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Abstract

In this paper we study the problem of autonomous driving in pedestrian environments. We
focus on End-to-End models trained using RGB monocular images for ego-position estimation
and waypoint driving. A mobile platform was designed and implemented that was able to
capture RGB monocular images as well as precise RTK-GNSS location data while driving in
a pedestrian environment. This platform was used to construct a dataset with applications for
research on autonomous driving in pedestrian spaces. The dataset is used for two experiments
on waypoint driving as well as ego-position estimation. For each of these two tasks we
trained and validated a baseline neural network. The resulting experiments show interesting
preliminary results for both tasks in pedestrian environments.
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1 Intro

Over the last decade interest in autonomously driving cars, by both the general public as well
as research, has greatly increased, in part due to various companies promising to deliver fully
autonomous driving cars in the coming years. As a result we have seen many papers detailing
new methods for the various tasks that are required for autonomous driving; like object detection
[1], localization [2] and trajectory planning [3]. Other researches try, instead of training various
models for there own tasks, to train a single model capable of autonomous driving in an End-to-End
manner [4]. While commercial methods seem to favor creating autonomous driving systems by
combining multiple models [5], End-to-End learning seems to be used more often on platforms with
limited computational power as End-to-End models only require running a single model instead of
multiple models.
Research has already provided various methods for training End-to-End autonomous driving models,
however these models are often trained and tested in a simulator. Simulators have their advantages
as they are easy to setup and require little effort for collecting data. However because models
trained in a simulator can have drastically different performance in the real world [6], it also remains
important to train and test models in the real world. However, this is not always as straight forward
as applying the methods used in the simulator to data from the real world. For example, methods
which use reinforcement learning to train a model rely implicitly on the ability of a simulator to
be able to crash the vehicle without incurring any cost or pose danger to other road user, which
would be prohibited in the real world [7]. Other methods might use other features of the simulator
which are hard to achieve in the real world. For instance, World on Rails [4] uses extremely precise
location information to train a forward model of the car. The use of simulator features which do
not translate well to the real-world, in combination with unpredictable generalizability of models
trained in simulators make these methods less widely applicable than methods which are trained
on real-world data. However, collecting data and testing in the real world is often more involving
and more time consuming as it requires a physical platform.
Many researches in the field of autonomous driving target a car driving on the road, ignoring other
spaces where vehicles may navigate, such as pedestrian spaces: public walkways, sidewalks and
cycle paths. These spaces provide there own challenges, as walkways are often less distinct than
roads without clear, uniform, markings. Furthermore, vehicles navigating public walkways would
also need to be able to handle pedestrians which often behave in a less predictable manner than
cars as they do not have to follow designated lanes.
In this paper we focus on supervised End-to-End learning for autonomous driving in pedestrians
spaces as well as ego-position estimation for these kind of spaces. Specifically we present the design
and implementation of a low-cost platform which is capable of capturing real-world datasets in
pedestrians spaces that can be used to train and test autonomous driving methods in the real
world. Our goal is to create a platform which has both the sensors and actuators to be able to
autonomously drive, as well as sensors to be able to establish a ground truth and properly measure
the performance of trained models.
There is much research into another related and important problem: tracking the position of a
vehicle in a given environment. The most common setting of this research problem seems to be in
simultaneous localization and mapping or SLAM. SLAM methods try to estimate the difference in
orientation and location between multiple frames of sensor data. This problem is similar but not
equivalent to our problem of ego-position estimation. With ego-position estimation we mean the
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task of estimating a global position from a set of sensor data. SLAM methods produce relative
positions: All positions generated are relative to some starting position which is often the position
of the first frame of data. Ego-position estimation aims to estimate the coordinates of the position
of a frame or window of sensor data independent from the order of frames or windows.
In order to estimate the performance of models which where trained for autonomous driving,
performance measures are required. There are several ways to measure the performance of an
autonomously driving vehicle, but for our platform we found that the best way to measure
performance was by tracking the position of the vehicle during autonomous driving and compare
this to where the vehicle was positioned in it’s training data. For this we choose to add a high
precision GPS module to the platform to be able to track the position of the car.
Basic GPS setups, with single-frequency receivers, are able to attain an accuracy of roughly 2
meters 95% of the time[8]. This imprecision would mean that we cannot determine the difference
between a model preforming well and a model performing poorly, as roads in pedestrians spaces
are often less than two meters wide. A position measurement with an accuracy of more then two
meters could not differentiate between whether the car is on or off the road. In order to improve
the accuracy of GPS GNSS systems it is possible on certain receivers to augment the measurements
with additional data using Real Time Kinematics (RTK).
Our platform is equipped with an RTK system and is able to track its own position to single
centimeter accuracy.
Using this platform we created a real world dataset with applications for learning autonomous
driving models in pedestrian spaces. This dataset contains roughly 35.000 images accounting for
more then 3 hours of driving. The images are accompanied by controlling input (steering and
acceleration input), precise position information (GNSS RTK), as well as speed measurements.

2 Related Work

Research into the problem of autonomous driving has been active since at least 1989 when the first
paper presenting an autonomous driving method using neural networks was published [9]. ALVINN,
the vehicle presented in the paper, was an autonomous driving car using a small neural net which
was capable following a road by itself. Since then, as computers have become more capable, we
have seen an increase in autonomous driving papers. The field of autonomous driving is varied,
with many different methods, sensors, and vehicles used. One common approach is to break the
task of autonomous driving into a variety of different tasks solved with different models. A few of
these possible tasks are detecting interesting regions in sensor data. This can be predicting a 2D
bounding box in RGB image data [1] [10] or regions of pixels [11] [12], or with LiDAR or other point
cloud sensors predicting 3D bounding boxes [13] or a 3D representation of the detected region [14].
Next is the task of predicting the position, orientation and velocity of vehicles called localization
[2], and finally, for tasks relevant to our thesis, we have trajectory planning, where the task is to
find a good trajectory through an environment [3] [15]. Anyone looking to build an autonomous
driving system using the methods presented in these papers would need to combine several of these
methods to create a system that is capable of driving autonomously. The current state of the art
seems to be a method which combines multiple different systems to create a single autonomous
driving system [16].
An alternative to this modular approach is the End-to-End approach as popularized by Nvidia
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[17]. Instead of combining multiple models, End-to-End driving tries to train a single model into
doing the full range of tasks for autonomous driving. Also here, there is a wide variety of sensors
and methods used. Some methods are using reinforcement learning [18] [4] and are trained in a
simulator [19], allowing a model to freely make mistakes without incurring costs. There are also
some researches that propose methods that are trained on real world data, a dataset generated with
their own platform [20] [17]. Training an End-to-End model can be done by creating a model from
scratch [17], but it might also be useful to instead base the network model on an existing, pretrained,
model [4]. One of the classes of networks, often used as the basis for training, are Imagenet models:
networks trained to classify images [21] [22]. Imagenet [23] itself is a dataset which is often used to
train and test these models. Throughout this paper we often refer to ’Imagenet networks’, with this
we mean any network trained for the task of image classification often using the Imagenet dataset.
While some papers choose to use older, less accurate, but more commonly known networks as their
basis [4], it seems to be the case that when choosing a pretrained Imagenet model as a basis for a
specialized model picking the model with the highest accuracy during pre training also seems to
lead to better accuracy once specialized on the data at hand [24].
There is a wide variety of datasets with applicability in autonomous driving [25] [26]. These datasets
are often from the point of view of a car driving on a road and are frequently used in the training
of the sensory tasks of autonomous driving, like object detection. Usage in End-to-End driving
seems less frequent as most End-to-End methods seem to either implement their own platform
[17] or use a simulator [4], of which CARLA [19] is one of the most popular simulator. CARLA is
a driving simulator aimed at providing a platform for research in autonomous driving. CARLA
is implemented in a recent game engine and thus is capable of producing photo-realistic data.
However, as realistic as CARLA is, training in a simulator does not necessarily transfer to the real
world due to a lack of adequate fidelity and environmental modeling. This can cause model failure
to only be exposed in real-world conditions and scenario’s [6]. This difference between simulator
and real-world performance makes it important to train and test in real-world environments. In
order to facilitate real-world training, we need a platform capable of capturing data and running
models in the real-world. As using full size cars for training autonomous driving methods could
be either rather dangerous or prohibitively expensive, there are a range of small scale driving
platforms available like Deepracer[27], a small pre-built platform from Amazon, or Donkey car [28]
and Jetracer [29] which are open-source platforms made from separately bought components.
Most work in the field of autonomous driving is focused on full sized vehicles on the road as apposed
to navigating pedestrians spaces like sidewalks or parks. These spaces could present additional
challenges as vehicles would have to drive themselves in close proximity to pedestrians. Autonomous
driving techniques that are able to drive in these spaces could have a variety of use-cases in
for-instance delivery and autonomous mobility vehicles. Some work has already been done in
researching vehicles that are able to navigate these spaces. A lot of this research focuses on modeling
the behaviour of pedestrians, which is useful for autonomous navigation to avoid collisions with
pedestrians [30]. There are also some papers presenting methods for navigation among pedestrians
[31] as well as models for detecting sidewalks [32]. Furthermore, there are several datasets that
target this space [33] [34]. However we are unaware of any paper presenting End-to-End trained
models using a dataset captured in a pedestrian space.
Ego-position estimation has a lot of overlap with the field of SLAM. SLAM methods vary in the
types of signals they use such as LiDAR data, IMU measurements, single monocular RGB images,
RGB-D images, or stereo RGB images [35]. SLAM which uses RGB images, also called Visual-SLAM
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can be implemented using classical methods [36] but also using deep learning methods [37]. The
field of research into SLAM is related to the problem of ego-position estimation. However it does
have a few significant differences. Research into SLAM tries to create a general method which can
estimate differences in position and orientation between two frames of data for all possible locations,
while ego-position estimation tries to estimate a single global position for each frame of data,
independent of other frames. We found current research into this specific problem to be relatively
sparse as we could not find research specifically addressing this problem. To our knowledge this
is one of the first studies addressing this problem in pedestrian space. Acknowledgment to Marc
Hilbert who pointed us to this problem.

3 Fundamentals

In this section we give a short overview of terms and technologies used for the design and imple-
mentation of our mobile robotic platform as well as techniques that are introduced in the methods
section.

3.1 End-to-End Autonomous Driving

The first research problem we focus on is End-to-End autonomous driving. With End-to-End we
understand a single model, in our case a single neural net, which can take as input images, speed
measures, navigation commands, and possible available sensor data and produces controlling output.
In our case our model takes only image data and produces acceleration and steering.
End-to-End autonomous-driving is different from the multi model approaches we often see in the
current approaches used in experimental autonomous-driving cars. These approaches often use a
combination of several trained models which all have different tasks like processing sensor input,
predicting trajectories, and planning actions. These multi-model approaches are however more
difficult to implement have lots of moving parts and require often more processing power then a
single model. They often require more computational power than currently a mobile platform is
capable of.
Autonomous driving methods can differ in what they understand as autonomous driving. Most
models that are for road going vehicles try to implement a method where a model is fed instructions
from a GPS navigation system. These systems tell the car which lane to take and which turn
to make. It is up to the model to handle steering the car to follow the commands. Pedestrian
spaces might not always have maps as accurate as roads have. Furthermore, there are no lanes in
pedestrian spaces. Therefore our preliminary experiments focus on waypoint driving, where a set of
waypoints, GPS coordinates are given, that specify a route. The vehicle would then be tasked with
autonomously navigating the pedestrian space, driven, from waypoint to waypoint while completing
a route.

3.2 Ego-postion estimation

.
The second research problem we focus on is Ego-postion estimation. With Ego-postion estimation
we mean the task of a model to predict its own position in a space from a single frame or window
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Figure 1: An RTK setup. (image source [38])

of sensor data. In the case of our experiment we focus on training a model to estimate its position
from RGB image data. While the coordinates used for training and prediction are not global in
relation to a global coordinate system but instead local to a local fixed reference point, together
with the global coordinates of the reference point they can be translated to global coordinates.
During the task of ego-postion estimation the model is given an image from which it should produce
the local position coordinates.

3.3 Real Time Kinematic Global Navigation Satellite System (RTK-
GNSS)

An RTK system (see Figure 3.3) consists of two GNSS receivers which are capable of measuring
the phase of a GNSS signal. One of the receivers acts as a base station which measures signals
received from GNSS satellites and sends its measurements over, an often wireless connection, to the
second mobile receiver; the rover. The rover uses the received measurements together with its own
measurements of signals received from the satellites to generate a precise measure of its position
relative to the base station. Using an RTK system it is possible to generate positions accurate to
within a centimeter.
The most commonly used RTK setup uses a base station which is at a static location and is
connected to the internet to serve connections with possible rovers. The messages created by these
stations are often freely available on the internet for use with a rover. There are several limitations
with such a setup: Firstly, the station typically only sends messages every second or so, which is not
sufficient for our use case. Secondly, for our receiver, the station must be within 20 kilometers of
our rover. Unfortunately for our location no station was available within 20 kilometers. Finally, an
RTK base station requires a somewhat involved and time consuming setup where it must record its
position for several hours in order to acquire precise, global position information. The base station
requires this precise position information to be able to generate the correct messages which a rover
with RTK requires for global positioning. These three downsides made this setup not feasible for
our use case.
The RTK receiver we use is able to act in a moving RTK base station setup. In this mode the base
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station does not need to be stationary but instead has the ability to move while connected to the
rover. The downside to this setup is that we lose global coordinates and instead get coordinates
relative to base station, but as a trade of we gain the ability to quickly create an RTK setup with
1cm local relative positioning accuracy at 10 measurements per second.

3.4 Hardware Setup: The Rover and the Base station

In order to generate our dataset and to validate our models, we created a rover platform which is
capable of running relatively complex neural networks for autonomous navigation, collect images,
measure speed and position data, with 1cm local accuracy at 10 measurements per second.
Our rover platform (depicted in Figure 2) is derived from the Jetracer platform [29] and uses an
off-the-shelf RC car as its base. An overview of all the components and how they are connected can
be seen in Figure 3. The rover is controlled, by an onboard controller board, using Pulse Width
Modulated (PWM) signals. These signals are fed into a motor controller which then drives the
motors. In order to control these motors from our computer module, the RC cars components are
connected to a circuit board, which is able to generated PWM signals and can be controlled using
an I2C bus. This I2C bus is connected to our computer module which is a Nvidia Jetson Nano B1,
equipped with a WiFi module for connectivity. The Jetson Nano is a small form factor computer
which is capable of running relatively large neural network thanks to its integrated 128-core Maxwell
GPU.
The Jetson Nano is connected to several sensors, which are used to generate data for building
datasets as well as running trained models. Firstly, a stereo camera is used: the IMX291-83, these
camera’s are capable of capturing a pair of images in 2x1640x1320 resolution at 30 fps.
Secondly, in order to be able to measure the speed of the car, which might be useful for methods
that use a measure of speed as input for there models, a speed sensor is added. The speed sensor,
which reads the rotations per second of the motor, is somewhat similar to speedometers in real cars.
As our RC car has no clutch, the RPM sensor is connected to the wires of the brushless motor.
This sensor sends a pulse each time the motor completes a rotation. In order to read this pulse
we used a small programmable board: the Digispark. This board is capable of reading raw pulse
signals that are converted into a number. The Digispark is plugged into a USB port of the Jetson
Nano from which it communicates over a serial port. The Digispark sends the number of rotations
at regular intervals 1/30 seconds over a serial interface to the Jetson.
Finally, the Jetson is also connected to the ZED-F9P GNSS module which, in turn, is connected to
a multi-band GNSS antenna which is mounted on the car. This module is RTK (see section 3.3)
capable and is used to track the position of the car. In order to control the ZED-F9P we created a
software tool set which is tailored to our use-case. During normal use the ZED-F9P provides 10
position updates every second with a precision of a single centimeter. This position is relative to a
base station which is connected to a second PC. This PC, in turn, is connected via WiFi to the
Jetson Nano for communicating the RTCM messages (messages of the Radio Technical Commission
for Maritime Services SC-104 communication protocol for differential GPS) required for RTK.
The whole vehicle is powered by two sets of batteries, one set for the car motors implementation of
and one set for the Jetson Nano.
For manually controlling the car during testing and dataset generation, we used a bluetooth
controller connected to the Jetson. Processes on the Jetson then read the input from the controller
and, in turn, control the motors and steering servo of the car.
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Figure 2: A picture of the vehicle. (A) The IMX291-83 stereo camera. (B) A Digispark used to
read data from the RPM-meter. (C) The RPM-meter connected to the brushless motor plugs. (D)
The Nvidia Jetson Nano. (E) A Multi-band GNSS antenna. (F) The ZED-F9P GNSS module. (G)
The base station reciever. (H) A WiFi router for connectivity between base station and rover. (I) A
laptop which sends messages from the base station ZED-F9P GNSS module to the rover over UDP.
(J) The Bluetooth controller used to control the car.

Figure 3: A block diagram of the RC car connected to a laptop for RTK.
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4 Methods

In this section we give an overview of our rover platform, the dataset we collected, as well as the
setup for the experiments.

4.1 Software tools

For capturing images on the Jetson, as well as controlling the ZED-F9P we designed and implemented
two software libraries; Jepture and UBX GPS Server, respectively. Jepture is a lightweight image
capturing library for python using the Jetson’s builtin hardware accelerated pipeline to be able to
quickly capture and save images without significant overhead. UBX GPS Server is a set of tools for
working with the ZED-F9P chip with support for high frequency RTK measurements over IP.

4.1.1 Jepture

The RC car is equipped with a stereo camera, which is able to record 30 fps at 2x1640x1320 pixel
resolution. As most of the machine learning libraries are written in python we needed a way to
be able to control capturing these images from within python, while also being able to access
the generated image data. Existing python libraries for capturing images either did not have the
required functionality or the required performance, adding so much overhead that the computer is
not able to run the neural network models while capturing images.
Therefore, a small python library, called Jepture, was designed which uses the Jetson’s builtin
hardware acceleration tools to be able to capture and process images in python. The resulting
library is able to capture images from the stereo camera at full resolution and frame rate with
minimal overhead. This library furthermore also integrates with Nvidia’s hardware accelerated JPG
codec for fast encoding and storage of the recorded frames.
The library is now publicly available on github (https://github.com/DelSkayn/jepture) and
can be easily installed using the python package manager pip.

4.1.2 Ubx GPS Server (UGS)

Our second tool is a library with the somewhat uninspired name UBX GPS Server (UGS). This
tool consists of several executables that are able to communicate with each other, and with a GNSS
chip that implements the UBX protocol in order to facilitate the tracking of positions using RTK
GNSS.
UBlox, the creator of the ZED-F9P, has tools to work with ZED-F9P however these tools only work
on windows and access to data from the ZED-F9P is limited. Linux, has a tool called GPSd which
is also able to communicate with the ZED-F9P and works similarly to our own implementation.
However the tool did not support moving base RTK configuration that was required for our
application. Furthermore the daemon only supported a method of communication using TCP
connections, which is a deal breaker for our requirements because it introduces high latencies when
communicating RTCM messages. Hence, a new tool for our use-case was designed and implemented,
called UBX GPS Server (UGS), see Figure 4 for the depiction of the UGS setup.
The primary functionality of the tool is a server that communicates with a chip that implements the
UBX protocol over a serial interface. This server acts as source and sink of UBX messages sent over
TCP, which enables configuration and communication with the chip across an IP network. When
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Figure 4: A block diagram of a network for running an RTK setup with UBX GPS Server.

started, the UGS executable starts a TCP server which can be used by other tools to send messages
to and read message from a GNSS chip. The server is also able to both receive and forward RTCM
messages over UDP for low latency connections. This functionality is used for facilitating RTK
GNSS setups. A diagram for the network connections required for a running RTK setup can be
seen in Figure 4.
Several auxiliary tools were implemented: a configuration tool which is able to write a configuration
to the GNSS chip, a monitoring tool which implements a terminal user interface for monitoring
messages and track positions returned by the GNSS chip, and a python library for connecting to
the server and reading and processing messages from the GNSS chip.
The library is written in the rust programming language and is able to run on any major platform
like linux, windows, or mac-os.
The UGS library is also publicly available on github (https://github.com/DelSkayn/ubx-gps-server).

4.2 The dataset: Ped-Data

The rover described in the previous section is used to capture a dataset of driving data in a
pedestrian space. We call this dataset: Ped-Data. As our rover is built on an RC car it is very
suitable to be driven on pedestrian roads: currently mostly a park. This allows us to capture novel
and different driving datasets, where existing datasets are mostly captured on roads. Another
difference from other datasets is the perspective of the images: most autonomous-driving datasets
are taken from a car often with cameras mounted to the roof of the car given a good perspective of
the road. Our RC car has its camera mounted roughly 15 cm from the ground. This makes images
somewhat more challenging to interpret as curvature of the road as well as obstacles further on the
road are less distinct.
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Figure 5: Two samples images of the dataset. Note the differences in appearance due to the weather.

Figure 6: A visualization of some of the positions recorded during dataset creation, overlaid on a
satellite image of the location. Each blue square represents a recorded position with the size of
the square representing the accuracy of the recorded position. The green circle represents the base
station position. All coordinates in this picture where approximately lined up to the satellite image
for visualization only. Satellite source: Google maps, Map Data © 2023 Images © 2023 , Aerodata
International Surveys, Maxar Technologies

10



Datatype detail number per second

Images 349168 (174584 pairs) at 2x1640x1320 30
Position data 86297 measurements at 1cm accuracy 10
Rpm Measurement number of rotations recorded in 1/30 sec. intervals 30

Table 1: Table with information about the contents of the dataset.

The dataset consists of the following data:

1. A set of recorded image pairs from the stereo camera. These images are recorded at 30 fps with
a resolution of 2x1640x1320. For each image pair a timestamp is recorded. The timestamps
are used to be able to combine the images with the other types of data recorded. Several
examples of the recorded images can be seen in Figure 5.

2. Every 0.1 seconds a position is recorded relative to the base station. The position of the base
station can vary between recording sessions and as such the coordinates between sequences of
images of different recording sessions are not always the same for the same global position of
the vehicle in the world. Furthermore, the accuracy of the measurement is recorded, which
should mostly be a single centimeter but might vary due to environmental factors, together
with a timestamp of the measurement. A visualization of the recorded positions is depicted
in Figure 6.

3. RPM measurements are recorded at 30 measurements per second. These speed measurements
are recorded together with a timestamp indicating the time the measurement was received.

An overview of the numbers of data can be seen in Table 1. A full description of the structure and
format of the dataset can be found in Appendix A.

4.3 Experimental setup

The dataset is used for two experiments: autonomous waypoint driving and ego position estimation.
In the following subsections we describe the experimental setups.

4.3.1 Autonomous waypoint driving

Our first experiment is an adaptation of the End-to-End learning method for Autonomous-Driving
Cars presented in [17]. The method is adapted to our platform, target space, dataset and with
some additions from advances in machine learning made since the paper, such as the usage of a
more recent backbone DNN. The task here is to train a model to predict the right steering and
acceleration input for the ego-vehicle to be able to drive autonomously. In our case the steering
and acceleration are both values ranging from -1 to 1. Steering a positive 1 means that the car
should steer as much left as it can while a steering position -1 means that the car should steer
as much right as it can with other values in between resulting in a shallower steering angle. For
acceleration a value equal to 1 means full acceleration while a value equal to -1 means breaking
while in forward motion and then, once fully stopped, accelerating backwards.
In contrast to roads for cars, public walkways often come in a wide variety of forms. Even within
the same neighbourhood the limits of what constitutes a walkway are often represented in a variety
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of different ways. Some public walkways have a ledge, while others are just a colored part of the
road, and other paths might only be delimited by the lack of grass. This in contrast to roads for
cars which have, by law required, indications of where a car should drive. This makes the task of
following roads in pedestrian spaces somewhat more challenging as any model trained for such a
task has to deal with more ambiguity than a model trained for regular car roads would.
Furthermore, unlike the original paper we conducted our experiment on a specific trajectory with
several intersections. The original paper [17] used a dataset where the roads for cars often have
long stretches without any intersections, Pedestrian areas often have lots of intersections. The task
of following a road then becomes somewhat more ambiguous when encountering a crossing as there
is no single road to follow but multiple options. This preliminary experiment aims to research the
question of how well an autonomously driving model behaves in this more ambiguous environment,
where we focus on training a model to replicate a driven path from the dataset. The results of this
experiment provide preliminary insights into the possible performance of autonomously driving
vehicles, like autonomous mobility scooters or delivery bots, in mobile pedestrian spaces.

Mobile Platform The mobile pedestrian platform from the reference paper [17] had 3 cameras,
our mobile platform only has 2. One of the innovations of the reference paper was to record with 3
cameras simultaneously. For each frame of driving data 3 images where recorded. One from the
camera in the center of the car, and 2 images from the cameras to each side of the center camera.
Apart from training the model to predict the target steering for each image from the center camera
the two images from the offset cameras where used as training examples of situations where the car
has drifted too far from the center of the road and should correct by steering back to the center.
When training on these images, the actual driven steering target is offset with a correcting steering
angle to steer the car back to the center of the road.
Our mobile platform does not have a camera in the center of the car but two cameras to each side of
the vehicles center. We use these cameras as offset cameras similar to the reference papers applying
a correcting steering angle when training on images generated by these cameras. As our mobile
platform does not have a third central camera we do not train on images without a correcting
steering angle.

Neural Network architecture A pre-trained imagenet network, i.e., a DNN pretrainted on the
Imagenet dataset [23], is used as a feature extractor with a customized decision head. The original
paper used a CNN that was trained from scratch, but modern approaches (e.g. [4]), often use
pre-trained imagenet networks as a backbone network. Pretrained imagenet networks are capable
of being powerful feature extractors which can be fine-tuned for new tasks [39]. For our selection of
our backbone network we took into account a few factors; Firstly, the size of the neural network.
Imagenet networks can scale up to hundreds of million parameters. While the Jetson Nano is a
rather capable platform for its size, it is still limited in performance when compared to a desktop
with a modern state of the art GPU. As such we need to select a comparatively small imagenet
network. Secondly, we looked at the imagenet network performance. It is generally found that
imagenet networks which perform better also fine-tune better [24]. Taking this into account we
selected a recent network EfficientNet B01 [21] a model with a relatively low parameter count of
roughly 5 million parameters. This model consists mostly of convolutional layers with a single final
fully connected layer at the end. Pretrained Imagenet networks, including EfficientNet B01, are
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Figure 7: A diagram of the used network architecture with an EfficientNet B0 backbone.

generally trained with a final target layer of around 1000 outputs, a number equal to the number
of imagenet classes. As road following has only two targets: steering and acceleration, we replaced
the final layers of the network. We removed the included layer from the imagenet network and
added a fully connected layer with newly initialized parameters and only two numbers as outputs,
representing the predicted steering and acceleration. We also tried different architectures with
additional fully connected layers reducing the features generated by the convolutional layers more
gradually to two outputs but we found that the resulting architectures performed worse on the
validation set. We will refer to this resulting neural net as the waypoint-model in further sections.
A diagram of the network architecture can be seen in Figure 7.

Data augmentation As several studies showed the benefits of data augmenting several data-
augmentation techniques were applied. Apart from the previously mentioned technique using offset
in the target together with the offset of the camera, we further augmented the data by randomly
applying a horizontal flip, and mirroring the recorded steering input for the flipped images, as
left turns in a flipped image are right turns and vice versa. This flipping allows us to create a
dataset which is perfectly balanced between left and right turns. Next we apply some common
regularization techniques like: random erasing and color jitter, which could prevent overfitting, and
random blurring which might allow the model to better respond to difference in focus. The cameras
on our rover need to be manually focused by hand. This could have resulted in the focus of images
in our dataset being different between different recording sessions.

Performance measures As we have access to other data and have a different target space than
the original paper [17], we also modified the performance measure. The paper ”End-to-End learning
for autonomous-driving Cars” target is to train a car to drive on the road in its lane. The paper
furthermore defined its performance as the amount of corrections that where required while the car
was driving. The reference paper calls this measure autonomy. Autonomy is defined as the time the
car is able to drive without intervention. An intervention happens when the car is one meter away
from the center of the line. The car’s path is then corrected which is assumed to take 6 seconds.
The final autonomy is calculated by taking the total amount of corrections times 6 seconds divided
by the amount of time spent driving and then subtracting the resulting number from 1 (see the
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autonomy = 1− interventions× 6s

driving time in seconds

Figure 8: Equation for autonomy

equation in Figure 8).
This is a relatively good measure when driving on long straight sections with clear indications of
what the road is, but breaks down in our target space where there is a less clear distinction between
what is part of the road. Furthermore, as it is using 6 seconds for a correction it is implicitly geared
to a certain speed of a specific vehicle. Therefore, we needed to alter the performance measure.
As can be seen from the tracks driven and depicted in Figure 6, in our dataset the human driver
shows large differences in the path that was driven during turns. Apparently at those places it is
challenging or not natural for a human to each time drive the same path. This is something we
wanted to take that into account when defining the performance measure. The error should be
bigger, if the car deviates a certain distance from its normal route in a place where the human
mostly drives the same route, whereas it should be relatively smaller at places where the human
has large differences in routes driveni
For our performance measure we started with define where the ego vehicle should be allowed to
drive. For this we defined an ’allowed path’. The allowed path is a trajectory together with a
distance from that trajectory within the autonomously driving vehicle is valued as driving well. We
calculate this target path from the dataset we created using the human driven paths as examples
of good driving, i.e., driving similar to human driving.
The target path is calculated as follows: First, we convert the coordinates from paths driven in
the dataset to polar coordinates with respect to the paths center, then we fit a curve through the
points from the dataset. This curve is determined using a function from the scipy library called
scipy.optimize.curve fit [40]. This function takes a model function that accepts a free variable
and a number of parameters and produces an output curve. The curve fit function will then try
to optimize the parameters such that, the output of the model function will approximate the data
given to the curve fit function. For our model function we choose to use a function that is similar
to a Fourier series and can be defined with an arbitrary amount of parameters. The definition of
this function can be seen in Algorithm 1.

Algorithm 1: The model function which is fitted to the data.

Input: The free variable X, and P a list of 2N parameters
Res ← 0
for i← 0 to N do

Res ← Res + P[2i]cos(iX) + P[2i + 1]sin(iX)
end
return Res

Once we fitted the function to the data the output of this function will represents the ’best’ path.
Then we split the path into waypoints, for each measured position in the dataset we calculate
the point of the curve which is closest to the measured point and calculate it’s distance to this
waypoint. This distance is a deviation from the ’best’ path. For each waypoint on the curve we
record the largest deviation in the dataset, e.i., the allowed deviation of the path at this waypoint.
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If a waypoint on the curve had no closest recorded position, the allowed deviation is the mean of the
allowed deviations of its two closest neighbouring waypoints. The pseudo code for this algorithm is
given in Algorithm 2.
As long as the car is driving within the allowed deviation from a waypoint on the curve we define
that good driving. If the car is driving beyond the allowed distance of any waypoint on the curve
then the car is off-course. A visualization of an allowed path that is determined with this algorithm
is depicted in Figure 9.
During the evaluation of our models we use this allowed path to measure the performance of a
model. If a model, during autonomous driving, managed to drive the entire time within the allowed
path, then it managed to drive with a performance similar to the human driver. Thus performance
is measured by the amount of time the model spent outside the allowed path during autonomous
driving.
With the previously calculated allowed path we also calculated a best mean path. This is the
average path the human drove the mobile platform in the dataset. We can use this average path to
compare our model to the reference paper. The reference paper used a deviation from the center of
the road for its measure of autonomy. While in a pedestrian space we cannot clearly define the
center of the road. But we can use our previously calculated mean path as the center of the road
when calculating the autonomy of our model.
Before we calculate the autonomy of our model we do need to make one more adjustment. As
we do not have a clearly defined center of the road, it is not possible to report on interventions
while validating model. Therefore we need to make some small adjustments such that we can define
interventions. An intervention is defined as the moment the ego vehicle is 1 meter from the mean
path. However, as we did not intervene during validation the ego vehicle could just skirt the 1
meter where interventions happen; resulting in numerous ‘interventions‘. Therefore, it is reasonable
not to count additional interventions untill the car is within the 1 meter distance from the mean
path for at least a full second. If the car exits the 1 meter range again within a second, we do not
count it as a new intervention.

4.3.2 Ego Position Estimation

For ego position estimation a network is trained to predict the position of a given recorded image.
The recorded position in our dataset is used as the target for the training. As these positions are
relative to the base station and not global coordinates, we cannot use all sequences in the dataset
but only those where the position of the base station did not change, which could have happened
in between separate dataset recording sessions. The dataset contains information about when the
position of the base-station could have been changed.
We previously mentioned that the accuracy of the recorded position of the car is generally a single
centimeter. This is only actually true for its north-south and east-west coordinates. The elevation
coordinates are often less precise. For the current experiment this is irrelevant as we ignore the
elevation and assume that the car is driving on flat terrain. A further assumption for this task is
that only the north-south and east-west coordinates have to be predicted.

Neural Network architecture For this task the input is an image and the output consists of
two targets. The targets are respectively the north-south and east-west predicted coordinates of
the input image. We scale the output of the neural net by a scalar factor which is derived from the
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Algorithm 2: Pseudo code algorithm for calculating the allowed distance for a given drive
of the rover.
Input: C: The set of driven coordinates; R: The set of reference coordinates from the

dataset
Output: D: The set of allowed distances.
// Calculate best path P resulting from a curvefit on R.

Rmean ← mean(R) // Calculate the center of R.

Rpolar ← toPolar(R - Rmean) // Transform R to polar coordinates.

F ← apply curve fit on Rpolar // The fitted curve given as a function F.

// Divide path into 1000 waypoints uniformly distributed along the fitted curve. This

will be stored in P.

X ← A list of 1000 points distributed with equal distance in the range of 0..2π.
P ← An empty list
for i← 0 to |X| do

P[i] = fromPolar(F (X[i])) + Rmean

end
// For each point on C calculate the closest waypoint on P.

D ← list with length equal to |P |, with elements initialized to 0
Assigned← list with length equal to |P | with elements initialized to False
for i← 0 to |C| do

Dist ← Infinity
Point ← 0
for j ← 0 to |P | do

if Distance(C[i],P [j]) < Dist then
Dist ← Distance(C[i],P [j])
Point ← j

end

end
Assigned[Point] ← True
D[Point] ← Min(Dist,D[Point])

end
// Some waypoints on P may be unassigned and have no allowed distance, for unassigned

points P, calculate its allowed distance by interpolating allowed distances from

neighbouring waypoints

forall i in 0..|P | where Assigned[i] = False do
left ← (i - 1) Modulo |P |
while not Assigned[left] do

left ← (left - 1) Modulo |P |
end
right ← (i + 1) Modulo |P |
while not Assigned[right] do

right ← (right + 1) Modulo |P |
end
D[i] ← (D[left] + D[right]) / 2

end
return D
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Figure 9: A visualization of the allowed path. Each circle represents a point on the curve with the
radius being the allowed distance from the point. The allowed distance is determined using human
driving trajectories. The allowed distance is the distance the human driven trajectories deviated
from the mean path.

maximum range of values of the dataset. The to be predicted coordinates a bigger range then [0, 1],
whereas pretrained networks often have output nodes with values in range [0, 1]. In order to save
training time for networks to predict values from a much larger range, it can be useful to rescale
the coordinates so that they fall within the 0 to 1 range.
If we just look at what input and outputs the network produces, we notice that this tasks has
similarities, to the previous experiment. The input is an image and the output are the two numbers
representing the two coordinates instead of two numbers representing steering and acceleration.
This allows use to use the same backbone neural network architecture as for the previous task. In
the next sections we will refer to this model as the ego-position neural net.

Performance measure The goal of this experiment is to train a model which is able to precisely
determine the position coordinates of an image. This means our performance measure should be a
form of position accuracy. In order to interpret the performance of our model, we need some numbers
to compare to. If this model where to be used in a real-world application, it would compete with a
GNSS device, therefore a good performance reference for comparison would be the performance
of GNSS devices. Ideally this model would perform as good as the GNSS RTK measurements we
made. It is however highly unlikely that we would be able to achieve such precision. Instead, as a
reference we compare it to the less accurate, normal GNSS performance without RTK corrections.
The data for comparison is from three different sources, First,a report from the US Government
National Transportation Safety Board or the NTSB [8]. This report details the performance of
GNSS signals and represent an upper bound on the accuracy of GNSS equipment. GNSS signals
are processed by GNSS devices in order to generate a postion. However, poor equipment, signal
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access, or a bad antenna can degrade the performance relative the signals. Real GNSS devices
rarely achieve the highest possible accuracy with the received signals. The report only cites, what
it calls, 95% accuracy, or the error distance below which 95% of the measurements fall, also called
the 95% quantile, to be less then 2 meters. The next reference is from a report on the accuracy
of mobile phones [41]. This paper only cites the mean error of smartphones which is 4.9 meters.
Finally, we have the performance of ZED-F9P as cited by its manufacturer, which is a median error
of 1.5 meters in GNSS without RTK mode. The manufacturer does not cite any other measurement
of the performance of the ZED-F9P without RTK. These performances are used in the evaluation
of our results on ego-position estimation.

5 Experimental Results

In the next section we present the results of our experiments on autonomous waypoint following
and ego position estimation.

5.1 Autonomous waypoint following

After training our waypoint neural net on our Ped-Data dataset we ran this model on the track. As
the car was autonomously driving on the track we recorded the position of the car, a visualization
can be found in Figure 10. The car was mostly able to drive on its own. The waypoint neural net
did have problems with crossings as it sometimes would steer too late or not at all. Furthermore,
the car seemed to have trouble staying on its path. The car would often sway across the road, only
adjusting its trajectory when the car would be relatively far from the path driven in the dataset.
This can be seen in Figure 10 as the path for the car sometimes snakes across the road.
On average the car managed to stay within 51 cm of the mean path which is better than the allowed
mean deviation of 52 cm. The car was able to stay within the allowed path on 72% of the recorded
positions. During this test the car was driving autonomously for 13 minutes, during which we had
to intervene 4 times when the car would drive too far from the path without any sign of recovering.
Remarkably, only places where we needed to intervene were at crossings. The car would often not
turn into the right direction, or turn too late. The car did manage to stay on the road, on its own,
while driving the sections without intersections.
Using our version of the autonomy measure, we found that our model required 32 interventions
for a driving-time of 899.4 seconds and an autonomy of 79%. This is significantly lower than the
autonomy of the reference paper which reported an autonomy of 98% on their test-set. This could
be due to our dataset being more challenging to drive than the dataset used in the reference paper.
Unfortunately as the dataset from the original paper is not publicly available this is hard to verify.
We can however get an estimation of how difficult our dataset is by using same metric to calculate
the autonomy of a human driver. If we apply the same definition of autonomy we used to measure
the performance to the recorded driving in the dataset we find that the human driver actually
performed worse then the waypoint neural net did, having 71 interventions for a 957.5s driving
time with an autonomy of 56%. An overview of the results can be seen in Table 2 and in Table 3
you can see the results of the reference paper.
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Figure 10: A visualization of the path driven by the drive model. Green squares represents recorded
positions within the allowed path, red squares are outside of the recorded path. Blue circles
represents points where we needed to intervene as the car drove too far of the path. A single
intervention top left was outside of the bounds of the map.

Ped-Data dataset Interventions Time driven Autonomy

Our Model 32 899.4 s 79%
Human in dataset 71 957.5 s 56%

Table 2: Performance of our model and the human driver.

End to End driving dataset Autonomy

End to End driving 98%

Table 3: Performance of the reference paper. Only autonomy was cited in [17].
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Figure 11: A graph showing predicted acceleration against the target acceleration

Next, we recorded a new round of driving done by a human, and tested how well the waypoint
neural net was able to predict both steering and acceleration. The results can be seen in Figure 11
and 12.
As can be seen in these graph the behavior of the human driver is very different from the behavior
the waypoint neural net learned. While the human driver mostly steers with large corrections
the model uses smaller corrections held over a longer time. This discrepancy is rather surprising.
Though the behavior of the model and the human driver seem to be very different, the car did
manage to stay on the road during driving. In order to investigate the behavior of the waypoint
neural net further, we created a graph where we smoothed the input of the human driver. This
graph can be seen in Figure 13. The graph depicts cleary the correlation between the predicted
steering angle and the target steering angle,as can be seen by the see peeks in the target steering
input lining up with peeks in the predicted steering input.
During driving we did observe that when the waypoint neural net was driving it would sometimes
sway across the road. This behavior can also be seen in Figure 10. Looking at the predicted
behaviour in the graph this might explain this behaviour. The model seems to be less determined
in its steering than the human driving from the dataset, only making small adjustments. These
small adjustments are probably not enough to fully correct the steering angle. And as the car
moves further from the best path the predicted steering angle increases until the car steers back
towards to best path. Here the model’s lack of determined steering causes it to miss the optimal
path, over-shooting and continuing the swaying.
We also noticed that the predicted acceleration of the model is consistently higher than the target
acceleration. This is probably due to inconsistency of the human driver. During the human test
drive the mean acceleration was 0.34 while the mean acceleration in the dataset was 0.46. The mean
predicted acceleration was equal to 0.49, which is a lot closer to the acceleration in the dataset than
to the human driven acceleration. This difference in acceleration did not seem to matter for the
quality of driving. During testing we never observed the car reaching a speed that would prevent it
from making a turn with the wheels at its maximum steering angle. Figure 12 does show a lack
of correlation between the predicted and target acceleration. This did not seem to cause an issue
when driving autonomously.
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Figure 12: A graph showing predicted steering against the target steering

Figure 13: A graph showing predicted steering against the target steering smoothed using a gaussian
filter.

5.2 Ego position estimation

In this experiment we trained our ego-position neural net to predict positions of the rover based
on captured images. We then ran the model on a newly recorded sequence. A visualization of the
predictions from the model on the validation set and the test set can be seen in Figure 14. An
overview of the results can be seen in Table 4.
The ego-position neural net managed to achieve a mean absolute error of 112 centimeters on
the validation-set, 95% of the predicted locations on the validation set have an error below 250
centimeters. The model performed significantly worse on the test set. On the test set the ego-position
neural net achieved a mean absolute error of 374 centimeters and 95% of the predicted locations
had an error below 1265 centimeters. This is relatively surprising, while in general it is expected
that the results of the test set have lower accuracy then on the validation set due to indirectly
fitting the training method to the validation set, the found discrepancy is unexpectedly high. One
explanation for the difference might have been due to the difference in weather between the test set
and the validation set. Most of the data of the validation and training set was recorded on rather
cloudy days, while it was sunny during the recording of the test-set.
In order to validate this explanation we also recorded another test-set during cloudier weather. A
visualization of the result of running the model on this new test-set can be seen in Figure 15. The
ego-position neural net achieved on this new test set a mean error of 161 centimeters and 95%
of the errors were below 398 centimeters. This result is much closer to the one achieved on the
validation set and seems to indicate that weather has a large impact on the performance of the
model.
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Mean Error Median Error 95% quantile 75% ” 50% ” 25% ”

GPS Signal error - - 182 cm - - -
Mobile Phone 490 cm - - - - -
ZED-F9P Non-RTK - 150 cm - - - -
Model validation 112 cm 91 cm 250 cm 132 cm 91 cm 59 cm
Model test cloudy 162 cm 122 cm 398 cm 201 cm 122 cm 76 cm
Model test sunny 374 cm 215 cm 1265 cm 340 cm 215 cm 142 cm

Table 4: Predicted position results.

Figure 14: A visualization of the predicted positions (pink boxes) against the ground truth positions
(green boxes) from the validation-set (left), and test-set (right).

These achieved errors are significantly worse then the reference errors from the GPS signals,
and a sufficiently good receiver might be able to outperform our trained ego-position neural net
consistently, however our model performed better than mobile phones in both tests and also
better than the ZED-F9P without RTK during the cloudy test. The ZED-F9P is a reasonably
advanced GNSS receiver with good performance even without RTK, and so outperforming it is a
significant achievement. Also this model did outperform the cited mean accuracy of GPS equipped
smartphones, as both on the test set as well on the validation the mean accuracy of the trained
ego-position neural was well below 4.9 meters.

6 Conclusions

In this paper we presented a rover platform, various tools such as UGS and Jepture, the platform,
and the Ped-Data dataset we created. Using the dataset we conducted two experiments which
show that the recorded data can be used to train models which can learn to autonomously drive
in pedestrian spaces as well as predict the position of a vehicle in such a space. We adapted
a method previously only applied to public roads for pedestrian spaces and showed that it is
possible to use these adapted methods for pedestrian spaces. We trained the adapted models and
showed that they were able to preform tasks like following a pre-learned trajectory. The conducted
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Figure 15: A visualization of the predicted positions (pink boxes) against the ground truth positions
(green boxes) from a test-set recorded during more cloudy weather.

experiments showed interesting preliminary results with regards to autonomous waypoint driving
and ego-position estimation using existing Imagenet neural networks, such as Efficientnet B0,
onboard our rover platform. The ego-position estimation experiments showed that NN models
are able to predict positions from captured images with an accuracy exceeding that of common
non-RTK GNSS devices. However, the achieved accuracy of these models proved to be dependend
on similar environmental conditions as encountered during the dataset creation. Running the model
during weather conditions that are not encountered during dataset creation resulted in a drastically
lower accuracy.
Our final contributions in this paper are the following:

• A design and implementation of a rover platform applicable for use in autonomous driving
and ego-position estimation research in pedestrian spaces.

• The Jepture library for efficient image capturing on the Jetson Nano.

• UBX GPS server, a set of tools for low latency interfacing and working with the ZED-F9P.

• The Ped-Data dataset captured with our rover platform and tools.

• A trained model and experimental results with applications in autonomous waypoint driving
in pedestrian spaces.

• A trained model and experimental results with applications in ego position estimation.

7 Future research

Although we found some interesting results in this paper our experiments gave only preliminary
results and insights. Possible future research could investigate the problems of autonomous waypoint
driving and ego-position estimation.
Our preliminary experiment for autonomous waypoint driving was not able to properly incorporate
waypoints into the experiment. The method was only trained to be able to follow roads. Further
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research could look into incorporating waypoints into the model. A model may for example be
extended to take a position relatively to the vehicle’s position and the model should then make its
way to the next waypoint while following roads and making the right turns at crossings.
The dataset we created is currently limited to a single location. Furthermore, from our experiments
we found that the data also lacks diversity of weather conditions. This seems to significantly impact
the performance of the trained models. In a future effort, when using our platform to capture a
more comprehensive large scale pedestrian dataset for autonomous driving and position estimation
research, data should be recorded during more diverse weather conditions and at different locations.
Furthermore, while the RC car was useful in testing the platform, its applicability is limited. The
tools we created could, relatively easily, be used in a different configuration by altering what the
actuators of the platform control. A more applicable platform might for instance be a delivery
robot, or a mobility scooter. If one uses a method to control the motor and steering of a mobility
scooter and mount a camera unit, the methods described in this paper should be easily transferable
to that new platform.
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Appendices

Appendix A Description of the Ped-Data dataset

The following section describes the layout and data of the recorded Ped-data dataset.

A.1 Overview

The dataset is divided into several directories each containing data for a single recording session.
Each recording session directory is named after the date the session took place. For example
01-12-22 for the recording session which took place on the first of December 2022.
A single session directory contains a set of subdirectories as well as a tgt.hdf5 dataset file. The
tgt.hdf5 is the main file describing how the data was recorded and the entry point for using the
dataset. The directories placed alongside the tgt.hdf5 that are named left_ or right_ together
with a timestamp contain the images recorded from the stereo camera of our rover platform. Every
session directories contains a pair of left and right directories with the same timestamp for each
recording sequence. During dataset recording we occasionally needed to reset our rover platform,
when this happened a new pair of directories was created. Each image in the dataset is a jpeg
image with as name a number. The tgt.hdf5 files contain specific information about how to load
the images in the right order as well as other sensor information recorded alongside the images.
The sensors on our rover record data at different intervals making it not feasible to store all the
data in a single table. Instead the dataset is divided into several data-collections which contain
data recorded at a specific interval. For instance: the car data-collection contains information about
images and recorded driving input. This data was recorded at 30 frames per second. However, the
GPS data-collection, which contains position information, was recorded at 10 frames per second.
Because of this difference in recording interval the dataset does not directly specify how frames of
different data-collections are related to one another. Instead the dataset provides timestamps as
well as offsets between the specific epochs from which the timestamp was derived. It is up to the
user to use the provided timestamps to match or interpolate the data.

A.2 The dataset in depth

The dataset consists of a number of directories each containing the data for a recording session. A di-
rectory containing a dataset file: tgt.hdf5 and any number of image directories called left_$stamp

and right_$stamp where $stamp is the timestamp the recording of that sequence of images started
as a floating point seconds, e.g. left_1673449657.825414.

A.2.1 tgt.hdf5

Every directory containing a recording session contains a file called tgt.hdf5. The tgt.hdf5 file is a
h5 file containing several tables forming three data-collections which contain all recorded sensor
data with the exception of the recoded images. Note the h5 file format calls tables in their file
formate datasets. We refer to these datasets as tables to avoid confusion.
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A.2.2 Data-collections

The tgt.hdf5 is split in several data-collections. Each collection can have multiple tables which
encode the data. These tables are called ${name}_${tablename} where ${name} is the name of
the data-collection and ${tablename} is the name for this specific table. For example the table
car_frame_id from the car data-collection.
Each of these tables has a single table which describes which frames of recorded data belong to a
single sequence. A sequence is a collection of frames recorded without any interruptions. The table
which has this sequence information is called the sequence table and is named ${name}_sequence.
For example, in the case of the car data-collection the sequence table is called car_sequence.
The sequence table is an array of an arrays containing 2 integers: the start-frame-index and end-
frame-index of each recorded sequence in this collection. The start-frame-index is the index of
the first frame of each sequence in that order. The end-frame-index is the index which is the first
index to no longer be part of the sequence. So the frames belonging to a sequence range from the
start-frame-index to, but not including, the end-frame-index. For example, the tgt.hdf5 file for the
01-12-22 recording session has at sequence index 1 the values [3259,4578] in the car_sequence
table. This means that the second sequence (with index 1) is from the frame with index 3259 to
the frame with index 4577, 4578 not including.
The frames for each data-collection where recorded independent of each other. To allow matching
the frames of one data-collection to another all data-collection have timestamp information as well
as the recorded offset in timestamps.

A.2.3 Data-collection indices

In this dataset we differentiate between frame indices: frame_idx and sequence indices: seq_idx.
A sequence index is the index of a specific sequence in a h5 file. The sequence index is used to index
the sequence table and other tables which contain information about a specific sequence. A frame
index is the index of a specific frame of data in a h5 file. The frame index is used to index a tables
containing information about a specific frame. A sequence contains a number frames as specified
by the sequence table. All tables in the h5 file are indexed with a frame index unless otherwise
specified.
A tgt.hdf5 file contains 3 different collections of data-collection: gps, car, speed.

A.2.4 Loading images

The image for the current frame can be loaded from the path
${orientation}_${car_sequence_stamp[seq_idx]}/${car_frame_id[frame_idx]}.jpg where
${orientation} is either left or right for the left or right camera, car_sequence_stamp, and
car_frame_id are tables from the tgt.hdf5 file, frame_idx is the frame index, and seq_idx is
sequence-index of sequence to which the frame belongs.
For example: for the recording session in directory 02-12-22 there are 6 sequences in the dataset. The
sequence with index 1 is from frame 3259 until but not including frame 4578. If we wanted to load the
left image for the frame 3400 the seq_idx would be 1 and the frame_idx would be 3400. If we look
up the data in the dataset file we find that car_sequence_stamp[seq_idx] is 1669901792.3659706
and car_frame_id[frame_idx] is 4739 so the image to load is ./left_1669901792.3659706/4739.jpg.
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A.3 Dataset tables

The following section describes each of the tables in the tgt.hdf5 file.

A.3.1 The car collection

The car data-collection contains data recorded from the car itself, this includes metadata of
the images recorded as well as driving input recorded. The frames in this data-collection were
recorded in 30 frames per second. Timestamps in this data-collection were recorded relative
to the linux monotonic clock. This clock returns a timestamp which is reset every time the
computer reboots. The datasets in this collection are car_steer, car_accel, car_frame_id,
car_proc_stamp, car_image_stamp, car_sequence_stamp, and car_sequence.

car steer car_steer contains the steering input for each frame for the car as a floating point
value between -1.0 and 1.0, where steering fully right is encoded as 1.0.

car accel car_accel contains the acceleration input for each frame for the car as a floating point
value between -1.0 and 1.0, where fully accelerating encoded as 1.0 and fully braking while moving
forward and then, once the rover has come to a stop, reversing is encoded as -1.0

car frame id car_frame_id contains the id for the images associated with the current frame.
See loading images A.2.4.

car proc stamp car_proc_stamp contains the timestamp of when the frame was processed, i.e.
when the steering and acceleration was recorded. The timestamp is a floating point value in seconds
since an unspecified epoch.

car image stamp car_image_stamp contains two timestamps of when the images associated
with the current frame where captured. The first timestamp corresponds to the left image the
second timestamp corresponds to the right image. The timestamp is a integer of milliseconds since
an unspecified epoch, the same epoch as car\_proc\_stamp.

car sequence stamp car_sequence_stamp contains the timestamp of when the sequences where
recorded. This table is indexed by the sequence index. See loading image for usage (A.2.4).

car sequence car_sequence contains the start and end for each sequence as described previously
in section A.2.2. This table is indexed by the sequence index.

A.3.2 The gps Collection

The GPS collection contains data captured from the GPS system. The frames in this data-collection
where recorded at 10 frames per second. The datasets in this collections are gps_position,
gps_accuracy,gps_stamp, gps_delay, gps_recv_stamp,gps_status,gps_sequence_position.
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gps position gps_position contains the position data for each measurement of the GPS frames.
Each frame consists of three integers containing the offset of the car with respect to a central point.
The first value is the offset to the north, the second value is the offset to the east, and the third is
the elevation offset downwards. All offsets are in centimetres. The position of the central point is
only guaranteed not to move within the same sequence. The position is given in units of 1 cm.

gps accuracy gps_accuracy contains the reported accuracy of the position measurement for the
current frame. Each frame consists of three integers containing the accuracy of the measurement
in three axis, north, east, and downwards, respectively. We tried to keep the accuracy of the gps
measurements at 1 cm but during recorded accuracy might have degraded. The accuracy is given
in units of 0.1 mm.

gps stamp gps_stamp contains the timestamp for the current measurement. The stamp is in
milliseconds since the GPS epoch. For more information see the iTOW section of the ZED-F9P
integration manual.

gps delay gps_delay contains the estimated delay between the GPS epoch and the unspecified
epoch from the car. The delay is a floating point value delay in seconds from the car epoch to the
GPS epoch. If one wants to retrieve the car time at the time of a GPS measurement, one should
subtract the delay from the GPS measurement.

gps recv stamp gps_recv_stamp contains the time at which the car obtained the measurement
from the GPS. The stamp is a floating point value in seconds since the unspecified car epoch.

gps status gps_status contains the status of the measurement, specifically the position fix type
of the GPS. If the GPS has no fix, the status equal to 0. If the GPS has a floating fix, the status is
equal to 1. If GPS has full fix, the status is equal to 2. During the recording of the dataset we tried
to ensure that the car had a full fix as often as possible. However during the recording, the fix might
have degraded. For more information regarding a GPS fix see the ZED-F9P integration manual.

gps sequence gps_sequence contains the start and end for each sequence as described previously
in section A.2.2. This table is indexed by the sequence index.

gps sequence position gps_sequence contains a unique id for different base-station locations.
The positions recorded in the gps collection are relative to the base station. Two similar coordinates
in different sequences might not belong to a similar location as the base-station could have changed.
This table contains a number which is a id for a location of the base-station. If a sequence has the
same location id then we tried to place the base-station in that same location to the best of our
abilities. Note that it is possible that there are small difference in base-station location even if the
id is the same. This table is indexed by the sequence index.
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A.3.3 The speed collection

The speed collection contains data captured from the RPM sensor. The frames in this data-collection
where recorded at 30 frames per second. The datasets in this collections are speed_measure,
speed_sequence, and speed_stamp.

speed measure speed_measure contains the number of rotation recorded by the RPM sensor
between the current and the last frame.

speed stamp speed_stamp contains the timestamp of when the frame was processed, i.e. when
the number of rotations was recorded. The timestamp is a floating point value in seconds since an
unspecified epoch. This epoch is the same as the epoch of the car collection.

speed sequence speed_sequence contains the start and end for each sequence as described
previously in section A.2.2. This table is indexed by the sequence index.
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Appendix B Platform Setup

The following appendix describes how to setup the Jetson Nano RC such that it can run the code
provided with this thesis.

B.1 Car Setup

The first step is to install the Jetpack distribution onto the SD-card. At the moment of writing the
last supported version of Jetpack for the Jetson Nano is 4.6.
After installing the Jetpack image onto a SD card by any preferred method boot up the Jetson and
make sure Jetpack is fully upgraded by running the following commands:

$ sudo apt-get autoremove

$ sudo apt-get update

$ sudo apt-get upgrade

Install pip to be able to install python packages:

$ sudo apt-get install python3-pip

$ pip3 install -U pip

Then change the default python ubuntu:

$ sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 1

$ sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.6 1

The installed version of setuptools is rather outdated so run the following command to upgrade
setuptools.

$ pip3 install -U setuptools

In order to control the motors of the car from python we need to install some packages:

$ pip3 install Adafruit-PlatformDetect==3.14

$ pip3 install adafruit-circuitpython-servokit==1.2.2

Next install Pytorch and Torchvision. A wheel file for Pytorch can be download from the following
thread: https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048/14. I have only
been able to get Pytorch to run with python 3.6. So I recommend installing the latest version of
Pytorch compatible with that version of python, which is at the time of writing 1.10.0.
Torchvision can best be installed from source:

$ sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev

$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev

$ pip3 install -U pillow

$ git clone https://github.com/pytorch/vision.git --branch vSPECIFIC_VERSION_HERE

$ cd vision

$ export MAX_JOBS=2

$ python3 setup.py bdist_wheel

$ cd dist

$ pip3 install ./torchvision-SPECIFIC_VERSION-cp36-cp36m-linux_aarch64.whl
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The next library required is Pycuda which can be installed from pip. However, the Pycuda
installation script looks for xlocale.h which is not present in the Jetpack distro. As a work around
run:

$ sudo ln -s /usr/include/locale.h /usr/include/xlocale.h

Then Pycuda can be installed with:

$ pip3 install --global-option=build_ext \

--global-option="-I/usr/local/cuda/include" \

--global-option="-L/usr/local/cuda/lib64" pycuda

A Bluetooth controller is used to be able to control the car during recording and testing. The
controller library used by the scripts should be able to read most controllers but, as with most
game controllers, getting controllers to connect properly might be somewhat of a hassle depending
on the controller used. It is recommend to use a Bluetooth Xbox controller as we encountered the
least problems with those controllers, but your millage may very.
The input library used by the scripts is approxeng-input. This library will generally work
but the bindings for the controller buttons might be off. You can alter the button layout by
editing the libraries config files. A config that has been used file for the Xbox controller I is
given in Listing 1 at the end of this appendix. The config files for controller can be found in
/home/$USER/.local/lib/python3.6/site-pacakages/approxeng/input/yaml_controllers af-
ter aprroxeng-input is installed.
Approxeng-input can be install via pip by running:

$ pip3 install approxeng.input

You can then check the functioning of your controller with the following command:

$ approxeng_input_show_controls

Finally the scripts require some more python libraries not available by default, that can be installed
with the following commands:

$ pip3 install h5py

$ git clone https://github.com/DelSkayn/jepture.git

$ cd jepture

$ pip install ./

B.2 Create local WiFi

It might be useful to be able to connect to the car when not in range of a WiFi network. It is
possible to configure the car to create its own WiFi network while still being able to connect to
other networks by the use of linux-wifi-hotspot which can be found here: https://github.
com/lakinduakash/linux-wifi-hotspot.
In order to setup a network install it following the instructions. Then alter the /etc/create_ap.conf
file to preferred settings, A config file, that has been used, can be found in Listing 2. If nat is used
as SHARE_METHOD, then install dnsmasq and iptables with the following command:
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$ sudo apt-get install dnsmasq iptables

$ sudo systemctl enable create_ap.service

$ sudo systemctl start create_ap.service

B.3 Setup VNC server

While most of the scripts can be executed using SSH, which is the generally prefered method, it is
useful to setup a VNC server to be able to check, for example, whether the cameras are properly
focused. Tigervnc is prefered, which can be install with:

$ sudo apt-get install tigervnc

And then started with:

$ sudo vncserver
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Listing 1: Approxeng-input config file for the Xbox Controller config file

axes:

dx:

code: 16

invert: false

max_value: 1

min_value: -1

dy:

code: 17

invert: false

max_value: 1

min_value: -1

lt:

code: 2

invert: false

max_value: 1023

min_value: 0

lx:

code: 0

invert: false

max_value: 32767

min_value: -32767

ly:

code: 1

invert: true

max_value: 32767

min_value: -32767

rt:

code: 5

invert: false

max_value: 1023

min_value: 0

rx:

code: 3

invert: false

max_value: 32767

min_value: -32767

ry:

code: 4

invert: true

max_value: 32767

min_value: -32767

buttons:

circle: 305

cross: 304
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home: 316

l1: 310

ls: 317

r1: 311

rs: 318

select: 314

square: 307

start: 315

triangle: 308

name: Xbox Wireless Controller

product: 654

vendor: 1118
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Listing 2: The create ap.conf file for linux-wifi-hotspot

CHANNEL=default

GATEWAY =10.0.0.1

WPA_VERSION =2

ETC_HOSTS =0

DHCP_DNS=gateway

NO_DNS =0

NO_DNSMASQ =0

HIDDEN =0

MAC_FILTER =0

MAC_FILTER_ACCEPT =/etc/hostapd/hostapd.accept

ISOLATE_CLIENTS =0

SHARE_METHOD=nat

IEEE80211N =0

IEEE80211AC =0

HT_CAPAB =[HT40+]

VHT_CAPAB=

DRIVER=nl80211

NO_VIRT =0

COUNTRY=

FREQ_BAND =2.4

NEW_MACADDR=

DAEMONIZE =0

NO_HAVEGED =0

WIFI_IFACE=wlan0

INTERNET_IFACE=eth0

SSID=jetson

PASSPHRASE=liacsjetson

USE_PSK =0
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