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Abstract

Images play an essential role in our digital age, which has given rise to the issue of image
forgery. Fortunately, researchers are actively working to develop methods to detect image
forgery. This paper examines the impact of different feature extraction methods as backbone
networks for algorithms that detect image forgery and image manipulation. The feature
extraction methods employed for this study, VGG16, InceptionResNetV2, EfficientNetB4, and
XceptionNet, were carefully selected with a discerning balance between inference speed and
accuracy. Incorporating the four different feature extraction methods on a robust dataset,
developed specifically for this study, into a single image forgery detection network FDFtNet,
this study demonstrates that better performing feature extraction methods can improve the
accuracy of existing image forgery detection methods. The results can be attributed to the
increased depth and complexity compared to the older feature extraction methods such as
VGG16, which is unable to capture fine details in images, a property particularly important
where subtle differences may be indicative of tampering. The novel dataset ensures that
the obtained results are not limited to a specific dataset but rather generalize well across
various scenarios. This novel dataset significantly contributes to the field by increasing the
diversity of the data and it generates new combinations of objects and scenes that were not
present in existing datasets. The networks are evaluated using two novel metrics, the Detection
Improvement Ratio (DIR) and the Image Forgery Efficiency Ratio (IFER), which advance our
understanding of the importance of feature extraction methods in image forgery detection
and provide valuable insights for researchers in this domain.
Keywords: image forgery detection, image manipulation, feature extraction, image
tampering, FDFtNet, DIR, IFER
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1 Introduction

In this digital age, images play an essential role in communication, entertainment, and many other
domains. Unfortunately, the widespread use of digital images has given rise to image forgery, an
important issue. Image forgery refers to the act of manipulating images with malicious intent. With
the ease of image manipulation, it has become increasingly difficult to distinguish real images
from fake ones. This leads to a rise in different types of image forgery, such as splicing, copy-move,
removal, and several facial forgeries, with the most widely known methods of Deepfakes among these.
This has severe implications in society, from spreading false information to causing reputational
damage and potential legal issues. Therefore, image forgery detection has become a crucial area of
research in computer vision and image processing, and the number of publications on image forgery
detection has increased exponentially [43]. The detection of image forgery is crucial to ensure that
these digital images accurately represent reality.

The detection of image forgery can be accomplished using various algorithms that employ feature
extraction methods. In recent years, several feature extraction models have been designed, such as
VGG16 [36], XceptionNet [5], EfficientNetB4 [39], and InceptionResNetv2 [37], which are widely
used in image classification and object detection. These models have shown exceptional performance
in image classification.

Despite the progress made in the field of image forgery detection, the detection of forgeries remains
challenging and image forgery localization has proven to be one of the most difficult areas in digital
image forensics [13]. Detecting forgeries is complicated as forgers often use sophisticated techniques
to conceal their activities and as supervised learning is required, datasets that contain ground truth
are crucial. Unfortunately, these datasets can be rare and as the techniques to forge images become
more complex, the detection of forgeries becomes increasingly difficult.

The primary objective of this thesis is to study whether newer and higher performing feature
extraction models can improve the performance of existing image forgery detection algorithms.
Particularily, this study focuses on the image forgery detection algorithm FDFtNet, a state-of-the-
art algorithm that contains feature extraction by XceptionNet. We study four different feature
extraction models using FDFtNet, including VGG16 as a baseline model, on a novel dataset and
compare their performance using two unique metrics.

The contributions made in this thesis are fourfold. Firstly, we present an extensive analysis of the
impact of using different feature extraction methods as backbone networks on the performance of
image forgery detection algorithms Secondly, this study presents insights into the advantages of
utilizing advanced feature extraction models to detect image forgeries with the use of a novel metric
called Relative Detection Improvement Ratio (RDIR). The thesis also introduces an independent
novel dataset that combines data from five different datasets, and therefore contains many forgery
types. This enables a reliable and robust experiment, as it ensures that the training of the algorithms
is not compromised by overfitted data or focussed on one specific forgery type. Lastly, it includes an
evaluation and comparison of the networks mentioned on a novel metric called the Image Forgery
Efficiency Ratio (IFER), which combines the classification time, computational cost, and accuracy
of each network. This sheds light on the feasibility of the practical use of the proposed image forgery
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detection algorithms in media platforms.

1.1 Thesis overview

The remainder of this thesis is organized as follows. Section 2 includes the definitions that are used
in this paper. In Section 3, we provide an overview of the literature on image forgery detection
and feature extraction models. We also discuss the different datasets that have been proposed
for image forgery detection and have been used in said networks. In Section 4 we provide a de-
tailed analysis of the chosen image forgery detection algorithm FDFtNet, as well as an in-depth
comparison of the feature extraction methods VGG16, XceptionNet, EfficientNetB4, and Incep-
tionResNetv2. Furthermore, it involves a comprehensive overview of the datasets used to create
the novel dataset for training and evaluating the networks, including a detailed description of the
images in the dataset. Section 5 describes the methodology used in our experiments, including the
specific techniques of pre-processing, and different parameter settings. It also includes the different
evaluation metrics used, as well as the novel metrics Detection Improvement Ratio (DIR) and
Image Forgery Efficiency Ratio (IFER). In Section 6, we present the results of our experiments in
various figures and tables and Section 7 analyses the performance of the four feature extraction
models. We compare the performance of the four models against the baseline model VGG16, and
examine the factors that contribute to their performance. We also perform a detailed analysis of
the results of the DIR and IFER metrics. Finally, in Section 8, we conclude the thesis by sum-
marizing the findings and discussing future research directions in the field of image forgery detection.

This thesis is part of the bachelor program in Computer Science with a specialization in Artificial
Intelligence at the Leiden Institute of Advanced Computer Science (LIACS) at Leiden University
and was written under the supervision of Prof. Dr. Michael Lew and Prof. Dr. Erwin Bakker.

2 Definitions

2.1 Acronyms

IFDL Image Forgery Detection and Localization
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
CMFD Copy-move forgery detection

2.2 Terminology

Image forgery Image manipulations that produce fake graphic content which falsifies some facts
Image tampering A special type of image forgery that alters a part or multiple parts of the

graphic content of a given digital image
Image manipulation Computing techniques that paint or edit a digital image
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3 Related Work

Many researchers have attempted to tackle the problem of image forgery detection and numerous
datasets and feature extraction methods have been proposed in the last few years to help forgery
detection methods. These detection methods can be categorized into active and passive forgery-
types, and further sub-categorized into dependency. A graph illustrating these categories can be
seen in Figure 1.

Figure 1: The different image forgery types in the field of IFDL

3.1 Networks

The current literature on image forgery detection highlights several deep learning-based approaches
for the task of image forgery detection. Among them, ManTra-Net, MesoNet, FDFtNet, SPAN,
and RGB-N are notable examples. Aside from these networks being categorized in those shown in
Figure 1, the image forgery detectors can be categorized into their form of classification, either a
binary classification of real or fake, often determined by a percentage or by predicting a localization
of the tampered region by producing a mask. An example of such a mask can be found in Figure 2.

ManTra-Net [47] is a manipulation tracing network designed for detecting and localizing image
forgeries with anomalous features. It was proposed by Wu et al. in 2019 and utilizes a novel
manipulation tracing module to capture the traces of different image manipulation operations. It
is based on a VGG16 architecture with a feature pyramid network (FPN) for multi-scale feature
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Figure 2: Example of binary mask produced by a CNN-based model [3]

extraction. ManTra-Net takes an input image and produces a heatmap indicating the regions of
the image that are anomalous, i.e., likely to be manipulated.

MesoNet, introduced by Afchar et al. in 2018 [1], is a compact facial video forgery detection DCNN.
The network extracts compact and discriminative features from facial regions using a multi-scale
aggregation of deep features and exploits the mesoscopic properties of face images. It has a total of
26 convolutional layers and uses a bottleneck design for parameter efficiency.

FDFtNet, proposed by Jeon et al. in 2020 [22], is a fake detection fine-tuning network. This network
is trained using a two-stage fine-tuning approach, where the first stage involves pre-training the
network on a large-scale dataset using a backbone network and the second stage involves fine-tuning
the pre-trained network on a smaller target dataset to improve its detection accuracy on fake images.
The FDFtNet is designed to detect and localize fake images, and it leverages the distributional
difference between real and fake images to improve accuracy.

The spatial pyramid attention network (SPAN), a deep learning-based network proposed by Hu et
al. in 2020 [18], is designed for image manipulation localization. SPAN uses ResNet as a backbone
for feature extraction and combines a spatial pyramid pooling module with an attention mechanism
to detect and localize image manipulations.

RGB-N [50] uses a multi-scale CNN architecture to learn rich features for detecting image manipu-
lations and was introduced by Zhou et al. in 2018. The characteristic that distinguishes itself from
other networks is its use of a novel RGB-normalization operation. This enables the network to
capture some of the subtle differences that are between manipulated and real images.

Other notable networks in the field of image forgery detection include BusterNet, which specialized
in CMFD [46], ObjectFormer, displaying the artifact of the forged feature [44], MFCN specialized
in splicing forgeries [34] and PSCC-Net [26], build on the feature extraction method HRNet.

3.2 Feature extraction methods

Many different networks described in the previous paragraph use a known feature extraction model
as an effective backbone to their network. An overview of these networks and their corresponding
base models can be found in Table 1. The topic of feature extraction methods has been extensively
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Authors Network Backbone Dataset

Wu et al. ManTra-Net [47] VGG-16 and VGG-19 Dresden, KCMI
Hu et al. SPAN [18] VGG Dresden, KCMI
Afchar et al. MesoNet [1] - FaceForensics++
Jeon et al. FDFtNet [22] Xception, ResNet, ShallowNet and SqueezeNet FaceForensics++, CelebA
Wu et al. BusterNet [46] VGG MIT SUN, MSCOCO
Zhou et al. RGB-N [50] Faster R-CNN → ResNet MSCOCO
Wang et al. ObjectFormer [44] EfficientNetB4
Liu et al. PSCC-Net [26] HRNet Dresden, KCMI, MSCOCO
Dong et al. MVSS-Net [7] FCN → ResNet CASIA
Zhou et al. GSRNet [49] VGG16 CASIA, MSCOCO
Akbari et al. PRNU-Net [2] MISLNet
Guo et al/ AMTEN [12] DenseNet CelebA

Table 1. Overview of SOTA image forgery detection methods with their feature extraction backbone
models and the datasets used for training and testing

studied in scientific research. SIFT (Scale-Invariant Feature Transform) [28], was introduced in 1999
and is a feature extraction algorithm that is invariant to scale, orientation, and affine distortion.
It identifies the key points in an image, which are then described by a set of descriptors. The
descriptors are generated by considering the gradients of the pixels in a local region around the
key point. SURF [4], created as an improvement to SIFT in 2006, uses a set of Haar wavelet
responses instead of gradient information to generate the descriptors and a box filter approximation
to Gaussian smoothing. However, newer methods, such as CNN-based feature extraction, have
surpassed these networks in terms of accuracy and performance.

Convolutional neural networks can also be used for this purpose and have shown a lot of promise
in addressing these problems, as CNNs are capable of extracting high-level features. One widely
used model is VGG [36], a DCNN introduced in 2014 by Simonyan and Zisserman. VGG16 and
VGG19 have fixed architectures consisting of convolutional and fully connected layers, of 16 and 19
layers, respectively.
In 2015, the Residual Network ResNet [14] was introduced as a solution to the problem of vanishing
gradients in DCNNs. This model introduced residual connections between the layers to enable
better gradient flow through the network. ResNet50, with 50 layers and 25 million parameters, is
the most commonly used ResNet model for image recognition tasks. In 2016, the ResNetv2 [15]
model was proposed as an improvement to ResNet, with better skip connections that bypass several
layers of the network to enhance identity mapping. The ResNetv2 has the same number of layers
and parameters as ResNet but with a different architecture.

In the pursuit of striking the perfect balance between network depth and width, the InceptionNet
model was devised [38]. Its primary objective was to gfinding an optimal trade-off between the depth
and width of the network, while maintaining a manageable number of parameters. To accomplish
this, the architecture comprises a series of Inception modules, distinguished convolutional blocks
that possess the unique ability to efficiently capture information at various spatial scales.

Building upon the foundations of InceptionNet, XceptionNet [5] was proposed. Born from the
concept of an extreme version of InceptionNet, it embraced the utilization of depthwise separable
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convolutions and pointwise convolutions, strategically woven together to construct an extreme
version of InceptionNet.

As algorithms to detect image forgery are improving, feature extraction methods are improving as
well. A newer feature extraction method, EfficientNet [39], is a convolutional neural network that
uses a technique called compound scaling method and has obtained state-of-the-art performance on
the ImageNet and the CIFAR-100 datasets. The network contains several different versions, scaling
the baseline network up from EfficientNet-B0 to EfficientNet-B7.
The InceptionResNet [37] model was introduced as a combination of the Inception and ResNet
architectures, utilizing residual connections between inception modules to enhance the performance
of the previous Inception and ResNet models.

Other notable feature extraction methods that have been utilized in image forgery detection include
ShallowNet [40], SqueezeNet [20], DenseNet [19], NASNet [51], AmoebaNet [32], and ShuffleNet [48].

3.3 Datasets

State-of-the-art algorithms in image forgery detection rely heavily on the availability of appropriate
datasets, as supervised learning approaches are required to accurately detect images that have been
tampered with. Specifically, these approaches require training on datasets that contain ground
truth labels. While these datasets are essential for advancing the state-of-the-art in image forgery
detection, they are often scarce and difficult to obtain, since forged images are typically created to
deceive people and may lack ground truth labels. Therefore, the majority of algorithms in image
forgery detection create a synthetic dataset using manipulation techniques to train the networks.
Some commonly used datasets are the DRESDEN image database [10] used by [47][26][18], MS
COCO [25] seen in [46][50][49], the KCMI Kaggle Camera Model Identification [16] dataset used by
[47][26][18] and the CelebA database, containing facial images of celebrities [27] used by [22] [12].

Nonetheless, these datasets are crucial for developing image forgery detection methods and therefore,
several datasets were proposed in the past decade, which I will present in this section.

Rossler et al. produced the FaceForensics++ dataset [33], a dataset containing over 1.8 million im-
ages and videos of manipulations created with five widely used facial manipulation techniques. The
FaceForensics++ dataset has created a benchmark for facial manipulation detection to standardize
the evaluation of detection methods1. The FaceForensiscs++ dataset was used by [1] [22], amongst
others. Another widely used benchmark dataset for image forgery detection is the CASIA Image
Tampering Detection Evaluation Database [8], available in two versions, CASIAv1.0 and CASIAv2.0.
CASIAv1.0 contains around 5000 images with copy-move and splicing forgeries. CASIAv2.0 contains
a larger collection of tampered and authentic images, with a total of 10,000 images. The tam-
pered images include various types of forgeries, such as copy-move, splicing, and retouching. Both
CASIAv1.0 and CASIAv2.0 include the location of tampering and method of forgery in the ground
truth labels and the datasets were used to test several algorithms [47][46][44][26][34][50][49][7].

1kaldir.vc.in.tum.de/faceforensics_benchmark
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Furthermore, the DEFACTO dataset is a dataset that specifically uses splicing, copy-move, removal,
and morphing from the MSCOCO dataset to automatically generate 149000 forged images, and
was created in 2019 [29]. The MSCOCO dataset is a large-scale dataset with a total of 2.5 million
non-forged labeled instances in 328k images produced by Microsoft [25].

In addition to these larger datasets, there are smaller datasets such as the NIST16 dataset [11]
that was part of the NIMBLE Challenge 2017 evaluation and used by [47][44][26][34][50][49][7]. It
contains about 100 images with a high resolution and their location of tampering as a binary mask.
The COVERAGE dataset [45] contains a collection of 1000 authentic and 1000 tampered images
created by copy-move forgeries and was used by [47][44][26][34][50][18][7]. In this dataset, the ground
truth incorporates information about the type and location of tampering. The COLOMBIA Image
Splicing Detection Evaluation Dataset [31] used by [47][44][26][34][50][7][18] contains a collection of
120 authentic and 120 spliced images primarily created by splicing and its ground truth comprises
information about the location of the splicing and whether the image is authentic or has been
spliced.
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4 Methods

4.1 FDFtNet

FDFtNet, the Fake Detection Fine-tuning Network, was designed for the robust detection of fake
images. It integrates several advanced techniques to enhance the performance and accuracy of their
detection algorithm. The architecture, depicted in Figure 3 combines a Fine-Tune Transformer (FTT)
with a pre-trained CNN as a backbone, and the MobileNet block (MBblockV3) to provide efficient
feature extraction via different convolution and structure techniques. By leveraging well-established
CNN architectures for fake image detection, FDFtNet offers a reusable fine-tuning network that
enhances the performance of existing backbone CNN models, which were not specifically designed for
detecting fake images. FDFtNet was originally tested on four backbone CNN models, SqueezeNet,
ShallowNetV3, ResNetV2, and XceptionNet, where the latter yielded the best performance. Due to
its clear use of a backbone CNN model, efficiency, and availability, FDFtNet was chosen as the
primary network for this study to compare various CNN models as backbone networks. This section
will further focus on FDFtNet and its architecture.

Figure 3: The architecture of FDFtNet [22]

To enhance the model’s robustness and its ability to overcome the challenge of limited fine-tuning
datasets, data augmentation is applied via the Cutout method [6]. This technique helps to address
the problem of overfitting, where the model performs well on the training data but poorly on new,
unseen data. By generating new training samples through applying squared zero masks, Cutout
can increase the diversity and quantity of data available for fine-tuning, which proved to increase
the model’s performance and generalization ability in the experiments of FDFtNet [22].
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The FTT employs self-attention modules, as illustrated in Figure 4, to extract distinct features
from images. The input image is divided into three feature spaces f(x), g(x), and h(x), which are
obtained via a 1x1 convolution filter. M = 3 iterations are applied to the input images, which was
empirically set [22].

Figure 4: The architecture of the Fine-Tune Transformer of FDFtNet[22]

In addition to FTT, FDFtNet also incorporates the MobileNet Block, also called the MBConvBlock
or MBblockv3, to enhance the model’s feature extraction capabilities and to explore the image
feature space through inverted residual structure and a linear bottleneck. The MBblockV3 is
added to the pre-trained model after removing the classification layers, enabling the network to
extract features using different convolution and structure techniques. MBblockV3 utilizes depthwise
separable convolutions and was chosen due to its computational efficiency and accurate feature
extraction on a pre-trained feature space. By combining the FTT with the MBblockV3, FDFtNet
can extract more complex and diverse features from images, improving the model’s accuracy and
robustness. After this, the Squeeze-and-Excitation (SE) blocks [17] are applied in the bottleneck
layer, to improve the representational power of the network by enabling it to perform dynamic
channel-wise feature recalibration. The MBblockV3 is in turn repeated N = 3 times, also determined
empirically. Details of the MBblockV3 can be found in Figure 5.

Figure 5: The architecture of the MBConv Block (or MBblock) as in MobileNet [35], used in
FDFtNet

4.2 Backbone architectures

Keras documented an extensive overview of their implemented models and their top-1- and top-5
accuracy2, which refers to the model’s performance on the ImageNet validation dataset. The stated

2Keras API, https://keras.io/api/applications/, accessed 02.2023
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feature extraction methods and their keras documentation can be seen in Table 3. These models
can be used as backbone models, meaning they serve as a feature extraction model before passing
the weights to a model that predicts the binary classification or creates a mask of the forged region.

Feature Extraction Methods Top-1 Accuracy Top-5 Accuracy Time (ms) per inference step
VGG16 71.3% 90.1% 4.2

XceptionNet 79.0% 94.5% 8.1
EfficientNetB0 77.1% 93.3% 4.9
EfficientNetB4 82.9% 96.4% 15.1

InceptionResNetv2 80.3% 95.3% 10.0

Table 2. The performance of the feature extraction methods VGG16, XceptionNet, EfficientNetB0,
EfficientNetB4, InceptionResNetV2 and their corresponding times per inference step

A majority of image forgery detection models that have demonstrated notable performance have
utilized a VGG16 architecture, thereby I’ve designated it as a baseline model for this study.
To accurately compare my results to that of the original FDFtNet paper, their used feature
extraction method XceptionNet was included as a newer baseline compared to VGG16. To achieve
expedited classification while maintaining superior performance in comparison to both VGG16 and
XceptionNet, the subsequent models were selected with a discerning balance between inference
speed and accuracy. In this section, the architectures of the two chosen feature extraction methods,
EfficientNetB4 and InceptionResNetV2 are shown exactly as they are implemented in Section 5
and their design choices are described in great detail, with characteristics and limitations on each
architecture. For comparison, the VGG16 and XceptionNet architectures are described as well.

4.2.1 VGG16

The VGG16 model has been a popular network for image processing tasks, due to its high perfor-
mance. Illustratively presented in Figure 6, its architecture encompasses a total of 13 convolutional
layers and 3 fully connected layers. The convolutional layers, characterized by a kernel size of 3
by 3, are succeeded by a ReLU (rectified linear unit) activation function. Max-pooling is applied
after every two convolutional layers to reduce the spatial dimensionality. The final layers are fully
connected, and have a softmax activation function for classification.

Figure 6: The architecture of VGG16 [36]
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One of the reasons why the VGG16 architecture has become so popular is due to its simplicity and
the use of small filter sizes. The use of small filters allows the network to learn local features, while the
use of deeper layers enables the network to learn more complex features by combining the local fea-
tures learned in earlier layers. This hierarchical structure of local and global features is what enables
the VGG16 network to achieve high performance on various image recognition tasks. The choice of
ReLU activation functions also improved the training time of the model by accelerating convergence.

However, it’s worth noting that VGG16 does have its limitations. One drawback lies in its substantial
number of trainable parameters, exceeding a staggering 138 million.Consequently, the model becomes
more prone to overfitting, where it becomes overly specialized to the training data and performs
poorly on unseen examples. Another limitation arises from the utilization of max pooling, which
can inadvertently result in the loss of crucial spatial information. In the context of forgery detection,
this loss is particularly undesirable, as it hampers the model’s ability to accurately identify
manipulated areas within an image. Furthermore, VGG16’s reliance on small filter sizes brings
forth an additional challenge. While these smaller filters allow for finer-grained analysis, they also
possess a smaller receptive field. Consequently, they can only capture information from a limited
number of neighboring pixels. The network may therefore struggle to capture higher-level features
that span larger regions of the image. This is the reason why newer models, such as the previously
stated InceptionResNetv2 and EfficientNetB4, have been proposed that use more effective receptive
fields.

4.2.2 XceptionNet

Figure 7 shows the architecture of the XceptionNet model, a DCNN that has been used extensively
for image feature extraction. The model was introduced as a variant of the Inception architecture,
known for its efficient use of computational resources.

XceptionNet consists of 36 convolutional layers that are organized into 14 modules, all containing a
sequence of depthwise separable convolutions and followed by a pointwise convolution. This design
allows the network to learn efficient representations by decomposing standard convolutions into
depthwise and pointwise convolutions to increase the power of the model, whilst minimizing the
number of parameters.

The depthwise separable convolution consists of an input tensor that is, for each input channel,
first convolved with a small filter. Followed by a pointwise convolution, a 1x1 convolutional layer is
applied to mix the channels. This innovative technique supplants the conventional approach found
in the Inception architecture, which employs a large filter that takes all input channels into account.
The integration of depthwise separable convolutions into the XceptionNet architecture confers
multiple advantages. Firstly, it reduces the number of parameters and computational demands im-
posed on the network. Consequently, training and inference processes accelerate, yielding efficiency
gains. Secondly, the network attains heightened proficiency in capturing intricate spatial details
by executing separate convolutions on each input channel. Lastly, the efficiency of the network
improves as the computational cost. required for processing each input is reduced.

XceptionNet also harnesses skip connections, similar to the ResNet architecture, facilitate seamless
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Figure 7: The architecture of XceptionNet [5]

information flow across the network while effectively mitigating the issue of vanishing gradients.
Specifically, each module in XceptionNet encompasses a residual connection that bypasses the
depthwise separable convolutions and merges the original input tensor with the module’s output.
This helps to ensure that the network can acquire nuanced and intricate features while avoiding
excessive depth.

Another notable feature of XceptionNet is its use of batch normalization and ReLU activation
functions after every convolutional layer, which can be seen in the first layer of Figure 7. Batch
normalization normalizes the activations of each layer to have zero mean and unit variance, which
helps to reduce the internal covariate shift and improve the stability and speed of training [21].
The ReLU activation function, on the other hand, introduces non-linearity into the network and
helps the network capture complex patterns and features.

The incorporation of depthwise separable convolutions within the XceptionNet architecture offers a
noteworthy advantage over the conventional convolutions employed in VGG16. While XceptionNet
also uses small filters, this innovative technique empowers XceptionNet to learn finer details within
the input data while significantly reducing computational demands. Notably, XceptionNet has
remarkable results across multiple publicly available benchmark datasets, including the widely rec-
ognized ImageNet and COCO datasets. These achievements underscore the efficacy of XceptionNet
in delivering high-quality results, however, the newer models EfficientNetB4 and InceptionResNetv2
have since surpassed XceptionNet in terms of accuracy and efficiency3.

3Keras API, https://keras.io/api/applications/, accessed 02.2023
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4.2.3 EfficientNetB4

EfficientNetB4 is a network that is part of the EfficientNet family. Which was designed to achieve
superior accuracy while using fewer parameters than traditional CNNs. The results presented in
Figure 8 demonstrate the networks of the EfficientNet family compared to other popular convolu-
tional neural networks.

Figure 8: Comparison of the performance of EfficientNetB0-B7 on the ImageNet dataset and their
number of parameters [39]

The EfficientNet family includes models that are optimized for trade-offs between performance
and efficiency. EfficientNetB0 is the smallest and most computationally efficient, while Efficient-
NetB7 is the largest and most powerful. EfficientNetB4 is an intermediate model that strikes a
balance between computational efficiency and performance. It provides better performance than the
EfficientNetB0-B3 networks, while still being more computationally efficient than the larger models
that are in the family. The architecture of EfficientNetB4 is imported via the keras-efficientnets
module and is illustrated in Figure 9.

The EfficientNetB4 architecture consists mainly of mainly MBConv blocks and SE-blocks. The
MBConv block, also used in the FDFtNet architecture shown in Figure 5, reduces the computational
cost of the network while increasing its accuracy [35]. The SE-block is used to improve the network’s
expressive power by adapting the feature maps across channels [17].
EfficientNetB4 also utilizes a compound scaling method to achieve better accuracy with fewer
parameters. This method scales up the networks depth, width, and resolution in a balanced manner
to optimize its performance.

The EfficientNetB4 architecture has shown excellent performance on several benchmark datasets,
including ImageNet and CIFAR-10 and it has outperformed other popular CNN architectures such
as VGG16 and XceptionNet [39].
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Figure 9: The architecture of EfficientNetB4 [39]

One reason for EfficientNetB4’s superior performance is its efficient use of resources. EfficientNetB4
achieves similar or better accuracy in comparison to VGG16 and XceptionNet while using signifi-
cantly fewer parameters. This efficient use of resources make EfficientNetB4 a better choice for
feature extraction methods in scenarios where computational resources are limited, such as practical
uses of image forgery detection. Another reason for EfficientNetB4’s superior performance is its
compound scaling method, which allows the network to adapt to a wide range of datasets.

4.2.4 InceptionResNet

The InceptionResNetv2 network (IRv2) is a hybrid deep learning model, that combines the strengths
of the architecture of both InceptionNet and ResNet. The Inception module enables the network to
capture features at multiple scales, while the residual connections from the ResNet module help the
network to train deeper models without facing the vanishing gradient problem. Its success can there-
fore be attributed to the combination of multiple advanced techniques of two models into one model.

The architecture of IRv2 is illustrated in Figure 10 and is composed of repeated blocks of Inception-
ResNet modules, followed by a global average pooling layer. Each Inception-ResNet module is
composed of several parallel paths of convolutional layers with different kernel sizes, aimed at
capturing features at different scales and concatenating their output features to form the final
output of the module. These parallel paths can be seen in Figure 10, as well as the repeated
blocks of 10 and 20 times. The residual connections from the ResNet module are incorporated by
adding the output of the module to the input of the module, which is illustrated in the figure as well.

One of the strengths of IRv2 is its efficient use of parameters, allowing the model to be both efficient
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Figure 10: The architecture of InceptionResNet [37]

and effective. This is because the 1x1 convolutions in the Inception module reduce the number of
input channels to each subsequent layer, thereby reducing the computational cost of the model.
The IRv2 architecture also employs advanced regularization techniques such as batch normalization
and dropout, to help prevent overfitting of the model. The use of a ReLU activation function also
contribute to the effectiveness of the model.

One reason why the IRv2 architecture could produce better performance than both VGG16 and
XceptionNet is due to its ability to capture features at multiple scales, a characteristic that is
important for capturing forged features. Another reason for the success of the IRv2 architecture is
its use of residual connections, that allow the model to train with deeper layers without facing the
vanishing gradient problem.

4.3 Data

Each feature extraction model needs to be trained on data, and as previously stated, data containing
ground truth labels per image. The feature extraction methods are pre-trained and fine-tuned on a
novel dataset created by images of the FaceForensics++ dataset, CASIAv2.0, and the DEFACTO
dataset. The datasets employed in this study were carefully selected based on the evaluation of a
set of criteria, including their accessibility, the abundance of visual content they contain, and the
diversity of tampering techniques represented within them.

The FaceForensics++ dataset is leading as a source for forged facial images, containing five different
approaches of tampering with facial images, which was the reason for choosing this particular
dataset. The different approaches included in this dataset are DeepFakes (from GitHub 4 and from
the Deep Fake Detection Challenge (DFDC) [30], Face2Face [42], FaceSwap [23], NeuralTextures
[41], and FaceShifter [24]. FaceForensics++ contains over 1000 forged videos of each manipulation
method, containing individuals speaking in various languages and under different lighting conditions.

4DeepFakes GitHub https://github.com/deepfakes/faceswap
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Furthermore, it contains 363 authentic (non-manipulated) videos that were obtained from YouTube.

The DEFACTO dataset was chosen for its extensive coverage of copy-move and inpainting ma-
nipulations in images. It contains over 200,000 images with various types of tampering, including
copy-move, inpainting, and object removal. Copy-move forgery is the copying and moving an object
of an image to a different part of the same image, while inpainting and removal concerns the
filling in of missing parts or removal of an object in an image. The data was obtained from Kaggle 5 6.

Similarly, the CASIAv2.0 dataset was chosen, which is a commonly used benchmark dataset for
image forensics research. This dataset was chosen specifically for its representation of image splicing,
a common form of tampering in which parts of one image are combined with another. The dataset
contains over 10,000 images with splicing manipulations performed using different techniques on
different image regions. The spliced images in this dataset were taken from a wide range of sources,
including celebrity photos and natural scenery, and are diverse in terms of their content and quality,
with variations in resolution, color, and lighting conditions. The CASIAv2.0 dataset was used to
train the feature extraction model for splicing detection and was obtained from Kaggle as well 7.

It’s worth noting that using different datasets for each type of manipulation helps ensure that the
results of this study are not limited to a specific dataset. By fine-tuning the feature extraction
models on multiple datasets with diverse tampering techniques, we can expect the models to be
more robust and generalizable to different scenarios. This approach is particularly important in the
field of forensic analysis, where tampering techniques are constantly evolving and improving.

(a) DFDC (b) DeepFakes (c) NeuralTextures (d) FaceSwap (e) FaceShifter

(f) Face2Face (g) Splicing (h) Inpainting (i) Copy Move (j) Real

Figure 11: Random example images of the dataset including all nine forgery types, where six are
facial images and three are non-facial images

5DEFACTO Copy-Move dataset https://www.kaggle.com/datasets/defactodataset/defactocopymove
6DEFACTO Inpainting dataset https://www.kaggle.com/datasets/defactodataset/defactoinpainting
7CASIAv2.0 Dataset on Kaggle https://www.kaggle.com/datasets/sophatvathana/casia-dataset
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5 Experiments

5.1 Prerequisites and hardware

The networks used in this project use different previous versions of various libraries, and the results
are greatly depended on the exact version of each library. These libraries and their versions can be
installed using their documentation. It is recommended to either use or create a virtual environment
with Linux distributed operating system with Ubuntu 20.04 of aarch64 architecture, as these
networks appeared to be difficult to get working on MacOS or Windows. The used libraries and
their corresponding versions can be found in Table 3.

Library/package Version
Python 3.6.8

Tensorflow 1.13.1
Keras 2.2.4
Numpy 1.19.2
Pillow 8.3.1

Matplotlib 3.3.4
Keras Preprocessing 1.1.2
Keras Applications 1.0.8
Keras EfficientNets 0.1.7

Table 3. Required libraries and corresponding versions used in the training, testing, and visualization
code of this study

The hardware used belongs to the Data Science Lab (DSLab) of the LIACS Research and Education
Lab (REL). The machine used for the training and testing of the networks contains high-end GPUs
and can specifically be used for CUDA-supported computations. The GPU of GeForce NVIDIA
GTX TITAN X with 11.93GiB memory was used for the majority of the training procedure.

5.2 Data processing

As previously mentioned, sufficient datasets to train manipulation detection networks are rare. To
improve the accessibility of the code and limit the amount of storage needed to run these networks,
a script was created to load the videos of the FaceForensics++ dataset directly of their download
script and cut out the frames of the video. A total of 500 videos per manipulation method was used
and two frames per video were extracted. The copy-move and inpainting datasets from DEFACTO
were downloaded using Kaggle, as well as the splicing data from CASIAv2. The images are rescaled
to an 80x80 resolution to mimic the harshest JPEG compressions seen on the internet [22] and
are displayed as a Numpy ND array. This array, along with its corresponding labels is shuffled by
permutation and split into training, testing, validation, and fine-tuning sets by a ratio of 70:10:10:10.
The number of images used from each dataset and the distribution of real and forged images is
depicted in Table 4.
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Total Train Test Validation Fine-Tuning

Forged images
FaceForensics++

FaceShifter 1000 700 100 100 100
NeuralTextures 1000 700 100 100 100
DeepFakes 1000 700 100 100 100
FaceSwap 1000 700 100 100 100
Face2Face 1000 700 100 100 100

DEFACTO
Copy-Move 4000 2800 400 400 400
Inpainting 4000 2800 400 400 400

CASIAv2
Splicing 2000 1400 200 200 200
Real images
YouTube 726 507 73 73 73
MS COCO 2000 1400 200 200 200
Total 20726 14507 2073 2073 2073

Table 4. Number of images used from each dataset to form the novel dataset and their distribution
over the training, testing, validation, and fine-tuning sets

5.3 Training

The majority of the training procedure has been replicated from the original research work [22].
Following this approach, the backbone models specified in Section 4.2 are initially pre-trained with
the data illustrated in Section 5.2. Specifically, the pre-training phase encompasses 300 epochs,
where each epoch comprises 55 steps. Every individual model undergoes training using the Adam
optimizer, a stochastic gradient descent approach that relies on the adaptive estimation of first-
order and second-order moments. The minimum number of steps per epoch is determined by
the batch size of 128 and the total number of training images. During the training process, the
network utilizes the ImageDataGenerator data generator, and Early Stopping is applied after
the validation loss ceases to decrease for 40 epochs. The Early Stopping Patience was scaled
up, as the network had a delay of improvement for the first epochs. To avoid overfitting, the
drop-out rate is set to 0.2. Furthermore, the learning rate is initialized at 0.3 and is gradually
adjusted with a factor of 0.1 via the implementation of the ReduceLRonPlateau algorithm by Keras.

As previously stated, a portion of the data is set aside for fine-tuning purposes, and this step is
applied to each of the pre-trained networks. Fine-tuning is executed by subjecting the network to
300 epochs and the batch size, drop-out rate, and learning rate remain the same as those utilized
during the pre-training phase.

5.4 Evaluation metrics

In this study, a comprehensive evaluation of various classification metrics was performed to deter-
mine the most appropriate metrics for evaluating the performance of the image forgery detection
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model. After a thorough analysis, the metrics selected for this study included the F2-score, precision,
recall and the area under the receiver operating characteristic curve (AUROC), as well as two novel
metrics; the Detection Improvement Ratio (DIR) and Image Forgery Efficiency Ratio (IFER). In
this section we will state the metrics that were used and explain them in detail, starting with the
definition of the existing metrics F2-score, precision, recall, and AUROC.

In the field of binary classification models, the Fβ-score in Equation 2, also known as the F1 score,
is a widely used evaluation metric. It combines the precision and recall depicted in Equation 1.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(1)

Setting β to 2 in the Fβ calculation places more emphasis on recall than precision. This choice is
justified in image forgery detection studies where identifying as many actual forgeries as possible
(high recall) is typically more critical than minimizing false positive detections (precision). By
assigning a higher weight to recall, the F2 score with β set to 2 achieves a balance between these
two metrics, enabling an evaluation that aligns with the specific needs of forgery detection. This
emphasis on recall acknowledges the importance of minimizing the risk of missing any forged images,
as even a single undetected forgery can have severe consequences. Hence, the F2-score proves to be
a valuable and appropriate metric for assessing image forgery detection algorithms and was selected
as one of the primary evaluation metrics.

Fβ-Score = (1 + β2)× Precision×Recall

β × (Precision+Recall)
(2)

Additionally, the AUROC was included in the assessment of this study. The AUROC (Area Under the
Receiver Operating Characteristic Curve) stands as a prominent evaluation metric highly regarded
for its steadfastness and resilience. This metric quantifies the overall performance of a classification
model by assessing the area under the curve derived from plotting the True Positive Rate (TPR),
also known as recall, against the False Positive Rate (FPR). The Receiver Operating Characteristic
(ROC) curve graphically represents this trade-off across various classification threshold values.
The AUROC is formulated in Equation 3, and the TPR and FPR can be calculated using the
equations in Equation 4.

AUROC =

∫ ∞

−∞
TPR(f(x)) dFPR(f(x)) (3)

Due to its popularity amongst image forgery detection methods, the AUROC was included to
account for a fair and clear comparison to other image forgery detection methods.

TPR =
TP

TP + FN
, FPR =

FP

FP + FN
(4)
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5.4.1 RDIR and DIR

The Detection Improvement Ratio (DIR), compares the accuracy of a given feature extraction
method as a standalone approach to its accuracy when used as a backbone model in an image forgery
detection algorithm. Specifically, DIR is defined as in Equation 5, where AIFD denotes the accuracy
of the feature extraction method when used as a backbone model in an image forgery detection
algorithm defined by the F2-score, and AFEM is the accuracy of the same feature extraction method
as a standalone approach, defined by the top1-accuracy noted by Keras8.

DIR =
AIFD − AFEM

AFEM

(5)

The DIR can be calculated for the new approaches XceptionNet, EfficientNetB4 and InceptionRes-
Netv2, as well as for the baseline VGG16. To investigate whether the newer approaches improve
the image forgery detection, we can calculate the Relative Detection Improvement Ratio (RDIR),
which compares the DIR of a given feature extraction method x to the DIR of the baseline model.

RDIR = DIRx −DIRbase (6)

The rationale behind the RDIR metric is rooted in the premise that an effective feature extraction
method should yield superior results when employed in an image forgery detection algorithm
compared to a lower performing feature extraction method.

A high positive RDIR value signifies a substantial improvement of the new method over the
old baseline method in both standalone accuracy and forgery detection accuracy, indicating its
efficacy as a backbone model. An RDIR value of around zero demonstrates that the backbone
model performs equally to the baseline model, where a small positive RDIR indicates a moderate
improvement and a small negative RDIR indicates a slight decline in performance. Coversely, a high
negative RIA value represents a significant deterioration in performance, where the new method
performs significantly worse than the baseline method and may not be well-suited for the image
forgery detection task when used in conjunction with the particular algorithm. The novel RDIR
method and it therefore provides a direct measure of the improvement that is obtained when using
a specific feature extraction method over an older method in image forgery detection.

5.4.2 IFER

The Image Forgery Efficiency Ratio (IFER) is a novel metric that was designed to assess the
efficiency and performance trade-off of feature extraction methods within the context of image
forgery detection. IFER offers a measure of the trade-off between the accuracy of detecting image
forgeries and the computational cost required during the feature extraction process. The primary
objective of IFER is to evaluate the effectiveness of feature extraction methods by considering their
performance relative to the computational resources required.

8Keras API, https://keras.io/api/applications/, accessed 02.2023
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IFER is defined as the harmonic mean of the accuracy (A) achieved by a feature extraction method
in detecting image forgeries, the corresponding computational cost (C) associated with the training
of the algorithm, and the time (T) required to classify an image. This is defined in Equation 7, where
n is a variable for the calculation of the harmonic mean and is set to n = 3, representing the number
of metrics in the equation. The variables Ar, Cr, and Tr denote the relative accuracy, computational
cost, and time, respectively, and are defined in Equation 8. The weights were empirically determined
and set to w1 = 0.6, w2 = 0.2, and w3 = 0.2, due to the importance of the accuracy. In Equation 8,
x denotes the value of the current network and b denotes the value of the best-performing network
for that metric. The use of the harmonic mean in this calculation is scientifically justified due
to its ability to emphasize smaller values and handle inverse relationships. By considering the
reciprocals of the values, it effectively deals with the inverse relationships between accuracy, time,
and computational cost. This metric captures the efficiency of the method in terms of accurately
identifying image forgeries relative to the computational effort expended in extracting the features.

IFERx =
n

w1
1
Ar

+ w2
1
Cr

+ w3
1
Tr

(7)

Ar =
Ax

Ab

, Cr =
Cb

Cx

, Tr =
Tb

Tx

(8)

A higher IFER value indicates a more efficient feature extraction method in image forgery detection,
as it achieves a greater accuracy in identifying forgeries while minimizing the computational
resources consumed. This metric aids in the identification of feature extraction methods that
strike a favorable balance between accuracy, computational cost, and the temporal aspect, making
them suitable choices for real-time image forgery detection systems or scenarios with limited
computational capabilities.

6 Results

The study presents three categories of results, which will be shown in this section. Firstly, three
training metrics of the pre-training and fine-tuning process of the four backbone models were
evaluated. These training metrics encompass the accuracy, loss, and learning rate during training.
These metrics provide an understanding of the training process and helped to identify problems
that require attention. Secondly, the performance of the fine-tuned model was assessed on the test
data, which provides results on the model’s ability to generalize beyond the training data and is
essential for any machine learning study, as well as the results for the metric RDIR. Finally, the
classification times of the four backbone networks were analyzed during the training, as well as the
classification of testing single images, and the results of the metric IFER, which provides valuable
information on the computational efficiency of the models.

Figures 12, 13, and 14 provide a graphical representation of the metrics observed during the
pretraining and fine-tuning process, and illustrate the accuracy, loss, and learning rate, respec-
tively. In these figures, the accuracy was measured by the proportion of correctly classified images.
The loss metric is composed of the error rate stated by Keras. The learning rate is a critical pa-
rameter that is set in the training code and it determines the step size of the optimization algorithm.
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Figure 12: The accuracy of the feature extraction methods VGG16, EfficientNetB4, Inception-
ResNetv2, and XceptionNet during the pre-training and finetuning of the methods as backbone
networks for image forgery detection method FDFtNet

Figure 13: The loss of the feature extraction methods VGG16, EfficientNetB4, InceptionResNetv2,
and XceptionNet during the pre-training and finetuning of the methods as backbone networks for
image forgery detection method FDFtNet

Figure 14: The evolution of the learning rate of the feature extraction methods VGG16, Efficient-
NetB4, InceptionResNetv2, and XceptionNet during the pre-training and finetuning of the methods
as backbone networks for image forgery detection method FDFtNet

Section 5.4 discussed the evaluation metrics used for the test data, which encompassed the F2-score,
AUROC, precision, and recall. These metrics, as well as the results of the novel metrics RDIR and
IFER are presented in Table 5. The precision, recall, and F2-Score are the macro average of these
metrics on the binary labels. The DIR and IFER scores of the feature extraction methods were
also illustrated using a graph, which can be seen in Figure 15. The results were also categorized in
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the different types of forgery as was shown in Table 4, which can be seen in Table 6.

Network AUROC Precision Recall F2-Score RDIR IFER
VGG16 0.500000 0.43 0.50 0.57796 0.0 2.09799
XceptionNet 0.766744 0.67 0.62 0.80504 0.20843 2.78144
InceptionResNetv2 0.768747 0.70 0.65 0.84259 0.23869 1.96183
EfficientNetB4 0.766489 0.67 0.61 0.79824 0.15229 1.39595

Table 5. The results of the four feature extraction methods on the novel dataset for evaluation
metrics AUROC, Precision, Recall, F2-score, and novel metrics RDIR, comparing all methods to
VGG16 and IFER, the tradeoff for efficiency and performance

VGG16 XceptionNet InceptionResNetv2 EfficientNetB4

Forged images
FaceShifter 1.00 1.00 1.00 1.00
NeuralTextures 1.00 1.00 1.00 1.00
DeepFakes 1.00 1.00 1.00 1.00
FaceSwap 1.00 1.00 1.00 1.00
Face2Face 1.00 1.00 1.00 1.00
Copy-Move 1.00 0.49 0.56 0.53
Inpainting 1.00 0.50 0.53 0.49
Splicing 0.32 0.57 0.58 0.58
Real images 0.25 0.61 0.66 0.65

Table 6. The macro average of the f2-score of the four feature extraction methods categorized by
the forgery types present in the novel dataset, where the importance of the accuracy on real images
should be noted

(a) DIR (b) IFER

Figure 15: The DIR and IFER of the four feature extraction models, where the DIR is the correlation
between the accuracy of the standalone model and the accuracy in image forgery detection, and
the IFER denotes the correlation between time and accuracy
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To assess the efficiency of each backbone network, an analysis of the training and classification
times for each model was performed. The results highlight the efficiency of each backbone network
in training and classifying new images and can provide valuable insights for researchers and
practitioners in the field of image processing. The results of this analysis are presented in Table 7.

Network Pre-training Fine-tuning Classification Computational Cost in FLOPs
VGG16 24.93 min 40.85 min 1.578 ms 1.26 billion
XceptionNet 41.01 min 47.86 min 1.983 ms 0.71 billion
InceptionResNetv2 59.77 min 51.85 min 8.409 ms 1.71 billion
EfficientNetB4 59.21 min 67.46 min 5.481 ms 1.52 billion

Table 7. The temporal aspect and computational costs of the feature extraction methods VGG16,
XceptionNet, InceptionResNetv2, and EfficientNetB4, where the training and classification times
are denoted in minutes and milliseconds, respectively, and the computational cost is denoted by
the total number of FLOPs in billions.

7 Discussion

This study evaluated the performance of four different feature extraction methods - VGG16, Xcep-
tionNet, InceptionResNetv2, and EfficientNetB4 - in detecting image forgeries. The hypothesis
proposed that newer feature extraction methods would outperform older methods. The network
was trained on a dataset of over 14.000 images and tested on a separated dataset of 2.072 images.
The results showed that newer feature extraction methods did indeed perform better than older
methods, lending support to the hypothesis. Additionally, the use of the novel dataset in this
study enhances its generalizability and robustness. The diversity that is captured in the dataset is
crucial for training and testing image forgery detection algorithms that need to generalize across a
wide range of conditions. Moreover, the larger sample size provided by the dataset contributes to
more robust statistical analysis and increased dataset representativeness. The introduction of new
combinations of objects or scenes that were not present in the individual datasets further tests the
generalizability of image forgery detection algorithms.

Specifically, the results showed that VGG16, considered the baseline model as it is an older feature
extraction method, performed relatively poorly, with an f2-score of 0.58 and a complete inability
to detect real images. Further analysis of Table 6, indicates that VGG16 exhibits superior perfor-
mance compared to other networks in terms of detecting forged images. However, VGG16 tends
to misclassify a substantial portion of the authentic images as forged, resulting in an AUROC
score of 0.5000. Consequently, this finds VGG16 as the algorithm with the poorest performance
among the evaluated approaches. The suboptimal performance of VGG16 can be attributed to
the limitations of VGG16. In particular, the smaller filter sizes that cause the inability to capture
fine details within the sample images. VGG16 is a relatively shallow architecture and it relies
heavily on pooling layers to reduce the dimensionality of the feature space. VGG16 was a pop-
ular and groundbreaking architecture when it was introduces, but it was primarily designed for
the task of image classification. Luckily, there exist newer feature extraction methods that have
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surpassed the performance of VGG16, which are a better choice for the use in image forgery detection.

In contrast, the newer feature extraction methods - XceptionNet, InceptionResNetv2, and Efficient-
NetB4 - all performed significantly better. EfficientNetB4 achieved an overall f2-score of 0.79824 and
a score of 0.65 for detecting real images. XceptionNet performed slightly better, achieving an overall
f2-score of 0.80504 and an f1-score of 0.61 for detecting real images, whereas InceptionResNetv2
achieved the highest performance, with an f2-score of 0.84259, and a high ability to detect real
images, with a score of 0.66.

The superior performance of the newer feature extraction methods can be attributed to two po-
tential reasons. Firstly, these methods have deeper and more complex architectures compared to
VGG16. The increased depth allows the networks to capture more intricate features in images,
which is particularly important for detecting image forgeries, as subtle differences can be indicative
of tampering. Secondly, the newer feature extraction methods incorporate novel architectural
features that improve the quality of the features extracted. To name a few, XceptionNet uses
depthwise separable convolutions, which allows for more efficient and effective feature extraction.
InceptionResNetv2 is an architecture that combines the strengths of the inception module with
residual connections, that creates the unique ability to improve gradient flow and efficiently use
resource utilization. EfficientNetB4 uses a novel scaling method that optimizes the balance between
model depth, width, and resolution.

However, it is worth noting that although the newer feature extraction methods performed better
than the older method VGG16, they all struggled to detect real images. This result may be due to
the fact that real images are increasingly difficult to detect, as they are by definition not manipulated
in any way. In addition to the overall scores of the feature extraction methods, another notable
characteristic is that the feature extraction methods seem to be performing better on the facial
images than that of copy-move, inpainting, and splicing. This may be because the dataset contains
imbalanced classes, with more forged facial images than real ones.

The observed results reveal a notable disparity between the AUROC of XceptionNet, which stood
at 76.67%, and the previously reported a remarkable accuracy of 99.37% in the original paper on
FDFtNet [22]. The factors contributing to this discrepancy remain unclear. It is plausible that the
variances in results could be attributed to variations in the training dataset size or the utilization of
a specific dataset instead of a generalized and robust dataset as was done in this study. Reproducing
the results from the original FDFtNet paper, which would yield a significant increase of 22.7%,
suggests that advanced feature extraction methods such as EfficientNetB4 and InceptionResNetv2
would potentially achieve an accuracy of at least 99.57%. This is in agreement with the novel RDIR
metric, shown in Table 5, which revealed that XceptionNet, InceptionResNetv2, and EfficientNetB4
received an RDIR score of higher than zero when compared against VGG16. This indicated that
these methods perform better than the older feature extraction method VGG16, and the RDIR
shows that this could have been predicted using their accuracies as standalone models. As expected,
VGG16 received an RDIR of 0.0 compared to itself. Furthermore, state-of-the-art methods like
ManTraNet and BusterNet, currently employ VGG16 as the feature extraction model. These
methods could benefit significantly from incorporating the newer feature extraction techniques,
potentially leading to an additional accuracy boost of 34.49%. This substantial enhancement could
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pave the way towards achieving near-perfect accuracy levels, approaching 100%.

Moreover, the examination of Table 7 and Figure 15 provides a comprehensive overview of these
classification times, showcasing VGG16 as the fastest model, closely followed by XceptionNet.
EfficientNetB4 ranks third in terms of speed, while InceptionResNetV2 exhibits the longest classi-
fication time of 8.409ms. The results of the IFER metric reveal a novel correlation between the
accuracy of the models and their respective computational and temporal costs. The XceptionNet
model seems to perform best regarding accuracy in combination with the time and computational
cost with an outstanding IFER of 2.78144. The VGG16 model, with its shallow network, receives
an IFER of 2.09799, closely followed by InceptionResNet with an IFER of 1.96183. The similarity
in values can be attributed to the trade-off between performance and computational efficiency. The
VGG16 model is fast but performs poorly, while the InceptionResNet model is slower but exhibits
superior performance. The EfficientNet model performs the poorest due to its IFER of 1.39595,
which can be explained by its high computational cost and classification times.

Considering the practical application of these models in social media or news platforms, the
classification times hold significant relevance. For instance, the social media platform Instagram
sees a staggering 95 million pictures posted per day [9]. The computational energy required to
classify all of these images before publication can be immense. A relevant example from Instagram
in 2022 involved the placement of a label redirecting all pandemic-related images to a source with
credible information. Similarly, labeling potentially forged images with informative content, such as
”This image is possibly forged, click here for more information on image forgery and guidelines for
assessing credibility,” could substantially aid in preventing the spread of misinformation.

8 Conclusions and Further Research

Our study focused on feature extraction, which is a critical part in the detection of image forgery.
We used four different feature extraction methods as backbone architectures and trained and
fine-tuned them on our novel dataset of real and manipulated images. Our aim was to identify
whether newer feature extraction methods can improve image forgery detection.

To achieve our objective, we first evaluated the pretraining and fine-tuning stages whilst training
the four backbone models. The pretraining involved using a large dataset to initialize the model’s
parameters, while the fine-tuning was done on a smaller dataset that was seperated (the fine-tuning
dataset) to improve the model’s performance. The second phase of our study encompassed the
evaluation of the fine-tuned model on our test dataset. The test set was used to evaluate the
performance of our fine-tuned model.

When analysing the results, it can be concluded that the newer feature extraction methods selected
for this study, XceptionNet, EfficientNetB4, and InceptionResNetv2, outperform the older method
VGG16 in image forgery detection. This conclusion aligns with the hypothesis that newer feature ex-
traction methods achieve better performance when used in existing image forgery detection methods.
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This thesis presents four significant contributions to the field of image forgery detection. Firstly,
it conducts an extensive study that specifically focuses on the feature extraction stage of image
forgery detection, rather than solely emphasizing overall accuracy. By highlighting the importance
of feature extraction methods, this thesis provides valuable insights for researchers to make informed
choices in selecting feature extraction techniques. The findings of this study demonstrate that
superior performing feature extraction methods lead to improved performance in image forgery
detection. Secondly, this study introduces a novel metric called the Detection Improvement Ratio
(DIR). The DIR metric establishes a correlation between the overall performance of a feature
extraction method and its influence on the accuracy of an image forgery detection algorithm. This
metric serves as a valuable tool for evaluating and comparing different feature extraction methods
in the context of image forgery detection. Furthermore, this thesis employs a novel dataset to
ensure that the obtained results are not limited to a specific dataset but rather generalize well
across various scenarios. This novel dataset significantly contributes to the field by increasing the
diversity of the data and generating new combinations of objects or scenes that were not present
in individual datasets. Consequently, the dataset enhances the reliability and robustness of the
study’s findings. Lastly, this research introduces a novel metric called the Image Forgery Efficiency
Ratio (IFER). The IFER metric combines the accuracy of image forgery detection algorithms
with the time required to classify a testing image. This metric addresses the practical usage of
image forgery detection algorithms by considering their efficiency and real-world applicability. In
summary, Through a thorough investigation of feature extraction, the introduction of the Detection
Improvement Ratio and the Image Forgery Efficiency Ratio metrics, and the use of a unique
dataset, this study makes significant contributions to the field of image forgery detection. These
contributions advance our understanding of image forgery detection methods and provide valuable
tools for researchers and practitioners in this domain.

It is important to note that the performance of the four previously stated feature extraction methods
depend on the size of the dataset, as well as the representation of the images in the dataset. This
thesis has a few limitations, as many networks and datasets are not publicly available. For example,
some training data of state-of-the-art networks that use feature extraction methods mentioned in
this thesis were not available for further research.

In conclusion, this study provides interesting insights into the performance of different feature
extraction methods in image forgery detection and our findings can serve as a cornerstone for
future research into improving existing image forgery detection models by using different feature
extraction methods. The results suggested that newer feature extraction methods provide higher
performance compared to older methods. These feature extraction methods can be used to improve
the accuracy of existing image forgery detection systems, and the contributions made in this study
advance our understanding of image forgery detection methods. Future research can build on these
findings by investigating the performance of a wider range of different feature extraction methods
on image forgery detection tasks, as well as exploring different networks other than FDFtNet and
using a larger training and testing dataset, as the feature extraction methods had trouble correctly
classifying real images.
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