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Abstract

Meal box delivery can be regarded as the ultimate challenge of last-mile
logistics: a typical order is anticipated to be delivered in a short time soon
after the food is ready. The order arrival flow is extremely unpredictable
and volatile. The crowd-sourced delivery fleets are free to decline requests
as well as log in and out at will. Current research described the problem and
provided feasible solutions. However, their formulations touch upon some
resources about uncertainty and the methods are not that comprehensive.
In this research, we implement a model which focuses on assigning the
orders to crowd-sourced couriers using mixed-integer programming with
time windows. Besides, we integrate the model into a computational
framework, where it is simulated in Open Source Routing Machine. A
more advanced row generation assignment model and a two-stage set-
partitioning model are studied as well. The model describes the problem
more accurately and myopically matches the couriers’ routes with the
orders with the use of information at the current time point. The results of
the model simulation with real-life instances meet all the time criteria of
performance metrics. The rates of order fulfilment are over 50%. Compared
with the Meal Delivery Routing network flow model, it reduces the average
computation time by 14% on all instances, while achieving a 7% higher
average fill rate.
Additionally, it offers valuable insights into demand management as well
as the potential benefits of crowd-sourced delivery.
keywords: on-demand meal delivery, crowd-sourced delivery, dynamic
vehicle routing ,integer programming, matching
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Chapter 1
Introduction

Meal delivery has been gaining popularity with the development of online
retailing. In particular, work-from-home requirements and preferences
during these pandemic years intensified the need for online ordering and
on-demand delivery. The meal delivery routing problem (MDRP) which
falls under a significant new category of dynamic delivery operations is
introduced and formulated by Reyes et al.[1] It is a dynamic deterministic
model of how meal delivery systems are set up and work, which contains
structural assumptions and some basic performance metrics. Apart from
the MDRP itself, an algorithm to solve it in near real-time is mentioned.

The growth of E-commerce increased demand for last-mile delivery and
the level of congestion in transportation in urban areas. Crowd-sourced ve-
hicles provide the additional capacity needed to meet the growing demand
in a cost-effective way. Crowd-source vehicles play an extremely important
role in meal-box delivery, which does not go against the will of people to
focus on getting reliable delivery at the right time at a reasonable cost.

The earliest solution algorithms to MDRP used the linear relaxation
model that mitigates uncertainty into the postponement of decisions that
are not time-critical. Later, provably high-quality solutions involving a
simultaneous column- and row-generation method are proposed. Since the
meal delivery routing problem is highly dynamic where several variables
interact with each other, there is great potential to extend the formula-
tion and introduce a more complex model as well. More complex models
that could be considered are supposed to involve more factors about the
sources of uncertainty. Considering the development status and prospects,
it would be of great value and interest to focus on models that rely on
crowd-sourced delivery and explore the potential of using extended formu-
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2 Introduction

lations in a rolling horizon framework.

Existing methods and models can describe the problem and solve it, but
as the times change, we need new and more realistic modelling and more
advanced solutions that can balance the quality and the cost.
On the basis of completing order allocation, our research explores more
advanced and complex algorithms, to reduce the cost as much as possible.
We involve the crowd-sourced vehicles in delivery and try to formulate the
problem with procedure decomposition. About the assignment model, a
mixed-integer model and a row generation model are explored. The MIP
model is implemented and merged into the computational framework for
simulation, and it works together with myopic matching policy and scope
limit to achieve the goal of a higher order fulfilment rate in a shorter time.

This chapter 1 contains the introduction; In Chapter 2 we discuss re-
lated work; In Chapter 3 we describe the problem and formulate it with
mathematical equations; In Chapter 4 we express the methods we use and
some background knowledge we apply; In Chapter 5 we will explain the
experiments including the implementation, simulation and results as well;
Results and conclusions will be discussed in Chapter 6 as well as avenues
for future research.

2
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Chapter 2
Related Work and Literature
Review

The Meal Delivery Routing Problem (MDRP) belongs to the large class of
Vehicle Routing Problems (VRP). Moreover, MDRP is highly dynamic with
pickups and deliveries, which means that it belongs to Dynamic Vehicle
Routing Problems (DVRP), specifically the class of Dynamic Pickup and
Delivery Problems (DPDP). Considering the urgent need of customers and
the rising service offered by online retailers, the problem has been extended
and associated with various aspects of the same-day delivery problem
(SDDP).

2.1 Vehicle Routing Problem Variants

The vehicle routing problem (VRP) was originally introduced by Dantzig
and Ramser (1959)[2], evolving consistently into heterogeneous variants
currently analyzed in the literature (Toth and Vigo, 2014[3], 2002[4];Golden
et al., 2008[5]; Eksioglu et al., 2009[6]). In the VRP literature, vehicles
are generally divided into two main categories: homogenous (Lin et al.,
2014[7]; Marinaki and Marinakis, 2016[8]) and heterogeneous. Heteroge-
neous transportation systems were introduced by Golden et al. (1984)[9]
and generally account for capacity differences across vehicles (Siddiqui
and Verma, 2015[10]; Talebian and Salari, 2015[11]; Lai et al., 2016[12]). The
VRP generalizes the well-known travelling salesman problem (TSP). and
bin packing problem (BPP). It is a combinatorial optimization and integer
programming problem to find the optimal path for delivering a product to
a given customer location. Determining the optimal solution for VRP is NP

Version of August 31, 2022

3



4 Related Work and Literature Review

hard.

There are a large number of researchers have studied these problems
from different angles, and we focus on DVRP and DPDP.

Pillac et al. (2013)[13] propose a framework that is driven by events
to optimize the DVRP parallelly and provide an overview of the DVRP,
in which the problems are divided according to the evolution and quality
of information. Later, Psaraftis et al. (2016)[14] compile a comprehensive
review that classifies the DVRP literature by different features (for example
type of problem, mode of transportation, objective function, constraints on
time and capacity, stochasticity, solution method and etc.).

Berbeglia et al. (2010)[15] survey the DPDP literature where the solution
strategies and the assessment of algorithmic performance are discussed.
Mitrovic-Minic et al. (2004)[16] propose a double-horizon algorithm that
evaluates the actions by different cost functions if the actions occur within
a given horizon (short term) or beyond that (long term). It tries to bal-
ance the fulfilment of current tasks and the preservation of flexibility to
complete future and unknown tasks. In the meantime, on when to delay
and commit to making decisions to reduce uncertainty, they explore four
waiting strategies for a DPDP with time windows: drive-first, wait-first,
dynamic waiting and advanced dynamic waiting. The basis of studying
dynamic delivery systems is to perceive dynamism and urgency, as most of
the requests during the period of operations need to be completed within a
relatively short time window. With regards to this, Lund et al. (1996)[17]
suggested measuring the degree of dynamics based on the proportion of
dynamic queries. In addition, Larsen et al. (2002)[18] refined the definition
and and the real measure of dynamics was developed. This measure sought
to encompass both the urgency and the evolution of information in a sin-
gle unit. However, van Lon et al. (2016)[19] have corrected this by using
two independent criteria to measure dynamism and urgency separately
to avoid previous drawbacks. These definitions are adopted by Reyes et
al. (2018)[1] while proposing the MDRP. More recently, a dynamic waiting
model is introduced by Yan et al. (2020)[20] where dynamic pricing helps
solve a ride-hailing problem out of Uber data.

Compare with general DPDP, SDDP usually has a shorter time limita-
tion and the dedicated vehicles should return to the depot after delivery.
The SDDP was presented by Voccia et al. (2015)[21] as well as a solution
with a Markov decision process (MDP), and the SDDP problem itself has
been receiving much attention soon after. The problem is highly dynamic
as future information is incorporated into route planning. Klapp et al.

4
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2.2 Meal Delivery Routing Problem 5

(2016)[22] use a simple setup to study the core trade-off encountered in
same-day delivery, that is to dispatch a car to deliver a known order im-
mediately, or wait for other orders to arrive. Waiting for additional orders
may result in a lower-cost route, however, reduce the delivery flexibility
of known orders at the same time because of less delivery time available,
which would may raise the cost in turn. Three types of solution methods
are discussed: a priori plan, a roll-out strategy and a more involved strategy
engaging approximate linear programming, among which the approximate
linear programming is almost of the same efficiency as the roll-out strat-
egy. Then, a sample scenario planning method is proposed by Voccia et
al. (2017).[23] It takes advantage of the sampled information to design a
consensus function specifically, which could identify when it is beneficial
to wait at the site in anticipation of future requests thus helping generate
the vehicle routing. Next, Klapp et al. (2018)[24] formulate the dynamic
dispatch waves problem (DDWP). In DDWP, orders arrive at the depot
dynamically and are supposed to be delivered on the same day. Informa-
tion related to the solution is deterministic. Waves, that is moments in time
where vehicles can be dispatched or stopped, play an important role in
decision making.

2.2 Meal Delivery Routing Problem

Similar to SDDP, MDRP formally introduced by Reyes et al. (2018)[1] is
also faced with a series of challenges of delivery by online services. In the
MDRP paper, a myopic rolling horizon matching-based algorithm is used to
solve the assignment logic by only prescribing the next pickup and delivery
for each courier. Bundles are allowed which means single orders could be
picked up together and then delivered by one courier on a specified route.
Linear and more complex integer programming assignment models are
considered, and a two-stage additive commitment to mitigate uncertainty
by postponing decisions according to the priority scheme as well. Almost
at the same time, Ulmer et al. (2017)[25] introduce the Restaurant Meal
Delivery Problem (RMDP), which involves stochastic cook time and thus
the solution of it includes a cost function approximation on an MDP model.

Yildiz and Savelsbergh (2019)[26] develop a simultaneous column and
row generation (CR) algorithm for the solution of a novel MDRP formula-
tion that assumes perfect information regarding order arrivals. Besides, an
enumeration algorithm (PS) to identify such columns is proposed as well as
a branch-and-price (BP) algorithm. The results of experiments on solving
the linear relaxation using the selective column inclusion (SCI) scheme for
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6 Related Work and Literature Review

the instances remark the viability of the algorithmic thoughts to develop a
dynamic dispatching heuristic. Their findings highlight that it is important
to size and schedule delivery capacity, and show there is a great potential
for retargeting-focused requirements management strategy. In an order
of one single customer, there may involve multiple restaurants. To tackle
such a situation, Steever et al. (2019)[27] define the Virtual Food Court
Delivery Problem (VFCDP) and show that the approach incorporated with
look-ahead policies outperforms the purely myopic one on the instances
artificially created by probability distributions. They provide a Mixed Inte-
ger Programming (MIP) formulation to this and combine it with a heuristic
based on an auction for sake of decision-making with future demand. It
has been also proved that proper predictions on arrival time improve the
system performance by Hildebrandt and Ulmer (2020).[28]

2.3 Crowd-sourced Delivery

The development of crowd-sourced delivery has been getting more in-
tentions these years. People turn to be more concerned about ensuring
dependable delivery at the appropriate time and price, instead of mainly
finding as many optimal routes with available and effective delivery ca-
pacity as possible. To achieve this, crowd-sourced delivery is considered
more. Static models treat crowd-sourced shipping as VRP. Archetti et
al. (2016)[29] define the form of crowd-sourced delivery as VRP with oc-
casional drivers (OD). They propose a static deterministic model where
professional vehicles (PV) are assigned with closed routes and OD may
visit only one customer before heading to their destinations without return.
Other extensions to this model emerge. Macrina et al. (2017)[30] allow
OD to deliver multiple packages to the transshipment nodes. Dahle et
al. (2019)[31] formulate the problem with time windows and focus on
compensation schemes to balance reducing the total cost and incenting
the willingness of drivers. Liao et al. (2020)[32] object to finding a green
way with minimal carbon footprint by using a genetic algorithm (GA) and
clustering with principal component analysis (PCA) to initialize the routes
and optimize by adaptive large neighbourhood search (ALNS) afterwards.

In natural, crowd-sourced delivery is under great stochasticity since
uncertainty originates from plenty of aspects. That is the reason why the
dynamic version of the crowd-sourced delivery is being taken into account.
Gdowska et al. (2018)[33] view the problem as a bi-level stochastic problem
where OD still visit a single customer but can reject a task allocation with
a given probability. Arslan et al. (2019)[34] introduce a rolling horizon

6
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2.3 Crowd-sourced Delivery 7

method that could solve the problem of matching tasks with the ad-hoc
drivers on the fleet iteratively. The literature mentioned above focuses on
the dynamism of one side, while dynamic aspects of both customers and
drivers are considered in the paper written by Dayarian and Savelsbergh
(2020).[35] Approaches including a myopic one and SSP are used to guar-
antee the quality of service. Tabu search is adopted for the routing of PV
and OD, and PV has no limitation on capacity while OD could visit two
customers at most. As for delivery systems with crowd-sourced drivers,
Sampaio et al. (2020)[36] frame the problem as PDP with transfers. An
ALNS algorithm is introduced so that favourable transfer opportunities
are efficiently identified and driver operations are synchronized. Apart
from modelling the crowd-sourced delivery problem with a set partitioning
formulation, Arslan et al. (2019)[34] propose the decomposition heuristic
(D-H) algorithm. With the help of it, the instances could be dealt in a
large scale. Lately, Torres et al. (2022)[37] consider a two-stage stochastic
programming model with recourse. Set partitioning performs at the first
stage, and then the subset of the routes with compensations is assigned
to crowd vehicles when they are available. The remaining routes as well
as the routes that fail by crowd vehicles (at a penalty) are dispatched to
professional vehicles in the second stage recourse. They modify the set
covering model as the master problem using column generation and branch
and price so that the formulation is strengthened by deriving upper bounds.

From the above literature review, we could conclude that for stochastic
VRPs, uncertainty comes from regular sources (demands of customers,
service, travel time including the weather and road conditions) and other
sources (characteristics of fleet including vehicle types, if crowd-sourced
delivery is involved). A model that is close to reality should be robust and
flexible to the changes, which means it could make good use of recent and
future information from time to time, make relatively fast and accurate
decisions, and leave some probability for optimizations as well as responses
to accidental events.
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Chapter 3
Problem Description and
Mathematical Formulations

There are two ways to formulate the problem: one is the traditional VRP
based MDRP formulations, and the other one uses the set partitioning. The
glossary for all sets, variables and parameters are in the notation table A.1
in Appendix A.

3.1 MDRP-based formulations

min Θ1 =

∑
v∈C

(zv( ∑
w∈W(v)

p1dwxv
w) + p2( ∑

w∈W(v)
xv

w − b))

+ ∑
v∈D

∑
w∈W(v)

p3dwxv
w + ∑

v∈D
Fdyv

(3.1)

s.t. ∑
v∈V

∑
w∈W(v)∩W(o)

xv
w = 1 ∀o ∈ O,

(3.2)

∑
w∈W(v)

sw=i

xv
w − ∑

w∈W(v)
fw=i

xv
w =


1, if i = ℓv,

−1, if i = ℓv,
0, otherwise

∀v ∈ V, i ∈ Nv\{h},

(3.3)
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10 Problem Description and Mathematical Formulations

∑
v∈C

∑
w∈W(v)

sw=ℓo
σw≤t

xc
w + ∑

v∈C
∑

w∈W(v)
fw=ℓo

ϕw>t−uo/2

xc
w ≤ 1 ∀o ∈ O, t ∈ To, (3.4)

∑
w∈W(v)

sw=h

xv
w − ∑

w∈W(v)
fw=h

xv
w = 0 ∀v ∈ D, (3.5)

yv ≥ ∑
w∈W(v)

sw=h

xv
w ∀v ∈ D, (3.6)

∑
w∈W(v)

xv
w ≤ zv × qc ∀v ∈ C, (3.7)

∑
w∈W(v)

xv
w ≤ yv × qd ∀v ∈ D, (3.8)

τo ≥ ∑
v∈V

∑
w∈W(v)∩W(o)

δo
wxv

w ∀o ∈ O, (3.9)

τo ≤ ao + ϱmax ∀v ∈ V, ∀o ∈ O, (3.10)
xv

w ∈ {0, 1} ∀v ∈ V, ∀w ∈W(v), (3.11)
zv ∈ {0, 1} ∀v ∈ C, (3.12)
yv ∈ {0, 1} ∀v ∈ D, (3.13)
τo ≥ 0 ∀v ∈ C, ∀o ∈ O. (3.14)

In the MDRP-based formulation, the object function aims to minimize
the total monetized cost of delivery meal boxes using crowd-sourced ve-
hicles (CV) and dedicated vehicles (DV). The first half multiplied by the
indicator variable includes the price based on distance and the compensa-
tion over the threshold on the number of work packages for CVs. The other
one is composed of the total distance cost of DVs as well as the fixed cost
of using DVs.

Constraints (2) to (8) are for the routing problem. Constraint (2) ensures
that each order is served. The constraints in Equation (3) are to balance the
flow at each node thus ensuring the spatial consistency of work packages
performed by couriers in succession. Analogously, constraint (4) ensures
temporal consistency of work packages executed by couriers continuously
by enforcing that a work package can start at the location ℓo at some time
t, provided that there is another package whose job ends at ℓo before t
minus half of the service time required to place the order. The service
time is the time required for arrival to the vehicle after delivery. The start
times of work packages are limited to continuous time intervals rather than

10
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3.2 Set partitioning formulations 11

discrete points in time, which implies that variables and constraints are
infinite, but it is sufficient to consider only a limited subset of work package
variables and time-consistency constraints. Constraint (5) guarantees a DV
is supposed to return to the depot after leaving it for delivery. The DV usage
constraint (6) indicates that only DVs existing in the depot can be activated
to serve the work packages. Constraints (7) and (8) are for capacity, and
they regulate the number of work packages that can be delivered by a
single CV or DV.

Constraints (9) and (10) are time window constraints with which the
click-to-door time is guaranteed not to exceed the given maximum. The
constraints in Equations (11) to (13) are binary for the decision variables,
while the constraint in Equation (14) is non-negative.

3.2 Set partitioning formulations

min Θ2 =

∑
v

∑
r

∑
w

p1dwyc
r,v + p2(∑

v
∑

r
∑
w

αc
r,w,vyc

r,v − b)

+∑
v

∑
r

∑
w

p3dwyd
r,v + Fd ∑

v
∑

r
yd

r,v
(3.15)

s.t. ∑
v

∑
w

αc
r,w,v × yc

r,v + ∑
v

∑
w

αd
r,w,v × yd

r,v = 1 ∀r ∈ {Nw},

(3.16)

∑
r

yc
r,v = 1 ∀v ∈ C,

(3.17)

∑
r

yd
r,v ≤ 1 ∀v ∈ D,

(3.18)

yc
r,v ∈ {0, 1} ∀(r, v) ∈ R,

(3.19)

yd
r,v ∈ {0, 1} ∀(r, v) ∈ R,

(3.20)

αc
r,w,v ∈ {0, 1} ∀(r, v) ∈ R, ∀w ∈W(v),

(3.21)

αd
r,w,v ∈ {0, 1} ∀(r, v) ∈ R, ∀w ∈W(v).

(3.22)

The object function (15) of set partitioning is similar to the previous
formulation and also aimed to minimize the total cost of all types of vehicles.
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12 Problem Description and Mathematical Formulations

Each work package must appear once and only once on all routes of the
two types of vehicles, which is shown in the constraint (16). Constraint (17)
ensures that only one feasible route for each CV is selected as part of the
optimal one, while Constraint (18) indicates that for each DV at most one
feasible route should be utilized. The constraints in Equations (19) to (22)
are for the binary decision variables.

3.3 Assumptions

For the sake of thoroughness, structural assumptions are made.

Any route only has a certain number of orders.
After off time, couriers are unable to receive new instructions but are still
able to complete any open tasks.
Every user has an order associated with it, but a user can only place one
order per day.
One notification of order allocation can only be sent to a courier at once.
Only one courier may be given an order. The courier’s vehicle is unchanged
over time.
The travel time between any pair of locations varies with time.
A courier moves and complies with traffic signals while adhering to the
actual street layout of the city.
Different vehicle types travel at various speeds.

12
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Chapter 4
Method

In general, our solution method is inspired by the procedure of Decompo-
sition Heuristic [34] and the overview can be described as the algorithm
below:

1. CV routes initialization and generation (1st stage):
Assign as many as possible work packages to all feasible CVs;

2. DV routes as supplement(2nd stage):
Generate routes for DVs to deliver the work packages not served in
the previous stage;
Switch some work packages from CV to DV for some specific reasons;

3. Re-routing and optimization;

4.1 CV Routes Generation

In order to match the routes to crowd-sourced vehicles, orders need to be
bundled as work packages into routes. We define a target route size St
shown in Equation(4.1), which is adapted from Reyes et al. (2018)[1] for the
ease to calculate routes.

St = max[⌈ |{o ∈ Ot : eo ≤ t + ∆}|
|{v ∈ Ct : sv = ∅}| ⌉, Smax], ∆ ≥ f (4.1)

where eo is the ready time of order o in Ot which refer to unassigned
orders and Ct are the idle crowd-sourced vehicles for picking up at time
t ∈ T. A specific value for ∆ is set through a tuning procedure and not less
than the size of the rolling horizon f .

Version of August 31, 2022
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14 Method

Then, the set of routes R can be generated by using parallel insertion
algorithm 1.

Algorithm 1 Routes generation with parallel-insertion

Require: Ot, Ct, St
for u ∈ U do ▷ for each restaurant

Ou ← {o, ∀o ∈ Ot : uo = u} ▷ get orders for the restaurant
O∗u ← {Ou(i), ∀i ∈ |Ot| − 1 : eOu(i)

≤ eOu(i+1)
}

▷ sort orders in increasing order of ready time
Cu ← {v, ∀v ∈ Ct : hℓv,ℓu ≤ d}

▷ get CVs linked to the restaurant according to the distance
nr ← max(⌈ |O

∗
u|

St
⌉, |Cu|) ▷ calculate the number of routes

R← {∅, ∀i = 0, ..., nr − 1} ▷ initialize routes with empty-sets
if assignment updates allowed then

C∗u ← {v, ∀v ∈ Vu : rv ̸= ∅ ∧ uo = u, ∀o ∈ rv} ▷ get vehicles with
non-empty routes of which pickup location is the restaurant

R← R ∪ {rv, ∀v ∈ Cu} ▷ update the vehicle’s assignments by
appending vehicle routes

end if
for o ∈ O∗u do

Find the route r ∈ R and the insertion position ir for the order
which minimizes increment of the route cost

if route efficiency decreases by insertion then
Ignore r and find the next best route and insertion position

end if]
rir ← o ▷ insert the order o at position ir of the route r

end for
end for
return R

4.2 Assignment Logic

After the routes are generated, the work packages containing bundles
of orders need to be assigned to CV routes. Instead of matching work
packages to individual CVs simply, we assign them to the routes of CVs
generated in the previous procedure.

The CV route assignment formulation which shows the process of

14
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4.2 Assignment Logic 15

assigning work packages to CV routes is as follows:

max
xw,r,v

Θ3 =∑
v

∑
r

∑
w

µαw,r,vxw,r,v −∑
v

∑
r

cr,vyr,v (4.2)

s.t. ∑
r

yr,v ≤ 1 ∀v ∈ C,

(4.3)

∑
v

∑
r

xw,r,v ≤ 1 ∀w ∈W,

(4.4)

∑
w

xw,r,v ≤ yr,vqc ∀(r, v) ∈ R,

(4.5)

xw,r,v ∈ {0, 1} ∀w ∈W, ∀(r, v) ∈ R,
(4.6)

yr,v ∈ {0, 1} ∀(r, v) ∈ R.
(4.7)

4.2.1 Row generation

As mentioned earlier, time information for dispatching is embedded in
the variables and constraints ensure time consistency in the MDRP-based
formulation. To solve it perfectly, almost infinite variables and constraints
are required. It is not possible to directly solve these formulations, how-
ever, it can be solved by using a Bender decomposition algorithm efficiently.

Benders decomposition is also known as row generation, since it adds
new rows (constraints) as it progresses toward the solution. In contrast,
column generation corresponds to Dantzig Wolfe decomposition as it gen-
erates columns (variables) for entry into the basis so that their inclusion
improves the objective function.
Benders decomposition is a technique in mathematical programming that
allows solving very large linear programming problems with block struc-
tures. This block structure is often found in applications such as stochastic
programming since uncertainty is often represented by scenarios.
The strategy behind it can be summarized as divide and conquer. That
is, in Benders decomposition, the variables of the original problem are
divided into two (or more) sub-problems that are individually much easier
to solve. If the subproblem determines that the fixed first-stage decision is
infeasible, Benders cuts are generated and added to the master problem,
and the problem is resolved until no cuts can be generated.
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16 Method

After applying row generation, the original CV route assignment for-
mulation can be transformed to the formulation with master problem and
subproblem below:

Master Problem (MP):

max
yr,v

ΘMP =Y (4.8)

s.t. ∑
r

yr,v ≤ 1 ∀v ∈ C, (4.9)

Y ≤ Cuts (4.10)
yr,v ∈ {0, 1} ∀(r, v) ∈ R. (4.11)

Subproblem (SP):

max
yr,v

ΘSP(z̄r,v) = ∑
(r,v)

∑
w

µαw,r,vxw,r,v − ∑
(r,v)

cr,vz̄r,v (4.12)

s.t. ∑
(r,v)

xw,r,v ≤ 1 ∀w ∈W, (4.13)

∑
w

xw,r,v ≤ z̄r,vqc ∀(r, v) ∈ R, (4.14)

xw,r,v ≥ 0 ∀(r, v) ∈ R. (4.15)

The dual of the subproblem (DSP) is:

max
γ

ΘDSP(z̄r,v) =∑
w

λw + ∑
(r,v)

λr,vz̄r,vqc − ∑
(r,v)

cr,vz̄r,v (4.16)

s.t. λw + λr,v ≥ αw,r,v ∀w ∈W, ∀v ∈ C,
(4.17)

λ ≥ 0 (4.18)

16
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4.3 Matching Mechanism 17

Algorithm 2 Row generation for CV route assignment

Initialize a feasible solution z̃0
r,v

Initialize an upper bound and a lower bound: U = +∞, L = −∞
t = 1
while U − L > ε do

Obtain extreme points: λ̃t ▷ solve the DSP
Add cut to the MP: Z ≤ ∑

w
λ̃t

w + ∑
(r,v)

z̃t−1
r,v qcλ̃t

r,v + ∑
(r,v)

zr,v(λ̃t
r,v − cr,v)

Update the lower bound: L = max[∑
w

λ̃t
w + ∑

(r,v)
z̃t−1

r,v (qcλ̃t
r,v − cr,v), L]

Obtain the solution z̃r,v, α̃w,r,v ▷ solve the MP
Update the upper bound: U = Θ∗MP

end while
return z̃r,v, α̃w,r,v, L

4.3 Matching Mechanism

4.3.1 Scope limit

We need scope limit to reduce complexity by discarding some prospective
matches that will not be considered in real life. For instance, if a crowd-
sourced vehicle is out of the distance range of the starting points of all
orders, it will not get any assigned work packages.

The scope limit lie in multiple aspects: First of all, a crowd-sourced
vehicle is not supposed to be too far from the restaurant. Then, a maximum
total offset allowed from the expected time of stops is bounded, where the
sum of the ready time of pick-up stops and the user’s expected drop-off
time should not exceed the upper offset bound. Next, the newly formed
route after the insertion of an order must be related to the vehicle.

If a matching could meet all the conditions of the scope limit shown
above, it could be processed by the matching policies.

4.3.2 Commitment strategy

Apart from the scope limit, a commitment strategy is required to guarantee
the quality of the delivery service. The aim of the commitment strategy is
to have the vehicle arrive just in time at the pickup locations. Without it,
some situations we do not expect would happen like that a crowd-sourced
vehicle would be matched again or the pickup location would change
during the journey. To avoid such situations, the strategy can let the busy
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18 Method

vehicles wait for the next optimization after they become idle, which will
not delay the pick-up or drop-off of any order.
If a vehicle could arrive at the location and all orders in the route are ready
before the end of the next time window, the route can be kept; If a vehicle
could not arrive at the location by the end of the next time window and is
idle, a backup is done in case no other best vehicle is found; If any order in
the route has been ready for a long time, it would execute immediately.

4.3.3 Matching policy

A myopic matching policy in Algorithm 3 that makes decisions solely based
on the current state at every decision points and ignores the future events
is utilized by us. This policy attempts to assign as many work packages as
possible to crowd-sourced vehicles at this stage while combining the men-
tioned routes generation, assignment logic, scope limit and commitment
strategy.

Algorithm 3 Myopic matching policy

Generate routes Rt with parallel-insertion and then update Rt
Generate scope limit {pr,v, ∀v ∈ V ∀r ∈ Rt} for matching
Generate matches Mt with the assignment model
for m ∈ Mt do

Check with the commitment strategy
end for
return Mt

4.3.4 DV Routes as Supplements

After the first stage, we assign as many as possible routes to all crowd-
sourced vehicles, There may exist some work packages not being delivered.
They are assigned to dedicated vehicles directly to complete all tasks. DV
routes are generated for these work packages with the insertion algorithm.
The insertion algorithm is used for both single vehicle routing and multi-
vehicle routing. It first obtains an estimated cost of all work packages that
will be delivered by DV. Then routes are generated to serve them. Next, a
check process is performed periodically with a given time duration to see if
there are some orders canceled. Cases that if the order is canceled by users
need to be removed from the lists. If the time of the order exceeds the limit,
a neighborhood search is performed to seek the possibility to switch it from
CV to DV.

18
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Chapter 5
Computational Study

A series of experiments are conducted in the computational framework
with real-life instances. The model is first implemented and then simulated
under the environment that is composed of movement on the actual street
map, cancellation available and information from time to time.

5.1 Instances

10 real-life instances from Rappi are provided, each containing operations
for the whole day (from 00:00 to 23:59) in a specific city.

We have used these 10 instances for experiments with a random seed
value of 10. Every instance is composed of two main parts: courier data
and order data. The instances are labelled from 0 to 9, and their sizes are
sorted in ascending order by the number of couriers.

In courier data, the information contains the vehicle type (walking,
bicycle, motorcycle and car), the location(latitude and longitude) and the
available time slot (from on time to off time). Two locations (pickup and
drop-off), as well as four moments (placement, preparation, ready and
expected drop-off time) related to orders, are included in order data.

Instance 0 1 2 3 4 5 6 7 8 9
Courier 396 415 430 455 941 959 1156 1185 1876 1908
Order 539 844 538 735 1462 1376 2407 2959 4516 4389

Table 5.1: Number of orders and couriers in the 10 different instances
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20 Computational Study

Figure 5.1: Number of orders and couriers in the 10 different instances

As shown in the above figure and table 5.1, taking 2000 orders and 1000
couriers as a threshold, instances 0-5 are less than this, while instances 6-9
are over.

To directly see the arrivals of the orders and couriers, the distribution
is shown in the figure 5.2 below by aggregating them per hour of the day.
The arrival of orders in line with actual life showed two peaks, lunch and
dinner. The distribution of the registered couriers also shows two peaks but
is relatively steady throughout the day. More courier vehicles are registered
ahead of the peak order period to increase their likelihood of being assigned
to an order.

(a) Instance 0 (b) Instance 1

(c) Instance 2 (d) Instance 3

20
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5.2 Implementation 21

(e) Instance 4 (f) Instance 5

(g) Instance 6 (h) Instance 7

(i) Instance 8 (j) Instance 9

Figure 5.2: Arrivals of couriers and orders in the 10 different instances

5.2 Implementation

We implement a mixed-integer programming (MIP) assignment model
as well as the myopic matching policy, and integrate them into an open-
source available computational framework[38]. The row generation model
(Algorithm 2) is also implemented.

With the help of Gurobi, the variables of routes and couriers are built
and then followed by a built objective function (Equation 3.1). We limit that
one order is assigned to only one courier within the matching scope limit,
which is done by the implementation of the two types of constraints: one
for the route, the others for the courier (Equation 3.2/3/11). The myopic
matching policy (Algorithm 3) is executed at the beginning of every time
window, which involves the functions of generation and grouping routes,
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bundles of orders calculation, and costs for solutions procession.
The computational framework[38] has plenty of useful built-in functions

and services. We utilized the OSRM (Open Source Routing Machine)[39]
service to simulate the model with the given instances, which means the
movement of the vehicle is completely along the real-life road map, and
the traffic rules and congestion levels are consistent with real life, which
will change with time and space. An example of a bicycle route on OSRM
is below.

Figure 5.3: Example of the movement on OSRM service

It is necessary to have some functions to first identify the vehicle type
and then locate the vehicles from time to time during the experiments.
Rules that create disturbances for the dispatch system, such as order can-
cellation policies, are also implemented.

5.3 Experiment

Experiments are carried out in all different instances under the same set-
tings of the lunchtime simulation scenario. The complete settings can be
found in Appendix B, and the information on the hardware and software
can be found in Appendix C.

In the beginning, all the instances are loaded into the embedded database.
Next, we test and simulate the model to assign and match orders to the
routes of crowd-sourced vehicles. During the experiments, two contain-
ers in Docker are required: one container where the movement, pickup
and drop-off actions of vehicles run; the other one embedded with the
database simulates from the start time to the end time with time windows

22
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and performs the assignment algorithm and optimizations. Finally, when
all simulations are done, the query tool is used to search and export results
by SQL sentences for the subsequent procedures.

We simulate the implemented model and then compare it with the
network flow[38] MDRP[1] model. Results are analyzed by performance
metrics and computational efficiency in the following section.

5.4 Result

5.4.1 Performance Metrics

Meal delivery routing problems involve several stakeholders (the dis-
patcher, restaurants, users, and couriers), each with its own objectives
and worries. Thus, several performance metrics are required to measure
the quality of the model from different aspects.

Time Criteria

All the time performances over instances 0-9 are shown in the box plots
(Figure 5.4). Here are the descriptions of the six time criteria and analyses
of sub-figures under each criterion:

(a) Click to door (CtD) time: the difference between the drop-off time of
an order and its placement time;
Figure (a) shows the user needs to wait for about 40 minutes to get
the order after placing it.

(b) In store to pick-up (StP) time: the interval between the time of pick-
up and the time the courier arrives at the store, which measures the
quality of the courier’s assignments and the precision of the system
at arrival times;
The median time interval between the arrival of the courier and the
pickup is 11 minutes shown in figure (b).

(c) Ready to pick (RtP) time: the difference between the pickup time of
an order and its ready time;
In figure (c), a meal box is supposed to wait 6 to 7 minutes after it is
ready, and then to be picked up by a courier.

(d) Ready to door (RtD) time: the difference between the drop-off time
of an order and its ready time;
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Figure (d) indicates the meal box can be delivered to the user’s loca-
tion approximately 1000 seconds after it is ready.

(e) Click to taken (CtT) time: the time difference between when a courier
accepts an order and the time it was placed, which reflects the effects
of pre-position and acceptance;
As for the click to taken time in figure (e), things are a little differ-
ent: 750 seconds is enough for a courier to accept a placed order of
instances 2 and 3; For other instances, it requires 1000 seconds.

(f) Lateness: the degree to which an order arrives later than expected
can be used to gauge how well the user experience and the solutions
are being provided;
From figure (f), we could see that almost over three quarters of orders
are delayed than expectation. Half of the orders are no later than 500
seconds as expected.

(a) Click to door (CtD) time (b) In store to pick-up (StP) time

Figure 5.4: Performance metrics box plots

24
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(c) Ready to pick (RtP) time (d) Ready to door (RtD) time

(e) Click to taken (CtT) time (f) Lateness
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Fill Rate

Fill rate, also known as order fulfillment rate, is the percentage of orders
that can be shipped from available stock without any lost sales or out of
stock. Fill rate can be calculated by counting the number of orders that
were fulfilled and dividing it by the total number of placed orders:

Fill Rate =
Total Orders Ful f illed

Total Orders Placed
∗ 100% (5.1)

For each placed order, it is either fulfilled or cancelled. Order cancella-
tions can come from the dispatcher or the users. Couriers accept the order
stochastically with a probability, which obeys a uniform distribution be-
tween the minimum and the maximum probability. Orders without any
possible assignments to an available courier will be cancelled after a certain
period. When the set maximum waiting time is exceeded, both the user
and the system can cancel the order randomly with a set probability. The
settings of parameters can be found in Appendix B.

The fill rates of the implemented MIP model for all instances are shown
in Table 5.2.

Model

Instance MIP MIP Network
(with scope) flow[38]

0 55.73% 85.48% 81.96%
1 65.82% 86.07% 55.69%
2 66.23% 53.84% 66.23%
3 72.72% 65.15% 69.69%
4 73.50% 59.50% 68.50%
5 68.50% 61.19% 68.81%
6 89.51% 58.63% 68.01%
7 80.38% 50.67% 51.63%
8 68.62% 50.67% 51.63%
9 55.35% 55.61% 46.64%

Average 69.43% 62.95% 62.51%
Table 5.2: Fill rates of the models

The mixed integer model has fill rates greater than 50% on all instances,
with an average of 69.43%, which outperforms the network flow model
in the simulations. On top of the MIP model, a limitation of 4km on the
matching scope was applied, which still performed better than the network
flow model on fill rate.

26
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5.4.2 Computational Efficiency

Due to the simulation being carried out on the OSRM, the movement and
positioning of the vehicle take time. The time of matching(Figure 5.5) and
routing(Figure 5.6) is visualized in the box plots.

(a) Instance 0-5 (orange: MIP; blue: Network)

(b) Instance 6-9 (orange: MIP; blue: Network)

Figure 5.5: Matching time box plots

For all instances, the medians, means and the first quartiles of the com-
putation time of the MIP model during the matching process are smaller
than those of the network flow model. Except for instances 4 and 5, so do
the third quartiles.

The usage of the matching scope limit significantly reduces computa-
tional complexity in matching process, because we do not consider assign-
ing orders to the vehicle out of the set range.
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(a) Instance 0-5 (orange: MIP; blue: Network)

(b) Instance 6-9 (orange: MIP; blue: Network)

Figure 5.6: Routing time box plots

In general, the MIP model performs better in routing time. In instances
6-9, the medians, means and the first quartiles are all 10 to 20 seconds
smaller. Despite both models requiring similar time for routing on smaller
datasets like instances 0-5, sometimes MIP takes 1 to 2 seconds more.

We could conclude that MIP performs better in computational efficiency.
The larger instances require longer computational time in both operations
of matching and routing. The sum of matching and routing time is smaller
than the length of the time window of 4 minutes, which means the opera-
tions of the dispatcher can be done within one time window.

28
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Instance MIP Network Improvement
0 7.735 6.151 -0.25
1 8.931 12.193 0.26
2 12.066 13.766 0.12
3 4.167 4.869 0.14
4 43.266 45.443 0.04
5 54.604 57.642 0.05
6 60.208 84.339 0.28
7 123.209 164.498 0.25
8 137.655 197.877 0.30
9 132.547 183.813 0.27
Average Improvement 14%

Table 5.3: Means of computational time for all instances in seconds
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Chapter 6
Discussion

This study presents several mathematical formulations for Meal Delivery
Routing Problem and algorithms to solve the problem. The research starts
from the Vehicle Routing Problem to the concepts of MDRP and formulates
it by the procedure of decomposition. This decomposition formulation
encourages the usage of crowd-sourced vehicles and leaves small space
for dedicated vehicles to handle some special cases to ensure all the or-
ders could be assigned. The row-generating model succeeds because it
involves more information in the variable definitions, avoiding the complex
constraints of modeling the relationships between them[26]. We believe it
could balance embedding the information into definitions and rendering
the formulation efficiently in computation.

Since it is hard to integrate the row generation model into the compu-
tational framework, we carry out the simulations by implementing the
MIP assignment model with the myopic matching policy; and compare the
results with the network flow MDRP model[38].

Finding a set of routes that optimize performance metrics by matching
vehicles with orders could be seen as the solution to the problem. From the
results under time criteria(Figure 5.4), we could see that the experiments
of MIP model over all instances have good performances on lateness: The
medians are around 500 seconds and some orders could be sent to their
destination earlier than expectations. If we increase the quality of service
requirements and reduce the system’s tolerance for delay, the performance
of the model results will decrease under various indicators.

In all, The research includes MDRP formulations with crowd-sourced
vehicles, which focuses on assigning the orders to crowd-sourced couriers
using a row-generation model and a MIP model with time windows. Both
models can make use of the information at the current time point to match
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the couriers’ routes with the orders. Compared with the MDRP network
flow model, the MIP model reduces the average computation time by 14%
on all instances, while achieving a 7% higher average fill rate.

Future work could be to implement and integrate the more complex row
generation model of crowd-sourced vehicles into the framework for the
simulation. It is also a good way to create a new framework which could
contain different stages and types of vehicles, allowing fast simulations
with a larger scale of data. More complex objective functions which not
only consider cost but carbon emission could be modelled. There seems to
be great potential in self-adapted time windows and row-column genera-
tions in extended formulations. Other stochastic factors in crowd-sourced
delivery that people are concerned about could be taken into more consid-
eration. Besides the aspects of time and cost, some optimizations on the
topological space of the algorithm can also be involved in future research.
Not only do we need progress in abstracting and describing problems, but
we also have a long way to go in weighing the quality and cost of solutions.

32
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Appendix A
Notations

Table A.1: Notation for Meal Delivery Routing with Crowd-sourced Vehicles

Sets:

O Set of orders, o ∈ O
V Set of all vehicles, V = C ∪ D, v ∈ V
C Set of crowd-sourced vehicles (CV)

D Set of dedicated vehicles (DV)

Nv Set of locations that vehicles could reach,
Nv = Nw ∪ {ℓv, ℓv}

Nw Set of locations of all work-packages, Nw = {ℓo : o ∈ O}
To Set of continuous time intervals during which it is

possible to start a work package

W Set of work-packages: W(v) can be performed by a
vehicle v; W(o) contains order o

R Set of routes, (r, v) ∈ R

Variables:

xv
w Binary variable equals to 1 if the work-package w is

performed by the vehicle v
zv, yv Binary variable equals to 1 if CV or DV v is used

τo Drop-off time for an order o

Continued on next page
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Table A.1: Notation for Meal Delivery Routing with Crowd-sourced Vehicles
(Continued)

yc
r,v, yd

r,v Binary variable equals to 1 if the rth feasible route of CV or
DV is used

αc
r,w,v, αd

r,w,v Binary variable equals to 1 if it is feasible for route r of CV
or DV v to deliver the work-package w

Parameters:

dw Distance of the work-package from start to end

sw, fw Start location, end location related to the work-package

σw, ϕw Start time, end time related to the work-package

δo
w Drop-off time for the order in the work-package

ℓo Drop-off location

ℓv, ℓv On location, off location of the vehicle

h Location of the depot for DV

uo Service time associated with the delivery of an order at a
customer location

p1 Price per unit of CV based on travel distance

p2 Compensation per work-package of CV above the basic
compensation threshold

p3 Monetized cost per unit of DV based on travel distance

Fd Fixed cost of each DV

b Basic compensation threshold for one CV

qc Capacity of CV that is the maximum number of
work-packages all CV capable or willing to deliver

qd Capacity of DV that is the maximum number of
work-packages all DV capable to deliver

ϱmax Upper bound for click-to-door time

38
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Appendix B
Simulation Settings

SEED 10
OPTIMIZER gurobi
SIMULATE 08:00-13:00

USERS 08:00-12:00
COURIERS 08:00-11:00

WARM UP TIME 9,000s
DISPATCHER WAIT TO CANCEL 45min

ROLLING HORIZON TIME 4min
DISPATCHER PREPOSITIONING TIME 1h

DISPATCHER PROSPECTS MAX DISTANCE 4km
DISPATCHER PROSPECTS MAX ORDERS 3

DISPATCHER PROSPECTS MAX STOP OFFSET 10min
DISPATCHER PROSPECTS MAX READY TIME 4min

DISPATCHER READY TIME SLACK 10min
DISPATCHER DELAY PENALTY 0.4
COURIER ACCEPTANCE RATE U(0.4, 1)

COURIER WAIT TO ACCEPT 15s
COURIER MOVEMENT PROBABILITY 0.4

COURIER WAIT TO MOVE 30min
COURIER EARNINGS PER ORDER 4

USER WAIT TO CANCEL 30min
USER CANCELLATION PROBABILITY 0.6

USER SERVICE TIME U(2, 5)min
RESTAURANT SERVICE TIME U(2, 10)min

ORDER TARGET DROP OFF TIME 40min
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Appendix C
Computer and Software
Information

Computer
Intel(R) Core(TM) i5-10200H CPU @ 2.40GHz

RAM 16.0 GB
OS Windows 10 x64

Software & Packages
Python 3.7.0

gurobipy 10.1.0
Docker 4.11.1

colombia osrm
postgres
numpy 1.19.1
pandas 1.1.1

haversine 2.3.0
python-geohash 0.8.5

snowflake 0.0.3
alembic 1.4.3
simpy 4.0.1

Version of August 31, 2022

41


