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Abstract

Equivariant quantum circuits (EQC) are the current state-of-the-art hybrid quantum-classical
machine learning algorithms for learning on weighted graphs. These problem-tailored circuits
offer a hybrid quantum-classical machine learning algorithm that may suited for the use with
noisy intermediate-scale quantum devices. They have also been shown to not suffer from bar-
ren plateaus caused by non-problem-specific circuits as is the case for more general hybrid
quantum-classical algorithms. Several studies have shown the pure performance of the EQC
and have shown it to not suffer from barren plateaus, but less is known about why the EQC
performs well for learning on weighted graphs. In this thesis, we analyze the inductive biases
of EQCs. First, a definition of these inductive biases is given for the EQC. Using experiments
insight into EQCs as a task-specific framework for approximating solutions to the traveling
salesperson problem is given. With the insight gained from the results, it can be seen that
the EQC does indeed have an inductive bias as defined.
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1 Introduction

The evolution of quantum machine learning (QML) algorithms has gained a lot of traction
in the last few years. From first trying to simulate classical artificial neural networks (ANN)
on theoretical quantum computers to the state-of-the-art hybrid quantum-classical machine
learning algorithms now, which have no connection to artificial neurons at all. It appears this
evolution first followed a similar trend to how the ANNs were modified into convolutional
neural networks (CNNs) to fit specific classification and data structure needs. However, the
state-of-the-art quantum graph neural networks (QGNNs) do not have any notion of classi-
cal artificial neurons left but instead, solely rely on the power of quantum circuits and only
resemble these neurons in name. QGNNs fall under the class of hybrid quantum-classical
machine learning algorithms which is a subset of variational quantum algorithms (VQAs).
These algorithms are designed for use with current noisy intermediate-scale quantum devices
(NISQ), which suffer from problems such as size limitations in terms of the number of qubits
and the number of circuit layers. One of the problems causing these limitations in the cur-
rent systems is that they are very sensitive to environmental noise and may easily collapse
their quantum state due to quantum decoherence. These limitations were one of the reasons
for the motivation of hybrid quantum-classical algorithms such as VQAs which combine a
parameterized quantum circuit (PQC) with classical optimization algorithms. When per-
forming optimization it is important to make sure the chosen algorithm does not get stuck
in a local minimum far from the global optimal minimum. For classical machine learning the
problem of getting stuck in a suboptimal local minimum can be mitigated by using methods
such as random weight initialization or gradient descent.
In addition to the problems mentioned regarding the limitations of current NISQ devices,
there is also the challenge of finding a good quantum circuit for a given task. Similar to clas-
sical machine learning tasks, it is equally important for QML algorithms to come up with a
network architecture that is specialized to the input, output and problem formulation. When
picking a non-problem-specific quantum circuit or random quantum circuit the optimization
of the algorithm gets stuck in what is called barren plateaus[1]. This has brought the need for
task-specific frameworks where the quantum circuit is designed for the optimization problem
at hand. One such task-specific architecture is the equivariant quantum circuit (EQC)[2]
used for the traveling salesperson problem (TSP) which does not suffer from this barren
plateau. It is also more efficient in both the number of trainable parameters and the number
of qubits needed to represent the cities making it very suitable for use with NISQ devices.
In order to further explore the EQC we want to gain insight into the inductive biases of
the EQC. These inductive biases will be defined in this thesis. Experiments will then be
conducted to explore these inductive biases for the EQC.
The main goal of this thesis is to answer the following research question:

Does the Equivariant Quantum Circuit have an inductive bias when used for
approximating the travelling salesperson problem?
In addition to this, three supporting sub-questions have been formulated:

2



• Does the EQC have an inductive bias for greedy edge selection when used for TSP?

• How does the performance of the EQC compare to a hardware-efficient ansatz?

• How does the EQC scale for future use on larger NISQ devices?

2 Background

In this section, all related work and background information regarding classical neural net-
works and quantum systems needed for my research is given. First, we will go over the devel-
opment and current state of classical neural networks and how this motivated the emergence
and development of graph neural networks. This is followed by a general overview of quan-
tum computing together with an explanation of parametrized quantum circuits with current
use cases. The last section provides insight into how it is possible to perform all previously
discussed classical neural network tasks on quantum systems using parameterized quantum
circuits.

2.1 Classical Neural Networks

The idea of ANNs first started when McCulloch and Pitts proposed the perceptron in 1943
[3]. A perceptron can be seen as a general classification algorithm where the classification is
done using a single artificial neuron. These perceptrons are mathematical representations of
the neurons in a human brain. The simplest form of such a classifier is called a single-layer
perceptron where the output node is directly connected to all input nodes which means that
the classification is done by one artificial neuron. Such a perceptron can be seen as a single
neuron and modelled as a function where all input values together with weighted variables
map to a single output value. The function for the output of a single artificial neuron takes
the form of f(x,w) =

∑i
0wixi with wi being the weight given to the input node i and xi

being the input value for node i. These functions are commonly referred to as activation
functions. However, the use for single layer perceptrons is limited as they are only capable
of performing classification on linearly separable data [4].

Researchers later discovered that this limitation of only classifying linearly separable data
could be overcome by making two important changes to the network. The first was the cre-
ation of the multilayer perceptron (MLP). The MLP consists of the same input layer as the
single-layer perceptron but combines this with an output layer of one or more neurons. The
MLP additionally has one or more fully connected hidden layers between the input and out-
put layers. The second important change which made classification on non-linearly separable
data possible was the change in activation function for the artificial neurons. Instead of using
a linear function to compute the output value for each neuron, a non-linear function was
used such as a sigmoid function. Currently, the most used activation function is the ReLU
(rectified linear unit) activation function or variations thereof [5]. The ReLU activation func-
tion has the form of f(x) = max(0, x), this makes it more computationally efficient than for
example a sigmoid function. Together these changes made it possible to classify non-linearly
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separable data [6]. Using these MLP or fully connected feed-forward ANNs, it is possible
to perform classification on large data sets of non-linearly separable data. This data can be
represented as a vector. The value of each element in the vector will then be taken as input,
an n dimensional vector will correspond to n input nodes.
Nonetheless, there remain several problems related to this data representation and mapping
to the input nodes. Some examples of this are graph problems, natural language processing,
time data series and computer vision problems such as image classification or object recog-
nition.

For these problems, several different modifications and improvements to the traditional feed-
forward ANN have been proposed. One of these improvements is the convolution neural net-
work (CNN) first created to solve the problems arising when performing image recognition
on MLP’s [7]. When taking an image as an input for a traditional MLP the dimensions of
the network become immensely large resulting in impossible training times. When for ex-
ample taking a k by k RGB image as an input, then for each fully connected hidden layer
(3 ∗ (k ∗ k))2 weights will have to be trained. For a 128x128 image, this will result in a
network with 49152 input nodes and 2415919104 trainable weights per hidden layer. while
permissible on current hardware, the network becomes untrainable in a realistic time frame
when taking larger images such as satellite pictures as input and does not scale well.
A second problem with using fully connected feed-forward ANNs for image classification is
that the input image data has to be mapped to a 1-dimensional representation of the image.
A k by k RGB image has to be mapped from a kxkx3 matrix to a (k∗k∗3)x1 vector. Because
of this, all information about where objects are in relation to each other is lost. An example
of this would be when trying to recognise faces in an image a human might try to recognise
two eyes and a mouth but this connection is lost in the 1-dimensional image representation.
Next to that when for example translating an image by a few pixels the 1-dimensional rep-
resentation can change massively resulting in completely different node activations in the
network.
CNNs try to solve these problems by adding two new types of layers. A convolutional layer
and a pooling layer. The pooling layer is used to reduce the image size by combining pixel
values, this is most commonly done either by taking the max value of a set of pixels in what
is known as Max Pooling or by taking the average over a set of pixels in what is known as
Average Pooling. A visual representation of this in practice can be seen in Figure 1.
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(a) Max Pooling

(b) Average Pooling

Figure 1: A visual representation of Max and Average Pooling

The convolutional layer works by taking the dot product of a matrix with trainable weights
also known as a kernel and a sliding window over the image. An example of this can be seen
in Figure 2 where a 4x4 image is combined with a 2x2 kernel to form a new 3x3 matrix.
When taking an RGB image as input the convolutional layer is used to combine the three
colour channels using the trainable kernel.
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(a)

Figure 2: A visual representation of the Convolutional Layer.

The size of the kernel matrix and the pooling size have to be specified by the user when
creating the network. These values are determined by the image size and the expected size
of the object that is to be classified. Because of this, CNNs are very problem specific and
choosing the correct or best network architecture can be quite a challenge.

Besides image classification, there are also numerous other applications for which CNNs can
be useful, for example when representing input data as labelled graphs. The idea of us-
ing CNNs for graph problems first started when researchers started representing images as
graphs [8]. All pixels in an image can also be represented by nodes in a graph, the edges then
represent the connection between adjacent pixels. All colour data can then be represented by
the feature vector for each vertex, in the case of an RGB image, this would be a vector with
three elements. When applying the convolutional layer information about the feature vector
gets combined with information from the adjacent vertices meaning after the convolutional
layer each node in the next layer of the CNN contains information about a vertex together
with all adjacent vertices. After this discovery, the notion of graph convolutional networks
was born. Other works[9] then started to use this idea of combining the information of ad-
jacent vertices using the convolutional layer with arbitrary graphs as input, not just graphs
representing images. There are however a few problems when applying the convolutional
layer as created for images directly on larger more complicated graphs. The convolutional
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layer when applied on graphs only works for d-regular graphs meaning each vertex has the
same number of adjacent vertices. As example of such a graph would be the graph represen-
tation of an image. Another problem is that the convolutional layer combines information
from only adjacent vertices, while for real-world applications on more complicated graphs
it can be useful to combine information from vertices multiple steps away. When looking
at information from the adjacent vertices the CNN can only learn greedy choices as there
is no information available about vertices that are not directly connected. One option to
fix this would be by letting the convolutional layer combine more information than just the
neighbouring vectors. However, it is difficult to know how much influence the vectors more
steps away should have and a lot of information can be lost by combining so many nodes.

This problem motivated the development of the Message Passing Neural Network (MPNN)
[10]. In MPNNs, the network per layer gains information about all vertices one step further
away from the starting input vertex. As input the network takes n = |V | vertices for a graph
G = (V , E). Then in each layer, for every input vertex, information is added to about the
neighbouring vertices one extra layer away per layer in the network. Every vertex starts with
a feature vector containing all input information, then in the first layer, this feature vector
is updated using a function over the feature vector of all adjacent vertices together with the
starting feature vector. In the second layer, this is repeated. However, now the feature vector
for each vertex contains information about the adjacent vertices so after applying the same
function all vertices now also contain information about all nodes that are two edges away.
This is repeated until each vertex contains information about all other connected vertices.
The way these messages are passed can be described using two functions.

ht+1
v = Ut

(
htv,m

t+1
v

)
.

In order to calculate the new feature vector ht+1
v after each step a function Ut is taken

over the previous feature vector together with the calculated message mt+1
v passed from

the neighbouring vertices. This message is calculated by taking a function over the feature
vectors of all neighbouring vertices together with the feature vector of the vertex itself.

mt+1
v =

∑
w∈N(v)

Mt

(
htv, h

t
w, evw

)
.

This results in not completely losing all information about the starting vertex while simulta-
neously gaining information about all other vertices in the graph. However they do still suffer
from information loss when large graphs with small feature vectors are used[11]. Because the
network gains information about vertices one edge further away for each layer in the net-
work, the vertices that are furthest from the starting vertex are only taken into account in
the last layer whereas the information in the directly adjacent vertices are represented in
each layer. This means that the more closely a vertex is connected the more influence the
information of that vertex has on the final output. Additionally using MPNNs the network
can be trained on how much all vertices should influence the vertices around them. Using
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this structure MPNN can be used for learning on all weighted graphs with data represented
in feature vectors not just regular or fully connected graphs.
Graph neural networks are the current state-of-the-art method for learning on graph-structured
data. However, the current solutions still pose a few problems. One of these problems arises
when using GNNs for graph classification. For distinguishing graph structures GNNs are at
most as powerful as the 1-dimensional Weisfeiler-Lehman algorithm for graph isomorphism
testing [12, 13]. One way to overcome this upper bound in performance is by adding unique
node identifiers [14] or random pre-set colour features [15]. However, these approaches suffer
in generalization and increase the training difficulty.

2.2 Quantum Computing

Quantum computing is the research area that explores algorithms created to be run on a
quantum computer for solving problems too complex for a classical computer. On a quantum,
computer computations are carried out by modifying qubit states using unitary operators.
A qubit is short for a quantum bit and differs fundamentally from classical bits as they are
able to represent a superposition over the two possible states a classical bit can take which
is either zero or one. A single qubit can be represented by |ψ〉 = α |0〉+ β |1〉 with α, β ∈ C
and |α|2 + |β|2 = 1. A more general representation for an n-qubit state can be written as

|ψ〉 =
∑

z∈{0,1}n
az |z〉

where |z〉 stands for the qubit string corresponding to the bit string z. The reason why
unitary operators are used is to preserve the unit length of 1 of the vector representing the
qubit state |ψ〉. This is done to ensure the total sum of all probabilities, all possible outcomes,
always equals 1. A combination of unitary gates acting on a quantum state represented by
qubits is called a quantum circuit.
Two different systems that are currently widely being explored in the research on quantum
computing are adiabatic quantum computing (AQC) and quantum gate models. Quantum
annealing, an optimization process closely related to AQC works by finding the ground state,
the state of a system with the lowest energy. These quantum annealing systems work best
for optimization problems where after correctly encoding the problem the ground state cor-
responds to the optimal solution. The first commercially available quantum systems were
quantum annealing systems and currently, the state-of-the-art quantum annealing systems
already have over 5000 qubits[16, 17], much more than the current state-of-the-art quantum
gate systems[18]. However, the performance of these systems is incomparable when looking
purely at the number of qubits in the system.

In this thesis, we will focus on the quantum gate model as this is the most widely used
for hybrid classical-quantum machine learning. The quantum gate model works by applying
a set of quantum gates or unitary operators on a number of qubits. The input for these
systems is usually either the all-zero qubit state or the uniform superposition over all qubits.
The input data is then encoded as unitary operators. These unitary operators are then fol-
lowed and or preceded by a set of standard quantum gates such as but not limited to Pauli
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operators and rotational gates. What is interesting to note here is that the Pauli gates can
also be classified as rotational gates with a fixed rotation of π radians. The current largest
state-of-the-art quantum gate system made by IBM has a little over 400 qubits [18].
Many of the most recent quantum algorithms are being made for NISQ devices which are
mostly quantum gate systems. Because of the limitations in these systems, most of the
current new quantum algorithm discoveries made for NISQ-era devices use hybrid quantum-
classical implementations. This is to try and overcome the lack in the number of qubits and
the possibility of decoherence. When keeping the number of layers in the quantum circuit low
there is less time and chance to lose the quantum state. This is unlike for example some more
traditional quantum algorithms such as Shor’s algorithm which could break RSA encryption
but hasn’t yet due to the need for a very large error-corrected quantum device[19, 20].

2.3 Parametrized Quantum Circuits

For the use of current NISQ-era devices on real-world applications a new class of quantum
algorithms was proposed, namely the class of variational quantum algorithms (VQAs). Here
instead of using a quantum circuit consisting solely of fixed quantum gates to do all operations
additionally a number of parametrized rotational gates are used. The way VQAs make use
of the current NISQ-era devices is by combining a parametrized quantum circuit (PQC)
together with classical optimization methods. The idea of using PQCs to create hybrid
variational quantum algorithms started with the variational quantum eigensolver (VQE)
[21]. This was originally proposed in 2013 by Peruzzo et al. when a PQC was used to find
the ground state of a system. Here the PQC is optimized or trained using gradient descent,
a classical optimization method. This algorithm and more specifically the combination of
the PQC with a classical optimization method then in turn started the trend of variational
hybrid quantum-classical algorithms which could be used with NISQ era devices [22].
From the concept of hybrid quantum-classical algorithms, the idea of using VQAs with PQCs
for machine learning problems was born. With QML the system is trained not by modifying
for example weights between layers as is done for classical NNs but instead by modifying the
rotation angles of layers of rotational gates in the PQC. These PQC layers are then classically
trained on a large set of training data very similar to how classical NN’s are trained.
Next to the VQEs, there are currently already a lot of different real-world applications using
VQA’s [23]. Some examples of this are complex optimization and classification methods. The
way these hybrid quantum-classical systems use the PQC for learning on data has been very
nicely visualized by [23] as can be seen in Figure ??.
Most VQAs then work by combining a non-trainable parameterized circuit together with
a PQC. In circuit part with the non-trainable parameters is then first used to encode the
input data using methods such as amplitude encoding with m features that can be encoded in
n = log(m) qubits by mapping the normalized feature values to the amplitudes for all qubit
combinations. This part of the circuit is then followed by a PQC to create a trainable circuit.
One very influential way this was done is with the Quantum Approximate Optimization
Algorithm (QAOA) proposed by Fahri et al. in 2014 [24]. Here a quantum algorithm was
proposed which produces an approximate solution for combinatorial optimization problems.
In QAOA a cost Hamiltonian HC is defined such that its ground state encodes the solution
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Figure 3: General overview of VQA’s. Reprinted from [23]. Reproduced with permission from
Springer Nature.

to the optimization problem as well as a mixer Hamiltonian HM . These two Hamiltonians
are then used to create the circuit

U(γ,β) = e−iβpHM e−iγpHC . . . e−iβ1HM e−iγ1HC .

Here the variable p ≥ 1 is used to specify the number of layers in the circuit. A layer is
a combination of one mixer Hamiltonian together with a cost Hamiltonian giving a single
layer two trainable variables. The parameters γ, β are then trained classically. The quality
or accuracy of the approximation by QAOA is dependent on the circuit depth in layers
specified by p. The accuracy is defined as the ratio between the resulting solution by the
QAOA and the optimal solution. Having a larger circuit increases this accuracy. To create
the cost Hamiltonian HC for QAOA the problem or objective gets encoded as a number of
bit strings with n bits representing m clauses which are the constraints or objectives that
have to be satisfied.
Due to the current limitations of NISQ devices, it is very important to make the most use
of the limited size in terms of the number of qubit and gate layers. For this reason, one has
to be smart with for example pre-processing data classically and not use any more layers
than needed in a quantum circuit. When being mindful of these limitations it is already
possible to do interesting things on the currently available quantum systems. For example,
researchers at Berkeley managed to train a 19 qubit gate model quantum computer using a
classical gradient-free Bayesian optimization method to solve a clustering problem [25].

2.4 Link Between Quantum Circuits and Classical Neural Net-
works

The idea of using quantum computers for machine learning tasks started in 1995 when the
idea of the combination of quantum computing and neural networks was first introduced
by two independent researchers, Subhash C.Kak [26, 27] and Ron Chrisley [28]. Since this
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first notion of quantum computing for use as neural networks, the field has now evolved
substantially. The current field of Quantum Neural Networks (QNN) is however only still
connected to classical neural networks in name and in what they are trying the achieve.
QNNs don’t have any form of neurons as they are used in classical NNs and the way that
the classifications are carried out does not in any sense represent a network. Instead, VQAs
are used to perform the QNN tasks. An example of this can be seen in [29] where a team
of researchers from Google performed classifications with a QNN on a NISQ device. Here a
general quantum neural network architecture is used which can represent quantum or clas-
sical labelled data and be trained using supervised learning. The training method used here
for training the QNN was gradient descent.
However, there still are a few problems with the method as described in [29] which are
highlighted in a paper by McClean et al. [1]. Here it is addressed how unlike with classical
ANN where randomization of the network weights is used to create an unbiased starting
point for training, this is not feasible for us with the QNN. They show that using random
circuits, which are hardware efficient, is unsuitable with more than a few qubits for hybrid
quantum-classical algorithms due to the exponential dimension of Hilbert space and the gra-
dient estimation complexity[1]. More recently there have been more studies conducted on
the power of QNN’s showing how some of these limitations can be overcome and how even
with some limitations the expressive power and learning capabilities of a quantum neural
network surpass its classical counterpart[30].
Just like how with classical neural networks the limitations and different needs lead to CNNs
the same happened with quantum neural networks [31]. When trying to classify data such as
for example images a problem arises when trying to use a standard quantum neural network
framework namely that with current NISQ devices there is a large limitation on the number
of qubits available. For example, an image with the size of 20 by 20 pixels would not be
considered large however when encoding all pixels as one pixel per qubit which would if the
input is an RGB image then this would already be three times over the limit of current
NISQ devices which have 400 or fewer qubits where the connectivity between qubits is also
limited[18]. For reasons like this, there has been active research into how data could be pooled
within quantum circuits thus creating quantum convolutional neural networks (QCNNs). In
2019 Cong et al. devised a method where a pooling layer is added to the quantum circuit[31].
In the pooling layer, a fraction of the qubits is measured, these outcomes then determine
unitary rotations applied to nearby qubits. In Figure 4 a visual representation can be seen
taken from [31]. The quantum circuit can have multiple pooling layers. Using this method a
QCNN used for classifying an n-qubit input state is characterised by O(log n) parameters.
This corresponds to a doubly exponential reduction when compared to the more general
QNN classifier by Farhi et al.[29].
Unlike classical neural networks, the Quantum Graph Neural Network (QGNN) did not arise
or evolve from solving problems regarding QCNNs or CNNs but more from general research
into machine learning on quantum platforms. The aim of the research in this field was not
to recreate GNNs using a quantum system as was the aim when creating the GCNN from
the idea of CNNs but instead the goal was to improve the classical solutions for learning on
graph-structured data. Classical GNN solutions made it possible for ANNs to gain perfor-
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Figure 4: The QCNN framework. Reprinted from [31]. Reproduced with permission from
Springer Nature.

mance by leveraging data geometry. The paper that started this research was by researchers
at Google, Verdon et al. in 2019 with the very clearly named paper “Quantum Graph Neural
Networks” [32]. Here a general class of quantum neural network ansatz is given called Quan-
tum Graph Neural Networks or QGNN along with three further specialized ansatzes namely
Quantum Graph Recurrent Neural Networks or QGRNN, Quantum Graph Convolutional
Neural Networks or QGCNN and Quantum Spectral Graph Convolutional Neural Networks
or QSGCNN.
Using all these different frameworks it is possible to efficiently perform classical neural net-
work, convolutional neural network and graph neural network tasks using quantum circuits.

2.5 Quantum Graph Circuits

After the development of the first real QGNN by Verdon et al. in 2019 [32] the research has
done anything but stall. Where the researchers at Google started with a classical GNN as
the base for their research [32] there have also been researchers taking a different approach
to QGNN one more similar to how the GNN was motivated by the CNN. The Quantum
Graph Convolutional Neural networks (QGCNN) by Zheng et al. from 2021 [33] does just
that. This paper builds upon the convolutional framework for the QCNN by Cong et al. [31].
The QGCNN also takes its inspiration from the classical GCNN where just like with CNNs
there are pooling layers in which per layer more information is combined. For the QGCNN
and GCNN, this means that with each pooling layer, more information becomes available or
gets combined into each qubit where with each layer one vertex further out from the first
encoded vertex to qubit will be looked at and combined. What is interesting in the difference
between the approach by the researchers at Google [32] and the approach by Zheng et al.
[33] is that The researchers at Google encode the data using the graph adjacency matrix and
feature vectors which get encoded into a Hamiltonian whereas the Zheng et al. [33] use the
more standard method of amplitude encoding.
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In 2021 Henry et al. [34] proposed the Quantum Evolution Kernel as a different method of
learning on graphs and encoding graph-structured data. Here the basis for the research does
not lie with the classical GNN framework but instead focuses on trying to use SVM’s to train
on and classify graphs. The idea for using a graph kernel came from a paper by Nikolentzos
et al.[35]. The problem with classical SVMs is that the performance suffers greatly from an
increase in data dimensionality which makes them very unsuitable for large data sets. An-
other difficulty with using SVMs with graph-structured data is that a kernel function must
be created to map an input graph onto unique feature vectors for unique graphs. This is
what the paper by Henry et al. tries to solve and what will be used later for the EQC[34].
A SVM works by using a kernel function to map the input data to a higher dimension with
the aim for it to become linearly separable. The Quantum Evolution Kernel is presented as
a layered time evolution system where each layer consists of alternating graph Hamiltonians
and mixing Hamiltonians. The input graph gets encoded as an Ising Hamiltonian with the
form ĤG =

∑
(i,j)∈E σ̂

z
i σ̂

z
j ≡ ĤI and the mixing Hamiltonian as Ĥθ = θ

∑
i∈V σ̂

y
i ≡ θĤ1. Here

the graph is defined as G = (V , E) for a system with n = |V| qubits. The mixing Hamiltonian
is defined by a single parameter θ.

In the Equivariant Quantum Graph Circuit proposed by Mernyei et al. in 2022 all three of
these techniques [34, 32, 33] get combined to form an Equivariant Quantum Graph Circuit
(EQGC) [36]. In this paper, the class of EQGCs is proposed as a new class of parameterized
quantum circuits specifically designed to encode graph-structured data. The goal for creating
this class of circuits was to establish a unifying framework for learning functions over graphs
using PQCs. Next to the general EQGC two special subclasses are defined namely EH-QGCs
and EDU-QGCs meaning equivariant hamiltonian and equivariantly diagonalizable unitary
QGCs respectively. For these subclasses, it is proven that any EDU-QGC can be expressed
as an EH-QGC therefore further on in this thesis we will only go into detail on the EH-QGC.
Now for the general EQGC, the definition by Mernyei et al. is as follows:
Let A ∈ Bn×n be an adjacency matrix, P ∈ Bn×n a permutation matrix representing a
permutation p over n elements, and P̃ ∈ Bsn×sn a larger matrix that permutes the tensor
product, mapping any |v1〉 |v2〉 . . . |vn〉 with |vi〉 ∈ Cs to

∣∣vp(1)〉 ∣∣vp(2)〉 . . . ∣∣vp(n)〉.
An EQGC is an arbitrary parameterized function Cθ(·) mapping an adjacency matrix A ∈
Bn×n to a unitaryCθ(A) =∈ Csn×sn that behaves equivariantly for all θ:

Cθ(A) = P̃
T
Cθ
(
P TAP

)
P̃

For the EH-QGC subclass, this definition is then further expanded by giving a tighter defi-
nition of the parameterized function Cθ(·) which is as follows:
An equivariant Hamiltonian quantum graph circuit (EH-QGC) is an EQGC given by a com-
position of finitely many layers Cθ(A) = Lθ1(A)◦ · · · ◦Lθk(A), with each Lθj for 1 ≤ j ≤ k
given as:
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Lθ(A) = exp

−i
 ∑
Ajk=1

H
(edge)
j,k +

n∑
i=1

H
(node) )
i



where H(edge) and H(node) are learnable Hermitian matrices over one and two-node state
spaces comprising the parameter set θ, and the indexing H

(edge)
i,j , H(node)

v refers to the same
operators applied at the specified node(s) – i.e., one EH-QGC layer is fully specified by a
single one-node Hamiltonian and a single two-node Hamiltonian.
The EH-QGC as proposed by Mernyei et al. is closely related to the approach taken by Ver-
don et al. for the QGCNN as well as the quantum evolution kernel by Henry et al.[33, 34].

This idea was further built upon by Skolik et al. with a paper from 2022 [2] where the
Equivariant Quantum Circuit (EQC) was proposed. This is the circuit for which we will be
analysing the inductive bias. In this paper, [2] an ansatz is proposed for learning on weighted
graphs namely the EQC which is then combined with Q-learning to perform complex learning
tasks on weighted graphs. The experiments performed specifically tested the performance for
a fully connected TSP. For solving the TSP the EQC uses both the node and edge features.
The EQC works as follows as described by Skolik et al. [2].
When given a graph G(V , E) with node features α and weighted edges E , and trainable pa-
rameters β, γ ∈ Rp, the state will have the following form at depth p:

|E ,α,β, γ〉p = UN (α, βp)UG (E , γp) . . . UN (α, β1)UG (E , γ1) |s〉

where |s〉 is the uniform superposition of bitstrings of length n,

|s〉 =
1√
2n

∑
x∈{0,1}n

|x〉

.
UN(α, βj) with Rx(θ) = e−i

θ
2
X , is defined as

UN (α, βj) =
n⊗
l=1

Rx (αl · βj)

and UG (E , γj) is

UG (E , γj) = exp (−iγjHG)

With HG =
∑

(i,j)∈E εijσ
(i)
z σ

(j)
z being the graph Hamiltonian and E the edges of graph G

weighted by εij.
In Figure 5 taken from [2] an overview of the alternating structure of the ansatz together
with a more in-depth look at how the quantum gates are structured can be found. This is
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the ansatz that is used when analysing the EQC in the experiments conducted in this thesis.

Figure 5: Overview of the Equivariant Quantum Circuit structure. Reprinted from [2]

In order to show the performance of the EQC and why the circuit must remain equivari-
ant three other quantum circuits were proposed where for each circuit the equivariance was
further broken. One of these proposed circuits is a hardware-efficient ansatz. This hardware
efficient circuit or HWE circuit can be found in Figure 6. One free parameter per gate is
added breaking the equivariance, the circuit starts with the all-zero state and there are only
single-qubit Y-rotation parameters that can be trained. This circuit will be used in the base-
line experiment to compare to the performance of a trained EQC.

Figure 6: Non-Equivariant Hardware Efficient ansatz. Reprinted from [2]

3 Inductive Bias

In this section, it will be defined what it means for the EQC to have an inductive bias for
preferring low-weight edges.
In general, a bias means that there is an a-priori for a certain solution over another solution.
For example, the greedy algorithm used in the experiments always selects the shortest edge
therefore it has a very clear bias for returning a greedy tour as this is always the case. In
this thesis, we define this bias over the solutions as a whole and over individual edge selec-
tion. Firstly, the equivariant quantum circuit can have a bias as a system as a whole. More
specifically, we mean that the EQC even untrained does not give a random tour as a result
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but has a preference for a specific type of tour when looking at the circuit over all combina-
tions of γ and β variables. This is interesting to define because it enables claims to be made
over the whole system without training so when randomly pickling variables the chance of
getting a certain result is higher than random if there is bias. This bias is defined as followed:

Definition 1 (Bias for greedy solutions) For an EQC as defined in Section 2.5 with
parameters β and γ in a range (a, b) and input graphs G(V , E) with edges ε ∈ E in range
(c, d). We define the EQC to have a bias for return greedy tours if on average over all
combinations of γ and β within the given range the EQC has a higher than random chance
of returning tours better or equal to a greedy algorithm.

The second way to define the inductive bias is by looking at specific edge choices, here
instead of comparing the total resulting tour length the specific edge choices made by the
EQC will be taken into account to check if there is a preference for selecting certain edges.
More specifically, we will focus on a bias for choosing the lowest weighted available edge.
If the system has a bias for picking low-weight edges, when measured by comparing the
length of the complete resulting tours over a set of input graphs, then that means that the
resulting tour lengths are close or equal to the calculated greedy tour length. (Note for some
graphs the greedy tour length is optimal.) This bias is defined as followed:

Definition 2 (Bias to select the shortest edge) For an EQC as defined in Section 2.5
with parameters β and γ in a range (a, b) and input graphs G(V , E) with edges ε ∈ E in range
(c, d) we define the EQC to have a bias to select the shortest edge if over all combinations
of γ and β within the given range the EQC returns tours containing a higher than random
percentage of shortest edges selected.

For the parameter set of the input graphs, one could argue that since all vertices lie on a 2D
euclidean plane it is possible to scale the graph in polynomial time in such a way that relative
distances are preserved meaning the information is not changed given that the transformation
function is reversible. In order to see if this has any influence the resulting tours for graphs
with the same number of vertices but different edge lengths will be compared.

4 Methods and Experiments

To better understand and motivate the use of the equivariant quantum circuit for learning on
graphs with node and edge features, it is important to gain more insight into the performance,
scalability and inductive biases. In the following section, the methods and setup for these
experiments will be detailed. Using these experiments we want to gain an insight into the
EQC to answer the research question as defined in Section 1. A multitude of different results
is then used to give a better insight into the EQC. First, a baseline experiment will be
performed to show the performance of the EQC when compared to a hardware-specific
ansatz. This will be followed by a larger experiment used to visualize the possible inductive
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bias of the EQC using a large set of tours created by the EQC over a range of parameter
combinations. These resulting tours will then be compared to optimal and greedy solutions
as well as a random agent. An insight into individual edge selection will be given here as well.
Lastly, an experiment will be conducted showing the scalability of the EQC over a range of
different input graph sizes meaning the number of vertices will change resulting in a change
in the number of qubits.

4.1 Baseline Experiment

The baseline experiment will be done using weighted 2D euclidean graphs G(E ,V) as input
with n = |V| vertices to represent the cities for the TSP, with edge weights εi,j = d(vi, vj)
where d(vi, vj) is the euclidean distance between nodes vi and vj. For this experiment for all
input graphs, we have that n = |V| = 10 meaning there are 10 cities or vertices in each input
graph which in turn corresponds to the same number of qubits in the EQC and HWE. For
all input graphs G(E ,V) it holds that for all ε ∈ E ε = (0, π

2
). This range was chosen because

within this range the cosine and sine are strictly positive.
The first baseline experiment is done to gain insight into the performance of the equivariant
quantum circuit with a depth of p = 1 as defined in [2] and to show why it is worth
further exploring the EQC over a hardware-efficient (HWE) ansatz. For some of the next
experiments, the performance over a set of trainable parameters will be compared to different
agents however this would not be fair to compare with the HWE ansatz as the number of
trainable parameters differs greatly. For this experiment, the HWE will first be trained on
the given input data after which the results will be compared to the greedy results for the
given input as well as the optimal solutions to see how far on average the results of the HWE
are from these results. The same will be done for a trained EQC to measure the relative
difference between the HWE and EQC.

4.2 Inductive Bias Experiments

For this set of experiments regarding the possible bias of the EQC the input consists of
weighted 2D euclidean graphs G(V , E) where we have n = |V| vertices to represent the cities
for the TSP and where the edge weight εi,j = d(vi, vj) and d(vi, vj) is the euclidean distance
between nodes vi and vj. For all graphs used in these experiments the number of vertices
|V | = 10. Then for half of the experiments, the edge weights e ∈ E are within the range
e = (0, π

2
) and for the second half of the experiments the vertices lie within a plane of (0, 20)

by (0, 20) given an edge weight range of (0,
√

202 + 202) = (0, 20
√

2). For both types of
graphs based on edge weight ranges, 100 unique inputs were used
This experiment is conducted using a depth of p = 1 meaning that the parameterized part of
the EQC has two variables which are manually set for each variable combination each run.
These parameters are γ and β which both represent rotations in the parameterized part of
the EQC. For all experiments the γ and β values were in the range [0, 2π].

Using these inputs and parameter setting 2.000.000 tours were created as approximations
for TSP. For the two different edge weight ranges, one hundred graphs were created with
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random weights in the given ranges. Then for all graphs, a TSP solution was produced by the
EQC for all sets of combinations for β and γ parameters within the given range. For these
experiments for all graphs, a grid size of 100x100 was used to create the combinations of γ
and β settings resulting in 10000 tours per input graph. This then gives for the 2 graph types
with 100 input graphs over the 100x100 parameter grid a total of 2∗100∗100∗100 = 2000000
tours or data points.
Using all this data several experiments were conducted to gain further inside into the bias
of the EQC.

For the experiment on the inductive bias, the total resulting tour length for all combinations
of parameter settings for all graphs will be compared to the resulting tour length when tak-
ing the average tour length over all permutations of a graph. This average tour length is the
expected value of a total tour when randomly choosing the next edge to add to the final tour
for all edges.
This will give an understanding of if the circuit over all combinations of γ and β parameters
perform better, worse or equally well to a random agent which will show if untrained so
without any parameter optimization the EQC still performs better than random meaning
the problem is in some sense encoded into the system making it perform better than random
even though the input variables are random.

For the second experiment on the inductive bias, we look at the total tour lengths resulting
from all combinations of γ and β parameters however they will now be compared to the
total resulting tour length when using a greedy method. The resulting tours from the greedy
method are created by always adding the closest available vertex with the smallest edge
length that is not yet in the created tour to the final tour. Using this experiment one can see
over what part of the 100 by 100 parameter field the circuit performs near or better than the
purely greedy method as well as how on average the EQC performs when compared with a
greedy solution. Some of the resulting figures will also be shown to demonstrate how easy or
difficult it might be to find good combinations of γ, β parameters thus giving a small insight
into how hard it could be to optimise the EQC.

For the third bias experiment, we will be looking at how often the EQC can find a solution
better than greedy and how often the optimal solution is found over all combinations of
γ and β variables. This will be done by counting the number of input graphs for which a
solution better or equal to the greedy solution is found and by counting the number of input
graphs for which the optimal solution is found. This experiment is conducted to gain more
insight into the total performance and to see if the EQC always or sometimes or never find
the optimal solution.

The fourth set of experiments will look at the specific edge selection done by the EQC to
gain insight into if there is a preference or bias for choosing low-weight and greedy edges.
Here all edge choices made by the EQC for all input graphs for all combinations of γ and β
variables will be compared to the greedy choice except for the last edge selection made. This
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edge choice is omitted for the reason that it is not a choice, when the first 8 edges have been
selected there will only be one edge remaining so the EQC always simultaneously chooses
the smallest next edge as well as the largest next edge. The total count of absolute greedy
edge choices will then be counted for all input graphs and averaged. This will give an insight
into if the EQC has a general bias for greedily selecting edges.

For the fifth and final bias experiment again the edge selection will be examined. Here again,
all edge choices made by the EQC for all input graphs for all combinations of γ and β vari-
ables will be compared to the greedy choice however now the edges available for selection will
be binned into quartiles. It will then be measured if the selected edge falls into the lowest
quartile or if it falls out of this bin. These results will then be compared with the results
from the experiment to compare a bias for specifically choosing the low-weight edges with a
more general preference of picking an edge in the lowest bin.

4.3 Scalability experiments

To test the effect of the input size on the performance of the EQC and thus testing the
scalability of the system, three different input sizes were defined. Here input size means the
number of vertices in the graph this is needed to test the scalability since the number of
qubits used by the EQC is equal to the number of vertices of the input graph. The scalability
of the system is very important to show as the goal of the EQC is to work for current and
future NISQ devices however if the framework does not work when scaling up or down then
there is no good use for it in the future.
This experiment assesses EQC performance and analyzes bias over a varying set of the fol-
lowing input sizes 5, 8, 10. The EQC here is trained on 5000 different input graphs for each
of the three sizes. They have all been trained separately starting from scratch. The bias will
be compared in the same way as was done for the bias experiments however now we will
only focus on the total resulting tour lengths compared with the result of averaging random
tours and the resulting greedy tours.
The input graphs are again graphs with vertices consisting of 2D points in a euclidean plane.
It holds that for all edges between all vertices for all input graphs, the distance between
points also the edge values is in (0, π

2
). This also means that if one were to map all points

on a plane they will all lie within a circle with middle point (π
4
, π
4
) and a radius of r = π

4
.

5 Results

In this section, the results for all experiments as explained in Section 4 will be given together
with a possible explanation for the results. A final conclusion on all results and answers to
the research questions can be found in Section 7.
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5.1 Baseline experiment

For the first experiment conducted to gain an insight into the baseline performance of the
EQC the resulting tours of a trained HWE ansatz will be compared to a trained EQC, both
trained on the same dataset. These resulting tours have been compared with the greedy and
optimal solutions to see percentage-wise how far off distance-wise these resulting tours are
from the greedy and optimal solutions. In Table 1 the results of this experiment can be seen.
From these results, it is clear to see that the HWE ansatz performed very poorly. It can even
be concluded that choosing random edges as the next edge gives on average a better result
than using the HWE. Meaning a random agent has a higher than 50% of outperforming the
trained HWE. It is also clear to see how well the EQC performs as on average the resulting
tours are only 17% longer than the optimal tours.

Table 1: The ratio of the resulting tour lengths by the EQC and HWE over the optimal,
greedy and random tour lengths

Results ratio tour/optimal ratio tour/greedy tour/random tour
HWE 1.94 1.78 1.06
EQC 1.17 1.07 0.64

5.2 Bias Experiments

From all the experiments conducted to explore the bias of the EQC over various types of
graphs and more specifically various input sizes with ranging edge lengths, there are a lot of
interesting results which we will go over in this section.
For the first experiment conducted, there is already an interesting result which can be seen
in Tables 2 when looking at the percentage of resulting tours from the EQC that are better
than random for graphs with input ε ∈ (0, π

2
) compared to the random agent tour lengths.

In the previous subsection 5.1 it could be seen that even trained the HWE performed worse
than the random agent while here one can easily see that with the same set of input graphs,
the EQC even outperforms the HWE untrained. Not only does the EQC outperform the
HWE untrained it even performs a little bit better than the random agent. For the graphs
however with vertex locations between (0, 20) it performs worse than random which can
suggest that there is a correlation between the graph input edge lengths and the inductive
bias of the EQC for returning greedy tours.

Table 2: Percentage of tours better than random agent

Graph type Average Variance
e ∈ (0, π

2
) 51.9% 3.8%

e ∈ (0, 20
√

2) 56.1% 0.68%

For the next experiment, the length of all resulting tours by the EQC is compared to the
greedy solution computed for each input graph. Here instead of looking at the results that
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are strictly better, we look at all resulting tours where the total tour length is less than or
equal to the greedy solution. One might say that this is to skew the results to make them
look better however after calculating all greedy results it was found that for some graphs
the greedy solution is the optimal solution so it would be impossible for the EQC to always
find a strictly better than the greedy solution. For two inputs graphs, it was found that they
were better or equal to greedy 10% and 15% percent of the time respectably which can be
seen in Table 3. With Definition 1 from Section 3 it can not be conclusively said that the
EQC has a bias for preferring greedy solutions for graphs with edge values ε ∈ (0, 20

√
2)

and e ∈ (0, 20
√

2) for γ and β parameters in the range [0, 2π]

Table 3: Percentage of tours better than greedy agent

Graph type Average Variance
e ∈ (0, π

2
) 9.3% 0.06%

e ∈ (0, 20
√

2) 14.7% 0.42%

In Figures 7, 8 two box plots can be seen showing the results of the previous two bias ex-
periments together with the spread of all averages over all 100 input graphs. For each input
graph, 100x100 tours were created by the EQC, this resulted in the images which can be seen
in Figures 9, 10. Here the tour length is represented as colour and as height in the 3D image.
These images show the resulting tour lengths for all combinations of γ and β parameters.
These images also demonstrate how relatively easy it is to find a decent solution. The aim of
the quantum approximation algorithms is not necessarily to always find the optimal result
but to quickly, way quicker than a classical solution would find a very good approximation
and as can be seen from the figures that there are relatively large clearly defined regions
with tours of a small length and thus good solutions.
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Figure 7: 2 pi

Figure 8: 20x20

After looking at the total resulting tours we will now look into the specific edge selections.
The EQC always starts the tour on vertex 0, this leaves 9 other available vertices to choose
from in the first step. For each step, this number will go down one. For this reason, in these
results, the last edge selection is not taken into account as there is no selection. Here the
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EQC will always simultaneously pick the lowest and highest weighted edge available as these
are the same since there is only one edge left. This means that the EQC will always pick
the lowest weighted edge as there is only one edge left and for this reason, this forced edge
selection is omitted.
From Table 4 it can be seen that the results for the binned edge section and absolute edge
selection are the same, this is likely due to the fact that after the first edge choices there
were only 2 bins left in the lowest quartile and after five edge selections, there was only one
bin left in the lowest quartile so the chance of picking an edge in the bin that was not also
the lowest weighted edge was very low and did not occur. Therefore we will only look into
the absolute edge choice experiment as the results are the same.
The EQC picked the lowest weighted available edge 28% and 36% percent of the time. This
is quite an interesting result since when looking at what percentage of combinations over γ
and β values outperformed the random agent the EQC with input graphs with ε ∈ (0, π

2
)

outperformed the ε ∈ (0, 20
√

2) graphs whereas here it can be seen that the EQC with
random parameters has a higher chance of picking a greedy edge when given input with
e ∈ (0, 20

√
2). What can be said about this is that it can be that the change in bias for

picking greedy edges does not necessarily have a positive influence on the performance of
the system. With Definition 2 from Section 3 it can be said that the EQC has a bias for
selecting the shortest edges for graphs with edge values ε ∈ (0, 20

√
2) and e ∈ (0, 20

√
2) for

γ and β parameters in the range [0, 2π]

Then when looking at the results of the edge selection compared to being within 25% of the
most greedy edge instead of the lowest quartile based on binning the edges, it can be seen
that now the percentage of chosen edges that fall within this category rises by around9% for
both of the input graph types. This experiment was conducted to see if the EQC specifically
has a bias for selecting the lowest-weighted edge or for selecting relatively low-weight edges
since no difference could be seen. From these results, it seems clear that the EQC has some
sort of bias for choosing or preferring edges with weights relatively(25%) near the lowest
weighted available edge.

Table 4: Percentage of greedy edge choices

Graph type e ∈ (0, π
2
) e ∈ (0, 20

√
2)

Absolute greedy edge choice 28.22% 36.41%
Bottom 25% available edges 28.22% 36.41%
Within 25% of greedy edge 37.42% 44.67%

For the next set of results, we will look at the real performance of the EQC to see if it can
find the best and optimal solution and if it can outperform a greedy agent. This experiment
is also conducted to see if the change in bias for the different inputs has a difference in the
overall performance and if this may be an inherent bias that can be an advantage or if it
limits the performance of the EQC. The results of this experiment can be seen in Table 5
For the two sets of input graphs, the EQC was able to find the optimal solution for 36%
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and 42% of the graphs. Here again it can be seen that on the graphs e ∈ (0, 20
√

2) the EQC
outperforms the e ∈ (0, π

2
) graphs. This could be an indication that the increased bias for

the e ∈ (0, 20
√

2) graphs gives an increase in performance over systems without an intrinsic
bias for greedily choosing edges and it could mean that within the EQC the TSP problem
is encoded giving it a clear advantage over random circuits.
Finding the optimal solution, however, is not what the VQA class of algorithm is designed to
do and is in most real use cases not necessary. For NP-hard optimization problems, a quan-
tum algorithm which can reliably outperform classical solutions such as greedy solutions and
which gives a close approximation to the optimal solutions in a realistic time frame is the
goal. For this reason, we compared all found EQC resulting tours with the greedy solution
for each graph to see if the EQC can find a better or equal solution(equal here for the same
reasons as explained earlier). In all cases, the EQC was able to find a solution which was
better or equal to the greedy solution as can be seen in Table 5 which means that the EQC
outperforms the simple classical solution.

Table 5: Optimal and greedy solution found

Graph type e ∈ (0, π
2
) e ∈ (0, 20

√
2)

Optimal solution found 36% 42%
Greedy solution found 100% 100%
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(a) graph 1 (b) graph 2

(c) graph 1 (d) graph 2

Figure 9: Resulting tour lengths for two e ∈ (0, π
2
) graphs over all γ and β parameter settings
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(a) graph 1 (b) graph 2

(c) graph 1 (d) graph 2

Figure 10: Resulting tour lengths for two e ∈ (0, 20
√

2) graphs over all γ and β parameter
settings

5.3 Scalability Experiments

To show how well the performance of the EQC scales with respect to the size of the input
graphs and thus in turn on circuit size an experiment is conducted where the performance
between these different input graph sizes is compared. First for all these experiments graphs
with the same range of edge weights were used to keep them as similar as possible and
only change the number of vertices while leaving all other characteristics the same. All edge
weights lie in the range (0, π

2
) and have a number of vertices of either 10, 8 or 5. After training

the following results were created which can be seen in Table 6.
Here it is clear to see how the system scales from 5 to 8 to 10 node graphs. There are no real
surprises as it is clear that for all experiments the performance drops marginally with each
step up in graph size which was to be expected. The problem of finding the optimal solution
classically becomes exponentially harder. For these results, we can hope to see that the EQC
performance does not go down exponentially. The results get closer to optimal the smaller
the input however it is interesting to note that the results also get closer to the resulting
average tour length by the random agent. This can be explained by the fact that for the
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smaller graphs, the difference between the worst tour and the best tour becomes smaller
since fewer bad edge choices can be made. As an example, if the input were to consist of
only three vertices then it would be impossible to make a bad edge selection. If the input
now consists of four vertices then either a tour representing a square or a tour with a cross
resembling an hourglass so the chance of a random tour being good or close to optimal is
higher than with larger inputs.

Table 6: Results for the scalability experiment

Results tour/optimal tour/greedy tour/random
EQC 10 qubits 1.17 1.07 0.64
EQC 8 qubits 1.09 1.01 0.69
EQC 5 qubits 1.03 0.99 0.84

6 Discussion

All experiments have shown interesting results and were performed with adequately sized
data sets but there have been a few unexpected outcomes. For the first experiment regarding
the HWE ansatz it was clear that the performance would not be as good or near the perfor-
mance of the EQC as could also be seen by the experiments performed in [2]. However that
the performance would even be clearly below random edge selection was unexpected and
for clearer answers on why has happened some further research would be needed using, for
example, different datasets or longer or different training methods. Then in the second set
of experiments focusing on the possible bias of the EQC there were again interesting results
on how even untrained for some datasets the EQC seemed to perform better than random.
The other experiments on the bias do also seem to enforce this idea that even untrained the
EQC performs better than random. For a large area over the combinations of γ and β the
EQC returned tours that were better than the greedy agent. And for overall performance,
the EQC managed to find a tour better than random for all graphs with some combination
of the parameters. Then for the last set of experiments on scalability, the results are very
promising and there was only one unexpected result which was for a graph of five vertices
which was that while it performed better than greedy it also returned tours which were
closer to the random agent however this is likely due to the fact that with only 5 vertices
the difference between the best and worse tours becomes smaller.

7 Conclusion

Using the insight gained from the results we can give some answers to the research questions
as proposed in Section 1. The first experiment showing the performance difference between
the EQC and the HWE ansatz gives a clear answer to the second sub-question. How does the
performance of the EQC compare to a hardware-efficient ansatz? The EQC greatly outper-
forms the HWE ansatz in terms of performance based on the quality of the approximation
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when compared to greedy solutions and to random edge choices.
In the scalability, experiment insight is given to answer the third sub-question. How does the
EQC scale for future use on larger NISQ devices? Even though the results show the EQC to
scale well with the given input size range it is not possible to say how the EQC would scale
up for large input sizes. Thus concluding that future experiments are needed for a decisive
answer.
From the results of the bias experiments, insight can be gained to answer the first sub-
question and the main research question of this thesis. Does the EQC have an inductive bias
for greedy edge selection when used for TSP? Does the EQC have an inductive bias when
used for approximating the travelling salesperson problem?
When looking at the results from the bias experiment it can be seen that the EQC does
satisfy Definition 2 for having a bias for selecting low-weight edges but not conclusively for
returning completely greedy tours. Thus implying that the EQC does indeed have a bias not
for returning complete greedy tours but specifically for the edge selection.

8 Future work

Based on the experiments conducted in this thesis there is some future research that can
be explored. The most notable being an extension on the scalability experiment. For testing
on a theoretical framework the experiment on graph sizes was adequate however for real-
world use in the future, larger scale scalability experiments will have to be conducted. Next
to that, all experiments conducted were to compare performance an bias between different
input graphs. An interesting future experiment would be to compare the results against other
proposed quantum TSP solutions. It would also be interesting to see how the EQC would
compare with a recursive version of QAOA on TSP or with the EQC for max-cut. Lastly, it
would be interesting to do future analytical research as to what makes the EQC have a bias
and how this bias could be removed or enhanced.

References

[1] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hart-
mut Neven. Barren plateaus in quantum neural network training landscapes. Nature
Communications, 9(1), nov 2018.

[2] Andrea Skolik, Michele Cattelan, Sheir Yarkoni, Thomas Bäck, and Vedran Dunjko.
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