron has been evolved into Tacotron2 [15]. Tacotron 2 is an improved version with a simpli-
fied architecture compared to the original Tacotron. It uses local sensitive attention instead of
the original additive attention. The decoder is now an autoregressive Recurrent Neural Network
(RNN). Instead of Griffin-Lin it uses WaveNet to convert the spectrograms into raw waveform.
Tacotron 2 received a MOS score of 4.53 which is close to the ground truth for recorded speech
which is 4.58. Note that for evaluation Tacotron 1 & 2 both are trained and evaluated on the a
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internal normalized dataset. As part of the normalization numbers are written out (i.e. “16” is
“sixteen”).

Generative Adversarial Networks
Generative adversarial networks (GANs) provide a way to learn deep representations without
extensively annotated training data. They achieve this through deriving backpropagation signals
through a competitive process involving a pair of networks the generator and the discriminator.
The representations that can be learned by GANs may be used in a variety of applications,
including image synthesis, semantic image editing, style transfer, super-resolution and classifi-
cation.

GAN Singing Networks
An interesting model is the Korean Singing Voice Synthesis System (KSVSS) [16]. This network
takes three inputs. The text, audio and midi files. The midi files contain the fundamental
frequency for the singing and how long it should hold. This model has three different encoders.
A text encoder, a mel encoder and a pitch encoder. The network has a so-called super-resolution
network that upsamples the generated mel-spectrogram into a linear spectrogram. It receives
a MOS-score of 3.07 for singing. It was better at maintaining the pitch compared to other
methods. Obviously the singing task is more difficult than standard text-to-speech, and also
typically there is less training data available.

In this work we will use Tacotron for our implementation of Enginetron.

2.3 Exhaust notes datasets

In preliminary research [5] no large public available dataset was found comprising car exhaust
notes audio annotated with raw OBD-data. It is known that for training text-to-speech networks
large amounts of data are required to synthesize comprehensible speech. In this earlier work
audio was recorded using a microphone and an OBD dongle. The car was driven for about 3.5
hours and an ETL script was used to convert this to training data. When this was used to train
Text-to-Speech networks it was found that it was insufficient data to synthesize good exhaust
notes. The main problem was that because the car was driving stationary at approximately
the speed limit for long times, the dataset showed little variation. This was later tackled by
modifying the ETL script to only select samples with variations (such as when the OBD data
showed accelerating or deceleration). Using this ETL script did result in a training dataset with
more variations, but also in an even smaller training dataset. To tackle the problem of small and
little variation datasets, this work presents a novel “FMOD-OBD Dataset”, a large synthesized
training dataset that is synthesized using a custom script through FMOD and AudioMotors.
A drawback of this method when training on the FMOD-OBD Dataset is that Enginetron’s
performance is bound to the performance of FMOD. Any flaws that will be in FMOD will likely
also be learnt in the Enginetron model. Enginetron will logically not be able to outperform
the FMOD synthesizer. In this work this is justified because there is no better data available.
Recording a sports car with very high variation in speed and RPMs for tens of hours was not
realistically possible within the context of this thesis.

The hypothesis of this work is that training Enginetron on the FMOD-OBD Dataset can syn-
thesize realistic engine sounds. It can also prove previous hypotheses (such as the hypothesis
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that with more and more varying data Enginetron will perform better) right. If Enginetron can
be used to synthesize realistic exhaust notes with the FMOD-OBD Dataset, we believe exhaust
note synthesis through TTS networks is an interesting and fruitful avenue for future research.
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3. Fundamentals

This chapter will cover the fundamentals for this work. This chapter covers on-board diagnos-
tics, and how they are captured. Next “mel”-spectrograms are covered which are often used as
intermediate inputs and outputs in neural networks. Raw audio waveforms are covered which
typically are part of the training input and the output of a Text-to-Speech network. Finally,
qualitative and quantitative evaluation metrics are described. These metrics are used in training
and to evaluate the quality of synthesizers in this work.

3.1 On-board diagnostics

All production cars since 2001 (2004 for diesels) in Europe are equipped with on-board diag-
nostics through an OBD-II port. With an OBD dongle diagnostic data such as fault codes can
be read from the car. Although it depends on the vehicle manufacturer and make, most cars
allow reading the car speed, engine RPM, absolute throttle position, and engine load in realtime
through this OBD port.

There are many consumer based products that show readings via an OBD-dongle connected
via either bluetooth or cellular networks such as the TomTom Curfer or Carly Connected Car,
which have a focus on reading OBD-II fault codes and coding certain features, such as folding
mirror on lock, like OBDEleven.

Preliminary research [5] presented a script that can be used for recording OBD data and exhaust
audio in realtime to record OBD with audio datasets. In that work OBD is stored in CSV format
with the following headers: RPM, Speed, Load, Throttle and Time. In Table 1 an example of
the raw OBD data is listed. OBD data is typically stored in intervals

RPM [0, 8000] Speed (km/h) Load ([0,100]) Throttle ([0,100]) Time (ms)

1631 20 40 35 0
1782 22 38 30 100
1835 24 37 28 200
1798 26 37 27 300

Table 1: Example of raw recorded OBD data (before any preprocessing).

This work does not use the script to record audio from a real car. Instead OBD-data is gen-
erated and synthesized in this work. Generated OBD data is stored in a similar fashion as the
preliminary research [5].

3.2 Mel spectrograms

A spectrogram is a visual representation of the specrum of frequencies of a signal as it varies
over time. In Figure 1 you see a spectrogram of an original engine sample. A spectrogram has
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Figure 1: Mel spectrogram of the original engine sample. Frequencies are limited from 0 to 1000Hz.

frequencies (in Hz) on the y-axis. On the x-axis the spectrogram has time. The color axis is
the amplitude in dB. A mel-spectrogram is a special kind of spectrogram where the frequencies
are on the so-called mel-scale. The mel-scale is not a linear nor a logarithmic scale, but a scale
that is inspired by the humar perception of speech and sound. On the mel scale is a perceptual
scale of pitches on which each pitch is determined to be equally ‘far’ from each other judged
by human listeners. Those mel-spectrograms are often an intermediate form in neural networks
that do audio, or in particular, speech synthesis. We use librosa [17] to implement the function
to calculate the mel-spectrograms (see subsection 3.4).

3.3 Waveform

A waveform sample is a a sequence of samples, where each sample is a real number denoting
the amplitude of the signal. The sample rate of 48 kHz means that the raw audio has been
sampled with 48.000 samples per second. The output of a text-to-speech network consists of
such waveform samples.

Our dataset is sampled with a sample rate of 22050Hz at 16-bits sample depth.

3.4 Librosa

Librosa1 [17] is a python package for music and audio analysis. Librosa is used in this work
in the ETL scripts to generate shorter samples with matching OBD from the longer version.
Librosa also has tools to generate mel-spectrograms and comes with many analysis tools. For
instance in preliminary experiments the fundamental frequency estimation algorithms yin [18]
and pyin [19] from librosa were used. Librosa is also used in the implementation of Tacotron to
generate samples from spectrograms.

1
https://librosa.org/doc/main/index.html
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3.5 Qualitative evaluation metrics

A common metric for speech synthesis is the so-called Mean Opinion Score (MOS). The In-
ternational Telecommunication Union (ITU) has defined the opinion score as the “value on a
predefined scale that a subject assigns to his opinion of the performance of a system” [20]. The
mean opinion score (MOS) is the average of these scores across subjects. For a MOS subjects
are asked to rate the naturalness of the stimuli in a 5-point Likert [21] scale score where 1 is bad
and 5 is excellent. This method is used in many Text-to-Speech papers as an evaluation metric
for the perceived quality of synthesized speech.

Another qualitative evaluation metric is the preservation of harmonics. The harmonics are
integer multiples of the fundamental frequency F0. In the case of an engine you have three
different frequencies which are integral multiples. You have the explosion frequency Fex, the
engine revolution frequency Fen and the individual cylinder firing frequency Fc. From the formulas
in Equation 3.1, 3.2, and 3.3 it follows that those frequencies are integral multiples. In a four
stroke engine the piston of each cylinder completes four strokes within a single thermodynamic
cycle comprising of intake, compression, power, and exhaust. During a complete cycle of a
four-stroke engine, the crank shaft turns two times. Independently from the number of cylinders
and their disposition, an engine noise is essentially harmonic due to the sequential explosions
occurring in the combustion chamber of each cylinder. The explosion frequency Fex for a four-
stroke engine is given by

Fex =
Nc

2
rpm
60

(3.1)

where Nc is the number of cylinders in the engine and rpm is the number of revolutions per
minute. Two successive explosions do not occur in the same cylinder and thus are not identi-
cal. Furthermore, two successive engine revolutions do not contain the explosions of the same
cylinders. On that account, two other frequencies Fen and Fc and their harmonics enrich the
spectrum of an engine sound:

Fen =
rpm
60

(3.2)

Fc =
1
2

rpm
60

(3.3)

where Fen is the frequency corresponding to the engine revolution and Fc is the fundamental
frequency corresponding to a complete cycle of the engine (two revolutions). The harmonics
are clearly visible in mel-spectrogram see Figure 1. A good engine synthesizer would preserve
the harmonics, (i.e. the Fex, Fen and Fc are still multiples of each other and do not deviate
from each other. However, manual observation of the fundamental frequency and harmonics in
the mel-spectrogram is needed to confirm if the harmonics are preserved in synthesized audio.
Manual observation is needed because in exhaust notes there is a lot of noise, and there are
more harmonics which are integral multiplications of the three frequencies earlier mentioned.
You can see in Figure 1 there are a lot more frequencies. Because the engine noise has a wide
range of frequencies, it is very hard to consistently find the fundamental frequency Fex compared
to human voice where the range of frequencies is much smaller.
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An attempt was made to systematically use the F0 of the exhaust note. Extracting it could
be used as an evaluation metric as well as be used during training as a separate encoder. Un-
fortunately all the F0 estimation algorithms that were considered (e.g. RMSE of F0) did not
give a meaningful F0 estimation (even on the original signal). Since the nature of the engine
you have to be able to find the fundamental frequency of the whole range of RPMs the engine
offers. The challenge is that within those ranges there is already some harmonics causing the
F0 estimation algorithms to become instable. Since the F0 could not reliable be obtained, the
quantitative measures like root mean square of the fundamental frequency could also not reliably
be obtained. Therefore other F0 based metrics are not considered in this section.

3.6 Quantitative evaluation metrics

There are several different quantitative evaluation metrics that can be used for exhaust note
synthesis. This paper covers F0 evaluation, MOSNet, Frequency Analysis using GoldWave®

(alpha function as shown in Section 3.7), and Fréchet Audio Distance score. For this work
MOSNet was attempted but it did not yield meaningful results. In the end only F0, Frequency
Analysis using GoldWave®, and Fréchet Audio Distance scores were used. The scores for these
metrics are covered in the Chapter 7 Results.

F0 evaluation

In Korean Voice Singing [16] a quantitative absolute metric is presented that can be used to
determine the quality of singing. The metric they use is extracting the F0 sequence. They then
converted it into a pitch sequence, and compared it to the input pitch sequence. The higher the
similarity between the two sequences, the more the network generates a singing that reflects the
input condition. The precision, recall and f-score is then calculated of the generated sequence
by frame-wise comparison. This network has not been used directly and none experiments
were made with this network as no code or pre-trained network was available. The paper is still
included in this chapter as it has relevant insights as it is a melody based network and inevitably
this work taken inspiration from it in some shape or form. In this work the F0 sequence part of
the WORLD vocoder [22] is used for extraction. There is a Python version of WORLD available.

For F0 extraction the Root Mean Square Error between the predicted and expected outcome
can be used to evaluate the performance of F0 extraction. The RMSEF0 is computed as follows
where Ŷi is the predicted F0 and Yi is the expected F0 at i:

RMSEF0 =

!
1
n

n

∑
i=1

(Ŷi −Yi)2 (3.4)
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MOSNet

MOSNet [23] is a quantitative absolute metric for end-to-end speech naturalness2. That means
it does not need a reference signal. It is based on deep learning. MOSNet is trained on speech
and when and for an input it will give a MOSScore is (0-5). The advantage of MOSNet as
opposed to real qualitative MOS-scores is that it can be fully automated and used as a quick
feedback loop in experiments, or even as a metric for training in an adversarial setting [24]. In
this work MOSNet is not used. There was done some small experiments using MOSNet with
a pre-trained model. The pre-trained model did not perform well in early experiments. This
because MOSNet is pre-trained on a large set of speech and MOS-scores. As part of future work
a set of exhaust notes and their respective MOS-scores could be created to train MOSNet for
exhaust notes.

2
https://github.com/aliutkus/speechmetrics is a wrapper around many objective speech metrics including

MOSNet.

11

https://github.com/aliutkus/speechmetrics


3.7 Frequency Analysis using GoldWave
®

GoldWave can be used to do frequency analysis on audio. What particularly proved useful for
this work is the GoldWave Control Window, which can be configured to show a spectogram and
the spectrum. In Figure 2 you see the GoldWave control user interface. Spectrum typically
shows the spectrum. It also shows a red peak line which displays the highest magnitude since
playback started. Finally a third yellow line is shown which is the so-called alpha line. It seems
that the average line (also called Alpha line in GoldWave) is a reliable method to find the F0
of an exhaust note sample. The alpha line function is shown in Equation 3.5. Even though
GoldWave is scriptable it is not easy to automate the frequency analysis through GoldWave.
The alpha function could easily be implemented in Python however. In this work GoldWave is
used as an inspection tool to verify metrics. Also the alpha function implementation was used
in python for F0 experiments.

M = al pha∗Mprevious +(1−al pha)∗Mnew (3.5)

Figure 2: GoldWave control window as you would see after playing back an exhaust note audio file.
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3.8 Fréchet Audio Distance (FAD)

Fréchet Audio Distance [25] is another measure that we can use to objectively evaluate quality of
synthesized audio. FAD is used in recent papers that deal with evaluating quality of synthesized
audio [26]. The idea of FAD is to measure the closeness of the data distribution of the real data
versus the data distribution of the generated data in a certain embedded space.

FAD compares embedding statistics generated on the whole evaluation set with embedding
statistics generated on a large set of training data. FAD uses embeddings generated by the
VGGish model. It then computes multivariate Gaussians on both the evaluation set embeddings
Ne(µe, Σe) and the background embeddings Nb(µb, Σb) as shown in Equation 3.6 where tr is the
trace of a matrix. The background embeddings are then referred to as a model’s FAD score

The lower a FAD score the better. In this project the FAD distance is used. One advantage of
this metric is that it is a relative metric. This means that it compares the data distributions in
the synthesized files to those in the original audio files. That means synthesized exhaust notes
will be compared to original exhaust notes. In early experiments it has shown that this metric
works better than absolute metrics (such as MOSNet) which is an absolute metric where lower
is better, but optimized for speech. The FAD classifier is publicly available3 through Google
Research GitHub project, which is used for this project.

F(Nb,Ne) = #µb −µe#2 + tr(Σb +Σe −2
"

ΣbΣe) (3.6)

3
github.com/google-research/google-research/tree/master/frechet_audio_distance
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4. Methodology

This section presents the method for this work. First it presents the input representation in
Section 4.2 as was used in preliminary research. At the end a simplified input representation is
presented, that will be used in this work when synthetic OBD is generated. Since the Tacotron
input space was limited to 256 characters, a choice had to be made with variables to include in
the language. The simplified language only considers revolutions per minute such that a higher
resolution is available.

The overview of the Enginetron architecture during training is depicted in Figure 3. The En-
ginetron network is presented in Section 4.1 as well as the changes that are made in the network
for exhaust note synthesis. Section 4.2 covers the custom language which is used in the En-
ginetron ETL unit.

Finally, the Enginetron synthetic OBD generator, FMOD-OBD-Dataset and FMOD-Enginesynth
units are covered in the next chapter (Chapter 5 FMOD-OBD Dataset).

OBD stream
Raw Waveform 

Audio 
unsegmented

Enginetron ETL (based on linear scanning method)

Enginetron 
Embeddings

Segmented Raw 
Waveform Audio

Pairs of matching embeddings & audio

Enginetron Network

Figure 3: Overview of the Enginetron in training mode. Blue squares represent data, orange squares

represent units of this work.
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4.1 Enginetron network

This section will describe the architecture of Enginetron which is a slightly modified network
based on Tacotron. Therefore this section will first cover the architecture of Tacotron, and then
introduces the modifications made to train on exhaust note data.

Attention

Pre-net

CBHG

Character embeddings

Attention 
RNN

Decoder 
RNN

Pre-net

Attention 
RNN

Decoder 
RNN

Pre-net

Attention 
RNN

Decoder 
RNN

Pre-net

CBHG

Linear-scale
spectrogram

Seq2seq target
with r=3

Gri!n-Lim reconstruction

Attention is applied 
to all decoder steps

<GO> frame

Lexical preprocessing

Postprocessing net

Figure 4: The tacotron network as described in [14]. The part before attention we annotated and will

refer to as “lexical preprocessing”. The attention we will refer to as attention. The part of the net after

the attention we will refer to as postprocessing net.

Tacotron [14] (See Figure 4) is an end-to-end TTS network and trains on Text-Audio pairs and
require minimal annotation. That is why for this work Tacotron is deemed the most promising.
At a high-level, Tacotron takes characters as input and produces spectrogram frames, which
are then converted to waveforms. Tacotron exists of the following models: CBHG module,
Encoder, Decoder, Post processing and waveform synthesis. The CBHG module stands for 1-D
Convolutional Bank, Highway Networks, and a Bidirectional Gated Recurrent Unit.

The CBHG is the combination of 1-D convolution banks with a layer of highway network, and
after that a layer of bidirectional Gated Recurrent Unit (GRU). CBHG is a powerful module
for extracting representations from sequences. The bank of 1-D convolutional filters is used to
extract local information. This is passed through a highway network to extract higher-level
features. Finally there is the Bidirectional GRU, which is used to learn long-term dependencies
in the forward and backward directions.

The encoder consists of the CBHG module with a bottleneck layer with dropout to improve
generalization. The CBHG module transforms the prenet outputs into the final encoder repre-
sentation. The CBHG-based encoder reduces overfitting and mispronunciations.

The decoder targets are highly compressed 80-band mel spectrograms. The post-processing net
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transforms the highly compressed representation into waveform. This post-processing net also
uses a CBHG module, to learn to predict spectral magnitudes on a linear frequency scale. Mul-
tiple non-overlapping output frames are predicted at each decoder step to reduce the model size,
training time and inference time. It also improves the convergence speed.

Modifications in network
This section covers the Enginetron architecture.

Most of the changes done in the network will therefore be in the Lexical preprocessing part of
the network (depicted in Figure 4). The attention and postprocessing net are not changed in this
work, although this could be promising for future work. In, and before the lexical preprocessing
there are some changes made such that it works on datasets with exhaust notes and OBD data.

First of all, because there is a custom language that does not use standard latin alphabet, the
alphabet is changed in “basic_cleaners”. Since the Tacotron [14] pre-net has a 256-D charac-
ter a language was build with no more than 256 unique characters. When creating a custom
language for Tacotron that does not use a standard latin alphabet it is important to change the
cleaners in Tacotron’s hyperparameters. Tacotron’s implementation comes with cleaners that
convert numbers to text, remove whitespace and puncutation and convert common symbols or
abbreviations to their full text. The remaining text is than filtered for the programmed alphabet
and strips any characters outside of the alphabet. Also to use Tacotron with non-standard latin
alphabet the _characters variable in text/symbols.py should be updated accordingly. The
characters used are 256 different characters that are used to encode RPM. It is 256 consecutive
characters in UTF-8 starting with R0...R256. Finally the hyperparameters that had that yielded
the best results in preliminary research were used in this work too.

Enginetron uses Tacotron Text-to-Speech network with the similar changes as proposed in pre-
liminary research [5]. The implementation by Keith Ito on GitHub is used as a starting point1.
The modified network is made available here2.

4.2 Input representation

In preliminary research [5] a language is presented that is used to represent the exhaust notes.
In this section the most basic and important takeaways from this language will briefly be sum-
marized. In Figure 5 you can see the Extended Backus-Naur form for the language. Speed is
referred to as S0 . . .S127 The second 128 characters are used to represent RP. Those are referred
to as R0 . . .R127. Analogously to real world corpus one could say that speed are the vowels, and
RPM are the consonants of the “language”.

There is also a slight extension of the language that will also be used in Figures or text in this
thesis. The extension allows to add repeating words (i.e. for idling). This makes it easier to
represent long repeating sequences in the paper. You can see the extension in Figure 6.

1
https://github.com/keithito/tacotron

2
https://github.com/tpgmeligmeyling/tacotron-exhaustnotes
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〈exhaust-sentence〉 ::= 〈exhaust-word〉

〈exhaust-word〉 ::= { 〈exhaustmorpheme〉 }, 〈EOL〉

〈exhaustmorpheme〉 ::= 〈speed-symbol〉, 〈rpm-symbol〉

〈speed-symbol〉 ::= S0 | S1 | S2 | . . . | S128

〈rpm-symbol〉 ::= R0 | R1 | R2 | . . . | R128

Figure 5: EBNF for the exhaust note language as used in the descriptions. This is the purest form of

the language as used in the datasets.

〈exhaust-word〉 ::= { 〈exhaustmorpheme〉 }, 〈EOL〉 |

〈repeatN 〉 〈exhaustmorpheme〉 }, 〈EOL〉

〈repeatN 〉 ::= { 〈number〉 } ×

〈number〉 ::= 0 | 1 | 2 | 3 | 4 | 5 |6 | 7 | 8 | 9

Figure 6: EBNF extensions for the exhaust note language. Those extensions are only used for

intelligibility of this thesis.

Simplified input representations
An engine under load sounds different than an engine that is not under load. Ideally an engine
sound would be generated from the combination of the rpm, load, throttle and speed values.
A lot of those values strongly correlate (or can be used to obtain new values). For instance
the gear for a certain engine is a product of its speed and RPM. Because it is a difficult task
to generate realistic OBD data with all these parameters this work opted to only use RPM for
synthesis. This choice is justified cause a much larger dataset has precedence over having a
detailed dataset. In this section a slight modification is presented of the input representation
shown in Section 4.2. How the input representations are used as character embeddings in the
TTS network is explained in the next section. The input representations are also used in the
dataset creation in Chapter 5.

〈exhaust-sentence〉 ::= 〈exhaust-word〉

〈exhaust-word〉 ::= { 〈exhaustmorpheme〉 }, 〈EOL〉

〈rpm-symbol〉 ::= R0 | R1 | R2 | . . . | R128

〈exhaustmorpheme〉 ::= 〈rpm-symbol〉

Figure 7: The modified EBNF language used for the dataset.
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In Table 2 you see examples of the simplified language

Transcription Description

10×R0 Engine off
R11R12R12R12R13 . . . Accelerating
R17(3×R16)R15 . . . Decelerating
(100×R14) Cruising at constant speed
. . . . . .
. . . . . .

Table 2: Example of OBD data in simplified language, where Ri denotes steps of RPM where R0 is the

lowest RPM (engine off) and R128 is the max amount of revolutions per second for an engine.

For this work an ETL script is made available that converts raw OBD data and unsegmented
raw waveform audio into shorter audio with those custom input representations.

Enginetron in synthesis mode

When Enginetron is trained, the custom embeddings can be used to synthesize raw audio.
Figure 8 depicts a scheme of Enginetron’s functionality when used for synthesis.

Enginetron 
Embeddings

Segmente Raw 
Waveform Audio

Enginetron Network

Figure 8: Overview of the Enginetron in synthesis mode. Blue squares represent data, orange squares

represent units of this work.
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5. FMOD-OBD Dataset

One of the first steps is the creation of a large dataset to train Enginetron. The creation of a
large dataset can be divided in a few tasks. First the synthetic OBD data should be generated.
Then a tool such as AudioMotors should be used to synthesize the sound for the synthetic OBD
data. Then the dataset should be cut into ten seconds segments with matching audio and OBD
annotations.

To create the dataset FMOD is used in combination with the AudioMotors plugin by LeSound.
Those tools are useful because parameters can be set manually for RPM and load. In previous
work it was found that an even distribution of those parameters in the training dataset is
desirable. With those tools it was possible to generate a large dataset. Because it is synthesized
from parameters a good transcription will be available to use for training with a Text-to-Speech
network. To generate a larger and diverse dataset, one can also generate synthetic OBD, and
then use it to synthesize a large dataset using FMOD with AudioMotors. Figure 9 schematically
shows the process of dataset generation. The FMOD-Enginesynth is covered in Section 5.1.
Synthetic data is generated using a Enginetron synthetic OBD generator presented in Section
5.2.

OBD stream

Raw Waveform 
Audio 

unsegmented

FMOD-Enginesynth

Enginetron synthetic 
OBD generator

Figure 9: Overview of the data generation. Blue squares represent data, orange squares represent

units of this work.

After generating synthetic OBD and synthesizing the synthetic OBD to raw waveform audio,
the fake OBD and raw waveform collectively form FMOD-OBD Dataset as shown in Figure 10.

OBD stream
Raw Waveform 

Audio 
unsegmented

FMOD-OBD-Dataset

Figure 10: Overview of the dataset. Blue squares represent data, orange squares represent units of

this work.
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5.1 Synthesizing with FMOD Studio and AudioMotors

The first experiment to synthesize a dataset with FMOD with the AudioMotors plugin using
OBD data. This was trained on the dataset from previous works in which OBD was recorded
from the car. We used a script to synthesize the audio from FMOD. FMOD Studio however is
a product that is specialized in making dynamic audio content for games. Bouncing out audio
files produces linear audio content, and is therefore beyond the scope of what FMOD Studio is
designed to do.

Since FMOD Studio does not come with an export audio option, a script was made to play back
OBD CSV files in realtime. This was used to modify the RPM parameter of the AudioMotors
plugin which was played back and recorded in realtime. Appendix A presents the BASH script
that was used to record the audio. This method of synthesis is considered as a baseline method
in this work. It will also be used for other experiments in this work. The code to synthesize
exhaust note data is shown in Appendix A. Because the dataset of real OBD from the preliminary
research was too short, synthetic OBD needs to be generated. The process of synthesizing raw
OBD data will be covered in the next section.

5.2 Generating synthetic OBD

The previous section shown how to synthesize OBD using FMOD and LeSound AudioMotors
plugin. This is an essential step in synthesizing a large dataset. Another step in generating a
large dataset is generating synthetic OBD data. Also in preliminary research it was concluded
that better results might be achieved in future work if the dataset was not only larger but also
would contain many scenarios with a wide range of different RPMs and accelerations. The
problem with a real dataset was that because most of it was recorded on a public road, the
car was often at cruising speed, and not switching gears, accelerating or decelerating for that
matter. In this section we will focus on generating synthetic OBD. Since we have simplified
our language, we will only need the RPM and time labels. We still want to use the same CSV
format as introduced in the Fundamentals in Section 3.1. The RPM, load and throttle will just
be zero-padded (See Table 3). Using the same format makes it easier to extend the code in the
future to also synthesize load, throttle and speed, as well as being able to reuse some parts of
the ETL from preliminary research.

RPM [0, 8000] Time (ms)

1631 0
1782 100
1835 200
1892 300

Table 3: Example of synthetic simplified OBD data.

The remainder of this section will go into the pseudocode used to generate the synthetic OBD.
For the code the packages numpy, bezier, csv and random were used.
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The code is divided in the following two algorithms:

1. write_pull(csvwriter, is_accelerating, from_rpm, from_time)

This algorithm (as shown in Algorithm 1) is responsible for writing a pull. A pull is
defined as an acceleration or deceleration from a certain RPM to a certain RPM that
takes a certain time. A bezier path is computed with a random bezier point that defines
a curve from the RPM to the RPM over the time. The function returns a tuple with
a boolean whether or not the next pull should be accelerating or decelerating, the final
RPM, and the final time. Those values can be used for the consecutive pull. Pulls are
always altering between accelerating and decelerating.

2. make_dataset(csvwriter)

This algorithm (as shown in Algorithm 2) generates one hour of synthetic OBD.

Result: A pull written to CSV
Function write_pull(csvwriter, is_accelerating, from_rpm, from_time):

time = from_time
pull_duration = random(4, 10)
if is_accelerating then

to_rpm = random(3000, 6000)
else

to_rpm = random(1000, 2500)
end

pull_bezier_point = random(1, pull_time - 1)
if is_accelerating then

pull_rpm_point = random(from_rpm + 100, to_rpm - 100)
else

pull_rpm_point = random(from_rpm - 100, to_rpm + 100)
end

curve_matrix =
#

0, pull_bezier_point, pull_time
from_rpm, pull_rpm_point, to_rpm

$

curve = create_bezier(curve_matrix)
for from progress_time to pull_time in steps of 0.1 seconds do

progress = progress_time / pull_time
rpm = curve.evaluate(progress)
write_rpm_and_time(csv, rpm, time)
time = time + 100

end

return (not is_accelerating, to_rpm, time)

Algorithm 1: Function to write a pull. A pull is either one accelerating with a from and to
rpm, or a deceleration with a from and to rpm.
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Result: Writes an one hour dataset of generated OBD data.
Function make_dataset(csvwriter):

is_accelerating = True
rpm = 1000
time = 0
while time < 3600000 do

is_accelerating, rpm, time = write_pull(csv, is_accelerating, rpm, time)
end

Algorithm 2: Function that loops until one hour of OBD data is generated. The code is
alternating between accelerating and decelerating.
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5.3 OBD and raw audio waveform ETL to Enginetron script

Since the input language has changed a modification of the ETL script is also used. The full
transformation script can be found in Appendix B. This script converts the generated OBD
data and the raw audio waveform that is one hour long into 10 second audio files and their
transcription in the custom input representation. In the preliminary research [5], there were
two different methods for the ETL. One was called “linear scanning” which just started at the
beginning and would cut every ten seconds (and convert the matching OBD into our custom
character embeddings). The other method would find a (remaining) place in the OBD data with
a lot of variation, and cut the matching ten seconds of audio (and convert the matching OBD
into our custom character embeddings). In this work we can rely on the linear scanning, since
our synthesized source OBD has enough variation.

5.4 Transformed dataset

The dataset is processed with the script presented in Section 5.3. The dataset contains tran-
scriptions and a location a reference to the stripped waveform audio file path. The individual
files are all just under 10 seconds. The transformed dataset is divided in three parts. There is a
12 hour training dataset. There is an 1 hour test dataset and finally there is an 1 hour validation
dataset.

Session Length Percentage

Train 12 hours and 0 minutes ∼86%
Validation 1 hour and 0 minutes ∼7%
Test 1 hour and 0 minutes ∼7%
Total 14 hours and 0 minutes 100%

Table 4: The composition of the dataset.

5.5 Test trained network script

After training the network all the samples in the test dataset are synthesized such that they can
be compared with the original signal. To generate all the samples in the test dataset a script
was made.
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6. Experimental Setup

This section presents the experiments in this thesis. Most experiments work on one the FMOD-
OBD Dataset presented in Chapter 5. In Table 5 an overview is given of the experiments. This
table shows the experiment number, name, section that described it in greater detail, goal and
the metric that is used. The results are presented in the next chapter.

No. Name Section Goal Metric

1 Novel metrics 6.1
Comparison of several F0-based metrics

on exhaust notes. Useful metrics
are used in following experiments

Various

2 FMOD-Enginesynth 6.2

Baseline method for exhaust note
synthesis using FMOD-OBD Dataset.
This baseline can be used to determine

performance of other methods

FAD Score

3 Enginetron 6.3

Proposed method for exhaust note
synthesis using FMOD-OBD Dataset
to evaluate effectivenes of using TTS
networks for exhaust note synthesis

FAD Score

Table 5: Overview of experiments

6.1 Exploring novel metrics for exhaust notes synthesis

This experiment will evaluate different metrics from Section 3.5 and 3.6. It will cover F0 evalu-
ation.

Networks for which melody is important typically have a pitch encoder in the text-to-speech
network. In this experiment we will use common pitch extraction methods on exhaust note
sounds and evaluate their precision. We use the world vocoder to extract the F0 sequence. It
will compare different F0 estimators and their performance on the FMOD-OBD Dataset. The
performance is measured using the RMSEF0 by comparing the estimations with expected values.

A Python implementation of the WORLD vocoder was used [27]. Code1 is available. The
python package librosa2 [17] also comes with two different F0 estimation algorithms yin [18] and
pyin [19]. Those were also experimented with.

Besides the F0 comparison this experiment contains a quantitative experiment showing the pres-
ence of harmonics in FMOD exhaust notes on a 2000 RPM constant exhaust note.

1
https://github.com/tuanad121/Python-WORLD

2
https://librosa.org/doc/main/index.html
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6.2 Synthesizing real OBD through FMOD-Enginesynth

In Section 5.1 a method is presented to synthesize OBD data with FMOD AudioMotors. This
script plays the OBD-data in real time and sets the RPM value on the AudioMotors plugin
to the corresponding value in the OBD dataset every tick. Although the main objective for
this script was to generate synthetic OBD to create a large dataset through AudioMotors, this
experiment focusses on synthesizing real OBD data through this method. The OBD data that
was used for this experiment was made available in preliminary research [5].

As mentioned in the fundamentals (Chapter 3) using granular synthesis is the current best and
most commonly used way to synthesize exhaust notes. Since AudioMotors is an established
name in the industry, and available to us, this method can be used as a baseline to compare
novel exhaust note synthesis methods with. Finally on the resulting exhaust notes novel metrics
(as presented in Section 6.1) can be applied.

For metrics a FAD score is computed. The background embeddings for the FAD-score are the
ones from the original 10 second sample that FMOD uses internally to synthesize any engine
sound.

6.3 Synthesis of exhaust notes through Enginetron

In the FMOD-Enginesynth experiment (Section 6.2) we synthesized real OBD through FMOD &
AudioMotors. This experiment focusses on synthesizing OBD through Enginetron. In Chapter
4 Enginetron is presented. In this experiment Enginetron will be trained and evaluated. For
training the the FMOD-OBD Dataset with synthesized audio trough FMODAudiosynth will be
used. A custom ETL script as presented in Section 5.3 will transform the dataset with our
custom embeddings such that Enginetron can be trained. The network will be trained until the
loss function flattens typically at 100-150K steps. A FAD score will then be computed with
the same background statistics as used in the FMOD-Enginesynth experiment. Since the same
benchmark is used, those two scores should be comparable.
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7. Results

Within this chapter the results of the experiments are presented. The first experiment describes
how different metrics were experimented with. At last the metric is decided that is used in the
other experiments for evaluation. From this experiment it was decided that the FAD score will
be applied as a metric for the FMOD-Enginesynth and Enginetron experiments to evaluate the
performance.

7.1 Novel metrics for exhaust notes

This experiment’s goal is comparison of several F0-metrics on exhaust notes. The goal of this
experiment was to use automated F0 extraction using librosa, Python WORLD. Experiments
were done with fundamental frequency estimation algorithms yin [18] and pyin [19] from librosa
and pyworld dio and harvest. See Chapter 8 for more details on proposed future work for F0
extraction on exhaust notes.

Method RMSEF0 (lower is better)
YIN 51.121Hz
PYIN 35.605Hz
PyWorld dio 68.708Hz
PyWorld harvest 33.717Hz

Table 6: Comparison of different F0 estimators and their RMSE to expected fundamental frequency.

on the twelve hours of training FMOD-OBD Dataset.

Qualitative evaluation of a F0 on fixed 2000 RPM

To explore metrics for exhaust notes an analysis of the fundamental frequencies at The FMOD
synthesis was first tested by synthesizing a constant 2000 RPM exhaust note. We can apply
the formula from Section 3.5. Peaks in amplitude are clearly visible at, Fen and Fc are shown
in Equation 7.2 and 7.1 respectively. You can see that the highest in amplitude is Fex as shown
in Equation 7.3. For F0 extraction we consider that the explosion frequency is the fundamental
frequency: F0 = Fex.
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Figure 11: Both figures show the 2000 rpm charger being played back. Left shows the frequencies 0 to

100Hz you can see Fc,Fen and right shows frequencies 100 till 200Hz in which Fex is clearly visible. On

the x-axis it is frequencies. On the y-axis it is dB.

Fc =
1
2

2000
60

= 16
2
3

(7.1)

Fen =
2000
60

= 33
1
3

(7.2)

Fex =
8
2

2000
60

= 133
1
3
≈ 133.33 (7.3)
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7.2 Synthesis of real OBD through FMOD-Enginesynth

First we synthesized real OBD data through FMOD with AudioMotors plugin. This subjectively
sounded more realistic than the results achieved in preliminary research. This synthesis method
however currently did not have gear shifting sounds. Also because this method only synthesizes
engine noise it misses background noises such as wind noise, tire noise etc. The problem with this
training approach is that if the car is accelerating too fast, you hear that it is skipping from one
RPM to one much further instead of smoothly transitioning. This is because the OBD dataset
has about 100 ms between each datapoint. In Figure 12 you see a spectrogram of an synthesized
exhaust note. As part of this work the audio is provided for listening. FMOD-Enginesynth
obtained a FAD score of 1.73.

Figure 12: Mel spectrogram of a sample generated with FMOD-Enginesynth. Frequencies are limited

from 0 to 1000Hz.

7.3 Synthesis of exhaust notes through Enginetron

For this work Enginetron was trained on the generated FMOD-OBD Dataset, a much larger
dataset than that was used in preliminary research. This dataset also has the benefits that there
is no artifacts in the audio such as wind noise, tire noise, passing cars etc. The synthesized
samples are made available as part of this work. In Figure 13 you see the loss function during
training. The y-axis is logarithmic.

28



To evaluate the quality of the trained network all the samples in the test dataset where synthe-
sized and observed. Interestingly some of the samples are 12.5 (max_iters ·outputs_per_step ·
frame_shift_ms) seconds long instead of the 10 seconds that the training samples are. Typically
the end of the sample will sound bad. This is a sign that the decoder does not know when to
stop. This can be solved (in future work) using a special stop token and stop token projection
layer in the network.

0.05

0.06

0.07

0.08

0.09

0 5k 10k 15k 20k 25k 30k

Figure 13: Loss function during training after 35000 steps. On the x-axis you see the steps the

network was trained. On the y-axis you see the loss.

As you can see in Figure 14 and Figure 15 the signals after training have maintained harmonic
characteristics of exhaust notes. You can see the harmonics are preserved after training En-
ginetron.

Figure 14: Mel spectrogram of a training dataset sample. Frequencies are limited from 0 to 1000Hz.

Figure 15: Mel spectrogram of a Enginetron exhaust note. Frequencies are limited from 0 to 1000Hz.
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The FAD score as presented in Section 3.8 was computed. To do so the original training
dataset and a synthesized test dataset was put in place. For the original dataset statistics
were exported using the network. The same was done for the synthesized dataset. With the
frechet_audio_distance.compute_fad the final FAD score was computed for this experiment.
Enginetron achieved a FAD score of 7.88. In Table 7 you see the FMOD-Enginesynth and
Enginetron’s performance compared.

Method FAD (lower is better)
FMOD-Enginesynth 1.73
Enginetron 7.88

Table 7: FMOD-Enginesynth and Enginetron performance using FAD metric.
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8. Conclusions and Future Work

A large dataset of OBD data with matching sound was generated that can be used to train large
networks. Finally a network was presented that can be used to synthesize realistic exhaust notes
when trained on the large dataset of OBD data and raw audio. A pre-trained network is made
available as part of this thesis.

Training on this more diverse dataset that was generated has proven that a bigger more diverse
dataset, with not as much background noise gives a better result.

Finally a study of different metrics was presented. It was observed that available F0 extraction
algorithms do not perform well on exhaust notes even with the F0 floor and F0 ceil parameters
adjusted.

Training a neural network metric to derive RPM from an audio signal is something that was not
attempted due to time constraints but likely a better approach to get the RPM, and therefor
the fundamental frequency of the car.

Key Contributions

This work presented FMOD-OBD Dataset, which is over twelve hours worth of OBD data and
matching exhaust notes audio. It presents the FMOD-Enginesynth method which can be used
to synthesize exhaust notes and scores a FAD score of 1.73. Lastly this work presents a novel
method Enginetron which is a modified text-to-speech network with custom embeddings trained
on the FMOD-OBD Dataset. This method is Enginetron which scores a FAD score of 7.88
(lower is better).

Although there is quite a difference in FAD score between Enginetron and FMOD-Enginesynth,
we think that the qualitive characteristics of Enginetron are very promising. As a qualitative
evaluation by the author, sound is considered significantly improved compared to preliminary
research [5]. The conclusion is that with sufficient annotated data a modified text-to-speech
network can be trained to synthesize other sounds than speech, in this case exhaust notes.

Future work

Since synthesizing exhaust notes with text-to-speech networks is a new research direction there
is a lot of future work. First this work presents a generated dataset, but training on a real
dataset that is professionally recorded would be beneficial. The AudioMotors plugin used to
create the large dataset uses granular synthesis and therefore using it to train a neural network
inadvertently brings any imperfections in this method into the trained network. Finally the
current dataset did not contain any gear shiftings. Also since the OBD data was generated too
and only contained the speed parameter now. Better results could be achieved with a dataset
that has more parameters such as load, throttle, and speed.
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The network could also be improved to synthesize a better exhaust note. There are better
networks with higher fidelity available such as Tacotron2, which were not used for this work
cause they require a lot of time to train. As shown in the results the network could benefit from
a stop token. There is a Tacotron fork available that adds Tacotron2’s local-sensitive attention
and stop token available here1.

Also encoding pitch into the network would be beneficial. For this it is best if a method is found
to reliable calculate the F0 for an exhaust note signal. Future work could develop a neural based
metric to get the F0 from an exhaust note signal.

1
https://github.com/begeekmyfriend/tacotron
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A. FMOD Synthesis script

#!/ bin / bash

write_commands ( ) {

s l e e p 5
i n i t i a l =1607170739727

echo ' pluginSound . volume = 0 '
echo ' var event = stud io . p r o j e c t . lookup ( " event : / Engine" ) ; '

while IFS=, read −r rpm load unused1 unused2 epoch
do

epoch=$ (echo $epoch | sed −e ' s /\ r$ // ' )
t ime l a s t=$ (echo $epoch − $ i n i t i a l | bc )
wait=$ (echo ${ t ime l a s t } . 0 / 1000 .0 | bc − l )
i n i t i a l=$epoch
echo " event . t ime l i n e . automationCurves [ 0 ]

. automationPoints [ 0 ] . va lue = $rpm ; "
s l e e p $wait

done < <( t a i l −n +2 record1607170737164217000 . csv )

echo ' pluginSound . volume = −100'
}

main ( ) {
i f ! command −v t e l n e t &> /dev/ nu l l
then

echo " t e l n e t could not be found"
exit

f i

write_commands | t e l n e t l o c a l h o s t 3663
}

main
Listing A.1: Script used to synthesize audio from CSV with OBD-data using FMOD Studio with

AudioMotors plugin.
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B. Dataset ETL script

import csv
from pydub import AudioSegment
import math

datase t = "dataset −12"
stoken = " l "
f i r s tT ime = 0
currentSegmentTime = 0
i t e r a t i o n s = 0
audio = AudioSegment . from_wav( datase t + " . wav" )
cu r r en tS t r i ng = ' '

def processSegments ( csvReader , c s vwr i t e r ) :
global f i r s tT ime
global currentSegmentTime
global cu r r en tS t r i ng
global i t e r a t i o n s
global audio
for row in csvReader :

i t e r a t i o n s = i t e r a t i o n s + 1
rowTime = int ( row [ 4 ] )
i f row [ 0 ] == 'None ' or row [ 1 ] == 'None ' or row [ 2 ] == 'None '

or row [ 3 ] == 'None ' :
continue

i f f i r s tT ime == 0 :
f i r s tT ime = rowTime

i f currentSegmentTime == 0 :
currentSegmentTime = rowTime

rpm = math . f l o o r ( f loat ( row [ 0 ] ) )
rpmEncode = math . f l o o r (rpm / 25)

cu r r en tS t r i ng = cu r r en tS t r i ng + str (chr ( rpmEncode+192))
i f ( ( rowTime − currentSegmentTime ) / 1000) >= 10 :

aud ioStar t = round( currentSegmentTime − f i r s tT ime , −3)
audioEnd = round( rowTime − f i r s tT ime , −3)
i f audioEnd > len ( audio ) :

break

segmentAudio = audio [ aud ioStar t : audioEnd ]
segmentAudio . export ( 'wavs/ ' + stoken +str ( i t e r a t i o n s )+ ' . wav ' ,

format='wav ' )
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c s vwr i t e r . writerow ( [
stoken + str ( i t e r a t i o n s ) , cu r r entSt r ing , cu r r en tS t r i ng

] )

currentSegmentTime = 0
cu r r en tS t r i ng = ' '

with open( datase t + ' . csv ' , newl ine=' ' ) as c s v f i l e ,
open( ' metadata . csv ' , 'w ' , newl ine=' ' ) as c s v o u t f i l e :

spamreader = csv . r eader ( c s v f i l e , d e l im i t e r=' , ' , quotechar=' | ' )
c s vwr i t e r = csv . w r i t e r ( c s v o u t f i l e , d e l im i t e r=' | ' , quotechar=' " ' ,

quot ing=csv .QUOTE_MINIMAL)
processSegments ( spamreader , c s vwr i t e r )
Listing B.1: Code to transform the waveform and corresponding raw OBD data to a common

text-to-speech format similar to LJSpeech.
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