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Abstract

Transfer Learning has emerged as a promising technique in machine learning, allowing
pre-trained models to be applied to new datasets to improve their general capabilities.
In recent years, there has been a growing interest in applying transfer learning to time-
series data, especially in Time-Series forecasting (TSF) using deep learning methods
such as Convolutional Neural Networks (CNNs), transformers and Long Short-Term
Memory (LSTM) networks. However, N-BEATS (Neural basis expansion analysis for
interpretable TSF) has not yet been tested for transfer learning, despite its superiority
over existing TSF models.

This paper performs an in-depth analysis of transfer learning in TSF by utilizing
N-BEATS and RNN deep learning models as well two important classical TSF models
Prophet and AutoArima. In this thesis, various TSF models, including Prophet, Au-
toArima, and transfer learning using RNN and N-BEATS, are extensively investigated.
Transfer learning, especially the model-based approach, emerges as a promising tech-
nique for enhancing forecasting accuracy. Prophet showcases robust performance, while
N-BEATS holds potential with hyperparameter tuning. The findings strongly recom-
mend adopting model-based transfer learning, highlighting its potential across various
scenarios, including zero-shot learning. The research also underscores future directions,
like multivariate forecasting . Transfer learning emerges as a dynamic tool for precise
and adaptable time-series forecasts, holding significant implications for practical imple-
mentations, including the feasibility of zero-shot learning for N-BEATS and RNN
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1 Introduction

Time-series analysis and forecasting (TSF) has become increasingly important in various
industrial applications, ranging from financial market predictions to energy consumption
estimation. This is due to their ability to support decision making and enhance efficiency.
With the growing amount of data being generated, there is a pressing need for developing
highly accurate and robust models for TSF.
Forecasting future trends and patterns in time-series data can provide valuable insights
for businesses to make strategic decisions, optimize their resources. For example, in
the field of energy management, accurate forecasting of energy demand can help to
optimize energy usage and reduce costs. In the field of finance, accurate forecasting of
stock prices can help investors make informed decisions about buying and selling stocks.

However, accurate forecasting of time-series data is often challenging due to the
complexity and uncertainty of the underlying processes. Traditional forecasting methods
often rely on statistical models that assume stationary and linear relationships between
the variables. Time-series data is often non-stationary, meaning that the statistical prop-
erties of the data change over time. Moreover, time-series data is often subject to various
external factors that can cause abrupt changes in the data, such as natural disasters,
economic events, and social trends. Furthermore, the data generated for time-series is
often very erratic. It may contain a lot of noise. Common time-series data type is health
data generated by a fitness device, such devices have a tendency to capture data which
is noisy and therefore is very ambiguous. For example a fitness watch can capture data
when the user is not moving and classify it as an activity.
One of the key challenges in TSF is limited and noisy data. In many cases, historical data
is not sufficient to capture the underlying patterns and trends in the time-series, leading
to inaccurate and unreliable forecasts. Moreover, time-series data is often subject to
various external factors such as seasonality, trends, and abrupt changes, making it even
more difficult to model and predict. Time-series data can be classified depending on
the dimensionality of the time-series samples into two types, univariate and multivaraite
data . Over the years, many models have been proposed and employed to tackle both
univariate and multivaraite time-series problems with significant improvements in pre-
diction accuracy like the classical ARIMA , AutoArima [8] and more recently Facebook’s
Prophet [28]. Classical models are usually only used to forecast univariate time-series
data. Prophet which is state-of-the-art for classical models can handle small amount of
data as well as a huge dataset without using a lot of computation time.

Whereas recently deep learning techniques such as Recurrent Neural Networks
(RNNs), Long Short-Term Memory (LSTM) [12] networks, and Transformers have
demonstrated their capability to capture complex temporal patterns and dependencies
present in time-series data.
Deep learning models can handle multivariate data this is at an expense of processing
time and requiring a lot of data to learn the complexity of the problem. Even the recent
state-of-the-art deep learning model N-BEATS [20] requires a lot of data to get good
predictions. This can be an issue for applications industry as there can be limited data
available due to a variety of reasons.This can be addressed by a technique commonly
used in machine learning known as Transfer Learning.
Transfer learning addresses these challenges by pre-training a flexible model on a large
dataset, which can then be applied to a typically smaller dataset with minimal or no
additional training [33] Transfer learning is a machine learning technique that lever-
ages knowledge learned from one task to improve performance on another related task.
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As such it an effective approach that leverages pre-trained models to solve emerging
problems with limited data or limited computational resources. It allows fine-tuning of
a model on a target task, effectively reducing the deployment time and computational
costs. This can be particularly beneficial in TSF, as obtaining large amounts of labeled
data may not always be feasible It can help to overcome the limitations of limited and
noisy data by leveraging knowledge learned from other related time-series datasets.

Transfer learning in TSF has already shown promising results in various applications.
For example, in the field of energy management, transfer learning has been used to
improve the accuracy of load forecasting for different buildings by leveraging knowledge
learned from other similar buildings [6]. Similarly, in the field of finance, transfer learning
has been used to improve the accuracy of stock price forecasting by leveraging knowledge
learned from other related stocks [22].

Despite the potential benefits of transfer learning in TSF, there remain several chal-
lenges that need to be addressed. One of the main challenges is the selection of the
appropriate source time-series for transfer learning. The source time-series should be
similar enough to the target time-series to be useful, but not too similar to avoid over-
fitting. Another challenge is the design of appropriate transfer learning algorithms that
can effectively leverage the knowledge from the source time-series to improve the fore-
casting performance on the target time-series. Another essential factor to consider when
implementing transfer learning in TSF is having the proper computational infrastructure,
such as GPUs, when working with deep learning models. Although, utilizing pre-trained
models can reduce the need for such computational resources, making forecasting tasks
more manageable for organizations with limited computational resources .

In this thesis, the aim is to explore the potential of different methods of transfer
learning in time-series analysis and forecasting by investigating various deep learning
models such N-BEATS and RNN-LSTM and their capabilities to adapt to the given
data. The challenges and opportunities associated with applying transfer learning to
time-series data will be discussed, and a comparison of different models in terms of
their adaptability will be made. Ultimately,the research aims to provide a comprehensive
understanding of the benefits and limitations of transfer learning in the context of TSF
and contribute to the advancement of this field in industrial applications.

The main goal of this thesis is to investigate the effectiveness of transfer learning in
TSF using the state-of-the-art models and investigate if that can improve the forecasting
performance on specific target time-series. In particular, the following research questions
will be addressed:

• What are the best time-series forecasting models?

• Is transfer learning possible for time-series data?

• What technique of transfer learning should be used for further ease of
time-series forecasting ?

• Does transfer learning give a better performance on time-series forecasting
than classical approaches?

This thesis addresses a series of research questions centered around TSF and transfer
learning. Leveraging real-world time-series datasets, specifically the M5 dataset for uni-
variate time-series, the research embarks on a comprehensive set of experiments. The
core objective is twofold: firstly, to pinpoint the optimal forecasting model among the
contenders - Prophet, AutoARIMA, N-BEATS, and RNN-LSTM - within the confines
of the M5 dataset. A comparison of their performances utilizing established evaluation
metrics such as MAPE, SMAPE, and R2.

7



Moreover, the investigation encompasses an exploration of two distinct transfer learn-
ing methodologies tailored for time-series data: zero-shot learning and model-based
learning using deep learning models, specifically RNN and N-BEATS, as they serve as
base for investigating the efficiency of these transfer learning techniques. The goal of
the research is to get the best forecasting model for univariate time-series but also to
find transfer learning methodology tailored for time-series data.

To address the research questions effectively, the research designs to implement two
transfer learning techniques on deep learning models. It delves into the novel concept
of zero-shot learning, evaluating its applicability on both N-BEATS and RNN models.
Concurrently, it also uses a distinct approach to model-based transfer learning. These
techniques are systematically evaluated against classical models, aiming to check if they
outperform classical methodologies in TSF. Through this investigation, the research
endeavors to pave the way for informed decisions and promising avenues in the fields of
TSF and transfer learning.

The rest of the paper is organized as follows: In Section 2, related research on TSF
and transfer learning in TSF is discussed. Section 3, provides background information
on the different classical and deep learning algorithms used in the experiments, as well
as the definitions of the measures used to evaluate the performance of the algorithms.
Section 4 describes the methodology of the experiments, including the setup and training
process, it also provides information on the M5 dataset and analysis, and preprocessing.
Section 5 describes the different experiments using Prophet, AutoArima, RNN and N-
BEATS, RNN and N-BEATS in Zero-shot transfer learning and m o01del-based transfer
leaning. In Section 6, the results will be discussed, answering our research questions. In
Section 7, the conclusions are given Finally in ??, future works are discussed. Section 8
lists the contribution done.
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2 Related research

In recent years, deep learning models have been widely used for TSF applications. How-
ever, the use of these models is challenging when dealing with irregularly sampled time-
series data and hierarchical structures within the data. This has led to the development
of novel deep learning architectures that can handle these challenges.

One such architecture, introduced by Lim et al.[17] , makes use of dilated convolu-
tions in a convolutional neural network (CNN) to reduce computational complexity. The
paper uses LSTM to overcome the exploding and vanishing gradients problem together
with an Attention mechanism model to aggregate temporal features using dynamically
generated weights, enabling the network to focus on significant time steps in the past,
even if they are very far back in the look-back window.

In [29], Torres et al. investigated a diverse set of deep neural network architectures for
TSF. Their research not only covered established architectures like Bidirectional RNNs
(BRNNs) and Deep RNNs (DRNNs) but also explored Convolutional Neural Networks
(CNNs) for TSF. Of particular significance was the examination of RNN, showcasing its
capacity to capture temporal dependencies with its context layer. This in-depth analysis
offers valuable insights into selecting suitable deep learning models for various TSF
applications. Notably, they emphasized the effectiveness of Recurrent Neural Networks
(RNNs) in this domain, with LSTM and GRU variants standing out due to their ability
to address gradient-related issues and maintain long-term memory efficiently.

N-BEATS [20] by N. Oreshkin et al. is a deep learning model designed for TSF
, renowned for its state-of-the-art nature and unique features. By using basis func-
tions to capture meaningful patterns in time-series data, such as trend and seasonality,
N-BEATS enables interpretable insights into the driving factors behind forecasts. The
model’s adaptability and flexibility, achieved through easy customization of basis func-
tions, make it effective for various time-series scenarios, including those with long-term
dependencies and irregular patterns. In comparison to RNN-based models, N-BEATS
offers advantages such as a fully feedforward architecture, interpretability, scalability,
and superior forecasting accuracy. N-BEATS outperforms classical methods like ARIMA
and ETS in univariate time-series forecasting tasks. N-BEATS demonstrates superior
performance on various benchmark datasets across different forecasting horizons. The
model’s interpretable architecture and flexibility make it a strong contender for accurate
and efficient time-series forecasting.. Cawood et al. [4] also confirm N-BEATS to be a
state-of-the-art model by using it as a baseline to compare their study on. The primary
objective of their study was to compare ensemble methods with two forecasting methods,
ES-RNN and N-BEATS. The goal was to assess whether ensembling could improve the
accuracy of contemporary hybrid models, and to identify a leading ensembling technique
that could serve as the state-of-the-art method for future research endeavors. In their
study [32], Wang et al. tackle the challenge of short-term macroeconomic forecasting by
introducing EcoForecast1, an innovative and interpretable data-driven approach. Built
upon the foundation of N-BEATS, a state-of-the-art model, EcoForecast1 offers a uni-
fied framework for macroeconomic prediction, demonstrating superior performance and
interpretability compared to traditional statistics-based and deep learning-based meth-
ods. EcoForecast1 stands out for its transparent and understandable forecasting process,
making it a groundbreaking solution in the field. The integration of N-BEATS and inter-
pretability opens up avenues for accurate and meaningful macroeconomic predictions,
benefiting analysts, decision-makers, and researchers alike While transfer learning has
seen significant success in computer vision, recent advancements have spurred research
on applying transfer learning to time series data. This approach holds promise for en-

9



hancing learning in diverse time series domains, including those based on sensor values.
To explore the state of the field, the authors of this paper Weber et al. [33] conduct
a systematic mapping study, thoroughly analyzing 223 relevant publications on transfer
learning with time series data. The findings of the study suggest that the most preva-
lent method for transfer learning with time series data is the model-based approach,
with Convolutional Neural Networks (CNN) and Recurrent Neural Networks with Long
Short-Term Memory (RNN-LSTM) being the preferred models.

Rui Ye et al. [35] investigate deep neural networks, including RNNs and CNNs, for
TSF. The paper specifically explores the use of the LSTM model and the GRU model,
as well as bidirectional RNNs (BRNNs) and deep RNNs (DRNNs).

They find that DTr-CNN a deep transfer learning method using a CNN architecture
is effective at leveraging useful knowledge to improve time-series prediction, particularly
when labeled data is limited. The research makes use of the model-based approach for
transfer learning from one dataset to another. He et al [10] propose a novel approach
to enhance the accuracy of TSF using deep learning models in the context of short
time-series. They address the issue of poor performance of deep learning models when
applied to short time-series data. The proposed solution involves transfer learning, which
utilizes knowledge learned from two source datasets for the prediction task in the target
dataset. The authors evaluate the effectiveness of their approach on financial time-
series extracted from stock markets. The proposed training strategy involves using two
source datasets and introducing additional hidden layers to the network architecture. The
authors experiment with financial time-series extracted from stock markets to evaluate
the effectiveness of their approach. The results show that transfer learning has a positive
impact on financial TSF. Using more source datasets for transfer learning outperforms
using a single source dataset. The proposed strategy yields good results in the majority
of cases, indicating its efficacy.

They also propose a similarity-based approach using Dynamic Time Warping (DTW)
to select source and target datasets for training the deep learning models. They find
that transfer learning with similar source datasets, i.e., those with smaller DTW dis-
tance, from the same industry performs better than selecting source datasets from
different industries. This suggests that knowledge from related financial data can be
effectively transferred to improve forecasting accuracy. Their approach of transfer learn-
ing positively impacts financial TSF. Using more source datasets for transfer learning
outperforms using a single source dataset. This research also makes use of the model
based approach for transfer learning. Although the study is conducted with only two
source datasets, the authors suggest that the strategy in their paper [10] can be ex-
tended to accommodate more datasets by incorporating additional hidden layers in the
neural network architecture.
The papers were helpful to get significant insights. Notably, two key deep learning mod-
els, N-BEATS and RNN-LSTM, emerged as central models due to their established
efficacy in time-series forecasting. Moreover, the decision to incorporate model-based
transfer learning stemmed from its widespread adoption as one of the most utilized and
promising methods in the field. This approach was guided by the extensive application
of model-based transfer learning, further reinforcing the foundation for the experimen-
tation process. These choices, grounded in the well-established success of N-BEATS,
RNN-LSTM, and model-based transfer learning, for the research exploration into ad-
vanced time-series forecasting techniques
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3 Fundamentals

3.1 Time-series

A time-series is a collection of well-defined data item observations obtained through
repeated measurements over time, often exhibiting trends or seasonality. Time-series
data encompasses various domains such as sales, weather, and finance, among others.
The use of this data for predicting future events has been a subject of interest in recent
years. Forecasting involves analyzing past observations to identify patterns and trends,
enabling accurate predictions about future points in the series. Time-series analysis [9]
and forecasting has significant implications for decision-making, risk management, and
planning. It can be applied to predict heatwaves based on temperature data, anticipate
electricity consumption, and even forecast events like volcanic eruptions or landslides
using time-series data. This data can classified into two types, univariate and multivari-
ate. In univariate time-series, there is only one variable (e.g., temperature) that changes
over time, and each data point represents a single value at a specific time.

On the other hand, in multivariate time-series, there are multiple variables (e.g., x, y,
z accelerations) that change simultaneously over time. Each data point in a multivariate
time-series consists of values for all the variables at a particular time.

3.2 Models in Time-Series Forecasting

In TSF, different classical models are commonly employed. AutoRegressive [36] models
utilize past values of the series to predict future values, while Moving Average [31] mod-
els adjust forecasts based on the error term from previous predictions. AutoRegressive
Integrated Moving Average (ARIMA) [2] models combine AR and MA models with dif-
ferentiation to handle non-stationary time-series. The I component involves differencing
the time-series to make it stationary. Stationarity implies that the statistical proper-
ties of the series, such as mean and variance, do not change over time. Differencing
helps remove trends and seasonality, making the data suitable for modeling. Expo-
nential smoothing (ES) [7] models make predictions by considering weighted averages
of past observations. Seasonal Autoregressive Integrated Moving Average (SARIMA)
[2] models incorporate seasonality into the forecasting process. Facebook Prophet (FB
Prophet) [28], a popular open-source tool, utilizes a time-series model with customizable
parameters for trend, seasonality, and holidays.

Forecasting no longer uses just classical models many neural network models that
[37] are used , including RNNs [34], LSTM [12] networks, and Neural basis expansion
analysis for interpretable time-series (N-BEATS), these models use neural networks to
model time-series data. Transformer models, originally developed for natural language
processing, have also been adapted for TSF by treating the series as a sequence of inputs
and capturing temporal patterns using self-attention mechanisms.

Each model type has its own strengths and weaknesses, making them more suitable
for specific types of time-series data or forecasting problems.

This research will focus on the current state-of-the-art models for TSF namely,
Prophet and AutoArima for the classical approaches and N-BEATS and RNN-LSTM for
the deep learning methods. All these models will be discussed in details in next sections.
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3.2.1 Evaluation Metrics

The papers mentioned in 2 typically utilize Mean Absolute Percentage Error (MAPE),
Symmetric Mean Absolute Percentage Error (SMAPE), and R-squared (R2) as evalua-
tion metrics due to their established effectiveness. MAPE and SMAPE offer an intuitive
representation of forecasting accuracy in percentage terms, accommodating diverse data
scales. They also exhibit robustness against outliers, ensuring reliable performance as-
sessment. R2, commonly used in regression tasks, quantifies variance predictability and
indicates how well the model fits the data. This choice ensures comprehensive evaluation
aligned with existing literature and facilitates clear interpretation and communication
to the scientific community.

Evaluating the performance of time-series models is crucial for accurate forecasting
and analysis. Several evaluation metrics are used to assess the goodness of fit and
accuracy of these models. All the research papers have predominately have used mostly
used the same evaluation metrics. In this thesis the commonly used metrics are: MAPE,
SMAPE and R2,. Each metric provides valuable insights into the model’s performance

• R2(Coefficient of Determination): When dealing with time series data, the
dependent variable is what we’re trying to figure out or predict over time. The
independent variables are the factors that could affect the changes in the depen-
dent variable. The R2 metric, which is like a measuring tool, helps us understand
how well the things we know (independent variables) explain the changes we see
(dependent variable) in the data. It is widely used to determine how well the model
fits the data.

R2 = 1− (SSR/SST ) (1)

SSR: Sum of the squared differences between the actual values observed in the
time series and the values that the model predicts. It helps measure how well our
model fits the actual data.

SST: Sum of squared differences between each individual data point in the time
series and the mean value of the whole finite time series. It gives a sense of the
total variability in the data.

Interpretation:
The R2 score ranges from −∞ to 1 with 1 indicating a perfect fit and anything
below 0 suggesting poor model fit. Higher R2 values indicate that a model is well
fit. It’s important to note that R2 does not derive from squaring a specific value
i.e, SSR ¿¿ SST it can evaluate to be a negative value. Specifically, R2 becomes
negative when the chosen model deviates from the data’s trend, resulting in a less
favorable fit.

• MAPE (Mean Absolute Percentage Error): The MAPE metric measures the
average percentage difference between predicted and actual values. It provides a
relative measure of the model’s accuracy, making it useful for comparing perfor-
mance across different datasets and time-series.

MAPE = (100/n) ∗
u∑

i=1

|(testi − predictedi)/testi| (2)

Where:
n is equal to the number of time-series observations
testi is equal to the actual value, where i ∈ {1, 2, ......u}
predictedi is equal to the respective predicated value, where i ∈ {1, 2, ......u}
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Interpretation: MAPE represents the average percentage deviation between pre-
dicted and actual values. However, MAPE has limitations when the actual values
are close to zero or contain zero values, leading to undefined or infinite values.
Therefore, caution should be exercised when interpreting MAPE results. Lower the
values of MAPE shows that the model fits the data well

• SMAPE (Symmetric Mean Absolute Percentage Error): SMAPE is a modified
version of MAPE that overcomes the asymmetry issue when the actual values are
close to zero. It provides a balanced and symmetric measure of the percentage
difference between predicted and actual values.

SMAPE = (200/n) ∗
∑

(|testi − predictedi|/(|testi + predictedi|) (3)

Where:
n is equal to the number of time-series observations
testi is equal to the actual value, where i ∈ {1, 2, ......u}
predictedi is equal to the respective predicated value, where i ∈ {1, 2, ......u}
Interpretation:Interpretation: SMAPE provides a symmetric measure of the per-
centage deviation between predicted and actual values. It is preferred when dealing
with time-series data that may contain zero or close-to-zero values. Lower SMAPE
values indicate a better model fit

Table 1: Mertics used for evaultion

Metric Interpretation

R2 A value close to 1 indicates good fit

MAPE A lower value indicates a better fit

SMAPE A lower value indicates a better fit

3.2.2 Facebook Prophet

Facebook Prophet [28], is a widely used open-source TSF library, that has been de-
veloped by Facebook’s Core Data Science team. This model simplifies the process of
predicting time-series data while making it easy to use in Python.

Prophet incorporates key components that make forecasting accessible to both data
scientists and domain experts. It utilizes an additive model to break down time-series
into trend, seasonality, and holiday components. Prophet’s decomposition approach sig-
nificantly enhances its modeling and forecasting capabilities, enabling the extraction
of intricate time-series patterns. By effectively addressing missing data and outliers,
Prophet accommodates irregularities frequently encountered in real-world datasets. This
contributes to a simplified yet robust framework for predicting future values in univariate
time-series data, streamlining forecasting and alleviating the need for laborious manual
parameter tuning. Through its automated trend detection, seasonality estimation, and
model selection, Prophet offers a streamlined and efficient process for accurate predic-
tions.

In practical applications, Facebook Prophet has gained widespread adoption across
industries, proving valuable for tasks such as demand forecasting, inventory optimiza-
tion, and financial planning. However, it is essential to acknowledge certain limitations.
Prophet’s primary design caters to univariate time-series forecasting, potentially re-
stricting its support for intricate multivariate scenarios involving multiple interrelated
variables. Additionally, Prophet heavily relies on the accurate identification of trends,
seasonality, and holiday effects. The presence of outliers or inadequate capturing of these
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patterns can undermine its forecasting accuracy. Furthermore, while Prophet attempts
to handle outliers, the model’s performance may be sensitive to extreme or influential
outliers that can disrupt its ability to capture meaningful patterns and generate reliable
forecasts.

Prophet’s inherent strengths, particularly its decomposition of seasonalities, trends,
and holidays, align well with the chosen dataset for this research. A comprehensive
comparison will be conducted between Facebook Prophet and other state-of-the-art
univariate forecasting models, such as AutoArima, using the same univariate dataset.
Through rigorous evaluations of Prophet’s performance metrics, a thorough assessment
will be made by comparing it to classical models in terms of simplicity, accuracy, and
forecasting effectiveness. The Prophet model will be executed using its default settings
[13], without alterations to hyperparameters, to ensure a consistent baseline evaluation.
This approach is justifiable based on Prophet’s proven ability to autonomously opti-
mize its hyperparameters, contributing to a more comprehensive and unbiased model
assessment[14]

3.2.3 AutoArima

AutoArima [8] short for Automatic AutoRegressive Integrated Moving Average, is a
widely adopted univariate time-series forecasting model recognized for its automated
parameter selection within the ARIMA framework. This model is renowned for its ability
to predict future values by autonomously determining optimal lag orders and differ-
encing parameters. Unlike traditional ARIMA models that require manual parameter
selection, AutoArima employs an algorithmic approach to explore various combinations
of lag orders (p), differencing (d), and moving average orders (q), simplifying the model
selection process and alleviating the challenges of manual tuning. Its automation facil-
itates integration into data analysis workflows and accommodates users with varying
levels of time-series expertise. AutoArima’s selection as a forecasting model for the
dataset is motivated by its automation, which adapts to unique dataset characteristics
and patterns. Through its implementation, this research aims to evaluate its forecasting
performance and assess its applicability in this specific context.

However, it’s important to acknowledge the limitations of AutoArima. It assumes
stationarity of time-series data, potentially disregarding trends or seasonality present in
real-world data. Handling outliers and anomalies poses a challenge for AutoArima, as
they can lead to suboptimal model fits. The model also does not consider external fac-
tors or exogenous variables that can influence the time-series. Despite these limitations,
AutoArima’s automated parameter selection mechanism streamlines the forecasting pro-
cess, which aligns with the goal of this research to assess its performance against other
models.

Incorporating AutoArima alongside Facebook Prophet enables a comprehensive com-
parison, evaluating their forecasting accuracy, simplicity, computational efficiency, and
overall effectiveness. By understanding the strengths and limitations of both models,
researchers and practitioners can make informed decisions when selecting the most suit-
able model for accurate and reliable predictions in univariate time-series analysis. The
findings of this research contribute to the broader understanding of univariate time-series
forecasting models and provide insights that have practical implications for industries
relying on accurate forecasts for decision-making. Just as with Prophet, AutoArima is
utilized at its default settings to ensure a consistent and unbiased evaluation of its
performance.

Utilizing forecasting models at their default settings ensures a consistent and unbi-
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ased evaluation of their performance. This approach aligns with best practices in the
field of time-series forecasting, as it provides a fair comparison of models’ inherent ca-
pabilities without introducing potential bias arising from manual parameter tuning. The
application of models at their default settings has been used for evaluating forecasting
performance [13]. This approach aids in showcasing the models’ out-of-the-box effec-
tiveness, which is particularly important when comparing their inherent abilities across
different datasets. It eliminates the influence of subjective parameter choices that might
vary based on the analyst’s familiarity with the model, ensuring a more objective and
reliable assessment.[14]

3.2.4 RNN-LSTM

RNNs have emerged as one of the most powerful deep learning methods for time-
series analysis. Unlike traditional feedforward neural networks, RNNs have recurrent
connections that allow them to retain information from previous time steps and use it
to inform predictions at subsequent steps. This capability enables RNNs to capture long-
term dependencies, which is crucial for accurate TSF. RNNs process data sequentially,
taking into account the current input and the information stored from previous time
steps. This recurrent nature makes RNNs capable of modeling time dependencies and
capturing long-term dependencies in the data. Each step in the sequence involves feeding
the current input along with the hidden state from the previous step into the RNN,
producing an output and updating the hidden state for the next step.

Additionally, RNNs demonstrate great flexibility in handling variable-length sequences
commonly found in time-series data. They can process sequences of different lengths,
making them adaptable to various time-series lengths without the need for fixed-size
inputs. This flexibility is particularly advantageous when dealing with irregularly sampled
or sparse time-series data, where the time intervals between data points are irregular.

Furthermore, RNNs can be enhanced by incorporating specialized units such as
LSTM. LSTMs address the vanishing gradient problem by selectively retaining or for-
getting information over long sequences, allowing the model to capture long-term de-
pendencies more effectively. The combination of RNNs with LSTM units, known as
RNN-LSTM, has shown competative performance in TSF tasks [26].

Overall, the inherent characteristics of RNNs, including their sequential data process-
ing, ability to capture long-term dependencies, adaptability to variable-length sequences,
dynamic modeling of temporal dynamics, and integration with specialized units like
LSTM, contribute as one of the best deep learning methods for time-series analysis
[26]. Their application in various industries and research domains showcases their effec-
tiveness in extracting valuable insights and making accurate predictions from time-series
data.

RNNs suffer from the vanishing gradient problem, which limits their ability to capture
long-term dependencies in time-series data. LSTM[12], a variant of RNN, was introduced
to overcome this issue. LSTM networks have an additional memory cell that allows them
to selectively retain or forget information over long sequences, making them well-suited
for capturing long-term dependencies.

Furthermore, LSTM’s ability to learn and model complex temporal patterns is highly
advantageous for TSF. By analyzing historical time-series data, LSTM can discover
underlying patterns, relationships, and dependencies. The network can learn to recognize
seasonality, trends, irregularities, and other intricate patterns that contribute to accurate
forecasting.

Additionally, LSTM’s architectural design makes it well-suited for handling various
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challenges in time-series analysis. It can handle irregular time intervals, missing data,
and noisy observations. Its inherent adaptability enables it to dynamically adjust to
changing patterns and capture evolving trends in the data.

RNN-LSTM model is powerful for time-series analysis. They excel at capturing tem-
poral dependencies and long-term patterns, making them valuable for tasks such as
TSF, anomaly detection, and sequence prediction. Over the years RNN with LSTM
have been considered as the benchmarked model[33] for TSF for transfer learning after
CNN models which convert the time-series in image representation. When comparing
these methods, several considerations come into play. Facebook Prophet’s strength lies
in its decomposition approach, which effectively captures patterns via trend, seasonality,
and holidays. This suits datasets with varying patterns and missing values. AutoARIMA’s
automation minimizes manual intervention, enhancing simplicity and speed, albeit po-
tentially struggling with complex patterns. LSTM’s deep learning capabilities make it
well-suited for intricate data with nonlinear relationships, but its performance is tied to
proper architecture setup. Since RNN-LSTM is better than the most other flavours of
RNN especially for time-series [33] LSTM will be used for the research

3.2.5 N-BEATS

N-BEATS [20] (Neural basis expansion analysis for interpretable TSF) is s a more re-
cent innovation that has gained attention for its impressive performance in time series
forecasting for both multivariate and univariate

N-BEATS distinguishes itself from RNNs by employing a fully feedforward architec-
ture, making it computationally efficient and easier to train. The model consists of a
stack of fully connected layers called basis functions, which learn to transform the input
time-series into a set of interpretable patterns. These patterns capture different types
of temporal dynamics, allowing N-BEATS to accurately forecast future time steps.

One key advantage of N-BEATS over RNNs is its ability to provide interpretable
forecasts. The basis functions in N-BEATS capture meaningful patterns such as trend,
seasonality, and other temporal dynamics inherent in the time-series. By decomposing
the time-series into interpretable components, N-BEATS allows users to gain insights
into the driving factors behind the forecasts. This interpretability empowers analysts and
domain experts to make informed decisions and better understand the underlying data.

The feedforward nature of N-BEATS enables parallelization, resulting in faster train-
ing and inference times. Unlike RNNs, which require sequential processing of data, N-
BEATS can process multiple time steps simultaneously. This scalability is particularly
valuable when working with large-scale time-series datasets, where RNNs may face com-
putational limitations due to their recurrent connections.

Furthermore, N-BEATS exhibits state-of-the-art forecasting accuracy compared to
RNNs. Numerous benchmark evaluations and comparative studies have consistently
demonstrated that N-BEATS outperforms RNN-based models [4], including LSTM, in
terms of forecasting error. The ability of N-BEATS to capture complex temporal patterns
and dependencies without relying on recurrent connections contributes to its superior
accuracy. The basis functions in N-BEATS can capture various types of temporal dy-
namics, allowing the model to adapt to different patterns present in the time-series
data.

Moreover, N-BEATS offers greater flexibility and adaptability to different time-series
domains and forecasting tasks. The model can be easily customized by adjusting the
number and size of the basis functions to suit specific data characteristics.
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Parameters N-BEATS RNN-LSTM
input chunk length 14 14
num layers/n rnn layers 2 2
training length NA 24
batch size 32 32
output chunk length 1 1
generic architecture True NA
num stacks 30 NA
activation ReLu NA
dropout 0 0
n epochs 100 100
layer widths 256 NA
hidden dim NA 25
expansion coefficient dim 5 NA
optimizer kwargs NA None
trend polynomial degree 2 NA
force reset True True

Table 2: Parameters for deep learning models

3.2.6 Parameters and hyperparmeter optimizzation

Both N-BEATS and RNN-LSTM have been tuned on parameters as similar to each other
as possible.They are tuned in way to fit the dataset. Parameters have been changed
from their default values like the input chunk length see the table 2. The parameters
are arranged on the basis of their influence on the models. Controlled experiments with
similar parameters are a common practice in machine learning research to ensure fair
comparisons between different models [19]. This approach helps isolate the impact of
individual model components on performance.[30] Stable comparisons involve keeping
variables consistent to avoid introducing unnecessary variability that could lead to bi-
ased comparisons [24]. Running experiments with similar parameters allows for in-depth
analysis of how each model architecture learns, predicts, and behaves under comparable
conditions.

The hyperparameters are also optimized to see, the their impact on both the mod-
els. Grid search is used as the hyperparameter tuning technique. In this, we define a
grid of possible values for each hyperparameter, and then iterate through all possible
combinations of hyperparameters to find the best set of hyperparameters that results in
the optimal performance for your model. From the table 2 the first five parameters are
selected for this grid search since these parameters are common in both RNN-LSTM
and N-BEATS model. Table 3 shows the hyperparameters that are optimized and the
grid space for these parameters. These parameters have a direct impact on the model’s
architecture, learning process, and prediction horizon. By systematically varying these
parameters, we can effectively explore different configurations and identify the combi-
nation that yields the best performance.
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Table 3: Parameters for deep learning models

Parameters N-BEATS
Tuned
Parameters
Range

RNN-LSTM
Tuned
Parameters
range

input chunk length 14 [10-40] 14 [10-40]

num layers/n rnn layers 2 [1-5] 2 [1-5]

training length NA NA 24 [12,24,36]

batch size 32 [16,32,64] 32 [16,32,64]

output chunk length 1 [1,10] 1 [1,10]

3.3 Transfer Learning

Transfer learning [3] is a powerful and popular technique in machine learning. The
basic idea of transfer learning is to reuse knowledge gained from solving one problem,
and apply it to a different, but related problem. This holds the promise of improving
generalization and reducing the need for large amounts of labeled data. By leveraging
the knowledge gained during training on the source task, the model can enhance its
performance on the target task. This strategy proves particularly beneficial when the
target task has limited data or exhibits similarities with the source task.

Transfer learning is done in a specific domain using a particular task. A domain
is defined by its features and probability distribution, while a task consists of a label
space and a predictive function. Domains can be images, text, or speech, while tasks
include classification, regression, and generation. Transfer learning can save time and

Figure 1: Transfer Learning high level [25]

resources by allowing us to reuse existing models rather than starting from scratch, and
it can improve the performance of models on new tasks, especially when there is limited
data available. In the context of TSF, transfer learning can be used to improve the
accuracy of predictions by leveraging knowledge from related time-series. For example,
a model trained on weather data from one region can be adapted to make predictions
for a different region with similar weather patterns. Transfer learning can also be used to
improve the efficiency of training by allowing the model to start with pre-trained weights,
reducing the amount of data required for training a new task. Transfer learning aims to
improve learning of the target task using information from the source task. For example,
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one might train a model on a large dataset of images, and then use the model for a
different task, such as object detection in a new set of images. The goal is to improve
the learning rate or accuracy on the new task by transferring the relevant knowledge
from the source. Transfer learning can be categorized into problem categorization and
solution categorization as discussed in the paper [38] Problem categorization further
divides into labeled settings-based and space settings-based approaches.

Figure 2: Transfer Learning categories [38]

Labeled settings can be further classified into inductive transfer learning, transductive
transfer learning, and unsupervised transfer learning [23]. Inductive transfer learning
refers to scenarios where the source and target domains have different feature spaces
but share the same label space. Transductive transfer learning involves scenarios where
the source and target domains share the same feature space but have different label
spaces. Unsupervised transfer learning deals with scenarios where the source and target
domains have different feature and label spaces.

Figure 3: Transfer Learning methods [23]
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Space settings categorize transfer learning into homogeneous and heterogeneous
transfer learning. Homogeneous transfer learning occurs when the source and target
domains have the same feature space but different marginal distributions or conditional
distributions. Heterogeneous transfer learning, on the other hand, deals with scenarios
where the source and target domains have different feature spaces.

Solution categorization transfer learning approaches can be classified as model-
based, feature-based, parameter-based, and relation-based methods[23].
Model-based transfer learning involves using a pre-trained model on the source do-
main and fine-tuning it on the target domain. The pre-trained model acts as the base
model, which is then adapted to the target domain using gradient descent. This ap-
proach has been found to be helpful in cases where the target dataset is small because
it allows us to leverage the learned knowledge from the source domain in the target
domain.

Feature-based transfer learning involves extracting meaningful features from the
source domain, which are then used in the target domain. These features can be either
general or specific to the source domain, and are leveraged to improve the learning of
the target domain.

Parameter-based transfer learning shares the parameters between the source
model and the target model, allowing them to learn from each other. This approach has
the advantage of reducing number of parameters that need to be learned in the target
domain, which can be beneficial when the target dataset is small.
Relation-based transfer learning involves learning the relationship or mapping be-
tween the source and target domains. This approach has the advantage of being flexible
and adaptable to various tasks. It can be used for tasks like cross-domain sentiment
analysis and cross-lingual word embeddings.

These different transfer learning approaches can be used based on the specific task
at hand. Some tasks may benefit more from a model-based approach, while others may
require a feature-based or parameter-based approach In recent years, transfer learning
has evolved, leading to sophisticated techniques such as zero-shot learning [15] and
one-shot learning. One-shot [5] and zero-shot learning represent advanced techniques in
transfer learning that aim to tackle the challenge of recognizing or classifying objects or
instances with limited or no labeled training data.
One-Shot Learning In conventional machine learning or deep learning approaches, sub-
stantial labeled training data is typically necessary to effectively train models. However,
acquiring abundant labeled data for every class or category may be impractical or costly
in real-world scenarios. One-shot learning surpasses this limitation by enabling models to
recognize or classify new instances based on a single example per class. To achieve one-
shot learning, various techniques can be employed, including similarity-based methods
that allow models to compare and match features or characteristics of the given example
with the test instances. Metric learning approaches, such as Siamese networks or pro-
totypical networks, strive to learn a similarity metric to differentiate between different
classes based on a limited number of examples.

Zero-shot learning takes a step further by addressing the challenge of recognizing or
classifying objects or instances that were not encountered during training. In traditional
learning approaches, the model can only recognize classes or categories that are present
in the training data. However, in zero-shot learning, the model demonstrates the ability
to generalize to unseen or novel classes during testing. Zero-shot learning [27] involves
learning a mapping between the input data and a semantic space where classes or
categories are represented by attributes or textual descriptions. During training, the
model learns to associate visual features with semantic representations of classes. At
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test time, the model can classify instances into classes it has never encountered before
by leveraging the learned associations between visual and semantic features.

Both one-shot learning and zero-shot learning are challenging techniques in transfer
learning as they require models to generalize effectively from limited or no training data.
These techniques have been successfully applied to various domains, including image
recognition, object detection, and natural language processing, to overcome the limita-
tions of traditional supervised learning approaches and empower models with enhanced
flexibility and adaptability.

Transfer learning has many applications in real-world settings, including image recog-
nition, natural language processing, and speech recognition. For example, a model
trained to recognize handwritten digits can be used to recognize other handwriting
styles, such as printed letters. This technique could be used in numerous applications,
from recognizing check amounts on scanned images to recognizing customer signatures.

However, transfer learning also poses several challenges. One of the main challenges
is determining which information from the source domain is useful and transferable
to the target domain. Another challenge is avoiding transferring information that is
detrimental to the desired outcome. Furthermore, transfer learning also has limitations,
such as the need for similar feature spaces, models, and tasks in the source and target
domains.

3.3.1 Transfer Learning in Time-series

With the increase in time dependent data, it has become crucial in to investigate new
methods to get better forecast for this time-series data, it is prevalent in variety of
domain from finance to health care. However, collecting labeled data in such domains
can be time-consuming and expensive, making transfer learning a promising approach.
Transfer learning in time-series has increasingly studied in the last few years [33]. In
many time-series applications obtaining labeled data can be costly or time-consuming,
which limits the amount of data available for training. Transfer learning holds significant
importance in time-series analysis due to a multitude of compelling reasons.

• Limited labeled data: Time-series datasets often pose a challenge with their scarcity
of labeled data, making it arduous to train accurate models from scratch. Transfer
learning offers a viable solution by harnessing knowledge acquired from a source
dataset rich in labeled data. This enables us to enhance model performance on a
target dataset that suffers from limited labeled data.

• Domain adaptation: Time-series data exhibits variations across different domains
or contexts. Transfer learning empowers us to adapt models trained on a source
domain effectively, capturing relevant patterns and characteristics specific to the
target domain. This adaptability is crucial in ensuring optimal performance in
diverse contexts.

• Generalization: Transfer learning plays a pivotal role in increasing the generalization
capabilities of models. By transferring knowledge gained from a source dataset,
models can better comprehend and predict the target dataset. This proves espe-
cially advantageous in TSF, where the target dataset might be limited in samples
or possess distinct characteristics.

• Model efficiency: Utilizing pre-trained models obtained from a source dataset offers
significant efficiency gains. These models serve as a robust foundation for training
models on a target dataset, resulting in reduced training time and computational
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resources. This efficiency is particularly valuable when dealing with large-scale
time-series datasets.

The previous section 3.3 has already delved in the intricacies of the different methods
of transfer learning which also encompasses the different methods of transfer learning
in time-series. Of the many transfer learning methods the two most commonly used
transfer learning methods are feature-based transfer learning and model-based transfer
learning with respect to TSF [33]

Figure 4: Transfer Learning methods [33]

Feature-Based Transfer Learning: Feature-based transfer learning involves extracting
relevant features from the source time-series and using them to enhance the prediction
of the target time-series. This approach focuses on capturing domain-specific patterns
and characteristics that can be generalized across different time-series datasets.

This thesis will further delve into the model-based approach of transfer learning in
the next section 3.3.2

3.3.2 Model-Based Transfer Learning:

Model-based transfer learning involves training a base model on the source time-series
dataset and transferring the learned model parameters to the target time-series dataset.
This approach assumes that the learned representations or parameters of the base model
capture relevant temporal patterns that can be useful for predicting the target time-
series. After training a base model on the source time-series, the learned weights or
parameters are transferred to the target time-series model. The transferred parameters
are then fine-tuned or adapted on the target time-series dataset to improve its predic-
tive performance. Since the majority of the research is done with model-based transfer
learning for time-series, it will be one of the methods used in this thesis. In the model-
based approach, instead of freezing weights, this research will freeze part of the dataset.
This innovative approach holds promising potential, particularly for various industrial
applications. . The research aims to see the effect of transfer learning on RNN-LSTM
which is shown as one of the most used baseline methods for transfer learning. [33].

Moreover, to explore novel avenues in time-series transfer learning, this research
will also delve into zero-shot learning. Zero-shot learning is a relatively underexplored
technique in the field of TSF [33]. It enables the model to generalize to unseen target
tasks by leveraging knowledge from related source tasks without direct training on target
data. By leveraging models such as N-BEATS and RNN-LSTM, this thesis aims to apply
zero-shot learning techniques to TSF and evaluate their effectiveness.

Currently time-series transfer learning is an active and evolving research area. As a re-
sult, various transfer learning methods and combinations of approaches are continuously
being explored. For instance, recent studies have highlighted the potential of zero-shot
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learning in TSF tasks, indicating its relevance and promising outcomes [21]. Until now,
the exploration of zero-shot learning within the context of N-BEATS and RNN-LSTM
has been limited as to best of our knowledge. This research endeavors to address this
gap by investigating the potential application of zero-shot learning. Transfer learning in
TSF poses unique challenges compared to different types of data. Time-series data has
temporal dependencies, and these dependencies can vary significantly between different
time-series. Therefore, it can be challenging to identify related time-series with similar
patterns and dependencies. Furthermore, transfer learning methods designed for other
types of data may not be suitable for time-series data.When applying transfer learning
to univariate or multivariate TSF, the pre-trained model can capture patterns and rela-
tionships in the data, which can be beneficial for predicting future values or patterns in
similar time-series data. Thus, in this thesis, the aim will be to explore the challenges
and opportunities of zero-shot and model-based transfer learning in TSF, and evaluate
its effectiveness compared to traditional TSF techniques. The central focus will be on
assessing the practical efficacy of these transfer learning methods and their comparison
to established traditional TSF techniques.

4 Experimental Setup

4.1 Dataset

Time-series forecasting research has been around for a several decades, this has lead
to development of benchmark datasets. Well-known TSF benchmark datasets used in
research are LORENZ, M4,M5, international airline passenger. The dataset used for this
thesis will be the M5 dataset [18], as it has been used to validate the state-of-the-art
time-series forecasting methods and forecasting competitions and is large enough to train
deep learning models. It was released in 2020 as part of the M5 forecasting competition.
The dataset includes 3049 products classified into three categories (Hobbies, Foods,
and Household) and seven departments within these categories. The products are sold
across 10 stores located in three states: California (CA), Texas (TX), and Wisconsin
(WI).

The data can be merged on different levels of aggregation. One way is by location,
considering the store and state information. Another way is by product-related infor-
mation, considering the department and category. These different levels of aggregation
allow for analyzing the sales patterns at various levels of granularity.

The selection of stores and states by Walmart was done deliberately to represent
different characteristics, shopping habits, and dynamics. Similarly, the product categories
and departments were chosen to represent a mix of consumables and durable goods, as
well as products with varying sales velocities.

To capture the diverse hierarchy within the M5 dataset, multiple cross-sectional
levels of aggregation are considered for evaluation. The dataset employs a numbering
system to categorize levels of aggregation. This systematic approach enables compre-
hensive analysis of sales patterns, yielding valuable insights into consumer behavior,
emerging market trends, and product performance. Considering the various levels of ag-
gregation, the M5 dataset enables researchers to analyze and forecast sales patterns at
different levels of granularity, providing insights into consumer behavior, market trends,
and product performance.
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Figure 5: M5 dataset hierarchy details [18]

The dataset itself utilizes hierarchical sales data provided by Walmart. The data is
available at item level and aggregated at higher levels starting from department, store,
product and finally in three geographical areas of the United States: California, Texas,
and Wisconsin. In addition to the time-series data, the dataset also included explana-
tory variables such as price, promotions, day of the week, and special events (e.g. Super
Bowl, Valentine’s Day, and Orthodox Easter) that can affect sales and improve forecast-
ing accuracy. The dataset is divided into sales train validation, sales train evaluation,
calendar, prices. One of the datasets sales train validation or sales train evaluation can
be used for analysis and modelling. Furthermore, The M5 dataset consists of daily data
spanning a period of approximately 5.4 years, from January 29, 2011, to June 19, 2016,
comprising a total of 1969 days but the evaluation date is set to May 22,2016 and there
are 1941 in for evaluation.

Level id Level description Aggregation level Number of series
1 Unit sales of all products, aggregated for all stores/states Total 1
2 Unit sales of all products, aggregated for each state State 3
3 Unit sales of all products, aggregated for each store Store 10
4 Unit sales of all products, aggregated for each category Category 3
5 Unit sales of all products, aggregated for each department Department 7
6 Unit sales of all products, aggregated for each state and category State-category 9
7 Unit sales of all products, aggregated for each state and department State-department 21
8 Unit sales of all products, aggregated for each store and category Store-category 30
9 Unit sales of all products, aggregated for each store and department Store-department 70
10 Unit sales of product i, aggregated for all stores/states Product 3,049
11 Unit sales of product i, aggregated for each state Product–state 9,147
12 Unit sales of product i, aggregated for each store Product–store 30,490
Total 42,840

Table 4: M5 dataset original

4.1.1 Data-Preprocessing

The preprocessing step plays a crucial role in handling large datasets like M5 to optimize
computational resources and reduce complexity. Given the vast number of potential
time-series in the M5 dataset (42,840), it is reasonable to select a subset of time-series
for analysis in the context of this thesis.

By carefully selecting a subset of time-series, the computational requirements can be
managed more effectively. It allows for a focused analysis on a representative sample of
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time-series, reducing the complexity of pretraining and handling the data. This selection
process enables researchers to concentrate on specific aspects and achieve meaningful
insights without overwhelming computational constraints.

The preprocessing step in this thesis involves selecting a subset of time-series from
the M5 dataset based on a specific criterion. In this case, the selection criterion is to
focus on the top four levels of aggregation in the dataset.

The M5 dataset offers multiple levels of aggregation, with different levels represent-
ing varying degrees of granularity. By choosing the top four levels of aggregation, the
analysis can capture a comprehensive view of the dataset while reducing computational
complexity.

Figure 6: M5 dataset hierarchy details [18]

The top four levels of aggregation include higher-level categories, regions, or the
states and stores that provide meaningful insights into the dataset as seen in 6. This
selection criterion allows for a manageable subset of time-series while still maintaining
the representativeness and diversity of the data.

The series are selected based on their hierarchy as seen in figure 6. Of 42,840 time-
series 56 time series are choosen based on the top 4 levels of hierarchy. Table 5 shows how
and which time-series combination are selected. These time-series are selected because
they capture the most important details of the dataset.

Level id Level description Aggregation level Number of series
1 Unit sales of all products, aggregated for all stores/states Total 1
2 Unit sales of all products, aggregated for each state State 3
3 Unit sales of all products, aggregated for each store Store 10
4 Unit sales of all products, aggregated for each category Category 3
5 Unit sales of all products, aggregated for each store and category Store-category 30
6 Unit sales of all products, aggregated for each state and category State-category 9
Total univariate 56

Table 5: M5 dataset with time-series after pre-processing

This approach ensures that the analysis remains feasible while still capturing the
important patterns and characteristics of the dataset.

By selecting a subset of time-series from the M5 dataset, this thesis aims to strike
a balance between the available computational resources and the complexity associated
with handling the entire dataset.

First, three distinct CSV files were imported, encompassing calendars with all dates,
sales data, and item prices. These datasets were transformed into data frames. To
optimize memory usage while maintaining data integrity, downsizing techniques were
applied due to the dataset’s size. Subsequently, a merged dataset was generated by
combining these data frames using a shared identifier, ’d’.
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Following this, columns like ′ww − mm − yyyy′ were eliminated from the refined
dataset to enhance memory efficiency. This process was pivotal in managing the dataset
effectively, facilitating analysis while upholding accuracy.

To obtain multiple time-series for model training, the dataset was filtered by region
based on its total sales for different stores. The three regions considered were California,
Texas, and Wisconsin. Further, the data was filtered to obtain sales per store per region,
resulting in four stores for California, three stores for Wisconsin, and three stores for
Texas. This filtering was necessary to obtain multiple time-series that could be used for
model training and prediction.

Algorithm 1 Data Preprocessing for Time-Series Analysis

Input: The M5 CSV with calendar dataset, sales dataset and sell prices dataset of
California, Texas and Wisconsin
Output: A collection of multiple time-series data formatted for Darts.

1: procedure DataPreprocessing
2: Downsize the datasets to reduce memory usage from int64 to int4.
3: Merge the three datasets using a common key, ’d’, to create a dataframe.
4: Remove unused columns such as ’ww-mm-yyyy’
5: Filter the dataframe by region
6: Filter the dataframe on per store per region.
7: Divide the data based on the category of items, namely food, household, and

hobbies.
8: Filter each category per store of that region.
9: Remove zero values by replacing them with interpolated values

10: Convert this dataframe into a time-series datatype by using the Date column as
index.

11: return a collection of multiple time-series data, structured to be suitable for Darts
analysis.

12: end procedure
13:

To facilitate transfer learning, the data was divided based on the category of items,
namely food, household, and hobbies. Each of these categories was filtered per store of
the respective region. This step allowed the transfer of knowledge between stores and
regions, which is essential in developing effective time-series models.

After merging and filtering the datasets, the resulting dataframes are further pro-
cessed to convert them into time-series format compatible with the Darts library. How-
ever, before performing the conversion, a careful observation is made regarding certain
days, such as Christmas days (e.g., 2013-12-25, 2014-12-25), where very low or no sales
are recorded. It is evident that on those specific days, the stores were closed, and any
sales recorded during those periods are likely erroneous.

To address this issue and avoid having extremely low values in the dataset, which
can negatively impact evaluation metrics such as MAPE (Mean Absolute Percentage
Error), a technique called interpolation [16] is applied. Interpolation helps in filling in
the missing values or low sales observations with reasonable estimates based on the
neighboring data points. The initial step involves replacing all instances of zero with NA
values. To address the resulting gaps, the interpolate function is applied. This function
strategically utilizes the entire time series’ min-max range to effectively fill the missing
values, enhancing the dataset’s completeness and accuracy. [1].
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Through interpolation, the dataset is smoothed, generating more accurate values for
days with low or no sales like Christmas. This preprocessing step enhances time-series
authenticity, reducing outlier influence. Interpolation preserves data integrity, boosting
reliability in analysis and forecasting. Addressing low sales days enhances metric accu-
racy, ensuring precise model evaluation.

4.2 Darts Library

Darts[11] is a library that is focused on time-series analysis. It is widely regarded as one
of the best libraries for time-series analysis, offering a comprehensive set of tools and
capabilities. Its versatility makes it suitable for various applications in finance, healthcare,
engineering, environmental science, and beyond.

One of the strengths of Darts lies in its support for both univariate and multivariate
time-series data. It offers a diverse range of models, including classical methods like
ARIMA, Prophet, as well as deep learning architectures such as RNN and N-BEATS.
The Darts implementation these models will be used for the research.

Majority of the tasks performed in this research is performed using Darts. It is used
perform some of the pre-processing tasks along with Numpy and it is primarily used for
everything after pre-processing from training to validating to mertics evaluation.

4.3 Methodology

After completing the preprocessing steps, a total of 56 univariate time-series were gen-
erated see table 5. The chosen models for this study include Prophet and AutoARIMA
for classical approaches, and N-BEATS and RNN (specifically LSTM) for deep learn-
ing methods. It is important to note that all models will be used with their default
parameters, ensuring no bias or partiality in the evaluation.

The Time-Series Modeling process involves distinct steps for both classical and deep
learning models. For classical models, the initial time-series data is converted into an
appropriate univariate format suitable for modeling. Next, a classical forecasting model
is chosen based on the specific requirements of the analysis. The time-series is then
divided into training and test sets, with the split being determined by a predefined
validation date. The collection of 56 time-series is meticulously partitioned into separate
sets dedicated to training, testing, and validation, each serving the purpose of deep
learning analysis. This partitioning adheres to the widely accepted distribution of 70%
for training, 15% for testing, and 15% for validation. The rationale underlying this
partitioning strategy lies in allocating dates occurring before 2014-04-30 exclusively to
the training subset, while the subsequent dates are distributed between the testing and
validation subsets For deep learning models, similar preprocessing steps are followed,
converting the time-series data into an appropriate format for the selected deep learning
model. However, in this case, an additional validation set is created during the data
split. The time-series data is divided into training, validation, and test sets.

In both cases, the models are trained on the training data and subsequently used to
make predictions on the test set.

Notably, in the case of deep learning models, data scaling is an essential step. Deep
learning models benefit from scaled data to mitigate bias and enhance model perfor-
mance. As a result, the data is scaled before training the deep learning models and the
predictions obtained are unscaled to reflect the original data format which is 2014-04-
30.
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The entire process aims to evaluate and compare the performance of different models
on the given time-series data, providing valuable insights into the forecasting capabilities
of both classical and deep learning methods.

Out of the complete set of 56 time-series see table 6, a subset of 30 time-series is
meticulously chosen for the purpose of conducting transfer learning experiments. This
selection process involves picking one time-series from each hierarchical level depicted
in Figure 6. In instances where only three options are available at a given level, all three
are considered. To illustrate, from the initial ”State” level, all three options—CA, TX,
and WI—are included. The selection process continues through subsequent levels, en-
compassing state-store, category, state-category, and store-category combinations. After
selecting the subset of 15 time-series for experimentation, the training and testing series
are swapped to create a balanced setup. This means that the data originally designated
for training the models is now used for testing, and vice versa. This exchange ensures
that each time-series is evaluated as both a training and testing dataset, providing a
comprehensive assessment of the transfer learning techniques’ performance across dif-
ferent scenarios. This process results in a final set of 30 time-series, where each series
serves as both training and testing data according to the level.

Table 6: Selected series for Transfer Learning

No TIME SERIES SELECTED
1 CA total

2 TX total

3 WI total

4 TX 1

5 CA 2

6 WI 3

7 Hobby combined

8 Food combined

9 Household combined

10 CA full state Food sale

11 TX-full state Household sale

12 WI full state Hobby sale

13 CA 4Household sale

14 TX 1Food sale

15 WI 2Hobby sale

In zero-shot transfer learning, the focus is on training a model on one time-series
and then leveraging that learning to make predictions on another, entirely different
time-series. For instance, the model is initially trained on a specific time-series, such
as California (CA) Store 1, and then it is utilized to generate predictions for Texas
(TX) Store 2, and so forth, moving across hierarchical levels. The objective here is
to examine the ability of the model to generalize its learning from one time-series to
another, without any specific training on the target time-series. For example, training
on the total sales of CA and predicting on TX or Wisconsin (WI), and vice versa. The
process continues by training on a specific store in CA and predicting on a different
store in WI or TX, gradually moving from higher levels of aggregation to lower levels
from state to store to category 6, such as training on CA Store 1 - food category and
predicting on TX Store 3 - hobbies category. The aim is to evaluate the effectiveness of
zero-shot transfer learning in this context.
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Algorithm 2 Zero-Shot Learning for Time-Series

Input: A hierarchical structure of time-series with a total of 56 time-series
Output: Zero-shot results (MAPE, SMAPE, R2) on the test set
Initialize an empty table for evaluation results

2: Select one of the 30 time-series from the hierarchy for training from Section 6
for each time-series in the same hierarchy do

4: Train N-BEATS and RNN models on the training sets of the selected time-series
Calculate MAPE, SMAPE, and R2 results on the test set of the selected time-series

6: end for
Repeat the process for the remaining time-series

8: return Zero-shot results

Conversely, model-based transfer learning involves a different approach. First, a
model is trained on a particular time-series dataset, as with the deep learning time-
series modeling process. However, instead of merely evaluating the model’s performance
on the same dataset, a portion of a different time-series dataset is introduced to the
already-trained model. This additional dataset is used for further fine-tuning the model,
effectively transferring its knowledge to new data. Following the fine-tuning process, the
model is then utilized to make predictions on other time-series, such as applying the
model trained on CA 1 to make predictions for TX 2.

In both transfer learning methods, the goal is to investigate the effectiveness of
knowledge transfer and the ability of the model to adapt its learning to new datasets.
Zero-shot learning assesses how well the model can generalize without explicit training on
the target data, while model-based transfer learning explores the potential of leveraging
pre-trained models to enhance performance on new datasets with some context given
during retraining. These methodologies provide valuable insights into the transferability
and adaptability of TSF models. For instance, training on CA and then using the trained
model to train on a selected portion of TX, followed by using this model to predict on
the remaining TX data. This is highly relevant to industry right now since data isn’t
readily availalbe and it can help data scientist to decide if transfer learning can be used
in industry.

Algorithm 3 Model-Based Transfer Learning for Time-Series

Input: A hierarchical structure of time-series with a total of 56 time-series
Output: Model-based results (MAPE, SMAPE, R2) on the test set
Initialize an empty table for evaluation results
Select one of the 30 time-series from the hierarchy for training from Section 6

3: for each time-series in the same hierarchy do
Train N-BEATS and RNN models on the training sets of the selected time-series
Select 5% of the other time-series for training

6: Retrain the N-BEATS and RNN models on this new selected time-series
Calculate MAPE, SMAPE, and R2 results on the test set of the selected time-series

end for
9: Repeat the process for the remaining time-series

return Model-based results
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5 Results

The Results section presents a comprehensive analysis of the experimental findings,
shedding light on the performance of various forecasting models across different scenar-
ios. It discusses the outcomes of classical models like Prophet and AutoArima, as well
as deep learning models like RNN-LSTM and N-BEATS. Additionally, the section delves
into the results of zero-shot learning and model-based transfer learning approaches. The
findings highlight the strengths and limitations of each model, offering insights into
their predictive capabilities, adaptability, and computational efficiency. The compari-
son between classical models and deep learning models underscores the significance of
leveraging transfer learning techniques to enhance forecasting accuracy. This section
will delve into the top results obtained from classical models,deep learning models and
the comparisons between them. It also shows the top zero-shot transfer learning results
for the deep learning models as well as the best model-based transfer learning results.
This section also shows the top results of a comparison between model-based transfer
learning and the classical model i.e Prophet.

5.1 Classical Models

The analysis of the experimental results reveals intriguing insights regarding the perfor-
mance of two classical forecasting models, Prophet and AutoArima.

Prophet’s consistent outperformance in 26 out of 56 instances reflects its remarkable
predictive capabilities, reinforcing its stature as a resilient forecasting model. This over-
arching trend underscores its adaptability across diverse forecasting scenarios, aligning
with the broader goal of delivering accurate predictions across a range of data-driven
contexts.

When examining the well-fitted models based on the positive R2 value, it was ob-
served that Prophet generally performed well. The best-fitted Prophet model achieved a
MAPE of 4.952695 , a SMAPE of 5.068750 and a R2 score of 0.788715,. In comparison,
the best-fitted AutoArima model achieved a MAPE of 4.599789, a SMAPE of 4.654468
and a R2 score of 0.833042.
Note:The bold text in the tables denoted the best times-series with the best overall
evaluation metrics score.

Table 7: Prophet vs AutoArima. For detailed results see table 16 and table 15

PROPHET MODEL AUTOARIMA MODEL

TIME-SERIES
NAME MAPE SMAPE

R2 TIME
(s)

MAPE SMAPE
R2 TIME

(s)
Household combined 5.92 6.18 0.71 0.38 4.59 4.65 0.83 77.28

CA full state Hobby
sale

5.95 5.82 0.55 0.42 5.44 5.35 0.58 88.33

CA total 4.95 5.06 0.78 0.36 6.25 6.46 0.71 94.46

CA full state Househ
sale

6.86 7.21 0.7 0.29 9.20 9.85 0.51 71.66

WI 3Hobby sale 13.60 13.26 0.25 0.34 13.99 13.53 0.28 71.83

CA 1Food sale 8.83 8.44 0.65 0.29 8.37 8.62 0.68
112.63

Total sale 6.97 7.04 0.63 0.37 7.90 8.32 0.48 85.84

TX 1 7.55 7.51 0.55 0.32 10.70 11.48 0.27
73.51
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Upon a thorough analysis of these results, it can be concluded that Prophet con-
sistently demonstrates strong performance. The best-fitted Prophet model showcased
competitive performance, although slightly lower than the best-fitted AutoArima model
in terms of MAPE, ,SMAPE and R2, .

An intriguing situation arises when observing Prophet’s performance in less-than-
optimal fitting scenarios. Here, Prophet’s remarkable ability to maintain predictive accu-
racy shines. This capacity is of utmost importance in real-world applications where data
often exhibits irregularities and deviations. Prophet’s capacity to generate accurate fore-
casts under suboptimal conditions showcases its robustness, making it a valuable asset
for practical decision-making. A crucial consideration pertains to the default parameters
of the models and their applicability across different data types. It’s noteworthy that
while default parameters may suit one kind of data well, they might be better suited for
another. The comparative analysis sheds light on this aspect: Prophet, with its default
parameters, consistently demonstrates strong performance, underscoring the efficacy of
its out-of-the-box settings for a range of datasets.

(a) AutoARIMA best Household combined (b) Prophet best CA total

Figure 7: Prophet vs AutoArima

These results have significant implications for researchers and practitioners seeking
an effective forecasting approach. Incorporating the Prophet model into their decision-
making processes can enhance the accuracy and reliability of predictions, particularly in
cases where the model fit may be less optimal.

Furthermore, Prophet showcased an additional advantage in terms of computation
time. The time required for Prophet was at least 10 times less than that of AutoArima.
This factor of computational efficiency enhances the overall effectiveness of Prophet as
a forecasting model.

5.2 Deep Learning models

The results obtained from the deep learning models, RNN-LSTM and N-BEATS, on the
M5 dataset is quite interesting. Both the RNN-LSTM and N-BEATS models demon-
strated suboptimal fits with the data. RNN-LSTM exhibited a marginal advantage over
N-BEATS. The performance profiles of these models across the 56 evaluated time-
series offer insights of significance. Notably, N-BEATS excelled in only 12 instances,
whereas RNN-LSTM showcased superior performance in 17 instances where both mod-
els achieved positive R2 scores. Further delving into the specifics of MAPE and SMAPE
scores, RNN-LSTM delivered lower values compared to N-BEATS. This emphasizes
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RNN-LSTM’s potential superiority in forecasting accuracy for this particular dataset
with the default parameters.
Table 8: RNN vs N-BEATS. For detailed results see table 17 and table 18

RNN-LSTM MODEL N-BEATS MODEL

TIME-SERIES
NAME MAPE SMAPE

R2 TIME
(s) MAPE SMAPE

R2 TIME
(s)

CA 4 7.22 7.38 0.38
127.06

11.29 10.53 -0.25
705.57

CA 4Food sale 8.10 7.85 0.35
108.73

10.66 10.64 -0.06
657.54

CA total 7.98 8.08 0.66
130.89

8.85 9.09 0.58 691.5

TX full state Food sale
9.40 9.58 0.4

125.20
9.20 9.17 0.38

701.95

Household combined 12.40 13.22 0.39
127.15

12.09 12.92 0.38
696.71

While examining individual case studies, such as the performance of RNN-LSTM
and N-BEATS in the context of CA 4, has the best overall score. Here, RNN-LSTM’s
MAPE score significantly outperforms N-BEATS, indicating the context-dependence of
model effectiveness. Whereas even where N-BEATS has it’s best score i.e CA total,where
N-BEATS scored 8.85, RNN-LSTM achieved a better MAPE score of 8.08. This con-
textual variation underscores the intricate interplay between model performance and
dataset characteristics. This shows that in the overall context of the RNN performs
better with it’s default parameters

(a) RNN best best CA 4 (b) N-BEATS best CA total

Figure 8: RNN vs N-BEATS best

RNN-LSTM’s performance seems to hinge more acutely on the quality of data fitting.
Its reliance on capturing temporal dependencies and intricate data patterns is indicative
of its nature as a deep learning model sensitive to nuances in the data. This highlights
the model’s reliance on capturing temporal dependencies within the dataset to gener-
ate accurate predictions. This assertion, grounded in data evidence, avoids unfounded
attributions.

N-BEATS displays the ability to deliver competitive performance even with less-
than-ideal fits. This characteristic underscores its inherent modeling capacity, enabling
accurate forecasts even in scenarios with suboptimal model-data alignment. Further-
more, the results underscore the imperative of hyperparameter tuning for N-BEATS. R,
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N-BEATS exhibited better initial performance in 12 instances compared to RNN-LSTM’s
17 instances.

In essence, the analysis traverses the intricate landscape of model selection, param-
eterization, and performance.

To further see if N-BEATS is perfoms well when the hyperparameters are optimized,
the time-series from table are hypertuned. With optimization N-BEATS is better and
performs like state of the art all the time series get better than the original results
obtained in 8, in fact it performs better than RNN-LSTM with the hyperparamters
optimized. This table 9 shows N-BEATS perfomance with optimization and how well it
does with the scores with hyperparameters optimized

The study delved into optimizing the N-BEATS model’s performance by tuning its
hyperparameters. This empirical process was carried out on the time-series data previ-
ously analyzed in table 8 to gauge the model’s potential under enhanced configurations.
The results revealed a significant boost in forecasting accuracy across all instances,
showcasing the model’s untapped capabilities when equipped with optimal parameters.
Particularly noteworthy was N-BEATS’ consistent outperformance against both its orig-
inal configuration and the optimized RNN-LSTM model, highlighting its potential as a
state-of-the-art forecasting solution.

Table 9 summarizes the evaluation scores from the optimized N-BEATS and RNN-
LSTM models, illustrating N-BEATS’ consistent performance improvement and superi-
ority over RNN-LSTM in most cases.It underscores the importance of hyperparameter
tuning in unlocking the full potential of forecasting models. By maintaining continuity
with prior analysis and substantiating findings with empirical evidence, the study con-
tributes a robust understanding of the intricate relationship between model architecture,
hyperparameters, and forecasting precision.

Table 9: RNN-LSTM with hyperparamters optimized

RNN-LSTM MODEL N-BEATS
MODEL

TIME-SERIES
NAME

MAPE SMAPE R2 MAPE SMAPER2

CA 4Food sale 9.96 10.45 0.04 8.87 8.40 0.38

CA 4 10.11 10.23 0.02 7.78 7.34 0.40

CA total 6.86 6.77 0.77 6.48 6.21 0.79

CA full state food
sale

18.35 17.89 -0.88 9.57 8.98 0.59

TX full state Food sale 8.00 7.86 0.61 7.46 7.54 0.68

Household combined 9.39 9.37 0.73 8.50 8.91 0.61

5.2.1 Deep Learning model vs Classical Models

From the analysis of table 7 and Table 8, it appears that the classical TSF models
maintain superiority in terms of predictions when compared to their deep learning coun-
terparts. On average, the classical models perform better in various metrics and are also
more time-efficient.This could be due to

• Data Availability and Size: Classical TSF models, such as AutoARIMA and Prophet,
have been extensively used and developed over the years. As a result, there might
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be more data available for these models, enabling them to learn and generalize
well from historical patterns.

• Simplicity and Interpretability: Classical models often have simpler architectures
and are easier to interpret. This simplicity can be advantageous when the dataset
is relatively small or when the forecasting task requires human understanding and
interpretability.

• Domain-specific Knowledge: Classical models often incorporate domain-specific
knowledge and assumptions, which can be beneficial in scenarios where certain
characteristics of the time series are known in advance. Deep learning models, on
the other hand, are more data-driven and may require a larger dataset to learn
these characteristics effectively.

• Model Robustness: Classical models have been tested and refined over time, mak-
ing them robust and reliable for various TSF tasks. Deep learning models may
require more experimentation and tuning to achieve optimal performance for spe-
cific datasets.

• Training Complexity: Deep learning models typically have a higher number of
parameters and may require more computational resources and time to train. In
contrast, classical models like AutoARIMA and Prophet are often quicker to train
and can provide satisfactory results with less computational overhead.

• Data Quality and Noise: Deep learning models can be sensitive to noisy data, and
a relatively smaller dataset with noise may impact their performance. Classical
models may be more resilient to noise and able to handle smaller datasets more
effectively.

Overall, while deep learning models like N-BEATS and RNN-LSTM show great promise
and have achieved remarkable results in various domains, classical models like Au-
toARIMA and Prophet still possess an advantage in terms of prediction accuracy and
time efficiency, particularly in certain TSF scenarios with limited data or a preference for
interpretability. It is essential to carefully consider the characteristics of the dataset and
the specific forecasting requirements when choosing between deep learning and classical
models for TSF tasks.

5.2.2 Model-Based Transfer Learning

Encouraging results are observed in model-based learning for both N-BEATS and RNN-
LSTM, especially when some part of the test dataset is used for training, highlight the
potential of leveraging context and additional information to improve the models’ per-
formance. Among the time-series given to the models For N-BEATS more than half (20
out of 30) of the time-series were positively fitted, indicating that N-BEATS effectively
adapted to the underlying patterns and relationships in the data when provided with
relevant context. Several time-series here achieved comparable or even better scores to
those obtained without transfer learning, highlighting the potential of transfer learn-
ing to enhance forecasting capabilities even with limited data. This result underscores
the value of leveraging knowledge from diverse domains to ensure robust and accurate
forecasts.

RNN-LSTM was similar to N-BEATS, over half (20 out of 30) of the time-series
demonstrated positive fitting, showing that RNN-LSTM also benefited from incorporat-
ing context in its training process. As with N-BEATS, certain time-series in RNN-LSTM
exhibited performance on par with or close to their non-transfer learning counterparts.
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Table 10: Model Based learning RNN-LSTM vs N-BEATS models.For detailed
results see table 21 and table 22

RNN-LSTM MODEL N-BEATS MODEL

TRAINED

ON

TESTED

ON
MAPE SMAPE

R2 TIME
(s)

MAPE SMAPE
R2 TIME

(s)

TX
total CA total

7.82 7.89 0.67 194.7 9.10 9.10 0.57
1562.75

WI
full state
Hobby sale

CA
full state
Food sale

8.38 8.15 0.63
162.91

9.17 8.73 0.55
2356.27

CA
2

TX 1 10.59 11.33 0.36 163.8 9.10 9.31 0.51
1839.71

TX full
Househ sale

CA full state
Hobby sale

11.96
11.58

0.2
163.93

9.26 8.88 0.53
2193.87

When the model is provided with additional context or partial information about
the test dataset during training, it can better adapt its internal parameters and repre-
sentations to capture the data’s specific characteristics. This additional context acts as
a form of regularization, guiding the model to generalize better to unseen data.

(a) RNN best best TX total to CA total (b) N-BEATS best CA 2 to TX 1

Figure 9: RNN vs N-BEATS best model based learning

The promising results of model-based learning suggest that leveraging context and
transfer learning can be an effective strategy for enhancing the performance of TSF
models like N-BEATS and RNN-LSTM. It showcases the potential of these models to
achieve strong predictive capabilities without extensive manual tuning, making them
valuable tools for various real-world forecasting applications.

5.2.3 Zero-Shot Transfer Learning

The results for zero-shot learning in both RNN-LSTM and N-BEATS were unexpected,
as only a limited number of hierarchical levels out of the 30 time-series as seen in 6
attempted were well-fitted to the data, and even fewer yielded good evaluation scores.
Specifically, out of the 30 different hierarchical levels, RNN-LSTM got only 8 out of 30
hierarchical levels were well-fitted to the data.

And N-BEATS got only 5 out of 30 hierarchical levels were well-fitted to the data.
Moreover, among these well-fitted hierarchical levels, only a couple of them demon-
strated good evaluation scores, as indicated in the table
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(a) RNN best best TX full stateHouseh sale to
CA full state Food sale

(b) N-BEATS best TX full stateHouseh sale to
CA full state Food sale

Figure 10: RNN vs N-BEATS best zero shot learning

Table 12: Zero shot learning RNN-LSTM vs N-BEATS models.For detailed
results see table 19 and table 20

RNN-LSTM MODEL N-BEATS MODEL

TRAINED
ON

TESTED

ON
MAPE SMAPE

R2 TIME
(s)

MAPE SMAPE
R2 TIME

(s)

Hobby
combined

Food
combined 11.07 10.55

0.34
152.78

30.9 38.2 -4.13
3006

Household
combined

Food
combined

9.67
9.58

0.46
155.99

10.46 10.8 0.32
1710

TX full
state
Househ sale

CA full state
Food sale

8.01
7.99

0.64
157.38

9.5 9.01 0.55
1296

TX full
state
Househ sale

WI full state
Hobby sale

16.94 18.15 -0.16
153.0

12.71 12.57 0.3
1434

The varied performance of RNN-LSTM and N-BEATS in zero-shot learning can be
attributed to their different architectural characteristics and how they approach handling
sequential data. While both models are capable of processing sequential information,
they do so in distinct ways, which may impact their performance in zero-shot learning
scenarios.

RNN-LSTM, as a recurrent neural network, inherently possesses sequential memory,
which allows it to retain information about past time points and effectively capture
temporal patterns and hierarchies in sequential data. In zero-shot learning, where the
model must generalize to unseen contexts, RNN-LSTM’s ability to remember long-term
dependencies becomes advantageous. Its recurrent connections enable it to maintain
contextual information from earlier time steps, enabling accurate predictions without
direct access to future data.

Conversely, N-BEATS relies on fully connected layers and does not have the recur-
rent memory of RNN-LSTM. Although N-BEATS is designed for TSF and can capture
patterns in sequential data through its stacking of basis functions, it may not inher-
ently handle complex temporal relationships and long-term dependencies as effectively
as RNN-LSTM.
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5.3 Classical models vs Transfer learning based Deep
learning models

The model-based transfer learning approach has emerged as the most prominent tech-
nique in this research, exhibiting good performance compared to the best classical model,
Prophet. After training the Prophet model using the transfer learning data, surprising
results were observed. The model-based approach consistently outperformed Prophet in
more than half of the 15 time series studied. This compelling finding demonstrates the
effectiveness of model-based transfer learning in enhancing forecasting accuracy across
various time series domains.

The table 14 lists some of the prominent instances where model-based transfer learn-
ing showed improved perfomance over Prophet. These results compared to the potential
of this approach in improving forecasting outcomes and its ability to leverage knowledge
from a source domain to better capture unique patterns and dynamics in the target time
series. The strong performance of the model-based approach in a significant number of
cases signifies its practical significance and positions it as a promising technique for
accurate and efficient TSF in real-world applications.

Table 14: Prophet vs with model based RNN and N-BEATS time-series.For
detailed results see table 23

Prophet RNN-LSTM N-BEATS
TIME-
SERIES
NAME

MAPE SMAPE R2 MAPE SMAPE
R2

MAPE SMAPE
R2

CA 4
Househ
sale

45.51 35.59 -9.35 13.78 13.54 -0.25 11.15 11.35 0.17

TX 1Food
sale

17.65 19.82 -0.24 12.06 12.07 0.25 11.5 11.72 0.27

CA total 7.59 7.24 0.76 7.82 7.89 0.67 13.55 14.68 0.07

Food
combined

9.6 9.57 0.58 9.35 9.54 0.47 12.59 12.76 0.16

CA full
state
Food sale

9.45 8.88 0.6 8.38 8.15 0.63 9.17 8.73 0.55
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6 Discussion

This thesis delved into a comprehensive analysis of two prominent TSF models, N-
BEATS and RNN-LSTM, with a primary focus on evaluating their performance across
various scenarios and datasets. While classical models, namely Prophet and AutoArima
were used , to gauge the effectiveness of the subsequent deep learning models. Subse-
quently, N-BEATS and RNN-LSTM were thoroughly examined under different experi-
mental setups, shedding light on their strengths and weaknesses in diverse forecasting
contexts.

• Effectiveness of Classical Models: The initial evaluation of classical models
was instrumental in setting a foundation for the subsequent analysis. The findings
revealed that Prophet consistently outperformed AutoArima in the majority of
cases, demonstrating its superior forecasting accuracy.

The inherent modeling capabilities of Prophet, along with its flexibility in capturing
seasonal and trend patterns, played a pivotal role in achieving better evaluation
metrics, such as MAE, MAPE, and SMAPE.

• Comparing N-BEATS and RNN-LSTM: The subsequent analysis involved an
in-depth comparison between N-BEATS and RNN-LSTM, two cutting-edge deep
learning models for TSF. Both models showcased distinctive characteristics, ex-
celling in specific scenarios. N-BEATS demonstrated remarkable robustness by
delivering good evaluation scores even under suboptimal fitting conditions In con-
trast, RNN-LSTM exhibited a heavy reliance on proper fitting to attain good
evaluation metrics. The impact of dataset complexity and hierarchical structures
was evident in influencing the models performance. When tuned to the proper
hyperparameters N-BEATS shows its real strength, since it heavily relies on the
parameters. With optimization RNN doesn’t show any significant improvements
infact it becomes worse it some cases, whereas N-BEATS consistently gives better
results

• Transfer Learning: An integral part of the study focused on exploring the po-
tential of model-based transfer learning and zero-shot learning in elevating the
forecasting models’ performance. The results highlighted both the techinques are
worth a shot for professionals as well as researchers. Zero-shot learning is pos-
sible and can be done but to have a positive results or make proper forecasting
hyper-parameters will have to be optimized.Zero-shot learning approach is still a
relatively novel and developing area within TSF. While it holds great promise for
knowledge transfer and efficiency, it is still in its early stages of exploration. As
such, there might be inherent limitations and challenges that need to be addressed
through further research and advancements in the field.
Model-based on the other hand is the go to method for transfer learning.Model-
based transfer learning proves to be a highly effective and reliable method for
TSF using transfer learninng .Model-based transfer learning leverages pre-existing
knowledge obtained from training on a source time-series to enhance the learning
process for a target time-series. By utilizing a model that has already been trained
on a similar dataset, the target model can benefit from the patterns, temporal de-
pendencies, and underlying structures learned from the source data. This enables
the target model to start with a better initialization, reducing the amount of data
needed for training and potentially speeding up convergence. Model-based trans-
fer learning allows for knowledge transfer and adaptation to target data through
fine-tuning, making it a robust technique for handling complexities and capturing
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relationships in time-series data. Model-based transfer learning outperforms zero-
shot learning in TSF due to its ability to leverage pre-existing knowledge, adapt to
target data through fine-tuning, handle complexities in time-series data, and en-
able a more guided and controlled learning process. The successful application of
model-based transfer learning in this thesis underscores its potential as a powerful
technique for improving forecasting performance and knowledge transfer across
related time-series domains. The findings of the study underscore the prominence
and effectiveness of the model-based transfer learning approach in TSF. This tech-
nique showcases its superiority over the best classical model, Prophet, which high-
lights its ability to leverage knowledge from a source domain and adapt to unique
patterns in the target time series. The successful performance of the model-based
transfer learning approach in a significant number of cases indicates its potential
to enhance forecasting accuracy and efficiency in various time series domains.

In scenarios where data is scarce or unrelated, model-based transfer learning stands
out as a superior approach compared to zero-shot learning. It empowers forecasting
models to leverage existing knowledge and adapt it to the target domain, enabling
more guided and controlled learning. As demonstrated in this thesis, model-based
transfer learning can yield impressive results, making it a go-to method for practi-
tioners and researchers seeking to enhance forecasting performance in challenging
settings.

Transfer learning in TSF holds great promise and opens up new opportunities for im-
proving forecasting accuracy, even when data is limited or unrelated. Both model-based
transfer learning and zero-shot learning have their merits, but model-based transfer
learning emerges as the more effective and robust technique, showcasing its potential to
revolutionize the field of TSF and knowledge transfer across diverse time-series domains.
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7 Conclusions

In conclusion, the thesis presents a comprehensive investigation into the effectiveness
of different TSF models like Prophet, AutoArima and transfer learning within the time-
series domain, particularly focusing on deep learning models like RNN and N-BEATS.
The empirical evidence gathered from the experiments strongly supports the robust ap-
plicability of transfer learning, showcasing its potential to enhance forecasting accuracy
and generalization.

Prophet’s superior predictive capabilities, and its computational efficiency, it can be
concluded that Prophet is the best model for forecasting the target variable. Its robust
performance, even in cases where it is not as well-fitted, further highlights its effective-
ness in generating accurate predictions. Future forecasting tasks in similar contexts are
recommended to utilize Prophet due to its superior performance and efficiency.

Despite its initial underperformance compared to default RNN-LSTM, N-BEATS
demonstrates its true potential through hyperparameter tuning, consistently outperform-
ing both its own default configuration and RNN-LSTM. This highlights the significance
of optimization in N-BEATS and highlights it as a powerful and competitive choice for
accurate time-series forecasting.

While the success rate of zero-shot learning appears modest, with 8/30 for RNN and
5/30 for N-BEATS, it is important to emphasize that this result does not undermine the
promise of transfer learning. Instead, it highlights the need for careful hyperparameter
tuning and fine-tuning of models to fully capitalize on the potential of this approach.

The thesis also uncovers an intriguing finding that model-based transfer learning
outperforms other transfer learning methods when handling time-series data. Both RNN
and N-BEATS exhibited success in 20 out of the 30 time-series when provided with
context and supplementary information during training. This result marks a remarkable
advancement from the model-based learning approach and emphasizes the significance
of incorporating prior knowledge and domain-specific context in the transfer learning
process.

Based on the findings from this thesis, practitioners and researchers looking to lever-
age transfer learning on time-series data are strongly encouraged to adopt the model-
based approach. This method showcases the most promising strategy for improving fore-
casting accuracy, making deep learning models like RNN and N-BEATS more adaptable
and flexible in handling complex time-series datasets.

Furthermore, the thesis opens up exciting avenues for future research. One such
direction involves exploring the application of transfer learning in multivariate TSF,
as this could further enhance the models’ ability to capture intricate interdependencies
between multiple variables. Additionally, fine-tuning hyperparameters and exploring real-
world applications can offer valuable insights into the practical implications of transfer
learning in various domains.
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This thesis underscores the importance of transfer learning as a powerful tool in for
TSF which can lead to significant advancements in the TSF domain. By adopting the
model-based approach and exploring various extensions and optimizations, researchers
can unlock the full potential of transfer learning, making it a very effective method
for more accurate and reliable time-series forecasts.It offers valuable insights into the
advantages of leveraging pre-trained models for improved time-series predictions, paving
the way for future research and practical applications in real-world forecasting scenarios.
Moreover, the promise of model-based learning and transfer learning unveils exciting
prospects for improving forecasting accuracy in real-world settings. By integrating rele-
vant context and harnessing transfer learning techniques, forecasting models can adapt
adeptly to varying data conditions and achieve heightened generalization. This aspect
holds particular importance in scenarios where obtaining large amounts of labeled data
for training poses challenges.
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8 Contribution

This research makes the following key contributions to the field of TSF and transfer
learning:

• Comprehensive Comparison of Models: The research conducts a thorough com-
parison of Deep learning models with classical models offering insights into how
different models impact forecasting performance.

• Focus on N-BEATS Model: While previous research has primarily concentrated
on RNN-LSTM models, this work uniquely investigates the effectiveness of transfer
learning using the N-BEATS model for improved forecasting accuracy.

• Investigation of Transfer Learning: This study examines the applicability of
transfer learning in TSF, particularly in scenarios with limited data availability in
industrial applications.

• Focus zero-shot transfer learning: While previous research has concentrated
on other methods of transfer learning , this work uniquely investigates the effec-
tiveness of zero-shot transfer learning using the RNN-LSTM as well as N-BEATS
models.

• Focus different method of model-based transfer learning: While previous
research has concentrated on just using freezing weights for model-based transfer
learning , this work uniquely investigates the effectiveness freezing parts of dataset
transfer learning in time-series using the RNN-LSTM as well as N-BEATS models.

• Performance Evaluation of model-based transfer learning with Classical
model: Through experimentation, the study evaluates the performance of model-
based transfer transfer learning approaches with prophet model, providing empiri-
cal evidence of the benefits and limitations of these techniques.

• Practical Applications: The findings of this research highlight the potential of
transfer learning for enhancing forecasting accuracy and efficiency in industrial con-
texts, offering practical insights for industries seeking to optimize their forecasting
processes.

Overall, this thesis enhances the understanding of transfer learning’s role in TSF
and contributes valuable knowledge to assist industries in making informed deci-
sions about leveraging transfer learning techniques for improved forecasting out-
comes.
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9 Future Work

Despite the valuable insights gained from this research, certain limitations warrant con-
sideration. The evaluation was conducted on specific datasets, potentially limiting the
generalizability of the results to all types of time-series data. As an avenue for fu-
ture research, the incorporation of multivariate TSF holds great potential for further
advancing forecasting accuracy and capturing complex interdependencies between mul-
tiple variables. Currently, the analysis primarily focused on univariate time-series data,
and expanding the investigation to include multivariate time-series datasets would pro-
vide valuable insights into real-world applications where multiple variables influence the
target variable’s behavior.

• Multivariate TSF: Exploring multivariate TSF entails analyzing datasets with
multiple related variables that interact with one another. By incorporating addi-
tional features and interrelationships, models can capture more nuanced patterns
and dependencies, resulting in more accurate and comprehensive forecasts. The
models such as N-BEATS and RNN-LSTM can be extended to accommodate mul-
tivariate inputs, and their performance can be evaluated on diverse and complex
datasets.

• Transfer Learning for Multivariate Time-Series: Applying transfer learning
techniques to multivariate TSF is an intriguing direction for future research. Sim-
ilar to the model-based learning explored in this thesis, transferring knowledge
from one domain or dataset to another could significantly improve forecasting
performance for multivariate time-series. The success of transfer learning in the
context of univariate TSF encourages its application in multivariate settings, where
the interactions and dependencies between variables can be leveraged to enhance
generalization.

• Further Fine-tuning Hyperparameters: In both univariate and multivariate TSF,
thorough hyperparameter optimization can significantly impact model performance.
Further fine-tuning the hyperparameters of the deep learning models, especially
when dealing with complex multivariate datasets, can unlock their full potential
and yield superior forecasting accuracy.
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A Results in detailed for normal models

In this section presents a comprehensive overview of all the results obtained from the
conducted experiments. The detailed information encompasses the performance metrics,
such as Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percent-
age Error (SMAPE), and R-squared (R2), for each model.

NOTE: The order of R2, MAPE and SMAPE is changed here it doesn’t signfy any
change of priority of the mertics it’s MAPE, SMAPE and R2.

A.1 AutoArima

An automated TSF model that is part of the ARIMA (AutoRegressive Integrated Moving
Average) family. It uses an intelligent algorithm to automatically select the optimal
order of differencing (d), autoregressive (p), and moving average (q) terms based on
the data’s characteristics. By automatically determining the best combination of these
parameters, AutoARIMA simplifies the forecasting process, making it accessible to users
without extensive expertise in time-series modeling. The model’s ability to automatically
handle seasonal and trend components makes it a popular choice for quick and accurate
TSF tasks. Below are the results for AutoArima. R2, MAPE, SMAPE have been used
as the evaluation metrics. The results have been presented in the ascending order of the
MAPE score.

Table 15: Detailed results of AutoArima Model

No TIME SERIES NAME R2 MAPE SMAPE TIME (s)
1 Hobby combined 0.71588 4.50278 4.52851 84.4827

2 Household combined 0.83304 4.59979 4.65447 77.28763

3 CA full state Hobby sale 0.5807 5.44943 5.35141 88.33441

4 CA 4 0.43802 5.67666 5.6254 111.882

5 CA 1 0.80681 5.86243 5.94787 93.53639

6 CA total 0.7158 6.25144 6.46847 94.46475

7 TX-full state Househ sale 0.73494 6.33169 6.07042 79.76967

8 CA 3 0.59054 6.47905 6.6479 70.7475

9 WI full state Househ sale 0.62357 6.66324 6.864 91.85632

10 CA 4Househ sale 0.18565 7.69172 7.85174 105.5147

11 TX 3Househ sale 0.54446 7.88028 7.87133 101.8543

12 Total sale 0.48844 7.9029 8.32234 85.84386

13 WI full state Hobby sale 0.47738 8.20651 7.80803 83.21339

14 CA 3Food sale 0.38953 8.23729 8.5539 35.84086

15 TX 2 0.48958 8.31152 8.2939 74.62666

16 CA 1Food sale 0.68634 8.37937 8.62776 112.6318

17 TX total 0.45024 8.44553 8.66334 65.94738

18 CA full state Food sale 0.48709 8.47895 8.91528 114.4139

19 WI 1 0.63412 8.52408 8.58964 85.97526

20 CA 1Hobby sale 0.54588 8.69653 8.55868 95.83658

21 WI 3Househ sale 0.56298 8.79277 9.12795 87.36886

22 TX 1Househ sale 0.53692 9.04687 9.44294 57.32037

23 CA 1Househ sale 0.69646 9.0763 9.24069 39.45512

24 WI 1Food sale 0.52362 9.09703 8.97311 86.95212
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25 CA full state Househ sale 0.51752 9.20719 9.85614 71.66782

26 CA 3Hobby sale 0.0609 9.35154 9.68765 52.01659

27 CA 3Househ sale 0.31001 9.9983 10.7331 66.54544

28 TX 3 0.3058 10.0678 10.2711 71.83625

29 CA 4Food sale -0.1178 10.1229 9.49278 55.2769

30 CA 4Hobby sale -0.0161 10.1974 10.1239 11.88748

31 Food combined 0.14047 10.2934 11.0769 96.88343

32 TX 2Househ sale 0.52821 10.5035 11.0336 55.70396

33 TX 2Food sale 0.19252 10.6423 11.254 89.25186

34 WI 1Househ sale 0.47977 10.6909 11.5667 62.76513

35 TX 1 0.27784 10.7019 11.4862 73.51879

36 CA 2Househ sale 0.66028 11.1344 11.8761 90.44123

37 TX 2Hobby sale 0.43517 11.2472 10.736 50.31506

38 CA 2Hobby sale 0.41535 11.694 11.7613 50.49286

39 TX full state Hobby sale 0.37461 12.6182 11.7847 81.37191

40 TX 1Hobby sale -0.0464 12.683 12.9377 10.26024

41 WI 2Househ sale 0.02558 13.1662 13.949 32.63976

42 WI 3 -0.0542 13.1721 14.4519 57.24171

43 TX 3Food sale 0.1092 13.2228 13.6276 48.71504

44 WI total -0.0488 13.2502 12.7838 15.43657

45 WI 1Hobby sale 0.49655 13.5092 12.83 76.23592

46 TX 1Food sale -0.0362 13.7284 15.0813 62.35116

47 TX full state Food sale -0.009 13.7563 13.4695 31.69085

48 WI 2Hobby sale -0.0037 13.8274 13.4475 29.54223

49 WI 3Hobby sale 0.28765 13.9987 13.5361 71.83498

50 WI full state Food sale -0.1531 15.0754 16.4585 78.07876

51 WI 2 -0.5573 16.3744 18.392 53.77023

52 CA 2 0.18093 16.3929 18.3034 92.77944

53 WI 3Food sale -0.3234 17.3977 19.6228 73.41984

54 TX 3Hobby sale 0.00524 18.7519 17.6215 34.56707

55 WI 2Food sale -0.5859 21.2888 24.6979 67.80978

56 CA 2Food sale -0.3483 22.9489 27.1638 56.80171
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A.2 Prophet

Prophet is a TSF model created by facebook designed to handle time-series data with
strong seasonal patterns and irregularities. Prophet combines a decomposable time-
series model with a set of user-defined seasonal components, allowing it to capture
various seasonalities, holidays, and other recurring events in the data. One of its notable
features is its ability to handle missing data and outliers effectively, making it robust in
real-world scenarios Below are the results for Prophet. R2, MAPE, SMAPE have been
used as the evaluation metrics. The results have been presented in the ascending order
of the MAPE score.

Table 16: Detailed Results Prophet Model

No TIME SERIES NAME R2 MAPE SMAPE TIME (s)
1 CA total 0.788715 4.952695 5.06875 0.363561

2 CA full state Hobby sale 0.559423 5.953144 5.829172 0.421101

3 CA 4 0.341106 6.225255 6.067383 0.377633

4 Household combined 0.718158 5.920006 6.181023 0.382055

5 CA full state Food sale 0.719448 6.227759 6.226539 0.438288

6 CA 3 0.622595 6.3295 6.379581 0.38761

7 CA 1 0.761724 6.691583 6.487925 0.442431

8 CA 4Househ sale 0.359668 6.668757 6.774604 0.310705

9 CA 1Househ sale 0.781132 7.030442 7.02402 0.422428

10 TX 1Househ sale 0.695803 6.843002 7.027202 0.323343

11 Total sale 0.638125 6.977922 7.045904 0.372602

12 TX-full state Househ sale 0.670156 6.92566 7.066283 0.360049

13 CA full state Househ sale 0.702455 6.860998 7.214876 0.29689

14 TX 1 0.553173 7.554889 7.516515 0.327981

15 Hobby combined 0.461322 8.078232 7.789649 0.70122

16 WI full state Hobby sale 0.556852 8.406109 8.136832 0.296226

17 WI 1Househ sale 0.689476 8.297998 8.201786 0.303757

18 WI full state Househ sale 0.494937 7.781059 8.228878 0.394194

19 WI 1 0.628511 8.753927 8.442125 0.395628

20 CA 3Food sale 0.449619 8.628278 8.446116 0.308298

21 CA 1Food sale 0.657367 8.839975 8.449203 0.29659

22 CA 3Hobby sale 0.189065 8.766398 8.492831 0.53098

23 CA 4Food sale 0.02664 9.34881 8.857988 0.400859

24 CA 3Househ sale 0.451991 8.390807 8.873399 0.286021

25 TX 3Househ sale 0.432166 8.76367 8.976992 0.370426

26 TX 2Househ sale 0.611207 8.823302 8.978433 0.311534

27 TX total 0.392859 9.207782 9.061344 0.325328

28 TX 2 0.389148 9.59879 9.133341 0.445289

29 CA 4Hobby sale 0.059801 9.333179 9.523822 0.28947

30 TX 1Hobby sale 0.411973 10.19067 9.798561 0.389845

31 Food combined 0.381437 10.19862 9.971897 0.517742

32 WI 1Food sale 0.458168 10.55445 10.04494 0.387321

33 CA 1Hobby sale 0.385316 10.93179 10.32759 0.388235

34 WI total 0.313964 10.99086 10.88234 0.451796

35 TX 1Food sale 0.281358 11.40715 10.99316 0.372931

36 WI 1Hobby sale 0.605725 12.24113 11.32912 0.465218
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37 TX 3 0.181576 11.45263 11.43647 0.403341

38 CA 2Hobby sale 0.472856 11.21245 11.49622 0.33637

39 WI 2Househ sale 0.234649 11.26473 11.5918 0.324227

40 TX full state Food sale 0.14056 12.7528 12.38308 0.432811

41 WI 3 0.135117 12.15962 12.89974 0.300654

42 WI 3Househ sale 0.206297 11.94752 12.92379 0.818465

43 TX 2Food sale 0.078753 14.00805 13.10421 0.467335

44 WI 3Hobby sale 0.258158 13.60577 13.26525 0.348948

45 TX 2Hobby sale 0.163926 15.06818 13.30123 0.474188

46 WI 2Hobby sale 0.079436 14.30299 13.31612 0.286644

47 TX full state Hobby sale 0.159957 14.62091 13.43338 0.483078

48 CA 2Househ sale 0.635332 12.84515 13.86716 0.359873

49 TX 3Food sale -0.00268 15.61547 15.26305 0.336075

50 WI full state Food sale 0.080861 16.28047 15.77096 0.293934

51 WI 2 -0.11302 17.67366 16.90272 0.349955

52 WI 3Food sale 0.025472 16.76165 17.48353 0.404247

53 TX 3Hobby sale 0.034166 19.9034 18.29801 0.388307

54 CA 2 0.114099 18.3471 20.71828 0.359412

55 WI 2Food sale -0.20156 26.63158 24.11357 0.311317

56 CA 2Food sale -0.28317 23.57434 27.93092 0.33992
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A.3 RNN-LSTM

RNN-LSTM model widely used for TSF. It excels in capturing sequential patterns and
dependencies present in time-series data due to its recurrent architecture and memory
cells called LSTM units. These LSTM units allow the model to retain and utilize infor-
mation from earlier time steps, enabling it to learn long-term dependencies effectively.
RNN-LSTM is adept at handling irregular and complex temporal patterns, making it
suitable for a wide range of time-series tasks. Its ability to learn from historical data and
make accurate predictions at future time points has made RNN-LSTM a popular choice
for TSF applications in various domains.

Below are the results for RNN-LSTM. R2, MAPE, SMAPE have been used as the
evaluation metrics. The results have been presented in the ascending order of the MAPE
score.

Table 17: Detailed results RNN-LSTM model

No TIME SERIES NAME R2 MAPE SMAPE TIME (s)
1 CA 4 0.388643 7.221248 7.300368 127.066

2 CA total 0.669826 7.980882 8.088233 130.8938

3 CA 4Food sale 0.354828 8.104657 7.856501 108.739

4 CA full state Food sale 0.630896 8.21515 8.035641 117.8658

5 TX full state Food sale 0.40068 9.409407 9.584195 125.2063

6 CA 3Food sale 0.455806 9.674494 9.24722 126.0705

7 WI 1Food sale 0.590121 10.16529 10.31818 119.3094

8 CA full state Househ sale 0.667502 10.58466 10.72027 123.5377

9 TX 1Food sale 0.254123 11.44465 12.1273 127.3835

10 TX total 0.18361 12.08376 13.01882 129.5359

11 Household combined 0.394762 12.4081 13.22103 127.1585

12 CA 1Househ sale 0.554162 13.06596 13.25177 119.8633

13 CA 2Househ sale 0.781877 13.08371 12.15541 108.2068

14 TX 3 -0.0203 13.69062 14.66707 129.7183

15 WI full state Househ sale 0.379354 13.70266 14.14399 128.0045

16 Food combined -0.22529 13.81673 15.19008 127.7306

17 WI 3 0.112058 13.85051 15.04472 123.5911

18 TX 1 -0.0228 14.27527 15.71975 127.2429

19 CA 2Hobby sale 0.436396 14.63814 14.07514 109.2901

20 CA 4Househ sale -0.49471 14.68536 14.66376 114.8193

21 WI full state Hobby sale 0.095886 14.82615 16.10614 124.3482

22 TX 1Househ sale 0.158858 15.21857 16.80161 128.5651

23 TX 3Househ sale -0.02651 15.762 16.94109 116.1865

24 WI 3Hobby sale 0.263912 15.80519 15.57857 122.0185

25 CA 3Househ sale 0.081572 16.55867 16.01058 128.3259

26 TX 3Food sale -0.60018 16.56427 18.58241 112.5084

27 Hobby combined -0.52916 16.9831 18.92533 127.6717

28 CA full state Hobby sale -0.58344 17.08161 18.88056 120.6734

29 TX 2 0.351723 17.46827 11.76938 127.9381

30 WI total -0.56134 17.70377 19.2728 128.0533

31 CA 2 0.063744 17.79921 20.57768 125.8129

32 CA 4Hobby sale -1.32831 17.80834 19.77335 111.3197

33 CA 1Food sale -0.35427 18.31708 19.96406 115.8828
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34 CA 3Hobby sale -1.23274 18.77862 21.17483 127.8161

35 CA 1Hobby sale -1.02258 20.31583 22.93738 116.966

36 CA 2Food sale 0.321765 20.73719 20.05517 110.8917

37 Total sale -1.39663 21.55097 24.83628 109.5879

38 WI 2Hobby sale -1.14198 21.70942 24.70461 128.203

39 TX 2Food sale -1.1E-05 21.96943 14.25371 115.9927

40 WI 2 -1.04577 22.75788 24.42265 126.2892

41 WI 1 -0.47598 23.0754 26.51462 126.8143

42 CA 1 -0.76384 23.09561 27.2211 125.0783

43 WI 2Househ sale -0.65084 23.29906 24.49943 127.0319

44 TX full state Hobby sale -0.79257 24.04229 28.42225 123.1232

45 WI full state Food sale -1.24605 24.22218 26.96626 124.2796

46 TX 2Househ sale -0.39723 26.03287 25.02377 108.4096

47 WI 3Househ sale -0.72377 26.18525 24.51793 121.7871

48 WI 2Food sale -0.70176 26.20513 28.76077 127.9111

49 TX 2Hobby sale -1.34054 27.32074 32.64041 109.2168

50 TX-full state Househ sale -2.24667 29.40002 36.25854 124.3257

51 WI 1Hobby sale -0.89702 29.65405 29.31208 121.358

52 CA 3 -4.04289 29.97295 37.34307 126.976

53 WI 3Food sale -1.48789 31.33938 25.24264 122.2344

54 TX 1Hobby sale -1.82802 31.79223 39.36066 128.0362

55 WI 1Househ sale -1.37495 33.54008 41.96524 121.112

56 TX 3Hobby sale -2.14328 37.43217 49.0619 116.613
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A.4 N-BEATS

N-BEATS is a deep learning model designed specifically for TSF. It employs a fully
feedforward architecture, making it efficient and parallelizable. Its decomposes time-
series data into interpretable basis functions, capturing meaningful patterns such as trend
and seasonality. This interpretability empowers users to gain insights into the driving
factors behind forecasts. Its adaptability to various time-series scenarios, including long-
term dependencies and irregular patterns, has contributed to its recognition as a powerful
and versatile tool for accurate and interpretable TSF.

Below are the results for N-BEATS. R2, MAPE, SMAPE have been used as the
evaluation metrics. The results have been presented in the ascending order of the MAPE
score.

Table 18: Detailed results N-BEATS model

No TIME SERIES NAME R2 MAPE SMAPE TIME (s)
1 CA total 0.58973 8.85414 9.09375 691.504

2 TX full state Food sale 0.38005 9.2094 9.17187 701.96

3 CA 4Food sale -0.0637 10.6699 10.6489 657.547

4 CA 4 -0.2536 11.2951 10.5337 705.577

5 CA 1Househ sale 0.64848 11.3234 11.8428 636.111

6 WI 1Food sale 0.5016 11.497 11.9183 644.303

7 TX 1 0.24612 11.7753 12.7107 692.892

8 Household combined 0.38446 12.0988 12.9227 696.718

9 CA 1Food sale 0.47538 12.0989 12.7886 650.372

10 CA 3Househ sale 0.50255 12.569 11.7259 710.465

11 TX-full state Househ sale 0.38208 12.9461 13.6793 705.389

12 CA full state Food sale -0.2831 13.0775 14.3469 681.81

13 CA 2 0.48307 13.7282 14.3682 700.233

14 WI full state Hobby sale 0.09854 14.1707 15.3612 719.839

15 CA 3Food sale -0.5048 15.0716 16.5152 689.202

16 TX 1Food sale -0.2403 15.1151 15.4286 713.786

17 Total sale -0.4144 15.4588 17.2605 659.103

18 WI 1Hobby sale 0.3651 15.6444 16.6027 643.45

19 CA full state Hobby sale -0.7029 15.6688 17.2825 709.419

20 CA 2Hobby sale 0.19189 16.265 17.3909 668.966

21 TX total -0.3462 16.3934 18.207 690.426

22 TX 3 -0.702 16.4793 18.0577 700.296

23 Food combined -0.5671 16.9231 18.7477 700.129

24 TX 2Hobby sale 0.21399 17.1145 17.6156 642.783

25 WI 2Hobby sale -0.2062 17.3219 17.4293 698.246

26 CA 2Househ sale 0.36274 17.9609 19.6546 664.346

27 WI 3Food sale -0.1302 18.8535 19.5424 664.192

28 Hobby combined -0.759 18.8742 21.2581 688.202

29 WI total -0.6658 18.9382 20.4107 693.398

30 WI full state Househ sale -0.3948 19.4365 21.3935 716.3

31 TX 3Food sale -1.042 19.4858 22.1358 687.229

32 TX 1Househ sale -0.365 19.947 22.7694 690.047

33 WI full state Food sale -0.4804 20.1453 21.1162 712.424

34 WI 2 -0.6858 20.3823 21.6771 705.92
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35 CA 3Hobby sale -1.5283 20.3922 23.1415 701.105

36 TX 3Househ sale -0.6553 20.4464 21.0647 653.213

37 TX 2Househ sale 0.3907 20.8838 14.3972 658.253

38 WI 3Househ sale -0.1119 20.9524 19.8551 673.796

39 WI 1 -0.4121 21.597 24.7407 722.213

40 CA 3 -2.6847 22.2008 18.8287 705.023

41 WI 3Hobby sale -0.2365 22.2512 19.3291 678.385

42 WI 2Househ sale -0.5366 23.3986 22.6027 692.158

43 WI 3 -0.7825 24.2862 21.8114 716.544

44 CA 1Hobby sale -1.0892 24.2906 28.1909 647.398

45 WI 1Househ sale -0.293 24.7815 28.6315 635.416

46 CA 2Food sale -0.7628 25.0261 30.7774 683.933

47 TX full state Hobby sale -1.1022 26.587 32.0496 688.894

48 CA 1 -2.2582 26.6614 33.189 704.382

49 TX 2Food sale -0.4526 28.0037 17.594 669.068

50 CA 4Househ sale -4.7429 28.524 35.422 663.902

51 WI 2Food sale -0.6926 29.6641 28.6306 697.425

52 TX 2 -1.9697 30.5794 30.6415 686.123

53 TX 1Hobby sale -2.2537 33.4815 42.1698 699.743

54 TX 3Hobby sale -1.8562 36.1883 47.0143 692.236

55 CA full state Househ sale -5.344 46.0057 65.378 689.694

56 CA 4Hobby sale -14.046 49.1554 70.6568 662.072
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B Results in detailed for Transfer Learning

In this section presents a comprehensive overview of all the results obtained from the
conducted experiments. The detailed information encompasses the performance metrics,
such as Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percent-
age Error (SMAPE), and R-squared (R2), for each model

B.1 Zero-shot learning results

In time-series zero-shot transfer learning refers to the application of transfer learning
techniques in TSF tasks where the target domain lacks labeled data for the specific
time points of interest. In traditional transfer learning, a pre-trained model is fine-tuned
on a related source domain with available labeled data before being applied to the
target domain. However, in zero-shot transfer learning, the model is directly utilized for
forecasting without any fine-tuning or access to labeled target domain data.

Below are the results for zero-shot transfer learning RNN-LSTM. R2, MAPE, SMAPE
have been used as the evaluation metrics. The results have been presented in the as-
cending order of the MAPE score.

Table 19: Zero-shot learning RNN-LSTM

No
TIME SERIES
TRAINED ON

TIME SERIES
TESTED ON

R2

MAPE SMAPE
TIME
(s)

1 CA total WI total -1.15 22.35 23.18 250.446

2 CA total TX total -0.69 16.57 17.50 174.65

3 TX total CA total -0.20 16.52 18.32 164.23

4 WI total CA total -0.44 14.34 15.69 168.63

5 TX total WI total -1.06 22.93 26.57 141.43

6 WI total TX total -0.63 15.23 16.81 151.89

7 TX 1 CA 2 0.31 14.38 15.93 167.14

8 TX 1 WI 3 0.23 14.48 13.7 149.72

9 WI 3 TX 1 -0.9 18.12 20.08 151.09

10 CA 2 TX 1 -1.25 22.73 26.3 153.03

11 CA 2 WI 3 0.19 14.23 14.59 154.4

12 WI 3 CA 2 -0.25 26.5 26.19 151.49

13 Hobby combined Food combined 0.34 11.07 10.55 152.78

14 Food combined Hobby combined -3.75 30.1 37.18 155.1

15 Food combined Household combined -1.15 22.42 25.63 150.54

16 Hobby combined Household combined 0.31 12.2 12.68 155.57

17 Household combined Hobby combined -1.22 22.55 26.04 160.84

18 Household combined Food combined 0.46 9.67 9.58 155.99

19 CA full state Food sale
TX-
full state Househ sale

-1.35 21.4 24.64 157.93

20 CA full state Food sale
WI full state Hobby sale

-1.73 26.08 28.61 158.52

21
TX-
full state Househ sale WI full state Hobby sale

-0.16 16.94 18.15 153.07

22
TX-
full state Househ sale

CA full state Food sale 0.64 8.01 7.99 157.38
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23
WI full state Hobby sale

CA full state Food sale 0.29 10.86 10.9375 151.105

24
WI full state Hobby sale TX full state Househ sale

-0.29 17.4 19.416 149.19

25 CA 4Househ sale TX 1Food sale -0.69 22.4 19.47 146.67

26 CA 4Househ sale WI 2Hobby sale -0.37 19.3 17.84 136.22

27 TX 1Food sale CA 4Househ sale -4.43 28.0 34.33 178.74

28 TX 1Food sale WI 2Hobby sale -2.82 30.5 37.54 257.42

29 WI 2Hobby sale CA 4Househ sale -1.48 18.12 20.2 256.07

30 WI 2Hobby sale TX 1Food sale -0.54 19.54 17.94 266.73
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Below are the results for zero-shot transfer learning N-BEATS. R2, MAPE, SMAPE
have been used as the evaluation metrics. The results have been presented in the as-
cending order of the MAPE score.

Table 20: Zero-shot learning N-BEATS model

TIME SERIES
TRAINED ON

TIME SERIES
TESTED ON

R2

MAPE SMAPE
TIME (s
)

CA total WI total -7.53 49.7 70.4 2474

CA total TX total -5.28 36.1 46.4 2683

TX total CA total -6.75 42.0 55.1 2740

WI total CA total -4.4 34.1 42.5 2673

TX total WI total -9.20 52.9 76.1 2701

WI total TX total -4.27 32.1 40. 3447

TX 1 CA 2 0.50 16.28 15.7 3670
TX 1 WI 3 -0.41 21.27 18.3 3677

WI 3 TX 1 -1.05 19.1 20.1 5071

CA 2 TX 1 -0.99 20.8 24.0 4322

CA 2 WI 3 0.07 15.6 15.5 4167
WI 3 CA 2 -0.5 29.4 27.4 4292

Hobby combined Food combined -4.13 30.9 38.2 3006

Food combined Hobby combined -12.0 57.7 84.2 3232

Food combined Household combined -5.40 47.19 63.8 3015

Hobby combined Household combined -4.5 38.69 51.2 3622

Household combined Hobby combined -2.10 26.83 31.9 2927

Household combined Food combined 0.32 10.46 10.8 1710

CA full state Food sale
TX-
full state Househ sale

-0.25 18.45 20.9 1322

CA full state Food sale WI full state Hobby sale -0.69 22.07 24.5 1877

TX-
full state Househ sale WI full state Hobby sale

0.3 12.71 12.57 1434

TX-
full state Househ sale CA full state Food sale

0.55 9.5 9.01 1296

WI full state Hobby sale CA full state Food sale -0.87 20.1 18.38 1356

WI full state Hobby sale
TX full state Househ sale

-0.5 18.9 19.6 1340

CA 4Househ sale TX 1Food sale -0.21 16.7 15.12 1440

CA 4Househ sale WI 2Hobby sale -0.30 17.95 18.77 1364

TX 1Food sale CA 4Househ sale -8.7 42.88 56.7 1540

TX 1Food sale WI 2Hobby sale -6.97 47.21 65.6 1409

WI 2Hobby sale CA 4Househ sale -1.44 19.1 21.46 1353

WI 2Hobby sale TX 1Food sale -0.17 15.71 14.98 1381
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B.2 Model Based learning

In time-series model-based transfer learning involves leveraging pre-trained models on a
source time-series domain and adapting them to a target time-series domain for improved
forecasting performance. In this approach, the pre-trained model is typically fine-tuned
or adapted using a small amount of labeled data from the target domain.

Below are the results for model-based transfer learning RNN-LSTM. R2, MAPE,
SMAPE have been used as the evaluation metrics. The results have been presented in
the ascending order of the MAPE score.

Table 21: Model based learning RNN-LSTM model

No
TIME SERIES
TRAINED ON

TIME SERIES
TESTED ON

R2

MAPE SMAPE
TIME
(s)

1 CA total WI total -0.02 14.98 15.36 200.47

2 CA total TX total 0.15 11.72 12.61 248.44

3 TX total CA total 0.67 7.82 7.89 194.73

4 WI total CA total 0.48 9.75 9.97 187.83

5 TX total WI total 0.33 11.87 12.28 184.93

6 WI total TX total 0.29 11 11.70 185.1

7 TX 1 CA 2 0.49 13. 13.72 185.83

8 TX 1 WI 3 -0.56 18.5 20.51 179.9

9 WI 3 TX 1 -0.21 14.16 15.13 167.1

10 CA 2 TX 1 0.36 10.59 11.33 163.8

11 CA 2 WI 3 -0.001 15.21 16.61 163.16

12 WI 3 CA 2 0.37 14.08 14.95 205.9

13 Hobby combined Food combined 0.07 12.59 12.73 167.81

14 Food combined Hobby combined -1.09 20.7 23.70 168.69

15 Food combined Household combined 0.64 10.14 10.21 163.83

16 Hobby combined Household combined 0.60 10.5 10.84 166.88

17 Household combined Hobby combined -0.86 19.27 21.79 165.29

18 Household combined Food combined 0.47 9.35 9.54 165.11

19
CA full state Food sale

TX-
full state Househ sale

0.41 12.76 13.40 166.3

20
CA full state Food sale WI full state Hobby sale

0.25 13.16 13.97 162.66

21
TX-
full state Househ sale WI full state Hobby sale

0.27 12.82 13.56 166.27

22
TX-
full state Househ sale

CA full state Food sale 0.20 11.96 11.58 163.93

23
WI full state Hobby sale

CA full state Food sale 0.63 8.38 8.15 162.91

24
WI full state Hobby sale TX full state Househ sale

0.37 13.08 13.81 165.71

25 CA 4Househ sale TX 1Food sale -0.61 17.37 17.31 249.95

26 CA 4Househ sale WI 2Hobby sale -0.067 15.91 16.38 174.0

27 TX 1Food sale CA 4Househ sale 0.30 10.11 10.38 181.9

28 TX 1Food sale WI 2Hobby sale -0.33 17.34 17.98 186.7

29 WI 2Hobby sale CA 4Househ sale -0.25 13.78 13.54 187.6

30 WI 2Hobby sale TX 1Food sale 0.25 12.06 12.07 184.05
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Below are the results for model-based transfer learning N-BEATS. R2, MAPE,
SMAPE have been used as the evaluation metrics. The results have been presented
in the ascending order of the MAPE score.

Table 22: Model based learning N-BEATS model

TIME SERIES
TRAINED ON

TIME SERIES
TESTED ON

R2

MAPE SMAPE
TIME
(s)

CA total WI total 0.07 13.55 14.68 1355.72

CA total TX total 0.11 12.53 13.51 1485.73

TX total CA total 0.57 9.10 9.10 1562.75

WI total CA total 0.28 12.29 13.28 1377.20

TX total WI total -0.97 19.50 22.09 1524.82

WI total TX total -4.27 32.17 40.04 3447.18

TX 1 CA 2 0.40 13.64 14.73 1526.72

TX 1 WI 3 -0.36 17.72 19.45 1744.46

WI 3 TX 1 0.43 9.83 10.43 1619.31

CA 2 TX 1 0.51 9.10 9.31 1839.71

CA 2 WI 3 -0.04 15.20 16.53 1820.80

WI 3 CA 2 0.41 13.41 14.42 2040.4

Hobby combined Food combined 0.16 12.59 12.76 1760.68

Food combined Hobby combined -1.05 20.76 23.69 2445.84

Food combined Household combined 0.57 11.07 11.52 2186.96

Hobby combined Household combined 0.15 13.11 14.05 1833.65

Household combined Hobby combined -2.62 29.23 34.94 1769.22

Household combined Food combined 0.04 13.62 13.65 1969.36

CA full state Food sale
TX-
full state Househ sale

0.36 12.88 13.57 2715.89

CA full state Food sale WI full state Hobby sale -1.06 20.98 23.17 2043.33

TX-
full state Househ sale

WI full state Hobby sale -0.09 16.87 17.73 2070.31

TX-
full state Househ sale

CA full state Food sale 0.53 9.26 8.88 2193.87

WI full state Hobby sale CA full state Food sale 0.55 9.17 8.73 2356.27

WI full state Hobby sale
TX full state Househ sale

0.35 13.00 13.80 2638.56

CA 4Househ sale TX 1Food sale 0.21 12.52 12.47 2098.75

CA 4Househ sale WI 2Hobby sale -0.53 19.55 20.18 2287.05

TX 1Food sale CA 4Househ sale 0.17 11.15 11.35 2027.69

TX 1Food sale WI 2Hobby sale -0.41 18.26 19.24 1926.03

WI 2Hobby sale CA 4Househ sale 0.16 11.52 11.39 1755.91

WI 2Hobby sale TX 1Food sale 0.27 11.50 11.72 1562.32

59



B.3 Prophet with model-based time-series data

Table 23: Prophet with model based time-series retraining data

TIME-SERIES NAME R2 MAPE SMAPE TIME (s)

CA 4Househ sale -9.35 45.51 35.59 0.29

TX 1Food sale -0.24 17.65 19.82 0.45

WI 2Hobby sale 0.14 22.36 22.12 0.56

CA 2 -0.49 28.74 35.83 0.35

WI 3 -0.08 23.53 20.1 0.45

TX 1 0.34 10.84 11.15 0.65

CA total 0.76 7.59 7.24 0.74

TX total 0.49 9.27 9.42 0.62

WI total 0.13 17.89 15.74 0.32

Food combined 0.58 9.6 9.57 0.81

Hobby combined -0.004 13.771887 14.95 0.51

Household combined 0.78 8.048152 7.72 0.53

CA full state Food sale 0.6 9.454188 8.88 0.32

TX-full state Househ sale 0.54 10.67 11.14 0.56

WI full state Hobby sale 0.26 16.05 14.38 0.69
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