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Abstract

Cross-modal food retrieval has gained a lot attention recently since the large-
scale dataset RecipelM [27] was released. Meanwhile, Vision-language Pre-training
(VLP) is also in a fast developing phase, where it has been proved that can improve
the performance of many vision-language downstream tasks. In addition, current
studies on cross-modal food retrieval focus on the dual-stream approach, whereas
VLP follows a single-stream approach. In this work, we investigate whether the
single-stream approach can work for the RecipelM dataset on the cross-modal re-
trieval task by fine-tuning two VLP models, Oscar [14] and ViLT [10], as well as
training a recipe vision-language (RecipeVL) model from scratch following the ar-
chitectures of the two VLP models. We use the latest work, H-Transformer [28],
of the original authors who released the RecipelM as our dual-stream comparative
model. The experimental results show that the single-stream approach can pro-
duce comparable performance on the cross-modal food retrieval. Furthermore, we
use a explainable framework, VL-CheckList [43], to evaluate our methods in three
aspects, namely object, attribute, and relation. Our code is available at https:
//github.com/chloeeegao/cross-modal-retrievall


https://github.com/chloeeegao/cross-modal-retrieval
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1 Introduction

In the real world, human beings generally learn about objects through five senses including
vision, hearing, smell, taste, and touch. In such ways, people can obtain comprehensive
information about the same object from different aspects. It has been shown that about
80% to 85% of the information people obtain is from vision [23]. Visual information
includes facial expressions, body language, text, visual symbols, color, diagrams, images,
videos, and so on. Human beings can naturally integrate different information to learn
about the same visual object. For instance, when we were kids, parents often use fruit
flash cards which contain a fruit name and its corresponding image on each card to teach
us recognize different fruits. After a period of learning, we can tell the fruit name based
on its image or draw a outline of the fruit given a fruit name. This is a simple example of
how human beings learn about objects from different aspects.

On the other hand, nowadays with the more accessible and faster network, multimedia
information which describe the same events or topics, are growing fast on the Internet.
For instance, a news website not only has textual descriptions about the headline but
also has images or videos about it for a full demonstration [36]. Furthermore, smart de-
vices, especially cellphones and tablets, have been widely used in our daily life, which
has reshaped our lifestyles. People tend to post more multimedia information on social
media and also prefer to obtain more multimedia information when searching online. It
has been suggested that like humans, machines can also learn more comprehensive in-
formation about the same visual object from different aspects. All of above introduced a
new challenge which is how to fuse information from different modalities, namely multi-
modal representation learning. Modality refers to the form of information presented[17],
which typically includes text, audio, images, videos, etc. In this work, we will focus on
cross-modal representation learning between text and images.

In the past decade, benefiting from the rapid development of deep learning, computer vi-
sion (CV) and natural language processing (NLP) have achieved high quality performance
in many downstream tasks, such as object detection, image classification, sentiment anal-
ysis, and machine translation. However, each of these tasks only involves a single modality.
As multimodal representation learning steadily draws more attention, many more complex
tasks that involve multiple modalities, such as image captioning, text-to-image genera-
tion, visual question answering (VQA), natural language for visual reasoning (NLVR),
cross-modal retrieval, and multimodal sentiment analysis, have been studied in the recent
years. In this work, we will tackle the cross-modal retrieval task in the food domain using
the RecipelM dataset [27], in which cooking recipes are used as queries to retrieve food
images or vice versa. The dataset contains more than 1 million cooking recipes and 800K
food images.

1.1 Problem Statement

Nowadays, latent representation is widely used to extract information from raw data,
which usually can preserve more useful information and also is more flexible to downstream
tasks than traditional task-specific feature engineering when dealing with large-scale and
noisy unstructured data |17]. As mentioned above, benefiting from current well-developed
deep learning architectures, such as ResNets [6] and BERT [3], a more powerful unimodal
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Ingredients: 4 hard-boiled eggs, chopped, 1/2
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chill.

word embeddings

(a) Recipe and food image pair (b) Semantic spaces

Figure 1: (a) An example from the RecipelM dataset. (b) Pseudo word vectors and
visual vectors in the semantic space.

representation can improve performance on many downstream tasks. For instance, as
BERT was introduced, the performance of many NLP downstream tasks took a big
leap, which also started a trend of utilizing pre-trained models.

Likewise, a more effective cross-modal representation will also boost the performance
in vision-language downstream tasks. Since our work focuses on the cross-modal retrieval
task and only involves text and image modality, the later mentioned cross-modal represen-
tation are all meant for these two modalities. There are three existing main challenges in
cross-modal representation learning. The first one is the semantic gap between modal-
ities, specifically different modalities often capture different aspects of information which
leads to the semantic information preserved in each modality can be unbalanced. For in-
stance, as shown in Figure (a)7 the cooking recipe contains quantity information about
each ingredient but this information is not explicitly shown in the paired food image. On
the other hand, the food image has some biscuits and a black plate in the background but
those are not described in the paired cooking recipe. The second challenge is the hetero-
geneity gap between modalities, specifically different modalities have distinct data
distributions and characteristics. For instance, as shown in Figure (b) ‘ham’ and ‘eggs’
are closer in the visual semantic space than in the text semantic space. The third challenge
is the lack of paired labelled data, specifically cross-modal representation learning is
naturally a weakly-supervised learning problem due to the lack of explicit alignments be-
tween modalities. As the example shown in Figure (1| the cooking recipe and the paired
food image are manually made to be a pair but explicit alignments between words in text
and corresponding regions in the paired image are not provided. Therefore, it requires
high volumes of paired data for model training.



Caption: a plate with creamy chicken and vegetables, a side of onion
rings, a cup of coffee and a slice of cheesecake.

Figure 2: An example from COCO dataset.

With the availability of large image-text corpora, such as COCO [[] and Flickr30K [
Vision-Language Pre-training (VLP) is becoming a prevalent topic in the field. Recent
researches also show that VLP models, such as Oscar and ViLT , have improved
performance on many vision-language downstream tasks. In this work, we will fine-tune
the two VLP models on the cross-modal retrieval task using the RecipelM dataset. In
addition, we also train a recipe vision-language (RecipeVL) from scratch following the
architecture of the two VLP models.

1.2 Research Questions

The cooking recipes in the RecipelM dataset are long text as shown in Figure [T}, which
often include more semantic information than the paired image as discussed in Section[1.1]
Meanwhile, the text data in the image-text corpora VLP models are trained on are short
image captions. For instance, the example in Figure 2]is from COCO, in which the image-
text pair is also related to food but the textual description just simply lists the visible
objects in the image. Thus in this manner, the typical text input length of VLP models
ranges from 40 to 70 tokens [} In addition, current researches of cross-modal food retrieval
focus on the dual-stream approach, but VLP models follow a single-stream approach. The
details of the two approaches are presented in Section[2.1} Therefore, we propose to extract
key information from recipes in order to reduce the semantic gap between modalities and
also be able to fine-tune VLP models using their pre-trained weights. The main research
questions of this work are as follows:

1. Does information extraction from cooking recipes help narrow the se-
mantic gap in cross-modal representation learning?

2. Can fine-tuning VLP models on the RecipelM dataset help improve the
performance of the cross-modal retrieval task?

Thttps://cocodataset.org

https: //www.kaggle.com /datasets/hsankesara/flickr-image-dataset

3Tokens refer to the units into which text is divided. In VLP models, BertTokenizer is often used
which is a subword-level tokenization. For example, word ‘unhappiness’ will be splitted into ‘un’ and
‘happiness’, which are identified as two subword tokens.



3.

1.3

Can single-stream approaches work better than dual-stream approaches
on the RecipelM dataset?

Contributions

In summary, the main contributions of this work are as follows:

1.4

We propose to extract key information from cooking recipes to ease the learning of
semantic alignment. Specifically, we extract ingredients with corresponding cooking
methods from recipe instructions using named entity recognition and dependency
parsing techniques.

We replicate Salvadaor et al.’s work [28] and retrain the H-Transformer using the
extracted information from recipes.

We fine-tune two VLP models, Oscar and ViLT, on the cross-modal retrieval task
using the extracted information from recipes on a subset of the RecipelM dataset.

We train a recipe vision-language (RecipeVL) model from scratch following the
architectures of the two VLP models. Our experimental results show that the single-
stream approach can produce comparable performance to current researches of the
dual-stream approach on the cross-modal food retrieval.

We evaluate our methods using a recent explainable framework called VL-CheckList
[43] for a more comprehensive understanding and also help to provide some insights
for future improvements.

Thesis Structure

The remainder of this work is organized as follows: Section 2 introduces two approaches
in cross-modal representation learning, related work on the RecipelM dataset, and details
about the two VLP models. Section 3 provides a preliminary analysis and statistics about
the RecipelM. Section 4 explains our proposed methods in details. Section 5 presents
our experiments and results. Finally, we address our research questions and discuss the
potential improvements along future work in Section 6 and conclude the thesis in Section

7.
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2 Background and Related Work

In this section, we provide an overview of two common approaches in cross-modal repre-
sentation learning and discuss related works on the RecipelM dataset. We also introduce
the details about the two VLP models, namely Object-Semantics Aligned Pre-training
(Oscar) and Vision-and-Language Transformer (ViLT) [10].

2.1 Cross-modal Representation Learning

Cross-modal representation learning aims to build embeddings using information from
different modalities. Since our task is to learn the cross-modal representation from text
and image modality, our survey mainly focuses on these two modalities while current
researches also involve audio, video, and other modalities. Recent works involving text
and image modality can be divided into two categories [17]: (1) fuse information from
different modalities into unified embeddings, known as single-stream approach. (2) build
embeddings from different modalities in a common semantic space based on similarity
metrics, known as dual-stream approach. Figure 3| illustrates the basic architectures of the
two approaches.

Unified Embedding

f

Encoder

T

Textual Features Visual Features

|

Caption: small
orange kitten sitting
in a wooden bowl.

(a) Single-stream approach. The example is from COCO dataset.

Text Embedding <Sl """"""""""" > Visual Embedding

arity
T objective T

Text Encoder Image Encoder

|

Caption: a very
pretty gray and
white cat looking
straight up.

(b) Dual-stream approach. The example is from COCO dataset.

Figure 3: Two cross-modal representation learning approaches.
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Specifically, (1) in the single-stream approach, text and visual features are concatenated
together as the input to the encoder. The parameters of the encoder are optimized through
training objectives. The output of the encoder will be the unified embedding which fuses
information from text and image modality. In Figure [3{a), the unified embedding will
contain the information from ‘small orange kitten sitting in a wooden bowl’ and the
paired image, which can be used for further vision-language downstream tasks. (2) in the
dual-stream approach, text and visual features are fed into the text and image encoder
separately. The outputs of the two encoders are projected into a common semantic space,
where the most similar embeddings will be closer than others and the most dissimilar
embeddings will be distant from others. The parameters of both encoders are optimized
jointly through similarity objectives. In Figure (b), the text embedding of ‘a very pretty
gray and white cat looking straight up’ and the visual embedding of the paired image
should be close to each other in the common semantic space after training.

2.2 Related Work on RecipelM Dataset

RecipelM dataset was created and released by Salvador et al. [27] in 2017. The authors
proposed to build cross-modal embeddings for cooking recipes and food images by jointly
training two encoders (JE) based on the cosine similarity between two modalities in the
common space with semantic regularization. Long-short term memory (LSTM) [7] and
ResNet-50 [6] were used as text and image encoder in JE. This is the first work presenting
the cross-modal retrieval task in the food domain. Chen et al. [2] argued that recipe search
is different from other cross-modal retrieval task because it requires understanding the
textual descriptions of cooking procedure to predict the possible consequence on visual
appearance. The authors proposed to use attention mechanism to align the attended words
and sentences in a recipe to their corresponding image features. Besides attention modeling
on cooking recipes, on top of JE, Chen et al. used all three components (title, ingredients,
instructions) in a recipe and also instead of using the penultimate layer of ResNet-50 ,
poolb features are extracted for image representation. The cross-modal retrieval result
was improved by 6% on Recall@1 (1K test set). Later, Wang et al. [35] proposed a novel
framework, adversarial cross-modal embedding (ACME), in which three parts are added
on top of JE: (1) a triplet loss with hard sampling to reduce the high variance in images,
(2) an adversarial loss to align the feature distribution between modalities, (3) a cross-
modal translation consistency loss to reduce the information loss. It achieved state-of-
the-art (SOTA) performance on the RecipelM dataset in 2019. Afterwards, Wang et al.
[34] proposed a semantic-consistent and attention-based networks (SCAN), in which a
semantic consistency loss was introduced to reduce the intra-class variance of food data
representations along with a self-attention applied on LSTM to learn discriminative recipe
features without images. It then outperformed previous mentioned models.

Besides above efforts on learning objectives, other works on better unimodal represen-
tation before cross-modal learning were also investigated at the same time. Cross-modal
hierarchical embeddings for food domain (CHEF) proposed by Pham et al. [21] used a
tree-structured LSTM as the text encoder to learn the complex functional and hierarchi-
cal relationships between images and text. CHEF can identify the main ingredients and
cooking actions in the recipe without explicit supervision. Sugiyama and Yanai [32] argued
that photos with different serving styles and different plates can be associated with the

12



Cross-modal retrieval on RecipelM Dataset
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Figure 4: Recall@1 on 1K test set of recent studies on the RecipelM dataset.

same recipe. They proposed a recipe disentangled embedding GAN [4] (RDE-GAN), in
which images are disentangled into a recipe image embedding and a dish shape embedding.
In this manner, the image embedding only contains recipe-related information. Xie et al.
[40] proposed a multi-modal semantic enhanced joint embedding approach (MSJE), in
which term-frequency and inverse document frequency (TF-IDF) features were extracted
from the title, ingredients, and instructions to capture the significant key terms. More-
over, they concatenated the frequency feature to the recipe sequence feature learned from
LSTM and TF-IDF enhanced category semantics were incorporated to the image feature
learned from ResNet-50. These methods all achieved competitive results shown in Figure

E1

After Transformer [33] architecture has proved to be a efficient technique in the NLP field,
studies of using it as the text encoder have been investigated extensively. The original
authors who released the RecipelM dataset proposed a hierarchical recipe Transformer
(H-Transformer) 28] with a self-supervised loss to make a full use of the recipe-only data.
It achieved SOTA results in 2021 with a simplified method compared to all aforementioned
methods. Its ablation study also showed that utilizing vision Transformer (ViT) [11] as
the image encoder can produce a better result than ResNet-50.

Furthermore, in this competitive field there are several novel works on the RecipelM
dataset published last year. Shukor et al. [31] proposed a new retrieval framework, Trans-
former decoders with multimodal regularization for cross-modal food retrieval (T-Food),
which exploited the interaction between modalities along with a novel regularization.
Plus, it used a VLP model, CLIP [25], as the image encoder. Papadopoulos et al. [20]
proposed to represent cooking recipes and food images as cooking programs in order to
capture cooking semantics and sequential relationships between actions. Specifically, be-
sides a text and image encoder, the model also jointly generated programs as sequence of
commands using a program decoder conditioned on the image and text features. Xie et al.
[39] argued that cooking recipes contain the descriptions of numerous events while such
event sequence information is lacking in the image, thereby it is a challenging to learn
the fine-grained alignment. They proposed a novel framework, event-oriented modality
alignment (EOMA), in which the significance of each event was captured and combined
with the identified key event elements to learn the discriminative text embeddings for

13



recipes and the image embeddings were enhanced by the shared event tags. EOMA is the
current SOTA model on the cross-modal retrieval task using the RecipelM dataset.

In conclusion, all aforementioned methods are dual-stream approaches. As we can see in
Figure 4] the performance of cross-modal retrieval task on the RecipelM dataset has been
improved a lot since JE was introduced. However, the single-stream approach has never
been investigated on the RecipelM dataset, to the best of our knowledge.

2.3 Vision-Language Pre-training

In this section, two VLP models, Object-Semantics Aligned Pre-training (Oscar) for
vision-language tasks [14] and Vision-and-Language Transformer (ViLT) without con-
volution or region supervision [10], are introduced in details along with two commonly
used pre-training objectives.

2.3.1 Pre-training Objectives

Oscar and ViLT both are single-stream approaches, in which text features and image
features are concatenated together to feed into the encoder and the output embedding
is the unified embedding which fuses information from the text and image modality. In
this approach, masked language modeling (MLM) and image text matching (ITM) are
the commonly used objectives.

Masked Language Modeling This is similar to the masked language modeling in
BERT 3] that the masked tokens in text can be recovered from its surroundings. In
cross-modal setting, the masked text tokens also leverage the information in the image
context. The masked text tokens are randomly chosen with the probability of 0.15. The
objective is to predict the masked text tokens t,,,skeq from its contextualized text tokens ¢
also plus all image features tokens v by minimizing the negative log-likelihood. The MLM
loss is as follow:

Lyipv = — B0y 108, (tnaskealt, v) (1)

Image Text Matching The output of the special token [CLS] contains the fused vision-
language information. The fused embedding is projected through a single linear layer over
binary class considered as a classifier f(-) to predict whether the input text ¢ and image
v is a pair (y=1) or not (y=0). The paired image is randomly replaced by another sample
from the dataset with the probability of 0.5. The ITM loss is defined as:

Lirv = —Eq ) ]'ng(y|f(t7 v)) (2)

2.3.2 Oscar

Oscar was released in July, 2020 by Microsoft Corporation. It was pre-trained on a huge
public corpus consisting of 6.5 million image-text pairs and fine-tuned on six vision-
language downstream tasks including image-text retrieval, image captioning, novel object

14
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Figure 5: Illustration of Oscar from [14]. The input triple consists of word tokens w,
object tags g, and region features v. The input can be understood from two perspectives:
modality view and dictionary view.

captioning (NoCaps), visual question answering (VQA), visual reasoning and composi-
tional question answering (GQA ), and natural language visual reasoning for real (NLVR2).
The statistics of its pre-training corpus are shown in Table [T Unlike other VLP models
which used image-text pairs as inputs, the input of Oscar is a text-tag-image triple. The
authors proposed that object tags detected in images can be used as anchor points to
ease the learning of semantic alignments. The idea was motivated by the observation that
the prominent objects in an image can be accurately detected and also mentioned in the
paired text.

Figure |5| illustrates the overview of Oscar. The input triple consists of word tokens w,
object tags q, and region features v, where w represents the sequence of word embed-
dings of the text, q is the word embeddings of object tags detected from the image, and v
represents the set of region vectors of the image. Specifically, the object tags g and region
features v are generated by Faster R-CNN [26]. Each region extracted from an image
denotes as (v’, z), where v/ € R is a P-dimensional vector and z is the R-dimensional
region position vector (i.e., R =4 or 6). v’ and z are concatenated to form the position-

Data Source # images # captions Oscar ViLT
COCOI16] 113K 567K v v
Flicker30k [42] (train) 29K 145K v

SBU [19] 867K 867K v v
VQA [5] (train) 83K 444K v

GQA [9] (bal-train) 79K 1026K v

VG-QA [12] 48K 484K v

VG [12] 108K 5.41M v
GCC [29] 3.01M 3.01M v v
Total (image/text) 4.1M/6.5M  4.1M/9.8M

Table 1: Statistics of pre-training corpus in Oscar and ViLT.
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sensitive region feature vector and then projected through a linear layer to have the same
dimension as word embeddings. The word embeddings of w and q are initialized using
pre-trained BERT. From Figure [5| we can see that the input can be understood from
two perspectives: (1) dictionary view: w and g share the linguistic semantic space while
v lies in the visual semantic space; (2) modality view: g and v are extracted from the
image modality and w is considered as text modality. In addition, the masked token
loss (MLM loss) is used for dictionary view where word tokens in (w, q) are randomly
replaced with the probability of 0.15. The contrastive loss (ITM loss) is used for modal-
ity view where (g, v) is replaced by a different tag sequence and corresponding image
sampled from the corpus with the probability of 0.5. The full pre-training objectives of
Oscar is Lyre—training = Lymrv + Lirar. Oscar is initialized with parameters @pprr and
the position-sensitive region features are linear projected via matrix W. Therefore, the
trainable parameters are @ = {@prrr, W}. In fine-tuning phase, image-text retrieval task
is considered as a binary classification problem, in which the final fused embedding [CLS]
is used to predict whether the given pair is a true pair or not. The probability score is
used to rank the image-text pairs given a query.

2.3.3 VILT

ViLT was introduced by Kim et al. in 2021. They argued that current VLP models heavily
rely on the image feature extraction process which requires much more computation than
the multimodal interaction steps; and the predefined visual vocabulary limited the upper
bound of the expressive power of the visual encoder. Therefore, they proposed a minimal
VLP model without convolution or region supervision which was up to tens of times faster
than other VLP models while also can have competitive performance on the downstream
tasks. Figure [0 illustrates ViLT model overview. It was pre-trained on 9.8 million image-
text pairs and the statistics of its pre-training corpus are shown in Table [T}

In ViLT, the visual features are extracted from a pre-trained ViT. Specifically, images
are sliced into patches and transformed to patch embeddings, which drastically simplifies
the visual embedding step to the level of textual embedding. The patch size of 32 is used
in VIiLT, in such manner a 224 x 224 image is sliced into (224/32) x (224/32) = 7x 7
patches and so the visual features consist of 49 patch tokens plus one class token. Instead
of initializing from pre-trained BERT, the text features are learned from scratch because
they argued the pre-trained model for single modality does not guarantee performance

Image Text Matching Masked Language Modeling ‘Word Patch Alignment

i e el ot
____________
T o)
| [ | | | [ Y ] [ |

Extra leamable [class] embedding

\4 odal-type embedding

Transformer Encoder

(
e -o

Word bmbeddmg Lmear Projection of Flattened Patches

b e s i o e ey g B “, 7|

Figure 6: [lustration of ViLT from [10].
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gain for vision and language tasks. Moreover, the interaction transformer weights are
initialized with parameters from pre-trained ViT. They stated that such initialization
can exploit the power of the cross-modal interaction layers to process visual features.
ViLT also uses the two commonly used pre-training objectives described above but it
adds two components to enhance the cross-modal learning. The first component is word
patch alignment (WPA) which computes the alignment score between textual subset and
visual subset using the inexact proximal point method for optimal transports (IPOT'). The
approximate wasserstein distance is mutltiplied by 0.1 and added to the I'TM loss. The
second component is whole word masking which means all consecutive subword tokens of
one word will be masked. The authors argued that if not all tokens of a whole word are
masked, the model might only rely on the nearby unmasked subword tokens to predict
the masked subword token rather than using the information from image context. In
fine-tuning phase, ViLT processes the image-text retrieval task as a binary classification.
Specifically, 15 negative texts were randomly sampled from the corpus and the model was
fine-tuned with cross-entropy loss that maximized the scores on positive pairs. In addition,
the similarity score head used during fine-tuning is initialized from the pre-trained I'TM

head of ViLT.
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3 Data

RecipelM [27] is a large-scale corpus of recipe data which contains over 1 million cooking
recipes and 800 thousands food images. The data were originally scraped from over 24
popular cooking websites. Specifically, relevant text was extracted from the raw HTML
and the linked images were downloaded from the same page. Each recipe consists of 3
components which are the title, a list of ingredients used for the dish, and a sequence
of instructions about how to prepare the dish. The recipe text is provided as free text.
The images are provided as RGB in JPEG format. The dataset [] was partitioned into
training, validation, and test sets, and its statistics are shown in Table 2} 70% of the data
is training set and the rest is split equally into validation and test set.

Partition # recipe  # images

Training 720,639 619,508
Validation 155,036 133,860
Test 154,045 134,338

Total 1,029,720 887,706

Table 2: Number of samples in training, validation and test sets.

3.1 Preliminary Analysis

According to the original paper [27], the dataset has approximately 0.4% duplicate recipes
and 2% duplicate images. The exact duplicates or recipes that shared the same image are
removed. In addition, due to the nature of the data sources, not all recipes in the dataset
have images. There are approximate 34% recipes have associated images, which means
there are over 340K image-text pairs. The statistics of the recipes with images are shown
in Table |3] Since models for cross-modal learning are trained on image-text pairs, that
portion of the dataset will be used in this work.

Partition  # recipe # images

Training 238,408 471,475
Validation 51,119 100,808
Test 51,304 100,297

Total 340,831 672,580

Table 3: Number of recipes have images and number of images per partition.

Figure [7| (a) and (b) display the distribution of number of ingredients and instructions
per recipe, respectively. On average, a recipe comprises 9 ingredients and 10 instructions.
In addition, the majority of recipes just have one associated image that illustrates the
final look of the dish. From Figure [7] (c), we can see that there are about 290K recipes
associated with one single image while a few recipes have more than one associated image
that demonstrates each cooking step in the instructions.

4http://im2recipe.csail.mit.edu/dataset /download/

18



(a) Ingredients Distribution (b) Instructions Distribution (c) Images Distribution
300000

100000 80000

250000
70000

80000

60000 200000
0000 50000

150000
40000

40000 30000 100000
20000

20000 50000

i 10000 . II
Ny [— . [T N | P
80 0 5

0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 10 15 20 25 30
Number of ingredients Number of instructions Number of images

Number of recipes

Figure 7: Distribution of the number of ingredients, instructions, and images per recipe.

Furthermore, in order to analyze the text length of cooking recipes we also count the
number of words including punctuation in each component. The statistics are shown
in Table [l On average, in a recipe: the title component has 4 words; the ingredient
component has 53 words; the instruction component has 133 words. In total, the average
number of words in a recipe is 191 words. As we can see in Table [ there are also some
outliers which contain more than 1K words. Such samples usually include sub-recipes for
the dishes.

Component Median Mean Min Max

Title 4 4 1 36
Ingredient 58 53 1 766
Instruction 108 133 1 3016
Total 163 191 3 3260

Table 4: Statistics for the number of words per recipe component.
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4 Methods

In this section, we first present our proposed method for extracting ingredients and cor-
responding cooking methods from recipes. And then, we explain how to use the extracted
information as inputs to retrain H-Transformer [28]. Then, we explain how to fine-tune the
two VLP models, Oscar [14] and ViLT [10], using the extracted information on the cross-
modal retrieval task. At last, we present the recipe vision-language (RecipeVL) model
following the architectures of the two VLP models.

4.1 Information Extraction

As we discussed in the introduction, cooking recipes are long text which normally contain
more semantic information than food images. Therefore, in order to narrow the semantic
gap between two modalities, we propose to extract key information from recipes. On the
other hand, it is also for the purpose of using pre-trained weights of VLP models to fine-
tune on the RecipelM dataset. Specifically, food ingredients and corresponding cooking
methods are extracted from the instruction component using named entity recognition
(NER) and dependency parsing techniques. Both techniques are implemented in spaCy E]

The instruction component of a recipe is a sequence of sentences describing the steps about
how to prepare a dish as shown in Figure [0] There are two reasons we want to extract
food ingredients and cooking methods as key information of a recipe: 1) the ingredients
are the main objects can be seen in the food images. In the RecipelM, the paired images
are usually the final look of the dish. 2) cooking methods applied to the ingredients can
alter the their appearances in the finished dish. For instance, the final appearances of
scrambled eggs and fried eggs are different.

4.1.1 Named Entity Recognition

We train a NER model to identify ‘food’ entities in the instructions by following the
notebook |shared by Isaac Aderogba on DeepNote. It used the food data from the USDA’s
Branded Food’s dataset[’] which contains 42,018 food names after filtering out names more
than 3 words. Since the distribution of one-worded, two-worded, and three-worded food
entities is not even, the dataset is further filtered to contain 45% for 1-worded foods, 30%
for two-worded foods, and 25% for three-worded foods, which results in 3,311 food entities
in total. The training data consists of 501 food entities [f| from the filtered results plus 436
randomly chosen sample text from nltk’s article corpus [} The remaining food entities [[7]
is the test data used for evaluation. After training, we obtain a food NER with 96.23%
accuracy, which is the average over the three types food entities. The NER can identify
commonly used cooking tools, such as pan or skillet, and it also can identify some states
of ingredients, such as brown or tender.

Shttps://spacy.io/
Shttps://deepnote.com/Qisaac-aderogba/Spacy-Food-Entities-2cc2d19¢-c3ac-4321-8853-0bcf2ef565b3
"https://fdc.nal.usda.gov/download-datasets

80ne-worded, two-worded, three-worded foods equally have 167 entities respectively.
9https://www.nltk.org/api/nltk.corpus

101036 for one-worded foods, 268 for two-worded foods, and 245 for three-worded foods.
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In addition, we also use the extracted ingredients from the ingredient component to com-
pile a pattern-ruled ingredient NER. This ingredient extraction procedure (e.g. ‘1/2 tea-
spoons pepper’ — ‘pepper’) was done in the first work of Salvador’s [27] with 99.5%
accuracy. Finally, we apply the two food and ingredient NERs to each sentence in the
instructions so words tagged FOOD or ING are extracted as food ingredient entities. As
shown in the Figure (a), ‘oil’, ‘iron skillet’, ‘vegetables’, and ‘tender’ are extracted.

cook until the vegetables Foob are tender FoobD and begin to brown.

heat 1 tablespoon oil in a cast- iron skillet Foob over medium-high heat.

(a) Ingredient entity recognition visualization

advcl
mark conj
cc
* det | ‘ nsubj acomp * I prep * I pobj ‘
cook until the vegetables are tender and begin to brown.
VERB ADP DET NOUN AUX ADJ CCONJ VERB ADP PROPN
pobj I
nmod I det
* nummod I *compound " I prep * ‘compound I *compound I
heat 1 tablespoon oil in a cast- iron skillet.
NOUN NUM NOUN NOUN ADP DET NOUN NOUN NOUN

(b) Dependency parse visualization

Figure 8: Visualization of (a) named entity recognition and (b) dependency parsing. The
example is the first and eighth sentence in the instructions shown in Figure @

4.1.2 Dependency Parsing

Since our data is only related to recipes and in order to improve the extraction accuracy,
we first manually create a cooking verb list consisting of 154 verbs shown in Table
that are widely used in the food domain. Then, we apply spaCy’s dependency parser []
to each sentence in the instructions. As we observe, the cooking methods are usually the
root word in the sentence or have a compound or modifier relationship with labelled food
ingredient entities. Hence, in each sentence of the instructions if the word’s dependency
role is root, or compound, or modifier, and meanwhile its lemmatization is also in the
cooking verb list then the word is extracted as cooking method for the corresponding
entity. As shown in Figure (b), although ‘heat’” was tagged as noun but it is the modifier
for ‘oil” and also in the defined verb list, so extracted as cooking method; ‘cook’ is the
root word and in the list, so extracted. The extracted information for the two sentences
are ‘heat oil iron skillet” and ‘cook vegetables tender’.

Our proposed information extraction procedure is a rule-based approach because there
is no annotations for cooking methods or food ingredients in the RecipelM dataset. The

1 The spaCy version we use is 2.3.9 and the parser is a variant of the non-monotonic arc-eager transition-
system described by Honnibal el at. [8].
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Title: potato and smoked sausage hash

Ingredients:

2 tablespoons canola oil, divided,

4 whole medium potatoes, par-baked*, peeled, and cubed,

172 i It, -
12 t:::gggﬁz ;z:sli):rmg sat Title: potato and smoked sausage hash
. ? Lo . . gredi ing :
1/3 ounces, weight smoked sausage, sliced into 1-inch pieces, Ln ted'lle.n ks ar;("lucct)okm methods
1 whole green bell pepper, seeded and chopped into 1 inch pieces, g: Olt Ton siifiet It b
1 whole red bell pepper, seeded and chopped into 1-inch pieces, & FO atoes, seasoning sall, peppers, brown
1 whole small red onion, chopped into 1-inch pieces orus
Instructions: brown potatoes brown crust
heat 1 tablespoon o1/ in a cast-iron skillet over medium-high heat. push pota?oesbbrovad crisp smoked
add the , season with , and allow them to get a > SaUSAge MCe DIOWNING Sausage
on one side before stirring. . . heat remaining oil §k111et‘ .
continue to brown the until they have on at least two sides. Information Extraction addlf P pezgle d (t)m?in striring often
when the are and , push them to one side of the pan and add the cook vegetables tender. . .
getting 2 on the as well. add cooked peppers onions cast iron skillet
meanwhile, heat in another over medium-high heat. potatoes saspage foss
add the and stirring often. taste seasoning salt pepper
cook until the are ’ and beg{n to brow. serve preferably ketchup hot sauce
add the and to the with the and
and toss to combine.
taste for and add more if needed.
serve promptly, with and/or on the side.

Figure 9: Information extraction from recipe instructions. The text in red color are cooking
methods and the text in yellow color are ingredient entities.

example in Figure [9] demonstrates after extracting the recipe can be represented using its
title and ingredients with corresponding cooking methods. The recipe title is considered
as the shared mutual information between text and image modality so it is kept . The
example recipe originally consists of 285 words including punctuation, after extracting the
recipe only contains 57 words but also keeps the key information about how to make the
dish. It is worth to mention the order of instructions is also kept since some instructions
might have sequential relations.

4.2 H-Transformer

We replicated Hierarchical Transformer (H-Transformer) [28] with the released code [?]
In order to explore the expressive power of the extracted information from recipes and
also for later comparison to VLP models, we retrain H-Transformer with the extracted
information. The model overview is shown in Figure [I0] It is a dual-stream approach
that recipe and image embeddings are learned separately from a text and image encoder,
and the training process is end-to-end. In this approach, recipe and image embeddings
are projected into the common semantic space and the parameters of two encoders are
optimized through a similarity objective.

4.2.1 Recipe Encoder

A recipe zg has 3 components: title ry, ingredients 7,4, and instructions r;,s. In terms
of representation, recipe title is a single sentence so ry = sy = (W, ...,wk) while both

ingredients and instructions are lists of sentences so r;,, = (s?ng, ...,sﬁng) and 1, =
(82 ., ...,s™ ). In H-Transformer, title ry; is encoded with a Transformer TR so ey =

TR(ry) is the average of the outputs of the Transformer at the last layer. Sentences
in ingredients and instructions are first encoded with a T R;—; to obtain a sentence-

12https: //github.com/amzn /image-to-recipe-transformers
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Figure 10: Illustration of H-Transformer using the extracted information. The image-text
pair example is from the RecipelM dataset.

level embedding for each sentence in ingredients and instructions respectively, and then
those embeddings are encoded with a second T'R;—, to obtain a single embedding for
ingredients and instructions respectively. This is so-called Hierarchical Transformer HT R,
in which each level T'R has the same architecture (2 layers, 4 heads, D=512) but different
parameters. Hence, e;,, = HTR(rin,) and €;,s = HTR(r;,s). The recipe embedding
er = FC(concat(ey, €ing, €ins)) With D = 1024.

In our case, we use recipe title r;; and the extracted information rj,g4c, (ingredients
along with corresponding cooking methods) as input as shown in Figure [10|so that recipe
embedding er = FC(concat(eu, €ing+em)) wWith