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Abstract

Cross-modal food retrieval has gained a lot attention recently since the large-
scale dataset Recipe1M [27] was released. Meanwhile, Vision-language Pre-training
(VLP) is also in a fast developing phase, where it has been proved that can improve
the performance of many vision-language downstream tasks. In addition, current
studies on cross-modal food retrieval focus on the dual-stream approach, whereas
VLP follows a single-stream approach. In this work, we investigate whether the
single-stream approach can work for the Recipe1M dataset on the cross-modal re-
trieval task by fine-tuning two VLP models, Oscar [14] and ViLT [10], as well as
training a recipe vision-language (RecipeVL) model from scratch following the ar-
chitectures of the two VLP models. We use the latest work, H-Transformer [28],
of the original authors who released the Recipe1M as our dual-stream comparative
model. The experimental results show that the single-stream approach can pro-
duce comparable performance on the cross-modal food retrieval. Furthermore, we
use a explainable framework, VL-CheckList [43], to evaluate our methods in three
aspects, namely object, attribute, and relation. Our code is available at https:

//github.com/chloeeegao/cross-modal-retrieval.

2

https://github.com/chloeeegao/cross-modal-retrieval
https://github.com/chloeeegao/cross-modal-retrieval


Contents

1 Introduction 7
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background and Related Work 11
2.1 Cross-modal Representation Learning . . . . . . . . . . . . . . . . . . . . . 11
2.2 Related Work on Recipe1M Dataset . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Vision-Language Pre-training . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Pre-training Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Oscar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 ViLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Data 18
3.1 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Methods 20
4.1 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Named Entity Recognition . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Dependency Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 H-Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Recipe Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Image Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Similarity Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Fine-tuning VLP Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Oscar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 ViLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Our Proposed Recipe Vision-Language Model . . . . . . . . . . . . . . . . 25

5 Experiments and Results 28
5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.3 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Cross-modal Retrieval Results . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.1 Qualitative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 VL-CheckList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.1 Evaluation of object . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.2 Evaluation of attribute . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.3 Evaluation of relation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Discussion 35
6.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Cross-modal Food Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Improvements and Future work . . . . . . . . . . . . . . . . . . . . . . . . 36

3



7 Conclusion 38

A Cooking Verb List 42

B Recipe-to-image examples 43

4



List of Figures

1 (a) An example from the Recipe1M [27] dataset. (b) Pseudo word vectors
and visual vectors in the semantic space. . . . . . . . . . . . . . . . . . . . 8

2 An example from COCO [16] dataset. . . . . . . . . . . . . . . . . . . . . . 9
3 Two cross-modal representation learning approaches. . . . . . . . . . . . . 11
4 Recall@1 on 1K test set of recent studies on the Recipe1M dataset. . . . . 13
5 Illustration of Oscar from [14]. The input triple consists of word tokens w,

object tags q, and region features v. The input can be understood from
two perspectives: modality view and dictionary view. . . . . . . . . . . . . 15

6 Illustration of ViLT from [10]. . . . . . . . . . . . . . . . . . . . . . . . . . 16
7 Distribution of the number of ingredients, instructions, and images per recipe. 19
8 Visualization of (a) named entity recognition and (b) dependency parsing.

The example is the first and eighth sentence in the instructions shown in
Figure 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9 Information extraction from recipe instructions. The text in red color are
cooking methods and the text in yellow color are ingredient entities. . . . . 22

10 Illustration of H-Transformer using the extracted information. The image-
text pair example is from the Recipe1M dataset. . . . . . . . . . . . . . . . 23

11 Illustration of RecipeVL. Food images are sliced into patches then linearly
projected to patch embeddings. Recipe text has two scenarios: 1) directly
using full recipe text; 2) using extracted recipes plus object tags defined in
the Section 4.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

12 Recipe-to-image comparison between H-Transformer and RecipeVL on 1K
test set. The left recipes are used as query and followed by the top 5
retrieved images in order. The image in green box is the ground truth.
The recipe text for both examples is shown in Figure 13. . . . . . . . . . . 30

13 Example recipes used in Figure 12. . . . . . . . . . . . . . . . . . . . . . . 43

5



List of Tables

1 Statistics of pre-training corpus in Oscar and ViLT. . . . . . . . . . . . . . 15
2 Number of samples in training, validation and test sets. . . . . . . . . . . . 18
3 Number of recipes have images and number of images per partition. . . . . 18
4 Statistics for the number of words per recipe component. . . . . . . . . . . 19
5 Invisible ingredients list . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6 Caption for LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7 Caption for LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8 Datasets used in VL-CheckList . . . . . . . . . . . . . . . . . . . . . . . . 32
9 Evaluation results of VL-CheckList for fine-tuned ViLT and RecipeVL. info

denotes the model was trained on extracted recipes; full denotes the model
was trained on full recipes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

10 Evaluation of object. info denotes the model was trained on extracted
recipes; full denotes the model was trained on full recipes. . . . . . . . . . 33

11 Evaluation of attribute. info denotes the model was trained on extracted
recipes; full denotes the model was trained on full recipes. . . . . . . . . . 33

12 Evaluation of relation. info denotes the model was trained on extracted
recipes; full denotes the model was trained on full recipes. . . . . . . . . . 34

13 List of cooking verbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6



1 Introduction

In the real world, human beings generally learn about objects through five senses including
vision, hearing, smell, taste, and touch. In such ways, people can obtain comprehensive
information about the same object from different aspects. It has been shown that about
80% to 85% of the information people obtain is from vision [23]. Visual information
includes facial expressions, body language, text, visual symbols, color, diagrams, images,
videos, and so on. Human beings can naturally integrate different information to learn
about the same visual object. For instance, when we were kids, parents often use fruit
flash cards which contain a fruit name and its corresponding image on each card to teach
us recognize different fruits. After a period of learning, we can tell the fruit name based
on its image or draw a outline of the fruit given a fruit name. This is a simple example of
how human beings learn about objects from different aspects.

On the other hand, nowadays with the more accessible and faster network, multimedia
information which describe the same events or topics, are growing fast on the Internet.
For instance, a news website not only has textual descriptions about the headline but
also has images or videos about it for a full demonstration [36]. Furthermore, smart de-
vices, especially cellphones and tablets, have been widely used in our daily life, which
has reshaped our lifestyles. People tend to post more multimedia information on social
media and also prefer to obtain more multimedia information when searching online. It
has been suggested that like humans, machines can also learn more comprehensive in-
formation about the same visual object from different aspects. All of above introduced a
new challenge which is how to fuse information from different modalities, namely multi-
modal representation learning. Modality refers to the form of information presented[17],
which typically includes text, audio, images, videos, etc. In this work, we will focus on
cross-modal representation learning between text and images.

In the past decade, benefiting from the rapid development of deep learning, computer vi-
sion (CV) and natural language processing (NLP) have achieved high quality performance
in many downstream tasks, such as object detection, image classification, sentiment anal-
ysis, and machine translation. However, each of these tasks only involves a single modality.
As multimodal representation learning steadily draws more attention, many more complex
tasks that involve multiple modalities, such as image captioning, text-to-image genera-
tion, visual question answering (VQA), natural language for visual reasoning (NLVR),
cross-modal retrieval, and multimodal sentiment analysis, have been studied in the recent
years. In this work, we will tackle the cross-modal retrieval task in the food domain using
the Recipe1M dataset [27], in which cooking recipes are used as queries to retrieve food
images or vice versa. The dataset contains more than 1 million cooking recipes and 800K
food images.

1.1 Problem Statement

Nowadays, latent representation is widely used to extract information from raw data,
which usually can preserve more useful information and also is more flexible to downstream
tasks than traditional task-specific feature engineering when dealing with large-scale and
noisy unstructured data [17]. As mentioned above, benefiting from current well-developed
deep learning architectures, such as ResNets [6] and BERT [3], a more powerful unimodal
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Figure 1: (a) An example from the Recipe1M [27] dataset. (b) Pseudo word vectors and
visual vectors in the semantic space.

representation can improve performance on many downstream tasks. For instance, as
BERT [3] was introduced, the performance of many NLP downstream tasks took a big
leap, which also started a trend of utilizing pre-trained models.

Likewise, a more effective cross-modal representation will also boost the performance
in vision-language downstream tasks. Since our work focuses on the cross-modal retrieval
task and only involves text and image modality, the later mentioned cross-modal represen-
tation are all meant for these two modalities. There are three existing main challenges in
cross-modal representation learning. The first one is the semantic gap between modal-
ities, specifically different modalities often capture different aspects of information which
leads to the semantic information preserved in each modality can be unbalanced. For in-
stance, as shown in Figure 1(a), the cooking recipe contains quantity information about
each ingredient but this information is not explicitly shown in the paired food image. On
the other hand, the food image has some biscuits and a black plate in the background but
those are not described in the paired cooking recipe. The second challenge is the hetero-
geneity gap between modalities, specifically different modalities have distinct data
distributions and characteristics. For instance, as shown in Figure 1(b) ‘ham’ and ‘eggs’
are closer in the visual semantic space than in the text semantic space. The third challenge
is the lack of paired labelled data, specifically cross-modal representation learning is
naturally a weakly-supervised learning problem due to the lack of explicit alignments be-
tween modalities. As the example shown in Figure 1, the cooking recipe and the paired
food image are manually made to be a pair but explicit alignments between words in text
and corresponding regions in the paired image are not provided. Therefore, it requires
high volumes of paired data for model training.
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Figure 2: An example from COCO [16] dataset.

With the availability of large image-text corpora, such as COCO 1 and Flickr30K 2,
Vision-Language Pre-training (VLP) is becoming a prevalent topic in the field. Recent
researches also show that VLP models, such as Oscar [14] and ViLT [10], have improved
performance on many vision-language downstream tasks. In this work, we will fine-tune
the two VLP models on the cross-modal retrieval task using the Recipe1M dataset. In
addition, we also train a recipe vision-language (RecipeVL) from scratch following the
architecture of the two VLP models.

1.2 Research Questions

The cooking recipes in the Recipe1M dataset are long text as shown in Figure 1, which
often include more semantic information than the paired image as discussed in Section 1.1.
Meanwhile, the text data in the image-text corpora VLP models are trained on are short
image captions. For instance, the example in Figure 2 is from COCO, in which the image-
text pair is also related to food but the textual description just simply lists the visible
objects in the image. Thus in this manner, the typical text input length of VLP models
ranges from 40 to 70 tokens 3. In addition, current researches of cross-modal food retrieval
focus on the dual-stream approach, but VLP models follow a single-stream approach. The
details of the two approaches are presented in Section 2.1. Therefore, we propose to extract
key information from recipes in order to reduce the semantic gap between modalities and
also be able to fine-tune VLP models using their pre-trained weights. The main research
questions of this work are as follows:

1. Does information extraction from cooking recipes help narrow the se-
mantic gap in cross-modal representation learning?

2. Can fine-tuning VLP models on the Recipe1M dataset help improve the
performance of the cross-modal retrieval task?

1https://cocodataset.org
2https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset
3Tokens refer to the units into which text is divided. In VLP models, BertTokenizer is often used

which is a subword-level tokenization. For example, word ‘unhappiness’ will be splitted into ‘un’ and
‘happiness’, which are identified as two subword tokens.
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3. Can single-stream approaches work better than dual-stream approaches
on the Recipe1M dataset?

1.3 Contributions

In summary, the main contributions of this work are as follows:

• We propose to extract key information from cooking recipes to ease the learning of
semantic alignment. Specifically, we extract ingredients with corresponding cooking
methods from recipe instructions using named entity recognition and dependency
parsing techniques.

• We replicate Salvadaor et al.’s work [28] and retrain the H-Transformer using the
extracted information from recipes.

• We fine-tune two VLP models, Oscar and ViLT, on the cross-modal retrieval task
using the extracted information from recipes on a subset of the Recipe1M dataset.

• We train a recipe vision-language (RecipeVL) model from scratch following the
architectures of the two VLP models. Our experimental results show that the single-
stream approach can produce comparable performance to current researches of the
dual-stream approach on the cross-modal food retrieval.

• We evaluate our methods using a recent explainable framework called VL-CheckList
[43] for a more comprehensive understanding and also help to provide some insights
for future improvements.

1.4 Thesis Structure

The remainder of this work is organized as follows: Section 2 introduces two approaches
in cross-modal representation learning, related work on the Recipe1M dataset, and details
about the two VLP models. Section 3 provides a preliminary analysis and statistics about
the Recipe1M. Section 4 explains our proposed methods in details. Section 5 presents
our experiments and results. Finally, we address our research questions and discuss the
potential improvements along future work in Section 6 and conclude the thesis in Section
7.
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2 Background and Related Work

In this section, we provide an overview of two common approaches in cross-modal repre-
sentation learning and discuss related works on the Recipe1M dataset. We also introduce
the details about the two VLP models, namely Object-Semantics Aligned Pre-training
(Oscar) [14] and Vision-and-Language Transformer (ViLT) [10].

2.1 Cross-modal Representation Learning

Cross-modal representation learning aims to build embeddings using information from
different modalities. Since our task is to learn the cross-modal representation from text
and image modality, our survey mainly focuses on these two modalities while current
researches also involve audio, video, and other modalities. Recent works involving text
and image modality can be divided into two categories [17]: (1) fuse information from
different modalities into unified embeddings, known as single-stream approach. (2) build
embeddings from different modalities in a common semantic space based on similarity
metrics, known as dual-stream approach. Figure 3 illustrates the basic architectures of the
two approaches.

Figure 3: Two cross-modal representation learning approaches.
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Specifically, (1) in the single-stream approach, text and visual features are concatenated
together as the input to the encoder. The parameters of the encoder are optimized through
training objectives. The output of the encoder will be the unified embedding which fuses
information from text and image modality. In Figure 3(a), the unified embedding will
contain the information from ‘small orange kitten sitting in a wooden bowl’ and the
paired image, which can be used for further vision-language downstream tasks. (2) in the
dual-stream approach, text and visual features are fed into the text and image encoder
separately. The outputs of the two encoders are projected into a common semantic space,
where the most similar embeddings will be closer than others and the most dissimilar
embeddings will be distant from others. The parameters of both encoders are optimized
jointly through similarity objectives. In Figure 3(b), the text embedding of ‘a very pretty
gray and white cat looking straight up’ and the visual embedding of the paired image
should be close to each other in the common semantic space after training.

2.2 Related Work on Recipe1M Dataset

Recipe1M dataset was created and released by Salvador et al. [27] in 2017. The authors
proposed to build cross-modal embeddings for cooking recipes and food images by jointly
training two encoders (JE) based on the cosine similarity between two modalities in the
common space with semantic regularization. Long-short term memory (LSTM) [7] and
ResNet-50 [6] were used as text and image encoder in JE. This is the first work presenting
the cross-modal retrieval task in the food domain. Chen et al. [2] argued that recipe search
is different from other cross-modal retrieval task because it requires understanding the
textual descriptions of cooking procedure to predict the possible consequence on visual
appearance. The authors proposed to use attention mechanism to align the attended words
and sentences in a recipe to their corresponding image features. Besides attention modeling
on cooking recipes, on top of JE, Chen et al. used all three components (title, ingredients,
instructions) in a recipe and also instead of using the penultimate layer of ResNet-50 ,
pool5 features are extracted for image representation. The cross-modal retrieval result
was improved by 6% on Recall@1 (1K test set). Later, Wang et al. [35] proposed a novel
framework, adversarial cross-modal embedding (ACME), in which three parts are added
on top of JE: (1) a triplet loss with hard sampling to reduce the high variance in images,
(2) an adversarial loss to align the feature distribution between modalities, (3) a cross-
modal translation consistency loss to reduce the information loss. It achieved state-of-
the-art (SOTA) performance on the Recipe1M dataset in 2019. Afterwards, Wang et al.
[34] proposed a semantic-consistent and attention-based networks (SCAN), in which a
semantic consistency loss was introduced to reduce the intra-class variance of food data
representations along with a self-attention applied on LSTM to learn discriminative recipe
features without images. It then outperformed previous mentioned models.

Besides above efforts on learning objectives, other works on better unimodal represen-
tation before cross-modal learning were also investigated at the same time. Cross-modal
hierarchical embeddings for food domain (CHEF) proposed by Pham et al. [21] used a
tree-structured LSTM as the text encoder to learn the complex functional and hierarchi-
cal relationships between images and text. CHEF can identify the main ingredients and
cooking actions in the recipe without explicit supervision. Sugiyama and Yanai [32] argued
that photos with different serving styles and different plates can be associated with the

12



Figure 4: Recall@1 on 1K test set of recent studies on the Recipe1M dataset.

same recipe. They proposed a recipe disentangled embedding GAN [4] (RDE-GAN), in
which images are disentangled into a recipe image embedding and a dish shape embedding.
In this manner, the image embedding only contains recipe-related information. Xie et al.
[40] proposed a multi-modal semantic enhanced joint embedding approach (MSJE), in
which term-frequency and inverse document frequency (TF-IDF) features were extracted
from the title, ingredients, and instructions to capture the significant key terms. More-
over, they concatenated the frequency feature to the recipe sequence feature learned from
LSTM and TF-IDF enhanced category semantics were incorporated to the image feature
learned from ResNet-50. These methods all achieved competitive results shown in Figure
4.

After Transformer [33] architecture has proved to be a efficient technique in the NLP field,
studies of using it as the text encoder have been investigated extensively. The original
authors who released the Recipe1M dataset proposed a hierarchical recipe Transformer
(H-Transformer) [28] with a self-supervised loss to make a full use of the recipe-only data.
It achieved SOTA results in 2021 with a simplified method compared to all aforementioned
methods. Its ablation study also showed that utilizing vision Transformer (ViT) [11] as
the image encoder can produce a better result than ResNet-50.

Furthermore, in this competitive field there are several novel works on the Recipe1M
dataset published last year. Shukor et al. [31] proposed a new retrieval framework, Trans-
former decoders with multimodal regularization for cross-modal food retrieval (T-Food),
which exploited the interaction between modalities along with a novel regularization.
Plus, it used a VLP model, CLIP [25], as the image encoder. Papadopoulos et al. [20]
proposed to represent cooking recipes and food images as cooking programs in order to
capture cooking semantics and sequential relationships between actions. Specifically, be-
sides a text and image encoder, the model also jointly generated programs as sequence of
commands using a program decoder conditioned on the image and text features. Xie et al.
[39] argued that cooking recipes contain the descriptions of numerous events while such
event sequence information is lacking in the image, thereby it is a challenging to learn
the fine-grained alignment. They proposed a novel framework, event-oriented modality
alignment (EOMA), in which the significance of each event was captured and combined
with the identified key event elements to learn the discriminative text embeddings for
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recipes and the image embeddings were enhanced by the shared event tags. EOMA is the
current SOTA model on the cross-modal retrieval task using the Recipe1M dataset.

In conclusion, all aforementioned methods are dual-stream approaches. As we can see in
Figure 4, the performance of cross-modal retrieval task on the Recipe1M dataset has been
improved a lot since JE was introduced. However, the single-stream approach has never
been investigated on the Recipe1M dataset, to the best of our knowledge.

2.3 Vision-Language Pre-training

In this section, two VLP models, Object-Semantics Aligned Pre-training (Oscar) for
vision-language tasks [14] and Vision-and-Language Transformer (ViLT) without con-
volution or region supervision [10], are introduced in details along with two commonly
used pre-training objectives.

2.3.1 Pre-training Objectives

Oscar and ViLT both are single-stream approaches, in which text features and image
features are concatenated together to feed into the encoder and the output embedding
is the unified embedding which fuses information from the text and image modality. In
this approach, masked language modeling (MLM) and image text matching (ITM) are
the commonly used objectives.

Masked Language Modeling This is similar to the masked language modeling in
BERT [3] that the masked tokens in text can be recovered from its surroundings. In
cross-modal setting, the masked text tokens also leverage the information in the image
context. The masked text tokens are randomly chosen with the probability of 0.15. The
objective is to predict the masked text tokens tmasked from its contextualized text tokens t
also plus all image features tokens v by minimizing the negative log-likelihood. The MLM
loss is as follow:

LMLM = −E(t,v) logp(tmasked|t,v) (1)

Image Text Matching The output of the special token [CLS] contains the fused vision-
language information. The fused embedding is projected through a single linear layer over
binary class considered as a classifier f(·) to predict whether the input text t and image
v is a pair (y=1) or not (y=0). The paired image is randomly replaced by another sample
from the dataset with the probability of 0.5. The ITM loss is defined as:

LITM = −E(t,v) logp(y|f(t,v)) (2)

2.3.2 Oscar

Oscar was released in July, 2020 by Microsoft Corporation. It was pre-trained on a huge
public corpus consisting of 6.5 million image-text pairs and fine-tuned on six vision-
language downstream tasks including image-text retrieval, image captioning, novel object
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Figure 5: Illustration of Oscar from [14]. The input triple consists of word tokens w,
object tags q, and region features v. The input can be understood from two perspectives:
modality view and dictionary view.

captioning (NoCaps), visual question answering (VQA), visual reasoning and composi-
tional question answering (GQA), and natural language visual reasoning for real (NLVR2).
The statistics of its pre-training corpus are shown in Table 1. Unlike other VLP models
which used image-text pairs as inputs, the input of Oscar is a text-tag-image triple. The
authors proposed that object tags detected in images can be used as anchor points to
ease the learning of semantic alignments. The idea was motivated by the observation that
the prominent objects in an image can be accurately detected and also mentioned in the
paired text.

Figure 5 illustrates the overview of Oscar. The input triple consists of word tokens w,
object tags q, and region features v, where w represents the sequence of word embed-
dings of the text, q is the word embeddings of object tags detected from the image, and v
represents the set of region vectors of the image. Specifically, the object tags q and region
features v are generated by Faster R-CNN [26]. Each region extracted from an image
denotes as (v′, z), where v′ ∈ RP is a P -dimensional vector and z is the R-dimensional
region position vector (i.e., R =4 or 6). v′ and z are concatenated to form the position-

Data Source # images # captions Oscar ViLT

COCO[16] 113K 567K ✓ ✓
Flicker30k [42] (train) 29K 145K ✓
SBU [19] 867K 867K ✓ ✓
VQA [5] (train) 83K 444K ✓
GQA [9] (bal-train) 79K 1026K ✓
VG-QA [12] 48K 484K ✓
VG [12] 108K 5.41M ✓
GCC [29] 3.01M 3.01M ✓ ✓

Total (image/text) 4.1M/6.5M 4.1M/9.8M

Table 1: Statistics of pre-training corpus in Oscar and ViLT.
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sensitive region feature vector and then projected through a linear layer to have the same
dimension as word embeddings. The word embeddings of w and q are initialized using
pre-trained BERT. From Figure 5 we can see that the input can be understood from
two perspectives: (1) dictionary view: w and q share the linguistic semantic space while
v lies in the visual semantic space; (2) modality view: q and v are extracted from the
image modality and w is considered as text modality. In addition, the masked token
loss (MLM loss) is used for dictionary view where word tokens in (w, q) are randomly
replaced with the probability of 0.15. The contrastive loss (ITM loss) is used for modal-
ity view where (q, v) is replaced by a different tag sequence and corresponding image
sampled from the corpus with the probability of 0.5. The full pre-training objectives of
Oscar is Lpre−training = LMLM + LITM . Oscar is initialized with parameters θBERT and
the position-sensitive region features are linear projected via matrix W . Therefore, the
trainable parameters are θ = {θBERT ,W }. In fine-tuning phase, image-text retrieval task
is considered as a binary classification problem, in which the final fused embedding [CLS]
is used to predict whether the given pair is a true pair or not. The probability score is
used to rank the image-text pairs given a query.

2.3.3 ViLT

ViLT was introduced by Kim et al. in 2021. They argued that current VLP models heavily
rely on the image feature extraction process which requires much more computation than
the multimodal interaction steps; and the predefined visual vocabulary limited the upper
bound of the expressive power of the visual encoder. Therefore, they proposed a minimal
VLP model without convolution or region supervision which was up to tens of times faster
than other VLP models while also can have competitive performance on the downstream
tasks. Figure 6 illustrates ViLT model overview. It was pre-trained on 9.8 million image-
text pairs and the statistics of its pre-training corpus are shown in Table 1.

In ViLT, the visual features are extracted from a pre-trained ViT. Specifically, images
are sliced into patches and transformed to patch embeddings, which drastically simplifies
the visual embedding step to the level of textual embedding. The patch size of 32 is used
in ViLT, in such manner a 224 x 224 image is sliced into (224/32) x (224/32) = 7 x 7
patches and so the visual features consist of 49 patch tokens plus one class token. Instead
of initializing from pre-trained BERT, the text features are learned from scratch because
they argued the pre-trained model for single modality does not guarantee performance

Figure 6: Illustration of ViLT from [10].
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gain for vision and language tasks. Moreover, the interaction transformer weights are
initialized with parameters from pre-trained ViT. They stated that such initialization
can exploit the power of the cross-modal interaction layers to process visual features.
ViLT also uses the two commonly used pre-training objectives described above but it
adds two components to enhance the cross-modal learning. The first component is word
patch alignment (WPA) which computes the alignment score between textual subset and
visual subset using the inexact proximal point method for optimal transports (IPOT). The
approximate wasserstein distance is mutltiplied by 0.1 and added to the ITM loss. The
second component is whole word masking which means all consecutive subword tokens of
one word will be masked. The authors argued that if not all tokens of a whole word are
masked, the model might only rely on the nearby unmasked subword tokens to predict
the masked subword token rather than using the information from image context. In
fine-tuning phase, ViLT processes the image-text retrieval task as a binary classification.
Specifically, 15 negative texts were randomly sampled from the corpus and the model was
fine-tuned with cross-entropy loss that maximized the scores on positive pairs. In addition,
the similarity score head used during fine-tuning is initialized from the pre-trained ITM
head of ViLT.
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3 Data

Recipe1M [27] is a large-scale corpus of recipe data which contains over 1 million cooking
recipes and 800 thousands food images. The data were originally scraped from over 24
popular cooking websites. Specifically, relevant text was extracted from the raw HTML
and the linked images were downloaded from the same page. Each recipe consists of 3
components which are the title, a list of ingredients used for the dish, and a sequence
of instructions about how to prepare the dish. The recipe text is provided as free text.
The images are provided as RGB in JPEG format. The dataset 4 was partitioned into
training, validation, and test sets, and its statistics are shown in Table 2. 70% of the data
is training set and the rest is split equally into validation and test set.

Partition # recipe # images

Training 720,639 619,508
Validation 155,036 133,860
Test 154,045 134,338

Total 1,029,720 887,706

Table 2: Number of samples in training, validation and test sets.

3.1 Preliminary Analysis

According to the original paper [27], the dataset has approximately 0.4% duplicate recipes
and 2% duplicate images. The exact duplicates or recipes that shared the same image are
removed. In addition, due to the nature of the data sources, not all recipes in the dataset
have images. There are approximate 34% recipes have associated images, which means
there are over 340K image-text pairs. The statistics of the recipes with images are shown
in Table 3. Since models for cross-modal learning are trained on image-text pairs, that
portion of the dataset will be used in this work.

Partition # recipe # images

Training 238,408 471,475
Validation 51,119 100,808
Test 51,304 100,297

Total 340,831 672,580

Table 3: Number of recipes have images and number of images per partition.

Figure 7 (a) and (b) display the distribution of number of ingredients and instructions
per recipe, respectively. On average, a recipe comprises 9 ingredients and 10 instructions.
In addition, the majority of recipes just have one associated image that illustrates the
final look of the dish. From Figure 7 (c), we can see that there are about 290K recipes
associated with one single image while a few recipes have more than one associated image
that demonstrates each cooking step in the instructions.

4http://im2recipe.csail.mit.edu/dataset/download/
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Figure 7: Distribution of the number of ingredients, instructions, and images per recipe.

Furthermore, in order to analyze the text length of cooking recipes we also count the
number of words including punctuation in each component. The statistics are shown
in Table 4. On average, in a recipe: the title component has 4 words; the ingredient
component has 53 words; the instruction component has 133 words. In total, the average
number of words in a recipe is 191 words. As we can see in Table 4 there are also some
outliers which contain more than 1K words. Such samples usually include sub-recipes for
the dishes.

Component Median Mean Min Max

Title 4 4 1 36
Ingredient 58 53 1 766
Instruction 108 133 1 3016

Total 163 191 3 3260

Table 4: Statistics for the number of words per recipe component.
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4 Methods

In this section, we first present our proposed method for extracting ingredients and cor-
responding cooking methods from recipes. And then, we explain how to use the extracted
information as inputs to retrain H-Transformer [28]. Then, we explain how to fine-tune the
two VLP models, Oscar [14] and ViLT [10], using the extracted information on the cross-
modal retrieval task. At last, we present the recipe vision-language (RecipeVL) model
following the architectures of the two VLP models.

4.1 Information Extraction

As we discussed in the introduction, cooking recipes are long text which normally contain
more semantic information than food images. Therefore, in order to narrow the semantic
gap between two modalities, we propose to extract key information from recipes. On the
other hand, it is also for the purpose of using pre-trained weights of VLP models to fine-
tune on the Recipe1M dataset. Specifically, food ingredients and corresponding cooking
methods are extracted from the instruction component using named entity recognition
(NER) and dependency parsing techniques. Both techniques are implemented in spaCy 5.

The instruction component of a recipe is a sequence of sentences describing the steps about
how to prepare a dish as shown in Figure 9. There are two reasons we want to extract
food ingredients and cooking methods as key information of a recipe: 1) the ingredients
are the main objects can be seen in the food images. In the Recipe1M, the paired images
are usually the final look of the dish. 2) cooking methods applied to the ingredients can
alter the their appearances in the finished dish. For instance, the final appearances of
scrambled eggs and fried eggs are different.

4.1.1 Named Entity Recognition

We train a NER model to identify ‘food’ entities in the instructions by following the
notebook 6 shared by Isaac Aderogba on DeepNote. It used the food data from the USDA’s
Branded Food’s dataset7, which contains 42,018 food names after filtering out names more
than 3 words. Since the distribution of one-worded, two-worded, and three-worded food
entities is not even, the dataset is further filtered to contain 45% for 1-worded foods, 30%
for two-worded foods, and 25% for three-worded foods, which results in 3,311 food entities
in total. The training data consists of 501 food entities 8 from the filtered results plus 436
randomly chosen sample text from nltk ’s article corpus 9. The remaining food entities 10

is the test data used for evaluation. After training, we obtain a food NER with 96.23%
accuracy, which is the average over the three types food entities. The NER can identify
commonly used cooking tools, such as pan or skillet, and it also can identify some states
of ingredients, such as brown or tender.

5https://spacy.io/
6https://deepnote.com/@isaac-aderogba/Spacy-Food-Entities-2cc2d19c-c3ac-4321-8853-0bcf2ef565b3
7https://fdc.nal.usda.gov/download-datasets
8One-worded, two-worded, three-worded foods equally have 167 entities respectively.
9https://www.nltk.org/api/nltk.corpus

101036 for one-worded foods, 268 for two-worded foods, and 245 for three-worded foods.

20



In addition, we also use the extracted ingredients from the ingredient component to com-
pile a pattern-ruled ingredient NER. This ingredient extraction procedure (e.g. ‘1/2 tea-
spoons pepper’ → ‘pepper’) was done in the first work of Salvador’s [27] with 99.5%
accuracy. Finally, we apply the two food and ingredient NERs to each sentence in the
instructions so words tagged FOOD or ING are extracted as food ingredient entities. As
shown in the Figure 8(a), ‘oil’, ‘iron skillet’, ‘vegetables’, and ‘tender’ are extracted.

Figure 8: Visualization of (a) named entity recognition and (b) dependency parsing. The
example is the first and eighth sentence in the instructions shown in Figure 9.

4.1.2 Dependency Parsing

Since our data is only related to recipes and in order to improve the extraction accuracy,
we first manually create a cooking verb list consisting of 154 verbs shown in Table 13
that are widely used in the food domain. Then, we apply spaCy’s dependency parser 11

to each sentence in the instructions. As we observe, the cooking methods are usually the
root word in the sentence or have a compound or modifier relationship with labelled food
ingredient entities. Hence, in each sentence of the instructions if the word’s dependency
role is root, or compound, or modifier, and meanwhile its lemmatization is also in the
cooking verb list then the word is extracted as cooking method for the corresponding
entity. As shown in Figure 8(b), although ‘heat’ was tagged as noun but it is the modifier
for ‘oil’ and also in the defined verb list, so extracted as cooking method; ‘cook’ is the
root word and in the list, so extracted. The extracted information for the two sentences
are ‘heat oil iron skillet’ and ‘cook vegetables tender’.

Our proposed information extraction procedure is a rule-based approach because there
is no annotations for cooking methods or food ingredients in the Recipe1M dataset. The

11The spaCy version we use is 2.3.9 and the parser is a variant of the non-monotonic arc-eager transition-
system described by Honnibal el at. [8].
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Figure 9: Information extraction from recipe instructions. The text in red color are cooking
methods and the text in yellow color are ingredient entities.

example in Figure 9 demonstrates after extracting the recipe can be represented using its
title and ingredients with corresponding cooking methods. The recipe title is considered
as the shared mutual information between text and image modality so it is kept . The
example recipe originally consists of 285 words including punctuation, after extracting the
recipe only contains 57 words but also keeps the key information about how to make the
dish. It is worth to mention the order of instructions is also kept since some instructions
might have sequential relations.

4.2 H-Transformer

We replicated Hierarchical Transformer (H-Transformer) [28] with the released code 12.
In order to explore the expressive power of the extracted information from recipes and
also for later comparison to VLP models, we retrain H-Transformer with the extracted
information. The model overview is shown in Figure 10. It is a dual-stream approach
that recipe and image embeddings are learned separately from a text and image encoder,
and the training process is end-to-end. In this approach, recipe and image embeddings
are projected into the common semantic space and the parameters of two encoders are
optimized through a similarity objective.

4.2.1 Recipe Encoder

A recipe xR has 3 components: title rttl, ingredients ring, and instructions rins. In terms
of representation, recipe title is a single sentence so rttl = sttl = (w0, ..., wk) while both
ingredients and instructions are lists of sentences so ring = (s0ing, ..., s

n
ing) and rins =

(s0ins, ..., s
m
ins). In H-Transformer, title rttl is encoded with a Transformer TR so ettl =

TR(rttl) is the average of the outputs of the Transformer at the last layer. Sentences
in ingredients and instructions are first encoded with a TRL=1 to obtain a sentence-

12https://github.com/amzn/image-to-recipe-transformers
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Figure 10: Illustration of H-Transformer using the extracted information. The image-text
pair example is from the Recipe1M dataset.

level embedding for each sentence in ingredients and instructions respectively, and then
those embeddings are encoded with a second TRL=2 to obtain a single embedding for
ingredients and instructions respectively. This is so-called Hierarchical Transformer HTR,
in which each level TR has the same architecture (2 layers, 4 heads, D=512) but different
parameters. Hence, eing = HTR(ring) and eins = HTR(rins). The recipe embedding
eR = FC(concat(ettl, eing, eins)) with D = 1024.

In our case, we use recipe title rttl and the extracted information ring+cm (ingredients
along with corresponding cooking methods) as input as shown in Figure 10 so that recipe
embedding eR = FC(concat(ettl, eing+cm)) with D = 1024 where ettl = TR(rttl) and
eing+cm = HTR(ring+cm).

4.2.2 Image Encoder

In the ablation study of [28], it was shown that Vision Transformer (ViT) has a relatively
better performance than previous commonly used ResNet-50. Therefore, in our work we
use a pre-trained ViT 13 as the image encoder to learn image embeddings eI . The output
of the last layer before the classifier layer in ViT is projected to the common space through
a single linear layer. The dimension of image embedding eI is set to 1024.

13This ViT is vit-base-patch16-224 and pre-trained on the ImageNet-21k dataset.
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4.2.3 Similarity Loss

A bi-directional triplet hinge-loss objective is used in H-Transformer as shown in Equation
4. The main component of the loss function is Lcos as shown in Equation 3, where a, p,
and n denote anchor, positive, and negative samples, c(·) denotes cosine similarity, and m
is the margin (empirically set to 0.3). In Equation 4, eR and eI denotes recipe embedding
and image embedding; n = i means the same sample from different modalities (e.g. recipe
and image embeddings of the image-text pair) and n = j means different samples. In
addition, δ(i, j) = 1 if i ̸= j otherwise 0. Hence, (en=i

R , en=i
I ) is a positive pair, and (en=i

R ,
en=j
I ) and (en=i

I , en=j
R ) are negative pairs. In training process, for a batch size B, the loss

for one sample i is the average of all losses considering all other samples in the batch as
negatives.

Lcos(a, p, n) = max(0, c(a, n)− c(a, p) +m) (3)

Lbi =
1

B

B∑
j=0

(Lcos(e
n=i
R , en=i

I , en=j
I ) + Lcos(e

n=i
I , en=i

R , en=j
R ))δ(i, j) (4)

4.3 Fine-tuning VLP Models

As we discussed in Section 1.2, the pre-trained weights of VLP models are not suitable
for lengthy text such as recipes. Therefore, we use the extracted key information from
recipes as text input. In this section, we explain how to fine-tune Oscar and ViLT on the
cross-modal retrieval task. Both models are introduced in Section 2.3.

4.3.1 Oscar

The input of Oscar is a triplet consisting of word tokens w, object tags q, and image
features v. The sequence length of discrete tokens (w, q) and v are 70, and 50 tokens,
respectively. The image features used in Oscar are object region features extracted from
Faster R-CNN. The object tags are also detected from Faster R-CNN. However, in our
case there is no labelled image regions in the Recipe1M dataset to train a object detection
model. Therefore, we use the pre-trained ViT 14 to extract image features, which is the
same as in H-Transformer. In this manner, images are sliced into image patches and then
flatted and linearly projected to patch embeddings v before feeding into Oscar. The word
tokens and object tags (w, q) are word embeddings from pre-trained BERT. In our case, we
use the extracted recipes as word tokens and consider main ingredients and food category
as object tags. Following the motivation in Oscar, the main ingredients are explicitly
visible objects in food images. And food categories are the shared mutual information
between text and image modality. Following the image-text retrieval downstream task in
Oscar, we fine-tuned it on the Recipe1M through the ITM objective by randomly select
a different image/text sample from the dataset with 0.5 probability.

Main Ingredients We consider the visible ingredients in food images as the main in-
gredients. Generally, ingredients used for seasoning or flavour, such as salt, sugar, spices,

14This ViT is vit-base-patch32-224 and pre-trained on the ImageNet-21k dataset.
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salt sugar vinegar pepper
sauce cumin spice oregano
flakes nutmeg cayenne cinnamon
ginger paprika rub blend
tamari mesquite seasoning flour
powder butter rosemary thyme
cloves garlic hickory hanout

Table 5: Invisible ingredients list

or some sauces, are very hard to be seen in a food image. We define them as invisible in-
gredients and we manually create an invisible ingredients list shown in Table 5. Therefore,
the ingredients not in this list are all considered as main ingredients and used as object
tags.

Food Category In the early work of cross-modal food retrieval, food category was used
as regularization to align the semantic gap between modalities because it is a mutual in-
formation shared by cooking recipes and food images. We use the food category generated
from [27]. The authors first assigned Food-101 [1] categories to recipes that contain them
in the title. And then the top 2,000 most frequent bigrams generated from the recipe
titles in the training set are used to assign food category to which recipe contains the
most frequent bigrams in the title. There are 1,047 categories obtained, which cover over
50% of the image-text pairs in the dataset. The remaining recipes without a category are
assigned to a background class. The food category is used as object tags.

4.3.2 ViLT

The pre-trained weights of the Oscar were learned from image regions which are manually
changed to image patches in our case. Fine-tuning Oscar could not yield desirable results.
Therefore, we also want to explore another VLP model that is pre-trained on image
patches. So here comes ViLT, which was designed to be a minimal VLP model without
convolution or region supervision and also can obtain competitive performance to other
advanced VLP models. The text input length in ViLT is 40 tokens so that we also use
the extracted recipes as text inputs. The image features are also extracted from the pre-
trained ViT 15. Following the retrieval downstream task in ViLT, we fine-tune ViLT on
the Recipe1M by randomly selecting 15 text negative samples for each data and rank
them with the pre-trained ITM head. And then, the model is tuned with cross-entropy
loss that maximizes the scores on positive pairs.

4.4 Our Proposed Recipe Vision-Language Model

Both Oscar and ViLT are pre-trained for vision-language downstream tasks so they aim to
produce a general cross-modal representation for text and image modality. Moreover, as
we discussed above, their pre-trained weights are limited and not suitable for downstream
tasks using long text such as recipes.

15This ViT is vit-base-patch32-384 and pre-trained on the ImageNet-21k dataset.
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Figure 11: Illustration of RecipeVL. Food images are sliced into patches then linearly
projected to patch embeddings. Recipe text has two scenarios: 1) directly using full recipe
text; 2) using extracted recipes plus object tags defined in the Section 4.3.1.

Therefore, we follow their model architectures to build a recipe vision-language (RecipeVL)
model for the food domain using the numerous recipe-image pairs in the Recipe1M. Fig-
ure 11 illustrates the overview of RecipeVL. Following ViLT, we initialize the interaction
transformer weights from a pre-trained ViT 16. The input z is the concatenation of text
embeddings of cooking recipes and image embeddings of food images. Specifically, the
text embedding t̄ is the summation of word embeddings t, position embedding matrix
T pos ∈ R(n+1)×H , and corresponding modal-type embedding vector ttype ∈ RH . The im-
age embedding v̄ is the summation of patch embeddings v, position embedding matrix
V pos ∈ R(m+1)×H , and corresponding modal-type embedding vector vtype ∈ RH . The con-
textualized embedding z is iteratively updated through D-depth transformer blocks until
the final sequence zD. The pooled representation p of the whole cross-modal input is the
linear projection of the first index of zD through Wpool ∈ RH×H with a hyperbolic tangent
activation. The hidden size H is 768, the transformer block depth D is 12 and each block
has 12 attention heads.

16This ViT is vit-base-patch16-224 and pre-trained on the ImageNet-21k dataset.
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t̄ = [tclass, t1, ......, tn] + T pos + ttype (5)

v̄ = [vclass, v1, ......, vm] + V pos + vtype (6)

z0 = concat(t̄, v̄) (7)

zd = TRblock(z
0), d = 1, ......, D (8)

p = tanh(zD0 ·Wpool) (9)

Since we want to investigate the expressive power of both extracted recipes and raw
recipes, the text input of RecipeVL has two scenarios. The first scenario is using the full
recipe text in order of title, ingredients, and instructions; the second is using the recipe
title along the extracted cooking methods with associated food ingredients, plus the object
tags defined in Section 4.3.1. The text sequence length is set to 300 and 100 tokens for
the two scenarios, respectively. Since the patch size we use is 16 x 16 and we resize the
input image to 224 x 224, the image sequence length is 197 = 1 + (224/16 + 224/16)
patch tokens.

We train RecipeVL with the two commonly used objectives in VLP: image text matching
(ITM) and masked language modeling (MLM). Specifically, for ITM, the paired image
is randomly replaced with a different image from the dataset with 0.5 probability. The
pooled feature p is projected through ITM head to logits over binary class. For MLM, the
text tokens are randomly masked with 0.15 probability. Following ViLT, we also use whole
word masking. The output zDmasked is feed to MLM head to get the logits over vocabulary.
Both logits are used to compute the negative log-likelihood loss., so L = LMLM + LITM .
In addition, when using extracted recipes as text inputs, following Oscar, inputs can be
considered in two views (dictionary view and modality view). Hence, in this case, object
tags should be corresponding to the paired image which means both of them are randomly
replaced with a different sample.
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5 Experiments and Results

In this section, we present our experiments on the methods introduced in the previous
section with the implementation details. We also evaluate their performance on the cross-
modal retrieval task. In addition, we use a novel explainable framework, VL-CheckList
[43], to evaluate the fine-tuned ViLT and RecipeVL for a more comprehensive under-
standing.

5.1 Implementation Details

5.1.1 Dataset

Table 6 shows the number of image-text pairs used for training each method in our
experiments. According to the preliminary analysis in Section 3.1, in most cases a recipe
has only one associated food image, but if it has more than one image we then randomly
choose up to 5 images per recipe during training. Moreover, we set the maximum number
of ingredients and instructions used per recipe up to 20 respectively, which means when
recipes have more than 20 ingredients or instructions, we take the first 20 in the text. Due
to the training cost and time constraint, we fine-tuned Oscar and ViLT on a subset of the
Recipe1M, which is the unique number of recipes in the training set. During evaluation,
we randomly choose one image when a recipe has more than one associated image.

5.1.2 Evaluation Metrics

Following prior works, the cross-modal retrieval performance are measured using Re-
call@K where K ∈ {1, 5, 10} on rankings of sample size N = 1000. Specifically, Recall@K
indicates the percentage of all the queries for which the true matching item is retrieved
amongst the top K. Therefore, the higher the Recall@K, the better the performance. In
our experiments, we first randomly sample 5 different subsets of 1,000 image-text pairs
from the test set, then we report the average Recall@K of the 5 test subsets.

5.1.3 Training Details

Following Salvador el at’s work [28], for all experiments, food images are resized to 256 x
256 in their shortest edge and cropped to 224 x 224. During training, images are random
cropped and horizontally flipped with 0.5 probability. During evaluation, images are center
cropped.

ViLT and RecipeVL are trained on 2 NVIDIA 3090 GPUs with a batch size of 16 for 5
epochs and 30 epochs, respectively. Oscar and H-Transformer are trained on 5 NVIDIA
980 Ti GPUs plus 1 Titan X GPUs with a batch size of 32 for 10 epochs and a batch size
of 128 for 30 epochs, respectively.

For fine-tuning Oscar and ViLT, we use their pre-trained weights from cross-modal re-
trieval task. H-transformer and RecipeVL are trained from scratch. Moreover, following
ViLT, RecipeVL is fine-tuned for 5 more epochs on the validation set of the Recipe1M by
randomly selecting 7 negative text samples for each image-text pair. AdamW optimizer
are used for all experiments. Following training setting of each method, the base learning
rate for H-transformer is 1e−4 with a step-wise rate decay of 0.1 every 10 epochs. The base
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Methods # Parameters # Image-text pairs # Training steps

H-Transformer
27M (recipe encoder)
87M (image encoder)

383,702 89,930

Oscar 157M 238,408 74,502
ViLT 111M 238,408 74,502
RecipeVL 134M 383,702 719,442

Table 6: Comparison of models in terms of parameters, training data and steps 17.

learning rate for Oscar is 2e−5 and linearly decayed to zero within total training steps.
The base learning rate for ViLT and RecipeVL is 1e−4 with a linear decay of 0.01 but was
first warmed up for 10% of the total training steps.

5.2 Cross-modal Retrieval Results

Methods
image-to-recipe recipe-to-image

R@1 R@5 R@10 R@1 R@5 R@10

Extracted recipes

H-Transformer 50.3 81.6 89.3 49.9 82.0 88.3
Fine-tuned Oscar 3.0 7.6 11.8 0.2 0.7 1.5
Fine-tuned ViLT 17.1 43.3 56.6 11.8 34.4 49.1
RecipeVL 48.6 78.7 87.6 47.1 78.4 87.2

Full recipes

H-Transformer 18 58.3 86.2 91.8 59.6 86.1 92.2
RecipeVL 56.2 84.8 90.7 56.0 84.2 90.3

Table 7: Performance comparison of RecipeVL with other methods on cross-modal re-
trieval task on 1K test set.

We compare the performance of RecipeVL with other methods by two groups, one is
trained on extracted recipes and the other one is trained on full recipes. Table 7 shows
the overall results. We can see that H-Transformer has the best performance among all
the methods in both groups, but RecipeVL also achieved comparable results as a single-
stream approach. Specifically, the overall performance of RecipeVL is about 2.25% lower
than H-Transformer.

On the other hand, comparing the results of the same method in the two groups, the per-
formance of H-Transformer and RecipeVL both decreased when using extracted recipes.
Specifically, H-Transformer dropped by averagely 9.15% on R@1, 4.35% on R@5, and
3.05% on R@10 respectively on two sub cross-modal retrieval tasks while RecipeVL
dropped by 8.25% on R@1, 5.95% on R@5, and 3.1% on R@10 respectively. We suspect
that the attention distribution for the same ingredient in recipes changes after extracting,

17The training steps are calculated based on using 1 GPU and mentioned batch sizes.
18This results are quoted from H-Transformer’s paper [28].
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which makes extracted recipes less powerful to distinguish similar recipes. Meanwhile,
our rule-based information extraction procedure cannot 100% accurately extract the cor-
rect ingredients and cooking methods, especially when the instructions are written in an
unstructured manner. This can lead to information loss when using extracted recipes.

In addition, from Table 7 we also can see that the performance of both fine-tuned VLP
models are significantly inferior compared to the other two methods, especially fine-tuned
Oscar. We speculate the reason for such poor performance is that Oscar was pre-trained
on image regions so when we change to image patches the pre-trained weights lost their
advantages of learning image features. We fine-tuned both VLP models within reasonable
epochs based on our computing resources. However, the performance of them are much
worse compared to RecipeVL that was trained from scratch. It is worth to mention that we
also experimented RecipeVL using extracted recipes without object tags and the results
were worse, which indicates the effectiveness of the architecture of Oscar.

(a) The query recipe is ‘German red cabbage’.

(b) The query recipe is ‘bratwurst with saucy peppers & onions’

Figure 12: Recipe-to-image comparison between H-Transformer and RecipeVL on 1K test
set. The left recipes are used as query and followed by the top 5 retrieved images in order.
The image in green box is the ground truth. The recipe text for both examples is shown
in Figure 13.
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5.2.1 Qualitative analysis

In order to further compare H-Transformer and RecipeVL, we visualize two examples
of recipe-to-image retrieval task from 1K test set as shown in Figure 12. We can see
that the top 1 retrieved results for both examples are all the ground truth, but followed
retrieved results are quite different among all the methods. In Figure 12 (a), the last two
retrieved images for H-Transformer trained on full recipes (the first row) are irrelevant
to ‘cabbage’ but are in red color while the retrieved results of H-Transformer trained on
extracted recipes (the third row) are all relevant to ‘cabbage’ but three of them are not ‘red
cabbage’. The retrieved results of RecipeVL (the second and fourth row) are all ‘cabbage’
and four of them are ‘red cabbage’. Interestingly, we can see that the ground truth image
contains a fork, two of the retrieved images of RecipeVL also contain a fork, which does not
show in any results of H-Transformer. This indicates that text embeddings learned from
RecipeVL fused information from image modality. In Figure 12 (b), the retrieved results
of H-Transformer are all shapely similar to the main visible ingredients ‘bratwurst’ in the
ground truth image; while the results of RecipeVL tend to contain similar ingredients like
red peppers and similar serving style.

Both examples’ retrieved results in Figure 12 demonstrate the differences between the
single-stream approach and dual-stream approach. Specifically, in the dual-stream ap-
proach, the learned text/image embeddings with similar semantic information are closer
than others in the common space. However, based on the retrieved results, the nearby
image embeddings in the common space with similar colors or shapes can be noises. For
the single-stream approach, the learned text/image embeddings fuse information from an-
other modality, however, the fused information from another modality may not be helpful.
For example, the third image in the fourth row shown in Figure 12 (b) are aligned with
the mentioned ‘tomato’ and also with similar serving style to the ground truth image.

5.3 VL-CheckList

VL-CheckList [43] is a recent explainable framework to evaluate the capabilities of VLP
models from three aspects: object, attribute, and relation. And the authors also further
break down the three aspects into more fine-grained variables. Specifically, the attribute
is composed of color, material, size, state, and action; the object is composed of size and
location and further divided into large, medium, and small, and center, middle, and margin
respectively; the relation is composed of action and spatial. Four datasets shown in Table
8 were used and categorized into three aspects, and then in the corpus for each image the
paired text is rewritten to generate a negative sample for each aspect. For instance, in
terms of color ‘the sheep is white.’ is rewritten to ‘the sheep is golden brown.’; or in terms
of action ‘the child is brushing teeth.’ is rewritten to ‘the child is photographing teeth.’.
The ITM head of a VLP model is used to predict if the given image-text pair is a true pair
or not. In VL-CheckList, if the ITM score on the original text is higher than the score on
the generated negative sample, they consider it as a positive output. In this manner, the
accuracy is calculated by the number of positive outputs over the total number of test
samples.

In our work, we want to have a comprehensive understanding of our methods not only
relying on the performance of a single downstream task. Therefore, we use VL-Checklist
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Name Size Adopt to

VG [12] 108K Objects, Attribute, Relation
VAW [22] 72K Attribute
HAKE [15] 104K Objects, Relation
SWiG [24] 126K Objects, Relation

Table 8: Datasets used in VL-CheckList

to evaluate our fine-tuned ViLT and RecipeVL. We pass H-Transformer due to its lack of
ITM head and Oscar due its poor performance. The overall results are shown in Table 9,
in which we can see that in terms of aspects, all the methods have better scores at object
than other two aspects. Besides, RecipeVL has similar scores at relation and attribute
while the fine-tuned ViLT performs better at attribute than relation. On the other hand,
in terms of methods, the fine-tuned ViLT achieved the best score at object and attribute
but the lowest at relation. RecipeVL (full) achieved better score than RecipeVL(info) at
object but RecipeVL (info) is slightly better at attribute and relation.

Methods Object Attribute Relation Average

Fine-tuned ViLT 66.10 57.18 50.64 57.97
RecipeVL (info) 57.14 54.76 55.58 55.83
RecipeVL (full) 59.10 53.51 53.94 55.52

Table 9: Evaluation results of VL-CheckList for fine-tuned ViLT and RecipeVL. info
denotes the model was trained on extracted recipes; full denotes the model was trained
on full recipes.

5.3.1 Evaluation of object

Furthermore, scores of each variable for each aspect are reported. Table 10 shows the eval-
uation results of the object aspect. We can see that the fine-tuned ViLT achieved the best
scores at each variable but all scores dropped compared to the results of ViLT reported
in the original paper [43]. We speculate the reason to be the inherent characteristics of
the data used. First, the datasets used in VL-CheckList are perfectly designed for VLP
models, specifically the text are the image captions describing the objects in the paired
image which are identical to the pre-training corpora of ViLT. In the Recipe1M dataset,
the objects mentioned in the recipes are the more fine-grained ingredients. Thus, within
limited training steps ViLT tends to learn fine-grained details of ingredients but may not
fully capture the more nuanced information, which may also cause its potential loss of the
original object recognition ability.

Similar to the findings in the original paper, the fine-tuned ViLT also tends to focus on
large objects located in the centre of images. It also explains the poor performance of
fine-tuned ViLT on the cross-modal food retrieval task. In contrast, although the scores
of RecipeVL are not ideal due to the inherent differences of the data in the Recipe1M
and VL-CheckList, we still can observe that RecipeVL tends to focus on small and
medium objects located in the middle of images. This observation aligns with the
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Methods
Object

AverageSize Location

Large Medium Small Center Middle Margin

Fine-tuned ViLT 72.24 63.20 60.80 71.78 66.52 62.05 66.10
RecipeVL (info) 56.14 58.14 58.78 55.91 57.43 56.40 57.14
RecipeVL (full) 58.18 59.40 59.47 58.39 60.12 59.05 59.10

Table 10: Evaluation of object. info denotes the model was trained on extracted recipes;
full denotes the model was trained on full recipes.

Methods
Attribute

Average
Color Material Size State Action

Fine-tuned ViLT 62.78 59.44 54.49 55.44 53.76 57.18
RecipeVL (info) 56.79 53.03 59.14 53.09 51.77 54.76
RecipeVL (full) 54.63 52.84 55.29 52.30 52.50 53.51

Table 11: Evaluation of attribute. info denotes the model was trained on extracted recipes;
full denotes the model was trained on full recipes.

characteristics of recipe data, where ingredients are the more fine-grained objects, and
the presentation of the dishes typically occurs in the middle of images.

5.3.2 Evaluation of attribute

Table 11 presents the results of each variable for the attribute aspect. As we discussed in
the previous subsection, the fine-tuned ViLT preserved some capability from pre-training,
resulting in the best score on color, material, state, and action but those scores also
decreased compared to the results of ViLT. It is worth to mention in the original paper,
all compared VLP models are low on size due to the subjective description about size
in natural language. Surprisingly, RecipeVL achieved higher score on size than the fine-
tuned ViLT even though the recipe text lacks explicit words describing ingredient size. We
suspect that training on more fine-grained objects like ingredients can enhance
the model’s sensitivity on size attribute.

Moreover, despite we expected RecipeVL could have better scores at other attributes, our
dataset only focused on the food domain and so it may be challenging for RecipeVL to
understand those attributes in a border spectrum.

5.3.3 Evaluation of relation

Table 12 presents the results for relation aspect. RecipeVL (info) achieved the best score on
both action and spatial relation, while RecipeVL (full) outperforms the fine-tuned ViLT.
We suspect the reason is recipe data contains more relation information. Specifically,
we observe there are sequential relations between the instructions in recipes and also
there are causal relations between cooking methods and ingredient appearances. Despite
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the inherent differences of the data in the Recipe1M and VL-CheckList, the scores of
RecipeVL, although not optimal, are comparable to other VLP models evaluated in [43]
which are pre-trained on millions of image-text pairs. The scores of RecipeVL also
indicates its ability to capture and understand the relational aspects of objects
in different modalities. In addition, we speculate the reason RecipeVL (info) achieves
higher scores than RecipeVL (full) is that extracted recipes may have less noise on relation
information. For example, some recipes end with sentences like ‘enjoy the meal.’, which
is eliminated in extracted recipes but kept in full recipes.

Methods
Relation

Average
Action Spatial

Fine-tuned ViLT 49.62 51.66 50.64
RecipeVL (info) 55.80 55.35 55.58
RecipeVL (full) 53.91 53.98 53.94

Table 12: Evaluation of relation. info denotes the model was trained on extracted recipes;
full denotes the model was trained on full recipes.
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6 Discussion

In this section, we address our research questions based on the experimental results; we
discuss potential improvements and suggest some future work.

6.1 Research Questions

1. Does information extraction from cooking recipes help narrow the semantic
gap in the cross-modal representation learning?

Based on our experimental results of the cross-modal retrieval task shown in Table 7,
information extraction from recipes did not help narrow the semantic gap. Specifically,
we experiment with both the dual-stream approach, H-Transformer, and the single-stream
approach, RecipeVL, on the Recipe1M dataset but the performance of both declined when
using extracted recipes. As we analyzed above, the main reason probably is our rule-based
information extraction method cannot 100% accurately extract correct ingredients or
cooking methods resulting in information loss. We also suspect the attention distribution
of text changes after extracting, which makes the extracted recipes less powerful than full
recipes to distinguish similar recipes in cross-modal retrieval task.

2. Can fine-tuning VLP models on the Recipe1M dataset help improve the
performance of the cross-modal retrieval task?

Our experimental results show that fine-tuning VLP models can not help improve the
performance of the cross-modal retrieval task on the Recipe1M dataset. Specifically, we
fine-tuned Oscar and ViLT within reasonable epochs based on our computing resources.
However, the results show the performance of both are quite deficient on the cross-modal
retrieval task, especially Oscar. As we discussed earlier, there are a couple of reasons for
such results. First of all, Oscar was pre-trained on image region features so that fine-
tuning it on image patches did not work. Secondly, ViLT although was pre-trained on
image patches, the results is still quite lower than what we expected in the first place.
Incorporating the results of VL-CheckList, we found that recipe data contains more com-
plex information than the image-text pairs the two VLP models trained on, which made
them can not fully capture the characteristics of recipe data within reasonable training
steps of fine-tuning.

3. Can single-stream approaches work better than dual-stream approaches on
the Recipe1M dataset?

Although our results show the dual-stream approach outperforms the single-stream ap-
proach, we speculate the performance of RecipeVL can be further improved with addi-
tional enhancements or techniques, such as incorporating another training objective which
can help increase the alignment between text and image modality.

6.2 Cross-modal Food Retrieval

Speaking of the application of cross-modal retrieval, the ultimate goal of the model is to
retrieve the most relevant and best-matched results from one modality given the query
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from another modality within reasonable response time. In the dual-stream approach, the
retrieved results from one modality are ranked based on distance metrics, such as cosine
similarity or Euclidean distance, given a query from another modality. Corresponding
embeddings for both modalities can be obtained beforehand through trained encoders. In
the single-stream approach, the retrieved results are ranked based on probability predic-
tions given image-text pairs. Therefore, there is an obvious drawback for single-stream
approaches compared to dual-stream approaches. Given the same ranking size, the re-
sponse time of single-stream approaches will depend on the computational complexity
of the model, which also includes the data processing for different modalities, as well as
any additional computations involved in the retrieval process. However, the response time
of dual-stream approaches only relies on the distance computation between pre-obtained
embeddings for different modalities. Hence, as the ranking size increases, the response
time of single-stream approaches can become much slower than dual-stream approaches,
which is not desirable in the application of cross-modal retrieval. Specifically, for instance,
in our work, the evaluation time of RecipeVL for the 1K test set is over 50 minutes while
it only takes less than 1 minute for H-Transformer.

6.3 Improvements and Future work

RecipeVL follows the basic architecture of VLP models as a single-stream approach and
our experimental results demonstrate its effectiveness on the cross-modal retrieval task
in the food domain, even though it did not outperform the dual-stream approach - H-
Transformer. We believe RecipeVL can be further improved with additional enhancements
or techniques as follows:

Train with a large batch size; or train on a larger recipe dataset. Due to
our limited computing resources, we only train the model with a batch size of 16 for 30
epochs. A recent study [41] of the Recipe1M shows that large batch training can improve
the model performance. In addition, it is worth to mention ViLT was pre-trained with
a batch size of 4096. On the other hand, the latest model VLPCook [30] proposed by
Shukor et al. is trained on Recipe1M+ [18] which contains over 13 millions food images.
Its performance was improved by 3% compared to be trained on the Recipe1M.

Implement a re-ranking strategy and fine-tune for more training steps. We
observe that the food images of different recipes using similar ingredients can look similar.
And the Recipe1M dataset is collected from the cooking websites and tends to be noisy,
in which positive pairs are not always strongly-correlated. Therefore, the ranking results
only based on the probability predictions can be rough. Wang et al. [38] proposed a
novel framework, AGREE, in which an entity alignment module was implemented during
fine-tuning and also re-ranking upon VLP models. Their results showed AGREE can
potentially help improve the performance of cross-modal retrieval task on fine-grained
recipe-image pairs.

Enhance cross-modal alignment along extra modules or training objectives.
The SOTA results in many vision-language downstream tasks have been updated con-
stantly as new VLP models and methods are introduced, such as ALBEF [13] and BEiT
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[37]. The fundamental principle is to increase the cross-modal alignment between modali-
ties by adapting extra modules or training objectives upon previous VLP models. Likewise,
RecipeVL can also be improved following similar procedures.
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7 Conclusion

In this work, we study the cross-modal retrieval task in the food domain. Specifically, we
experiment with the two commonly used approaches in cross-modal representation learn-
ing on the Recipe1M dataset: single-stream and dual-stream. We also propose to extract
key information from recipes and use them to fine-tune Oscar and ViLT and re-train H-
Transformer. Our results demonstrate that cross-modal food retrieval is a challenging task
for VLP models within limited training epochs. However, the performance of RecipeVL
that is trained from scratch and follows the basic architecture of VLP models demonstrates
the effectiveness of single-stream approaches in the food domain, even through it did not
outperform the dual-stream approach, H-Transformer. In addition, we use VL-CheckList
to evaluate the capability of our methods in terms of object, attribute, and relation. We
also discuss that in the real-life application of cross-modal food retrieval, single-stream
approaches may cause response time problem compared to dual-stream approaches.

In conclusion, the cross-modal retrieval task in the food domain is challenging. Despite
the requirement of large computing resource, the fine-grained ingredients and complex
relationships between each cooking instruction and also between cooking methods and
ingredient appearances are much harder to be captured than common image-text pairs.
Regardless of single-stream or dual-stream approaches, future work discussed in the Sec-
tion 6.3 can be potential directions for further investigations.
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A Cooking Verb List

add bake barbecue baste beat
blanch blend bring boil braise
bread break broil brown brush
candy can carve char check
chill chop clean coat combine
cook cool core cover cream
crisp crush cube cut debone
decorate deep-fry dehydrate dice dip
dissolve drain dress drizzle dry
drop dust emulsify ferment filet
flame flambé flip fold freeze
fry garnish glaze grate grill
grind gut heat hull infuse
julienne knead layer level liquefy
light marinate mash measure melt
mince mix mold move microwave
oil pack pan-fry parboil pare
peel place pickle pierce pinch
pit poach pop pour preheat
preserve pressure-cook prick puree push
put reduce remove rinse refrigerate
roast roll sauté saute serve
scald scramble scallop score sear
season shred simmer sip sift
skewer slice smoke smooth soak
soften sprinkle sous-vide spatchcock spice
spread squeeze steam steep stir
strain stick stuff submerge sweeten
swirl taste take temper tenderize
thicken toast top toss truss
thread turn on turn off wash weight
whip whisk wilt

Table 13: List of cooking verbs
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B Recipe-to-image examples

(a) The recipe is ‘German red cabbage’.

(b) The recipe is ‘bratwurst with saucy peppers & onions’

Figure 13: Example recipes used in Figure 12.
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