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Abstract

Due to the accelerating rise in the global population, it is more important than ever
to increase the efficiency of agricultural processes. To facilitate downstream applications
such as yield forecasting, we must first improve computer vision techniques on agricul-
tural datasets, which present their own unique set of challenges. In this paper, we focus
on the use case of monitoring strawberry crops, and we analyze specific challenges for
the multi-object tracking task on the Growing Strawberries Dataset (GSD). Namely,
issues such as camera motion, low frame rates, the prevalence of non-linear move-
ments, and the appearance evolution of the objects increase the difficulty of tracking
the strawberries in this dataset. We replicate the characteristics of GSD through a se-
ries of transformations applied to the popular multi-object tracking benchmark MOT20.
We give details on how data enhancements can be carefully curated to achieve similar
properties as found in GSD, and then check the robustness of state-of-the-art tracking
algorithms DeepSORT and StrongSORT to these particularities, by benchmarking them
on GSD and ModMOT20. We also propose additional features for these algorithms,
which lead to a considerable improvement in terms of tracking performance. Specifi-
cally, the HOTA performance of StrongSORT has improved on GSD from 27.9 to 42.8,
and on the ModMOT20 from 34.9 to 39.0. We explain how the performance enhancing
features such as camera shift compensation, immediate track initialization, aspect ratio
verification, relaxed location matching constraints, and appearance-only matching can
be implemented and applied on other datasets similar to GSD.
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1 Introduction

The current rapid rate of population increase is causing enormous concerns about the human
species’ survival on food resources that are naturally limited on planet Earth. It is estimated
that the total food production will need to increase by 51% before 2050 in order to suffice for
the predicted population of that year [70]. The scientific consensus is that the best approach
for sustaining this swift population growth is to optimize agricultural activities through the use
of existing and emerging technologies. This is hardly a new initiative, as innovative agriculture
projects started being developed in the 1980s, and include the use of Artificial Intelligence
(AI) techniques, wireless networks, robots, and drones to manage and automate the care of
crops such as corn, cotton, citrus, wheat, apple, and soybean [3]. One of the main goals that
technology can help achieve is the reduction of food waste through crop monitorization, and
yield predictions, which can help optimize the planning of employee shifts and supply deliveries
to clients.

In this paper, we aim to facilitate the further advancement of crop monitorization through
multi-object tracking (MOT) geared specifically towards the agricultural sector. We focus on
the use-case of the Growing Strawberries Dataset (GSD) [77], which contains time-sequential
images of strawberries as they grow in a greenhouse. This dataset was created to facilitate a
downstream application in which the total number of strawberries, their associated ages, and
their progressively changing appearances are used to forecast the yield obtained at a specific
time after the last recorded image. However, it presents several particularities that make track-
ing challenging, including the evolving appearances of the fruits, and the non-linear movements
caused by environmental factors.

Although the plants grow under controlled conditions in terms of humidity and temperature,
the light conditions are natural. This leads to colors being distorted by shadows and reflections
due to the varying lighting angles from the sun, as well as nightly periods when the captured
images are dark. In addition, the strawberries sometimes present non-linear movements when
the greenhouse workers reposition them to help them grow or accidentally move them when
passing by. They also pick the fruits when they are ripe, and regularly spray the plants, during
which time the cameras are covered in order to protect them. The strawberries themselves
often push other fruits away while growing, due to occupying more space. Sometimes, the
cameras present vertical shifts downwards due to humans moving them accidentally or due to
gravity itself. All of these irregular changes and gaps in usable images lead to an increase in
the difficulty of tracking individual strawberries across sequences of frames. While these issues
hinder our ability to easily track the fruits, their existence is generally to be expected in real
agricultural applications involving tracking. Hence, it is important to create a tracking system
that functions well when faced with difficult impediments such as these.

We advocate for the evaluation of the robustness of popular tracking algorithms against some
of the particularities of industrial and agricultural datasets such as GSD. We encourage the
use of data transformation techniques to replicate difficulty-inducing characteristics like camera
motion, non-linear movements, and appearance evolution. An example is offered of how this
can be achieved by using shifting to simulate camera movements, and altering color values on
the MOT20 dataset. This has resulted in a new dataset, ModMOT20, which closely resembles
the characteristics of GSD, in terms of properties like the Intersection-over-Union (IoU) of

3



consecutive bounding boxes (bboxes), and the color evolution of the subjects and images. We
provide further insight on how to create such a dataset in order to evaluate the robustness of
trackers in the presence of amplified or diminished degrees of the presented challenges.

Finally, we offer implementations of several features that can be added to state-of-the-art
tracking algorithms DeepSORT and StrongSORT in order to increase performance on datasets
presenting similar challenges as GSD and ModMOT20. The provided features include camera
motion compensation, immediate track initialization, aspect ratio verification, less strict lo-
cation matching constraints, and appearance-only matching. We benchmark the original and
customized algorithms on GSD and ModMOT20, obtaining a higher performance when mak-
ing use of the aforementioned improvements. Our methods give important insights about the
kinds of features that are suitable for use with complex agricultural datasets, and they could
inspire further work on the topic.

2 Related Research

Object Detection

Deep learning object detection techniques have already been used in numerous agriculture-
related projects. The tasks in question present unique challenges due to the high variety and
changing states of the objects, as well as exposure to different lighting conditions. Particularly,
strawberry fruit and flower detection have been used for automated harvest picking with robots
[83, 80], yield estimation [39], plant disease detection [51, 32], and distinguishing mature and
immature fruit [26]. Similar projects have been implemented to enhance the cultivation tech-
niques of other plants. These include the counting of grape clusters [62], sweet-peppers [74],
wheat spikes [79], oranges [86], mangoes, almonds, and apple fruits [4] and flowers [18].

The techniques used in accomplishing these tasks include Faster R-CNN [39, 40, 51, 62, 61, 4]
as the most popular one, accompanied by Mask R-CNN [83], YOLO [80, 86], and other Convo-
lutional Neural Network (CNN) architectures [26, 79, 18], as well as classical machine learning
algorithms applied to RGBD data [74]. In all of these situations, a high detection accuracy
was achieved despite the vast variety of appearances and the changing illumination conditions
associated with footage coming from outdoor gardens, fields, and farms.

Faster R-CNN, Mask R-CNN, and YOLO are among the numerous neural network architec-
tures that comprise the state-of-the-art landmark on popular object detection becnhmarks such
as Common Objects in Context (COCO) [41], Pascal VOC [29], and CrowdHuman [63]. Other
object detection architectures that achieve the overall highest performances on these datasets
are Co-DETR [90] for COCO, and InternImage-H [75] on Pascal VOC 2007 and CrowdHuman.
However, these are part of a large number of architectures that closely compete to achieve the
highest mean Average Precision (mAP) score on these tasks, their performances often being
separated by just a few decimal points.

Another relevant aspect to consider when choosing a model architecture is the ease with
which it can be integrated within a new project. The YOLO series is very commonly used
in industry projects due to both its high performance on object detection tasks, and to its
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open source availability. As a result, we opted to make use of the newest release in the YOLO
network architecture series, YOLOX [22]. It has a straight-forward training pipeline which is
easily adapted to various use cases and datasets.

Multi-Object Tracking (MOT)

Object detection in agricultural settings often precedes the application of tracking algorithms
to the obtained predictions [80, 62, 86]. GSD has previously been used to train Faster R-CNN
[24] and YOLOX [59] models for strawberry detection [77]. The mAP score achieved using
these architectures is 55.7 for YOLOX, and 55.8 for Faster R-CNN. Given the similar perfor-
mance of these two architectures, it was concluded that the choice of detection model among
these would have little influence over the performance of the tracking pipeline. The resulting
detections were then used to benchmark the tracking performance of several MOT algorithms:
SORT [7], OC-SORT [9], ByteTrack [88], DeepSORT [78], and StrongSORT [15]. SORT was
published in 2016, and DeepSORT in 2017, while ByteTrack and OC-SORT both appeared
in 2022. StrongSORT [15], which was released at the end of 2022 is a new online tracking
algorithm which positions itself near the state-of-the-art on benchmark datasets like MOT17
and MOT20.

Algorithms based solely on location matching, such as SORT, OC-CORT, and ByteTrack,
fail to leverage appearance as a way to perform matching despite the non-linearity of object
movements in GSD. Our experiments thus focus on DeepSORT [78] and StrongSORT [15],
two online tracking algorithms that take both the location and appearance of detections into
consideration when matching them together to form a trajectory. Both of these algorithms
use a Kalman Filter framework to perform location matching based on velocity vectors, as-
suming a consistently linear motion of the tracked objects. Appearance information is used to
achieve a higher matching performance. DeepSORT was the first tracking algorithm to pro-
pose appearance matching, based on features extracted using a deep neural network. To solve
the association problem, DeepSORT uses a Mahalanobis gating distance to verify whether an
association is admissible. Then, matching is performed solely based on the appearance cost,
which is measured using the cosine distance. Meanwhile, StrongSORT is an enhanced version
of DeepSORT, which proposes certain improvements, such as abandoning the use of the gating
threshold, and combining the motion cost (Am) and the appearance cost (Aa) in one equation
for the overall association cost (C):

C = λAa + (1− λ)Am. (1)

Typically, a much bigger weight is placed on the appearance cost, as the standard value for
λ is 0.98. StrongSORT also includes an object representation updating strategy using Expo-
nential Moving Average (EMA), and camera motion compensation with Enhanced Correlation
Coefficient (ECC) maximization [17].

Agricultural Applications of Visual Detections and Tracking

There are numerous implementations of other agriculture-related applications of object de-
tection and MOT. For example, a simple solution is used for locating highly occluded citruses
[27] by processing images to find clusters of pixels within manually defined valid fruit color
ranges. More novel solutions are used for the three-dimensional (3D) tracking of tomatoes
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[58], including object detection with Mask R-CNN over two-dimensional (2D) images cap-
tured at multiple angles, which are then combined to create a 3D representation of the space.
Then, tracking is performed using a customized algorithm. Another relevant application is the
prediction of the future paths of defective citrus fruits on a conveyor belt. These are detected
using a CNN, and tracked with SORT. In this case, tracking is performed with the aim to
then pick out the undesirable fruits using a robot arm [11]. Tracking has also previously been
used as part of a citrus classification application which identifies the quality grade of each fruit
[84]. In this case, a personalized tracking algorithm was used, created using a Program Logic
Controller (PLC).

A number of other projects also use object detection with the purpose of automatically count-
ing fruit in videos. Such applications exist for counting avocados, lemons, and apples using
Faster R-CNN, MobileNet [72], and YOLOv4 [21]. A visual counting application has also been
implemented for cotton seedlings, involving detection with CenterNet and tracking with Deep-
SORT [81]. Lastly, strawberries have also been a target for such an application [33], which
involves detection with a CNN, and tracking with a DeepSORT inspired algorithm.

Fruit Quality Prediction

Notably, GSD has also been used to create a strawberry quality prediction model in [76]. Sev-
eral approaches were benchmarked for this application, including deep learning methods such
as CNN, Variational Autoencoders (VAE) and Multilayer Perceptron (MLP). Other machine
learning techniques were also used, inluding Principal Component Analysis (PCA), Kernelized
Ridge Regression (KRR), and Support Vector Regression (SVR). The segmentation images
of strawberries at the moment of harvest were used as input, alongside with plant load data
and environmental parameters, including temperature, humidity, and lighting. Based on these
features, the model would output a prediction of the Brix degree of a strawberry at harvest
time, referring to the Total Soluble Solid (TSS) in the fruit. This value is in direct correlation
with the sweetness of a strawberry, and usually ranges between 6 and 12 for strawberry fruits.
The model achieved a Root Mean Squared Error (RMSE) value of 1.10 for the predicted Brrix
degree, and it was stipulated that a better performance may be reached by using segmenta-
tion images from the fruit’s entire life cycle instead of a single image at the moment of harvest.

Various previous papers have described how deep learning can be used to predict the ripeness
of fruit. One example is using classification and regression on images of bananas to predict
their ripeness class and expected shelf life with CNN and AlexNet [1]. Another paper has pre-
sented a statistical method for predicting the optimal picking date for all apples in an orchard
[56]. However, in this case, all fruits in the orchard become ripe during the same period of
time. In addition to visual data on fruit size, and color of the ground and background, some
data is collected through methods that involve destroying a part of the fruits, by measuring
the soluble solids content, acidity, firmness, and stage of starch transition. Other methods
use environmental data to predict the optimal harvest date, for example by using a statistical
plant growth simulation model for tomatoes [68]. In such methods, special attention is gener-
ally given to the temperature factor [38]. Fruit maturity has also previously been modeled as a
time series for grapes [5]. In this case, RGB images were used to chromatically study the fruit,
particularly in order to determine the color intensity for the green color channel. This value has
been found to have a high correlation to the fruits’ ripeness. Using an optimizable regressor
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that can be implemented with a simple neural network, the ripeness interval of a fruit can be
determined based on its color.

Yield Estimation

Predicting yield is a very popular application of AI in agriculture. The machine learning
models built for this scenario generally use environmental data, such as climatic parameters
[73, 55, 34, 31, 30, 2, 69, 13], soil data [55, 43, 31, 2, 13], plant load and vegetation index
observations [16, 50, 35, 34], and data about human agricultural activities [64, 52, 65]. Some
of these applications use visual data, such as Normalised Difference Vegetation Index (NDVI)
values derived from a Moderate Resolution Imaging Spectroradiometer (MODIS) sensor data
[50] or from satellite images [35]. However, none of these yield forecasting models used images
captured over time with regular photographic cameras.

Robustness Through Data Augmentation

Agricultural applications are in dire need of potent tracking algorithms, that will enhance the
usability of the aforementioned applications. Currently, however, standard evaluation datasets
for MOT algorithms are carefully curated, and only contain short, high-quality videos, with
high frame rates, and homogeneous lighting conditions. In addition, the most popular MOT
datasets have been designed to encourage advances in the field of autonomous driving. As
such, the objects tracked in these datasets are usually humans, as in the MOT Challenge,
[36], DanceTrack [67], SportsMOT [12], HiEve [42], and SeaDronesSee [71], or vehicles, as in
KITTI [23], BDD100K [82], and Synthehicle [28]. Increasing robustness to the agricultural in-
dustry’s challenges is an important goal in the development of AI techniques, including the field
of computer vision. This has previously been done for tasks such as image classification and
object detection. Several augmentation techniques have been employed to obtain more varied
training data for neural networks, leading to an overall improved performance [14, 48]. Such
methods include simple alterations like flipping, rotating, shifting, and cropping the image,
as well as more advanced ones like adding noise, PCA jittering General Adversarial Networks
(GANs), and Wasserstein GANs (WGANs).

Certain tracking algorithms have also been developed with specific dataset challenges in mind,
which has required evaluation data to contain a high amount of these specific challenges. This
was generally achieved through curating a data collection to contain as much of the studied
characteristic as possible. Such difficulties include occlusion occurrence [85, 53], varying light
conditions [57, 89], and busy backgrounds [10, 47]. One study has observed the importance of
gradual and controllable data augmentation, by studying how robust tracking algorithms are
when faced with incremental noisiness added to the evaluation data [20, 53]. No existing MOT
benchmark datasets present the same challenges as GSD in terms of non-linear motion and
evolving object appearances. However, carefully modifying a popular benchmark is a promising
strategy for obtaining such a dataset.
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3 Fundamentals

3.1 Neural Networks

The use of Neural Networks (NNs) is a fundamental building block for the methods used in
this paper. Specifically, CNNs are a particularly popular type of NN for processing images,
which are arrays of pixel color values [37]. For example, RGB images are composed of three
two-dimensional arrays, one for each individual color channel: red, green, and blue. CNNs con-
tain a series of convolutional and pooling layers. Convolutional layers are composed of multiple
feature maps, in which each unit is associated to a patch of units in the previous layer through
a weighted sum. An activation function is then applied to the result of this weighted sum.
Thus, convolutional layers are extremely good at detecting the occurence of motifs in the
previous layer, which can then be used in the subsequent layer to detect a motif at a larger
scale, formed by the co-occurrence of a number of motifs in the current layer. This is how
a CNN can go from locating simple features in an image, like straight lines and corners, to
classifying, for example, an image of a dog or a cat.

Meanwhile, pooling layers typically replace the values in a feature map with the local maximum
values of a small neighbourhood of units, making the network more robust to small variations
in the identified motifs. Training a CNN is done by tweaking the weights associated to the
units in its feature map, within any convolutional layer. This is performed through supervised
learning, by using a series of labeled images as input for the network. The difference between
the model’s output and the image’s label is treated as an error. Specifically, if the model
predicts that a dog-labelled image is a dog image with a confidence of 0.6, the error is equal
to 0.4. This classification error is used to modify the weights in the network in a process called
backpropagation.

The CNN architecture is a great solution to image classification problems, and it has been
adapted to detection tasks by using a sliding window [19] or region proposal methods [25].
However, this approach results in pipelines that are difficult to train, as each component has
a separate training process. By far the fastest architecture in terms of training and inference
is YOLO [59]. As its name suggests, running inference on an image is done after processing
the image only one time, as opposed to other existing models. This is achieved by treating
the task as a regression problem, receiving the image pixels as input for a CNN, and returning
the bbox locations. Since the introduction of YOLO, there has been a series of improvements
added to the original network. In this paper, we are using the latest version, YOLOX [22].

Convolutional layers are also used to build Convolutional Auto-Encoder (CAE) models
[49, 87]. Auto-Encoders (AEs) are unsupervised models whose input is almost identical to
their output. Their goal is to preserve the meaning of their input, but improve certain char-
acteristics of it, such as lowering its storage requirements, and removing noise and redundant
content. AEs have two main components: the encoder, and the decoder. In regular AEs, these
components are formed using fully-connected layers, organized in a feed-forward network. How-
ever, these layers can be swapped for convolutional layers to create CAE models, which are
better at using images as their input and output. These networks have input and output layers
with the same size, while the middle layers, which compose the bottleneck of the model, are
much smaller, as shown in Figure 1. The outputs of the bottleneck layers of the CAE are
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latent featuress, which are compressed encodings of the original images, without losing any
of the important information stored in them. Typically, a CAE arechitecture is used either for
image compression, or for generating de-noised images based on original ones. CAEs can also
be used to extract the latent features of detected objects in image datasets. In this paper, we
use feature encodings generated in this way for GSD.

Figure 1: Representation of a typical CAE architecture. This image is from [54].

Figure 2: Representation of the BoT feature extractor architecture and pipeline. This
image is from [45].

Another popular strategy for feature extraction is the use of a CNN specifically trained for this
task. One of the best performing models that does this is Bag of Tricks (BoT), which uses
a 50-layer CNN named ResNet50 trained according to several best practices for this task [45].
These practices refer to various training aspects, such as the warm-up learning rate, augmen-
tation through random image region erasure, label smoothing, reducing the size of the last
stride, and adding a Batch Normalization (BN) layer after the original final layer of ResNet50,
using a structure called BNNeck. The resulting pipeline is shown in Figure 2, and the BoT
architecture is used in Section 5.1.
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3.2 Evaluation Metrics

For the purpose of evaluating the performance of the tracking algorithms used on our data,
we chose several established metrics which are also used in the MOT Challenge. As MOT
is a complex task, these metrics focus on different combinations of aspects related to MOT
performance. Firstly, the detection performance refers to finding the objects of interest in
each frame. Meanwhile, localization performance shows how well the location of the objects is
reported in each frame. Lastly, the association performance describes how accurately objects
from different frames are found to belong to the same or different tracks.

In recent years, High Order Tracking Accuracy (HOTA) has been preferred as a tracking
metric, as it encompasses detection, association, and localization performance in a single for-
mula [44]. This metric has multiple components, and starts with finding a one-to-one mapping
between detections and ground truth annotations by using the Hungarian algorithm based on
IoU values calculated between each detection-annotation pair. IoU is the ratio between spatial
overlap for two bboxes (intersection) and the total space they collectively occupy (union).
Different HOTAα values can be calculated based on the IoU matching threshold, α, used to
generate this mapping.

Based on the one-to-one mapping obtained, correctly mapped objects that have an IoU higher
than α, are called True Positive (TPα). Meanwhile, extra detections are considered False Pos-
itive (FPα), and missing ones are considered False Negative (FNα). Thus, the Detection
Accuracy (DetAα) is calculated within a HOTA based ratio of accurate detections in the
following way:

DetAα =
|TPα|

|TPα|+ |FPα|+ |FNα|
(2)

The Association Accuracy (AssAα) is the average accuracy of trajectory matching over all
detections, when using an IoU threshold α. To calculate it, the set of True Positive Associations
(TPAα) for a given TPα instance, c, are described as the set of all pairs in TPα that have the
same ground truth ID (grID) and predicted ID (prID) as c. Similarly, the set of False Negative
Associations (FNAα) for c is formed of all elements in TPα with the same grID as c, but a
different prID. Lastly, the set of False Positive Associations (FPAα) for c is comprised of the
TPα pairs with the same prID as c, but which have a different grID.

AssAα =
1

|TPα|
Σc∈TPα

|TPAα(c)|
|TPAα(c)|+ |FPAα(c)|+ |FNAα(c)|

(3)

The final component of HOTAα, the Location Accuracy (LocAα), is calculated as the
average IoU of all TPs in the dataset:

LocAα =
1

|TPα|
Σc∈TP IoU(c) (4)

Detection and association evaluation are then combined to measure HOTAα in the following
way:

HOTAα =
√
DetAα · AssAα (5)
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Finally, a comprehensive value for HOTA is calculated over 19 different α values within (0, 1)
with the formula below. Although location is not explicitly included in the HOTAα formula,
location accuracy is automatically included in the value of HOTA as it stands as the base for
the one-to-one mappings obtained each α value.

HOTA =
∫
0<α≤1

HOTAα ≈ Σ0.95
α=0.05,α+=0.05HOTAα (6)

Another popular MOT metric is MOT Accuracy (MOTA), which emphasizes detection
rather than association performance, and does not account for localization at all [6]. Just
like HOTA, MOTA relies on a one-to-one mapping between ground truth and predicted
bboxes, obtained by using IoU scores and the Hungarian algorithm. Then, the frequency of
three types of errors is evaluated: False Positive (FP ), False Negative (FN), and Identity
Switch (IDSW). An IDSW refers to an object’s track identity mistakenly being swapped
with the identity of a different object, or to a track being considered lost, and then being
reinitialized with a different track ID. Given a set of ground truth Detections (gtDet), the
formula of MOTA is:

MOTA = 1− |FN |+ |FP |+ |IDSW |
|gtDet|

(7)

Finally, the Identification (IDF1) metric focuses on measuring association rather than de-
tection performance [60], in contrast with MOTA. Based on a one-to-one mapping between
ground truth Trajectories (gtTraj), and predicted Trajectories (predTraj), once again based
on the Hungarian algorithm. The correctly identified objects are called Identity TP (IDTP ).
Similarly, the occurrences of Identity FP (IDFP ) and Identity FN (IDFN) are counted as
well. This gives the following formula for calculating IDF1:

IDF1 =
|IDTP |

|IDTP |+ 0.5|IDFP |+ 0.5|IDFN |
(8)

4 Data

4.1 The Growing Strawberries Dataset

Overview

The industry dataset studied in this paper, GSD, contains image sequences of strawberry
plants in a greenhouse. Data was collected with the use of six fixed cameras. Three of these
cameras capture images in a Red-Green-Blue color scheme (RGB), while the other three cam-
eras do so in Orange-Cyan-Near-infrared (OCN). The experiments reported in this study focus
on the RGB camera image sequences: RGBCAM1, RGBCAM3, and RGBCAM5. The plants
grow under natural light conditions, with alternations between day and night. As a result, the
images captured have cyclically varying light conditions, which can be observed in Figure 4.
The strawberry fruits are in constant but slow change due to their growth, from their first
appearances until they are ripe and ready for picking. This can take between 3 and 7 days.
Due to the slow growth process of the fruit, images are captured with a frame rate of one per
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hour. It is not useful to capture videos at the higher frame rates commonly used by popular
multi-object tracking benchmarks. For example, the MOT Benchmark contains camera se-
quences with frame rates ranging between 14 and 30 frames per second [36]. These values are
useful, for example, when tracking pedestrians that move in and out of view within a matter
of seconds. However, in the case of mostly static objects, this would result in an unnecessary
amount of data being collected.

The goal of this dataset is to be used for harvest estimation by automating fruit growth
observation. The first step in achieving this goal is performing multi-object tracking on the
strawberry fruits. In this way, the appearance of each fruit can be monitored over time in order
to inform a prediction of the time when the fruit will be ripe. The images are accompanied by
COCO annotation files. These facilitate the use of GSD for training detection models, and for
evaluating detection and tracking performance.

(a) (b)

Figure 3: Consecutive frames from GSD, which present lighting changes and camera mo-
tion: a) RGBCAM1, image ID 818; b) RGBCAM1, image ID 819.

However, the task of tracking on GSD presents many challenging characteristics, as one can
expect from an industry dataset. Firstly, strawberries often do not look like previous
images of themselves. The appearance changes caused by the growth of the fruits make
matching and tracking based on appearance very challenging. In addition, the changes in light
conditions cause the strawberries to appear different from one frame to the next, amplifying
the challenge of appearance matching even further. Strawberries also look like each other.
The variety in the appearance of strawberry fruits is much more limited than, for example,
that of human pedestrians. Additionally, although the low frame rate is reasonable for this
use case, it also causes further challenges. For example, agricultural activities are performed
by humans in the greenhouse, which sometimes involve moving the fruits. This causes sudden
non-linear movements to occur within a trajectory between consecutive frames. The setup
of the cameras in the greenhouse also makes these susceptible to regularly occurring camera
movements on the vertical axis. These vertical motions displace the camera’s field of view
by varying amounts of pixels. This phenomenon is another cause of non-linear shifts of the
annotated strawberries within series of consecutive frames. Finally, a lot of the frames do not
contain clear images of the strawberries, due to being captured during nighttime, when visi-
bility is very low. There are also frames captured while cameras are covered to be protected
during pesticide spraying, resulting in completely occluded images.
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Some of the presented challenges can be bypassed with simple preprocessing steps. For exam-
ple, night-time and completely occluded images can be filtered out, as they do not contain
valuable annotations of strawberries. Meanwhile, to tackle more difficult characteristics, such
as non-linear fruit shifts, the solution often lies in improving the robustness of the tracking
algorithms themselves.

Preprocessing Steps

Nighttime images from GSD were not used in the experiments described in this paper,
as they would hinder the performance of detection models on the dataset, due to containing
barely visible strawberries. Frames captured during the night were filtered out by setting a
minimum luminance threshold of 50, and only using images with an average pixel luminance
higher than that. As nighttime images only occured on average twice a day, we decided that
this method of filtering them out is favorable to performing image normalization. The lumi-
nosity of each pixel, Y, was calculated based on the RGB values of that pixel according to the
ITU-R BT.601 standard [8], using the formula:

Y = 0.299R + 0.587G+ 0.114B. (9)

Furthermore, the frames where the field of view is completely or partially occluded due to
human activities were also filtered out. Such images were identified by calculating the standard
deviation of the image RGB array. A standard deviation less than 40 was interpreted as a signal
that the image has low variance in colors, and is most likely occluded. The process of filtering
out night time and occluded images was also described in [77]. The remaining frames shall
hence be referred to as DayGSD.

Further Analysis

To quantitatively determine what makes GSD a highly complex tracking dataset, certain char-
acteristics were examined in more detail. Particularly, we measured and stored the camera
motion occurring between every consecutive pair of images. We used Local Feature Matching
with Transformers (LoFTR) [66] to find pixel-wise matches between each pair of consecutive
frames. The difference between the horizontal and vertical coordinates of the pairs of pixels
matched between two consecutive frames was averaged to compute the camera motion occur-
ring between one frame and the next. The resulting estimated camera motions were compiled
into Figure 4 for DayGSD. It appears that vertical camera displacements are much more preva-
lent than horizontal ones. This is a known issue, arising from the setup of the cameras in the
greenhouse. As they are placed on a horizontal cylindrical bar, they can easily rotate forward
due to gravity. They often require repositioning by the employees of the facility. Camera mo-
tion, together with non-linear movements of some annotated strawberries, leads to difficulties
when performing location-based matching, as the IoU is often even 0 for consecutive-frame
annotations belonging to the same track. This is shown in Figures 5a and 5b for GSD, and
DayGSD, respectively. This is an important observation, as most tracking algorithms use IoU
distance as a performance measurement for location-based matching.

In addition to the location matching difficulties imposed by GSD, the appearance-based match-
ing is also made more complicated by the strawberries evolving over time. Figure 6 shows the
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(a) (b)

Figure 4: Histograms of the horizontal (a) and vertical (b) camera motion values registered
for frames in DayGSD.

(a) (b)

Figure 5: Histograms of the IoU values between consecutive locations of bboxes belonging
to the same strawberry for GSD (a), and DayGSD (b).

Figure 6: Average RGB values of the pixels inside bboxes according to their order inside
a track. Representation includes bboxes up to position 300.
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evolution of the color composition of bounding boxes belonging to the same strawberry over
time. The average track length in GSD is 155, and there are few tracks with a length greater
than 300, which is the reason why this limit was chosen for the plot’s horizontal axis. It is
evident that, as strawberries mature, their color becomes less green and more red. Namely,
the average R value of the pixels in a bbox grows from 125 to 150 over 300 frames. During
that time, the B value also increases from 50 to 75, and the G value decreases from 125 to
75.

4.2 Modification of MOT20

Original MOT Dataset

The MOT Benchmark is a collection of video sequences that is widely used to evaluate the
performance of tracking algorithms. Several versions of this dataset have been released in
2015, 2016, 2017, and 2020. All releases contain a train set and a test set. Each of them
contains several surveillance-style videos recorded in areas with heavy pedestrian traffic, such
as street corners, markets, and train stations. The datasets present multiple difficulties for the
tasks of detection and tracking, including occlusions of pedestrians and distance to camera.
However, they do not present some of the challenges that often occur in less carefully curated
datasets, such as the datasets used for agricultural industry applications, like GSD.

MOT Modification Steps

To reproduce some of the challenges present in GSD, we have modified the newest release
of the MOT Benchmark, MOT20, to include videos with camera motion and chromatic evo-
lution. The purpose of these modified versions of MOT20 is to benchmark different tracking
algorithms and observe their performance when faced with non-linear pedestrian movements
and changing appearances. The Modified MOT20 (ModMOT20) dataset was created based
on the train set of the original MOT20. This might seem unusual, as we intend to use it
for evaluating trackers, just as the test set is typically used. However, we need to be able to
generate ground truth files for the modified dataset. As the ground truth annotations are not
public for the MOT20-test set, we had to resort to using the original train set as a basis for
our transformed dataset.

The first modification performed was the addition of camera motion. Since GSD presents
camera motion mostly on the vertical axis, only vertical movements were artificially added to
MOT20. To achieve this, the images of MOT20-train were cropped down to 60% of their
original height. The camera motion value added to each cropped frame with global image ID
i, yiModMOT20, was calculated based on the value obtained during the camera motion analysis
of GSD, yiGSD, following the formula:

yiModMOT20 = yiGSD · h
i
ModMOT20

hi
GSD

(10)

This formula includes scaling the added camera motion value based on the height of the images
in ModMOT20, hi

ModMOT20, and in GSD, hi
GSD. The distributions of camera motions on the

vertical axes before and after this modification are shown in Figure 7. These graphs show how
the camera motion initially falls within a very restricted range, between -6 and 8 pixels. After
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(a) (b)

Figure 7: Histograms of the vertical camera motion values registered for frames in the
original MOT20-train (a), and the new ModMOT20 (b).

the modification, there are numerous instances of images affected by a high degree of camera
movement, with values varying between -300 and 300 pixels. This modification has caused
the distribution of IoU values between consecutive bbox locations in ModMOT20 to become
much more similar to that in GSD and its filtered version. Figure 8a shows the distribution
before adding camera motion, in which all such IoU values are above 0.8, and most of them
are equal to 1.0. After this modification step, there appear to be lower values as well, with a
considerable proportion of them being equal to 0.0, as depicted in Figure 8b.

We have also generated a number of different modified datasets with a diminished frame rate,
by sampling every 5th, 10th, 20th or 50th frame from the original dataset, and adding camera
motion to the resulting subset of frames. The IoU between consecutive bboxes in these modi-
fied variants can be seen in the plots included in Appendix A. We can observe that the degree
to which the frame rate is lowered is directly linked to a bigger shift of the distribution towards
lower IoU values. Meanwhile, adding camera motion produces a new peak of the distribution
around the IoU = 0.0 value. These insights could be helpful in finding the right modification
parameters to reproduce the IoU distributions of other high complexity industry and agricul-
tural datasets in the future.

The second modification step involves inducing progressive color changes into the MOT20-
train dataset, which makes it more similar to the case of growing strawberries. We decided to
alter the green channel of the images over time, by setting the green channel equal to the red
one, but then adding values from a sinusoidal distribution to it. As in GSD, the progression of
the red and green channels starts with the two having the same value, but after 300 frames,
the values differ by roughly 75, on a scale from 0 to 255. As such the sinusoidal distribution
used for changing MOT20 has an amplitude of 75, and a step of 0.0033 units, resulting in
the same green and red channel value difference being achieved in the same number of frames
as in GSD. These alterations were made at an image level, over the entire dataset. Figure 9
shows the evolution of the average color levels across the first 3000 frames of MOT20, and
ModMOT20. The values of the other color channels, red and blue, were kept as in the original
images. Some examples of the color and camera motion variety present in ModMOT20 are
shown in Figure 10.
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(a) (b)

Figure 8: Histograms of the IoU values between locations of consecutive bbox locations
for objects in the original MOT20-train (a), and the new ModMOT20 (b).

(a) (b)

Figure 9: Image color composition analysis for the first 3000 frames of the original MOT20-
train (a), and the new ModMOT20 (b).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Example of frames in the original MOT20-train: (a) MOT20-01, image ID 1,
(b) MOT20-01, image ID 150, (c) MOT20-01, image ID 300, and (d) MOT20-02, image
ID 21, and their new ModMOT20 versions: (e)-(h), respectively.
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5 Methods

5.1 Model Architectures

The object detection models used for GSD were taken from [77], where they were trained
and evaluated on GSD. Training new object detection models for GSD is beyond the scope
of this paper, which focuses on MOT methods and datasets. However, we are including a
detailed overview of the training procedure employed. Three YOLOX-x [22] detection models
pre-trained on the COCO dataset [41] were finetuned on GSD. Cross-validation was used by
leaving a different camera sequence out during the training of each model. During preprocess-
ing, the images were rescaled to a size of 2133×1600 and afterwards padded to 2174×1600.
The model was trained for 100 epochs, with a batch size of 4, a cosine annealing learning rate
of 3.125e−6, and a weight decay of 5e−4. Several data augmentation processes were involved
in the training, including horizontal and vertical flipping with a probability of 50%, rotation
between 0 and 90 degrees, brightness amplification with a value between 0.92 and 1.12, and
random contrast amplification with a value between 0.92 and 1.12. The detection files further
used in the tracking experiments were generated for each camera sequence using the specific
YOLOX-x model that had not been trained on that set of images.

As described in Section 3.1, the feature extractor used for GSD was created by taking the
encoder part of a CAE model trained on all strawberry segmentations acquired before August
2021. The model has three convolutional layers, interleaved with 2 maxpooling layers of sizes
(5, 5), and (4, 4). The dimension of both the input and output layers is 200x200x3. The
strawberry instances used to train the feature extractor for GSD are also present in the test
sets used for evaluating tracking performance on GSD. However, their effect on tracking per-
formance is negligible, as the CAE model is not trained to make representations more similar
for segmentations belonging to the same track.

For the object detector for MOT20, we used the same object detection model as ByteTrack
[88], which was also used in the StrongSORT paper to obtain the reported results [15]. Also
here, a YOLOX-x model pretrained on the COCO dataset was used. However, this time it
was fine-tuned on MOT20-train and CrowdHuman. The object detection files generated with
this model on MOT20-train were then processed to obtain detections corresponding to Mod-
MOT20. This operation was performed by clipping the bounding boxes from MOT20 to the
new cropped images, and also accounting for the added camera motion.

For both MOT20 and ModMOT20, we extracted features with the same model as proposed
by StrongSORT [15]. It is a Bag of Tricks (BoT) [46] model pretrained on the DukeMTMC
dataset [60], and finetuned on MOT20-train and CrowdHuman. More details on this technique
are given in Section 3.1. As the images in the ModMOT20 dataset are modified versions the
MOT20 training set, a slighlty different version of the ModMOT20 objects is captured in the
feature extractor model. However, for the same reason as in the case of the GSD feature
extractor, this has an insignificant effect on the tracking performance.
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5.2 MOT Algorithm Improvements

Two popular tracking algorithms were benchmarked on DayGSD, MOT20 and ModMOT20:
DeepSORT, and StrongSORT. After observing the particularities of these two datasets, some
additional features were incorporated into DeepSORT and StrongSORT to improve their per-
formance under these conditions. This resulted in customized versions of these algorithms,
which we refer to as Upgraded DeepSORT, and Upgraded StrongSORT, respectively. This sub-
section explains how to replicate this customization to facilitate tracking on any new datasets
with similar characteristics as GSD.

Gating Threshold Amplification

Firstly, in the case of DeepSORT, gating threshold amplification was performed using a new
parameter, called alpha (α). The goal of this parameter is to allow location matching to con-
sider candidates with a Mahalanobis distance higher than the original value, t(1) = 9.4877,
from the distribution of objects already associated with the track. This threshold value cor-
responds with a 95% confidence interval based on the inverse chi-squared (χ2) distribution.
Originally, DeepSORT assumes a high degree of linearity in the movements of the tracked
objects. However, with the non-linear movements present in GSD and ModMOT20, it is ben-
eficial to relax this requirement. Implementing this feature for DeepSORT is done by simply
multiplying the gating threshold with a value α. The condition for excluding a candidate bbox
j from being associated with the distribution of a track i was originally:

d(1)(i, j) ≥ t(1), (11)

where d(1)(i, j) is the Mahalanobis distance between i and j. Amplification with the α param-
eter will result in a new exclusion condition:

d(1)(i, j) ≥ α · t(1). (12)

The optimal value for α can be found through a hyperparameter optimization search for any
specific dataset. For GSD, this value was found to be 50, as described in Section 5.3.

Camera Movement Compensation

The DeepSORT code can also be altered to account for the camera motion occurring in
a given dataset. The vertical camera motion values can be measured with LoFTR. This tech-
nique is used to identify pixel-level correspondences between consecutive frames in the dataset,
and calculate the horizontal and vertical difference between the pixels’ locations within those
images. The output of LoFTR is comprised of two lists: one of horizontal distances, distxi (p, q),
and one of vertical distances, distyi (p, q), between the corresponding pixel pairs, (p, q), identi-
fied for each pair of consecutive images, with IDs i−1 and i. The complete set of corresponding
pixel pairs between images i−1 and i is denoted by Pi. To compute the horizontal (motionx

i )
and vertical (motiony

i ) camera motion values for each Image i, average horizontal and vertical
distances are calculated across the set of corresponding pixels in the following way:

motionx
i =

Σ(p,q)∈Pi
distxi (p, q)

|Pi|
(13)

motiony
i =

Σ(p,q)∈Pi
distyi (p, q)

|Pi|
(14)
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These values can then be subtracted from the bounding box coordinates, (xmin, ymin, width,
height), of every detection within each image in the dataset. The following formulas exemplify
this update rule for the bounding boxes corresponding to the detections in Image i:

xmin = xmin −motionx
i (15)

ymin = ymin −motiony
i (16)

This leads to a better overlap between consecutive bounding boxes belonging to the same
track, despite apparently non-linear movements caused by the camera motion. Given that
GSD is affected by mostly vertical camera movements, we only use vertical camera motion
compensation in our implementation. This also works well for ModMOT20, where only vertical
camera shifts were artificially added to the original MOT20 frames. However, choosing which
kind of camera movements to compensate is dependent on the specific characteristics of any
MOT dataset.

Immediate Track Initialization

Another addition made is immediate track initialization, which allows a track to be instanti-
ated based on a single detection. This does not happen with the original code of DeepSORT,
where even setting the n init parameter to 1 causes tracks to be considered confirmed only on
their second detection. In the original code, track states can have one of three different states:
tentative, confirmed, or deleted. Tracks are always initialized with the tentative state, and only
acquire the confirmed state when the number of detections associated to them is larger or
equal to n init. However, this condition is never checked when the track is first initialized, and
only when additional detections are acquired for it. As only detections associated to confirmed
tracks are included in the tracking algorithm’s output files, this leads to the occurrence of false
negatives. We changed the code to initialize every track in the confirmed state from the very
begining.

Aspect Ratio (AR)

Finally, an AR condition was introduced as a method to identify and discard erroneous object
detections, in order not to use them as input for the matching procedure. Previously, detec-
tions were only checked against a minimum detection height, and disregarded, if they had a
lower value than that. We changed the code so that the ratio between the height and the
width of each bounding box must fall within a certain range to be considered as legitimate.
The following formula shows how to calculate the AR of a bounding box, BBoxAR:

BBoxAR =
BBoxheight

BBoxwidth

(17)

The truth value of the following Boolean expression is then evaluated to decide whether the
bounding box’s shape corresponds with a legitimate detection:

minAR ≤ BBoxAR ≤ maxAR (18)

The minimum (minAR) and maximum (minAR) AR threshold values depend on the general
shapes of the tracked objects. They can be found through statistical analysis of the detection
bbox shapes or through hyperparameter optimization on any given dataset. For strawberry
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tracking on GSD, the optimal values found are minAR = 0.6, and maxAR = 1.6, as described
in Section 5.3.

Immediate track initialization and AR conditions were also added as improvement measures
for StrongSORT. However, the α parameter was not used as an upgrade for StrongSORT, as
the original algorithm does not use a gating threshold during matching. StrongSORT also has
its own camera motion compensation module, which uses ECC. Thus, it was not necessary to
perform further compensation based on the values obtained using LoFTR.

Appearance-Only Matching

However, the association method of StrongSORT was altered to perform matching solely
based on appearance. In this way, we expect to bypass all the issues caused by non-linear
movements existing in the dataset. The original matching cost C evaluation formula was ex-
pressed based on the appearance cost, Aa, and the motion cost, Am, as shown in Equation
1. The λ parameter quantifies the emphasis placed on appearance matching. Its original value
is set to 0.98 in StrongSORT, showing that the algorithm already relies strongly on apper-
ance matching over location matching. To achieve appearance-only matching, this formula
was changed to:

C = Aa (19)

This corresponds to changing the value of the lambda (λ) parameter from the algorithm’s
default of 0.98 to 1.

5.3 Hyperparameter Values

Choosing hyperparameter values for the original and upgraded DeepSORT and StrongSORT
algorithms can be done using any hyperparameter optimization technique. A grid search was
conducted to determine the best hyperparameter values for our new version of DeepSORT
on DayGSD. The resulting values are shown in Table 3. Most of these hyperparameters are
common to the original DeepSORT and StrongSORT algorithms, as well as to the improved
version of StrongSORT. Additionally, as previously demonstrated, the GSD and ModMOT20
datasets have very similar properties. Because of this, and hyperparameter optimization pro-
cesses being very time consuming, we opted to reuse most of these values when running the
remaining algorithms on DayGSD and ModMOT20. The hyperparameter values used for ap-
plying the other algorithms are listed in Tables 1, 2, and 4.

However, to accommodate for object specific characteristics, some of the parameters have
been tuned for the respective dataset. For example, the minimum and maximum threshold
values used for AR were optimized specifically for strawberry tracking, and found to be 0.6
and 1.6, respectively. Meanwhile, ModMOT20 is a pedestrian tracking dataset. Because the
expected aspect ratio of a human differs from that of a strawberry, using different values
was necessary. To decide on an appropriate values, we looked to the original StrongSORT
and DeepSORT state-of-the-art performances on MOT20-test, which are achieved with the
comparable parameter min detection height set to 0. This value essentially signifies that the
threshold is not used, because bounding boxes always have a height larger than 0. Thus, we
used min AR = 0, and max AR = 100 for ModMOT20, all bounding boxes in the dataset
fall within these thresholds.
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Another case of differing parameter values is that of nn budget. This parameter corresponds
to the number of feature vectors retained in a feature bank for each object, in order to be used
when calculating the cosine distance of a new detection to any the existing tracks. For Deep-
SORT and its customized version, we used the value 10, found through the hyperparameter
search. This means that the 10 most recent feature vectors belonging to each trajectory are
available always available for use in the matching procedure. However, instead of the feature
bank used for DeepSORT, StrongSORT saves each object representation as a single vector
of Exponential Moving Average (EMA) values over all previous feature encodings acquired for
that object. Due to the use of EMA, an nn budget value of only 1 is necessary when applying
StrongSORT and the upgraded StrongSORT algorithm. Additionally, as previously explained,
the value of lambda differs between StrongSORT and upgraded StrongSORT in order to per-
form the association of the tracked objects only based on appearance.

Tables 1 and 2 also show the hyperparameters used to obtain close to state-of-the-art re-
sults on MOT20 in the case of DeepSORT, and StrongSORT. These values will be used to
reproduce and validate these performances on the MOT20-test set.

Table 1: Hyperparameter values used for running DeepSORT code on GSD, MOT20 and
ModMOT20.

DeepSORT Hyperparameters
Hyperparameter MOT20 ModMOT20 DayGSD
min confidence 0.6 0.1 0.1
nms max overlap 1.0 0.7 0.7
min detection height 0 0 0
max cosine distance 0.3 0.1 0.1
nn budget 100 10 10
max iou distance 0.7 0.3 0.3
max age 30 3 3
n init 3 0 0

Table 2: Hyperparameter values used for running StrongSORT code on GSD, MOT20 and
ModMOT20.

StrongSORT Hyperparameters
Hyperparameter MOT20 ModMOT20 DayGSD
min confidence 0.6 0.1 0.1
nms max overlap 1.0 0.7 0.7
min detection height 0 0 0
max cosine distance 0.45 0.1 0.1
nn budget 1 1 1
max iou distance 0.7 0.3 0.3
max age 30 3 3
n init 3 0 0
lambda 0.98 0.98 0.98
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Table 3: Hyperparameter values used for running altered DeepSORT code on GSD and
ModMOT20.

Upgraded DeepSORT Hyperparameters
Hyperparameter MOT20 ModMOT20 DayGSD
min confidence 0.6 0.1 0.1
nms max overlap 1.0 0.7 0.7
min AR (new) 0 0 0.6
max AR (new) 100 100 1.6
max cosine distance 0.3 0.1 0.1
nn budget 100 10 10
max iou distance 0.7 0.3 0.3
max age 30 3 3
n init 0 0 0
alpha (new) 50 50 50

Table 4: Hyperparameter values used for running altered StrongSORT code on GSD and
ModMOT20.

Upgraded StrongSORT Hyperparameters
Hyperparameter MOT20 ModMOT20 DayGSD
min confidence 0.6 0.1 0.1
nms max overlap 1.0 0.7 0.7
min AR (new) 0 0 0.6
max AR (new) 100 100 1.6
max cosine distance 0.45 0.1 0.1
nn budget 1 1 1
max iou distance 0.7 0.3 0.3
max age 30 3 3
n init 0 0 0
lambda 1 1 1

6 Results

6.1 Reproduction of Results on MOT20-test

To ensure correct usage of the open source code of DeepSORT and StrongSORT, the two
algorithms were first benchmarked on the MOT20 dataset. The hyperparameter values used
are reported in Tables 1 and 2, and they correspond to the values reported in the publications
associated with the two algorithms [15]. Table 5 shows the performances achieved in terms
of several popular MOT evaluation metrics. Our obtained metric values are very close to the
reported ones, demonstrating a correct approach and implementation.
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Table 5: Reproduced and reported performance metrics obtained on MOT20-test.

Results on MOT20-test
Algorithm HOTA(↑) IDF1(↑) MOTA(↑) AssA(↑) DetA(↑) IDSW(↓)
DeepSORT
(ours)

57.12 69.62 71.77 55.49 58.97 1418

DeepSORT
(official [15])

57.10 69.60 71.80 55.50 59.00 1418

StrongSORT
(ours)

61.63 76.31 72.08 63.71 59.77 1058

StrongSORT
(official [15])

61.50 75.90 72.20 63.20 59.90 1066

6.2 Benchmarking on DayGSD

The performances achieved with the four tracking algorithms are listed in Table 6. The upgrades
made to DeepSORT and StrongSORT led to a considerable improvement in terms of the
metrics HOTA, IDF1, AssA, and IDSW. There is a slight lag behind the original algorithms
when considering MOTA and DetA performance. However, the improved algorithms generally
lead to a better performance. The performance metrics used are detailed in Section 3.2. Of
these, HOTA is generally viewed as the most comprehensive MOT performance metric, as it
includes all aspects of tracking: detection, association, and localization. A clear improvement of
DeepSORT and StrongSORT can thus be observed after applying our upgrades. This translates
into an increase of the leading metric, HOTA, from 30.93 to 43.01 for DeepSORT, and from
27.95 to 42.89 for StrongSORT.

Table 6: Performance metrics obtained on DayGSD using DeepSORT, upgraded Deep-
SORT, StrongSORT, and upgraded StrongSORT.

Results on DayGSD
Algorithm HOTA(↑) IDF1(↑) MOTA(↑) AssA(↑) DetA(↑) IDSW(↓)
DeepSORT 30.93 26.98 53.22 17.33 56.75 11141
Upgraded
DeepSORT

43.01 44.67 49.26 35.29 53.40 5715

StrongSORT 27.95 23.10 52.12 14.05 57.36 15427
Upgraded
StrongSORT

42.89 42.16 50.24 33.93 55.33 7892

6.3 Benchmarking on ModMOT20

Similar to the performance overview on GSD, Table 7 shows that the results achieved using
the upgraded versions of DeepSORT and StrongSORT surpass those reached using the orig-
inal algorithms. In this case, MOTA and DetA metrics are also higher when the customized
algorithms are used. The only performance metric that is not improved by the upgraded
StrongSORT is IDSW, for which the original StrongSORT achieves a lower value. The overall
improved performance confirms that the characteristics identified as challenging in both GSD
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and ModMOT20 were adequately addressed by the new features added to DeepSORT and
StrongSORT.

Table 7: Performance metrics obtained on DayGSD using Deepsort, upgraded DeepSORT,
StrongSORT, and upgraded StrongSORT.

Results on ModMOT20
Algorithm HOTA(↑) IDF1(↑) MOTA(↑) AssA(↑) DetA(↑) IDSW(↓)
DeepSORT 23.19 22.26 64.53 8.54 63.50 70941
Upgraded
DeepSORT

36.53 42.68 71.72 20.33 66.19 60462

StrongSORT 34.97 39.63 70.75 18.06 67.89 53316
Upgraded
StrongSORT

39.01 44.92 75.13 21.39 71.41 60597

7 Discussion and Conclusions

The results achieved in this paper demonstrate multiple important findings. To begin with,
we show that the performance of standard tracking algorithms on challenging datasets can
be improved by further adding important customized features. These additions are tailored
to face the challenges offered by industrial and agricultural datasets. As seen in the cases of
GSD and ModMOT20, challenges can arise, among others, in the form of camera motion,
non-linear trajectories, and appearance changes over time. One important contribution of this
paper is proposing additional features for existing MOT methods, including camera motion
compensation, immediate track initialization, aspect ratio, relaxed location constraints, and
appearance-only association. In our case, these features led to clear improvements in terms
of all considered metrics on ModMOT20. Meanwhile, on GSD, the performance has vastly
improved in terms of HOTA, IDF1, AssA, and IDSW, and is still comparable to that of the
original trackers in terms of MOTA and DetA. The procedure used for adding these features
to existing MOT algorithms is described in the methods of this paper, and can be used to
improve tracking performance on other datasets similar to GSD.

Additionally, we provide a way to verify algorithm robustness to the aforementioned chal-
lenges. Given that the most popular MOT datasets present short videos, captured with stable
cameras, it is difficult to estimate performance when complications are added. But, by bench-
marking on our proposed dataset, ModMOT20, performance on challenging datasets can now
be estimated, and potentially improved. We also provide insights regarding how to best imitate
the various properties of the datasets we are interested in when transforming a well known
dataset like MOT20. The camera motion we induce, the downsampling of the images, and the
color variation we add can all be carefully tweaked to closely simulate certain variations in IoU
shifts or chromatic evolution that typically appear in agricultural datasets.

The methods and experiments presented demonstrate a huge potential for further advance-
ments in the use of challenging image datasets, and also the need for such datasets to be
benchmarked on. The reported improvements give a promising overview of the use of agricul-
tural datasets, despite the challenges of tracking objects whose intrinsic and extrinsic visual
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properties are constantly changing. Improved performance on this task has vast implications
and ramifications into optimizing the use of technology in the food sector.
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A Effects of Frame Rate and Camera Motion Modi-

fications

We created multiple modified versions of MOT20, by progressively lowering the frame rate of
the original dataset. The effect of this modification on the IoU distribution of consecutive bbox
locations belonging to the same object is shown in Figure 11. The effect of further adding
camera motion to these modified datasets is shown in Figure 12.

(a) (b)

(c) (d)

Figure 11: Histograms of the IoU values between consecutive bbox locations of objects in
MOT20 modified to have frame rates lowered 5 times (a), 10 times (b), 20 times (c), and
50 times (d).
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(a) (b)

(c) (d)

Figure 12: Histograms of the IoU values between consecutive bbox locations of objects in
MOT20 modified to have camera motion, and frame rates lowered 5 times (a), 10 times
(b), 20 times (c), and 50 times (d).
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